Dynkin Functions and Its Applications

Dynkin functions were introduced by Ringel as a tool to investigate combinatorial properties of hereditary artin algebras. According to Ringel, a Dynkin function consists of four sequences associated to An, Bn, Cn, Dn and five single values associated to the diagrams E6, E7, E8, F4 and G2. He also p...

Full description

Autores:
Bravo Rios, Gabriel
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79480
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79480
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Auslander-Reiten quiver
Categorification
Brauer configuration
Brauer configuration algebra
Catalan triangle
Cluster algebras
Dyck paths
Dynkin algebra
Dynkin function
Frieze patterns
Lattice path
Mutation class
Perfect matchings
Poset
Quiver representation
Section
Triangulations
Carcaj de Auslander-Reiten
Configuración de Brauer
Álgebra de Configuración de Brauer
Triángulo de Catalan
Álgebra de Conglomerado
Caminos de Dyck
Álgebra Dynkin
Función Dynkin
Patrones de frizo
Camino reticular
Clases de mutación
Emparejamiento perfecto
Conjunto parcialmente ordenado
Representación de carcaj
Sección
Triangulaciones
Categorización
Análisis matemático
Mathematical analysis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_1fde40af397757cd96ce7c0abea5425f
oai_identifier_str oai:repositorio.unal.edu.co:unal/79480
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Dynkin Functions and Its Applications
dc.title.translated.spa.fl_str_mv Funciones Dynkin y sus Aplicaciones
title Dynkin Functions and Its Applications
spellingShingle Dynkin Functions and Its Applications
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Auslander-Reiten quiver
Categorification
Brauer configuration
Brauer configuration algebra
Catalan triangle
Cluster algebras
Dyck paths
Dynkin algebra
Dynkin function
Frieze patterns
Lattice path
Mutation class
Perfect matchings
Poset
Quiver representation
Section
Triangulations
Carcaj de Auslander-Reiten
Configuración de Brauer
Álgebra de Configuración de Brauer
Triángulo de Catalan
Álgebra de Conglomerado
Caminos de Dyck
Álgebra Dynkin
Función Dynkin
Patrones de frizo
Camino reticular
Clases de mutación
Emparejamiento perfecto
Conjunto parcialmente ordenado
Representación de carcaj
Sección
Triangulaciones
Categorización
Análisis matemático
Mathematical analysis
title_short Dynkin Functions and Its Applications
title_full Dynkin Functions and Its Applications
title_fullStr Dynkin Functions and Its Applications
title_full_unstemmed Dynkin Functions and Its Applications
title_sort Dynkin Functions and Its Applications
dc.creator.fl_str_mv Bravo Rios, Gabriel
dc.contributor.advisor.none.fl_str_mv Moreno Cañadas, Agustín
dc.contributor.author.none.fl_str_mv Bravo Rios, Gabriel
dc.contributor.researchgroup.spa.fl_str_mv TERENUFIA-UNAL
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Auslander-Reiten quiver
Categorification
Brauer configuration
Brauer configuration algebra
Catalan triangle
Cluster algebras
Dyck paths
Dynkin algebra
Dynkin function
Frieze patterns
Lattice path
Mutation class
Perfect matchings
Poset
Quiver representation
Section
Triangulations
Carcaj de Auslander-Reiten
Configuración de Brauer
Álgebra de Configuración de Brauer
Triángulo de Catalan
Álgebra de Conglomerado
Caminos de Dyck
Álgebra Dynkin
Función Dynkin
Patrones de frizo
Camino reticular
Clases de mutación
Emparejamiento perfecto
Conjunto parcialmente ordenado
Representación de carcaj
Sección
Triangulaciones
Categorización
Análisis matemático
Mathematical analysis
dc.subject.proposal.eng.fl_str_mv Auslander-Reiten quiver
Categorification
Brauer configuration
Brauer configuration algebra
Catalan triangle
Cluster algebras
Dyck paths
Dynkin algebra
Dynkin function
Frieze patterns
Lattice path
Mutation class
Perfect matchings
Poset
Quiver representation
Section
Triangulations
dc.subject.proposal.spa.fl_str_mv Carcaj de Auslander-Reiten
Configuración de Brauer
Álgebra de Configuración de Brauer
Triángulo de Catalan
Álgebra de Conglomerado
Caminos de Dyck
Álgebra Dynkin
Función Dynkin
Patrones de frizo
Camino reticular
Clases de mutación
Emparejamiento perfecto
Conjunto parcialmente ordenado
Representación de carcaj
Sección
Triangulaciones
Categorización
dc.subject.unesco.none.fl_str_mv Análisis matemático
Mathematical analysis
description Dynkin functions were introduced by Ringel as a tool to investigate combinatorial properties of hereditary artin algebras. According to Ringel, a Dynkin function consists of four sequences associated to An, Bn, Cn, Dn and five single values associated to the diagrams E6, E7, E8, F4 and G2. He also proposes to create an On-line Encyclopedia of Dynkin functions (OEDF) with the same purposes as the famous OEIS. Dynkin functions arise from the context of categorification of integer sequences, which according to Ringel and Fahr it means to consider suitable objects in a category instead of numbers of a given integer sequence. They gave a categorification of Fibonacci numbers by using the Gabriel's universal covering theory and the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver. For instance, if Λ denotes a hereditary artin algebra associated to a Dynkin diagram ∆n then r(∆n) the number of indecomposable modules, a(∆n) the number of antichains in mod Λ, and tn(∆n) the number of tilting modules are Dynkin functions. In particular, we are focused on the way that some Dynkin functions act on Dynkin diagrams of type An. In this work, we follow the ideas of Ringel regarding Dynkin functions by investigating the number of sections in the Auslander-Reiten quiver of algebras of finite representation type. Dyck paths categories are introduced as a combinatorial model of the category of representations of quivers of Dynkin type An and it is shown an algebraic interpretation of frieze patterns as a direct sum of indecomposable objects of the category of Dyck paths. In particular, it is proved that there is a bijection between some Dyck paths and perfect matchings of some snake graphs. The approach allows us to give formulas for cluster variables in cluster algebras of Dynkin type An in terms of Dyck paths. At last but not least, it is introduced some Brauer configuration algebras such that the dimension of these algebras and its corresponding centers can be obtained via some combinatorial properties of the Catalan triangle. This research was partially supported by COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-10
dc.date.accessioned.none.fl_str_mv 2021-05-05T18:44:11Z
dc.date.available.none.fl_str_mv 2021-05-05T18:44:11Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79480
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79480
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] G. Andrews, The Theory of Partitions, Cambridge University. Press, Cambridge, 1998.
[2] D.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, vol. 2, Springer, 2000.
[3] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Cambridge University Press, Cambridge UK, 2006.
[4] I. Assem, C. Reutenauer, and D. Smith, Friezes, Adv. Math. 225 (2010), 3134-3165.
[5] M. Auslander, I. Reiten, and S. O. Smalo , Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics., Cambridge University Press, Cambridge, 1995.
[6] E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Mathematics 170 (1997), 211-217.
[7] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Mutation of friezes, Bull. Sci. Math 142 (2018), 1-48.
[8] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Conway-Coxeter Friezes and Mutation: A Survey, Advances in the Mathematical Sciences. 2017. Association for Women in Mathematics Series 15 (2018), 47-68.
[9] K. Baur and R. Marsh, Frieze patterns for punctured discs, J. Algebraic Combin 30 (2009), 349-379.
[10] S. Bilotta, F. Disanto, R. Pinzani, and S. Rinaldi, Catalan structures and Catalan pairs, Theoretical Computer Science 502 (2013), 239-248.
[11] V. M. Bondarenko and A. G. Zavadskij, Posets with an equivalence relation of tame type and of finite gowth, Can, Math. Soc. Conf. Proc. 11 (1991), 67-88.
[12] M. Bousquet-Melou, Square lattice walks avoiding a quadrant, Journal of Combinatorial Theory 144 (2016), 37-79.
[13] A. Buan, M. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2006), 572-628.
[14] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332.
[15] A. Buan, M. Marsh, and I. Reiten, Cluster mutation via quiver representations, Commentarii Mathematici Helvetici 83 (2008), no. 1, 143-177.
[16] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras of finite representation type, Journal of Algebra 306 (2006), no. 2, 412-431.
[17] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364.
[18] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Commentarii Mathematici Helvetici 81 (2006), 595-616.
[19] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.
[20] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z 281 (2015), 55-102.
[21] I. Canakci and R. Schiffler, Snake Graph Calculus and Cluster Algebras from Surfaces III: Band Graphs and Snake Rings, International Mathematics Research Notices 4 (2019), 1145-1226.
[22] I. Canakci and R. Schiffler, Cluster algebras and continued fractions, Compositio Mathematica 154 (2018), 565-593.
[23] I. Canakci and R. Schiffler, Snake Graphs and continued fractions, European Journal of Combinatorics. 86 (2020), 103081.
[24] A.M. Cañadas, Descripción categórica de algunos algoritmos de diferenciación, (Tesis de Doctorado) Universidad Nacional de Colombia (2007).
[25] A.M. Cañadas, Morphisms in categories of representations of equipped posets, JPANTA 25 (2012), no. 2,145-176.
[26] A.M. Cañadas, Some categorical properties of the algorithm of differentiation VII for equipped posets, JPANTA 25 (2012), no. 2, 177-213.
[27] A.M. Cañadas, P.F.F. Espinosa, and I.D.M. Gaviria, Categorification of some integer sequences via Kronecker modules, JPANTA 38 (2016), no. 4, 339-347.
[28] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, Categorical properties of the algorithm of differentiation D-VIII, and on the algorithm of differentiation DIX for equipped posets, JPANTA 29 (2013), no. 2, 133-156.
[29] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, On the algorithm of differentiation D-IX for equipped posets, JPANTA 29 (2013), no. 12, 157-173.
[30] A.M. Cañadas and H. Giraldo, Completion for equipped posets, JPANTA 26 (2012), no. 2, 173-196.
[31] A.M. Cañadas, H. Giraldo, and P.F.F. Espinosa, Categorification of some integer sequences, FJMS 92 (2014), no. 2, 125-139.
[32] A.M. Cañadas, H. Giraldo, and G.B. Rios, On the number of sections in the Auslander-Reiten quiver of algebras of Dynkin type, FJMS 101 (2017), no. 8, 1631-1654.
[33] A.M. Cañadas, H. Giraldo, and G.B. Rios, An algebraic approach to the number of some antichains in the powerset 2^n, JPANTA 38 (2016), no. 1, 45-62.
[34] A.M. Cañadas, H. Giraldo, and R.J. Serna, Some integer partitions induced by orbits of Dynkin type, FJMS 101 (2017), no. 12, 2745-2766.
[35] A.M. Cañadas, H. Giraldo, and V. C Vargas, Categorification of some integer sequences and Higher Dimensional Partitions, FJMS 93 (2014), no. 2, 133-149.
[36] A.M. Cañadas, J.S. Mora, and I.D.M. Gaviria, On the Gabriel's quiver of some equipped posets, JPANTA 36 (2015), no. 1, 63-90.
[37] A.M. Cañadas, N. P. Quitian, and A. M. Palma, Algorithms of differentiation of posets to analyze tactics of war, FJMS Specc. (Comput. Sci.) (2013), 501-525.
[38] A.M. Cañadas, G. B. Rios, and H. Giraldo, Integer sequences arising from Auslander-Reiten quivers of some hereditary artin algebras, Journal of Algebra and Its Applications. (2020), 1-33.
[39] A.M. Cañadas and V. C. Vargas, On the apparatus of differentiation DI-DV for posets, Sao Paulo Journal of Mathematical Sciences 14 (2020), 249-286.
[40] A.M. Cañadas, V. C. Vargas, and P. F. F. Espinosa, On sums of figurate numbers by using algorithms of differentiation of posets, FJMS 32 (2014), no. 2, 99-140.
[41] A.M. Cañadas, V. C. Vargas, and A. F. Gonzales, On the number of two-point antichains in the powerset of an n-element set ordered by inclusion, JPANTA 38 (2016), no. 3, 279-293.
[42] A.M. Cañadas and A.G. Zavadskij, Categorical description of some differentiation algorithms, Journal of Algebra and Its Applications 5 (2006), no. 5, 629-652.
[43] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94.
[44] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175-183.
[45] H.S.M. Coxeter, Frieze patterns, Acta Arith 18 (1971), 297-310.
[46] B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed.,Cambridge University Press, 2002.
[47] M. Delest and X.G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci. 34 (1984), 169-206.
[48] P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics 225 (2000), 121-135.
[49] P. Fahr, C. Ringel, and D. Thurston, A partition formula for Fibonacci numbers, Journal of integer sequences 11 (2008), no. 08.14.
[50] P. Fahr and C. Ringel, Categorification of the Fibonacci numbers using representation of quiver, Journal of integer sequences 15 (2012), no. 12.2.1.
[51] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180.
[52] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008), 83-146.
[53] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda Lengths, Mem. Amer. Math. Soc. 255 (2018), no. 1223.
[54] S. Fomin and A. Zelevinsky, Cluster algebra. I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
[55] S. Fomin and A. Zelevinsky, Cluster algebra. II: Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.
[56] S. Fomin and A. Zelevinsky, Cluster algebra. IV: Coefficients, Compositio Mathematica 143 (2007), 112-164.
[57] B. Fontaine and P.-G. Plamondon, Counting friezes in type Dn, J. Algebraic Combin. 44 (2016), no. 2, 433-445.
[58] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
[59] P. Gabriel and J. A. De la Peña, Quotients of representation-finite algebras, Comm.Algebra 15 (1987), 279-307.
[60] P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopedia of Math.Sc., vol. 73, Springer-Verlag, Berlin, New York, 1992.
[61] E. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math 141 (2017), no. 6, 539-572.
[62] E. Gunawan and R. Schiffler, Frieze Vectors and Unitary Friezes, Journal of Combinatorics 11 (2020), no. 4, 681-703.
[63] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math 23 (1975), no. 5, 607-615.
[64] A.C.M. Lopez, Emparejamientos perfectos, álgebras de conglomerado y algunas de sus aplicaciones, (Tesis de Maestría) Universidad Nacional de Colombia (2019), 74-77 p.
[65] R. Marczinzik, M. Rubey, and C. Stump, A combinatorial classification of 2-regular simple modules for Nakayama algebras, Journal of Pure and Applied Algebra 225 (2020), no. 3.
[66] S. Morier-Genoud, Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc. 47 (2015), no. 6, 895-938.
[67] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier. 62 (2012), no. 3, 937-987.
[68] G. Musiker and R. Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), no. 2, 187-209.
[69] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.
[70] T.K. Petersen, Enriched P-partitions and peak algebras, Advances in Mathematics 209 (2007), no. 2, 561-610.
[71] J. Propp, The combinatorics of frieze patterns and Markoff numbers, Integers 20 (2020), 1-38.
[72] L.A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk SSSR 37 (1973), 752-791 (in Russian.)
[73] L.A. Nazarova, Partially ordered sets of infinite type, Math. USSR Izvestija 9 (1975), 911-938.
[74] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.
[75] L.A. Nazarova and A.V. Roiter, Categorical matrix problems and the Brauer-Thrall conjecture, Preprint Ins. Math. AN UkSSR, Ser. Mat. 73.9 (1973), 1-100 (in Russian); English transl. in oin Mitt. Math. Semin. Giessen 115 (1975).
[76] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of tame type, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev (1977), 122-143 (Russian).
[77] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen., 19 (1982), no. 2, 72-73 (in Russian); English transl., Functional. Anal. Appl., 16 (1982), 135-137.
[78] C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, Recent Developments in Representation Theory. Contemp Math 673 (2016).
[79] C. M. Ringel, Tame algebras and integral quadratic forms, LNM, Springer- Verlag 1099 (1984), 1-371.
[80] R. Schiffler, Quiver Representations, Springer, 2010.
[81] R. Schiffler, A cluster expansion formula (An), Electron J. Combin. 15 (2008), no. 1, R64.
[82] B.S.W Schröder, Ordered sets. An Introduction, Birkhäuser, 2003.
[83] A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.
[84] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.
[85] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A083329, The OEIS Foundation.
[86] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A000295, The OEIS Foundation.
[87] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A049611, The OEIS Foundation.
[88] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A176448, The OEIS Foundation.
[89] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A052951, The OEIS Foundation.
[90] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A009766, The OEIS Foundation.
[91] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1986.
[92] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.
[93] R. Stanley, Ordered structures and partitions, Mem. Amer, Math. Soc. 1-111 (1972).
[94] J. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997).
[95] H. A. Torkildsen, Counting cluster-tilted algebras of type An, Int Elec J Algebra 4 (2008), 149-158.
[96] M. Wallner, Combinatorics of Lattice Paths and Tree-Like Structures, PhD thesis, PhD thesis, 2016. 1-4p.
[97] A.G. Zavadskij, Differentiation with respect to a pair of points, Matrix problems, Collect. sci. Works. Kiev (1977), 115-121 (in Russian).
[98] A.G. Zavadskij, An algorithm for posets with an equivalence relation, Canad. Math. Soc. Conf. Proc. 11 (1991), 299-322.
[99] A.G. Zavadskij, On Two Point Differentiation and its Generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376 (2005), 413-436.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en línea (135 páginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79480/1/1012346226.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79480/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79480/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79480/4/1012346226.2020.pdf.jpg
bitstream.checksum.fl_str_mv 2c1f2dd4ffc33d13fb7559230a8566db
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
e7e278831d6705906ceed4c3ab002b27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089767336280064
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Cañadas, Agustín9ca55eaf75ecd87559010093e719d1f8Bravo Rios, Gabriel312d39a307e1f8bee7cbdbb979420cfdTERENUFIA-UNAL2021-05-05T18:44:11Z2021-05-05T18:44:11Z2020-10https://repositorio.unal.edu.co/handle/unal/79480Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Dynkin functions were introduced by Ringel as a tool to investigate combinatorial properties of hereditary artin algebras. According to Ringel, a Dynkin function consists of four sequences associated to An, Bn, Cn, Dn and five single values associated to the diagrams E6, E7, E8, F4 and G2. He also proposes to create an On-line Encyclopedia of Dynkin functions (OEDF) with the same purposes as the famous OEIS. Dynkin functions arise from the context of categorification of integer sequences, which according to Ringel and Fahr it means to consider suitable objects in a category instead of numbers of a given integer sequence. They gave a categorification of Fibonacci numbers by using the Gabriel's universal covering theory and the structure of the Auslander-Reiten quiver of the 3-Kronecker quiver. For instance, if Λ denotes a hereditary artin algebra associated to a Dynkin diagram ∆n then r(∆n) the number of indecomposable modules, a(∆n) the number of antichains in mod Λ, and tn(∆n) the number of tilting modules are Dynkin functions. In particular, we are focused on the way that some Dynkin functions act on Dynkin diagrams of type An. In this work, we follow the ideas of Ringel regarding Dynkin functions by investigating the number of sections in the Auslander-Reiten quiver of algebras of finite representation type. Dyck paths categories are introduced as a combinatorial model of the category of representations of quivers of Dynkin type An and it is shown an algebraic interpretation of frieze patterns as a direct sum of indecomposable objects of the category of Dyck paths. In particular, it is proved that there is a bijection between some Dyck paths and perfect matchings of some snake graphs. The approach allows us to give formulas for cluster variables in cluster algebras of Dynkin type An in terms of Dyck paths. At last but not least, it is introduced some Brauer configuration algebras such that the dimension of these algebras and its corresponding centers can be obtained via some combinatorial properties of the Catalan triangle. This research was partially supported by COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.Las funciones Dynkin fueron introducidas por Ringel como una herramienta para investigar las propiedades combinatorias de las álgebras hereditarias de artin. Según Ringel, una función Dynkin consta de cuatro sucesiones asociadas a An, Bn, Cn, Dn y cinco valores únicos asociados a los diagramas E6, E7, E8, F4 y G2. También propone crear una Enciclopedia en línea de funciones Dynkin (OEDF) con los mismos propósitos que la famosa OEIS. Las funciones Dynkin surgen del contexto de categorización de sucesiones enteras, que según Ringel y Fahr significa considerar objetos adecuados en una categoría en lugar de números de una sucesión entera dada. Ellos dieron una categorización de los números de Fibonacci utilizando la teoría de cubrimiento universal de Gabriel y la estructura del carcaj Auslander-Reiten del carcaj 3-Kronecker. Por ejemplo, si Λ denota una álgebra hereditaria de artin asociada a un diagrama de Dynkin ∆n entonces r (∆n) el número de módulos indescomponibles, a(∆n) el número de anticadenas en mod Λ, y tn (∆n) el número de módulos inclinantes son funciones Dynkin. En particular, nos centramos en la forma en que algunas funciones Dynkin actúan en los diagramas de Dynkin de tipo An. En este trabajo, seguimos las ideas de Ringel con respecto a las funciones Dynkin investigando el número de secciones en el carcaj de Auslander-Reiten de álgebras de tipo representación finita. Las categorías de caminos de Dyck se introducen como un modelo combinatorio de la categoría de representaciones de carcajes de tipo Dynkin An y se muestra una interpretación algebraica de patrones de friso como una suma directa de objetos indescomponibles de la categoría de caminos de Dyck. En particular, se ha demostrado que existe una biyección entre algunas caminos de Dyck y emparejamientos perfectos de algunos grafos serpientes. El enfoque nos permite dar fórmulas para las variables de conglomerado en álgebras de conglomerado Dynkin de tipo An en términos de caminos de Dyck. Por último, pero no menos importante, se introducen algunas álgebras de configuración de Brauer de modo que la dimensión de estas álgebras y sus correspondientes centros se puede obtener mediante algunas propiedades combinatorias del triángulo de catalán. Esta investigación fue apoyada parcialmente por COLCIENCIAS convocatoria doctorados nacionales 785 de 2017.DoctoradoTeoría de representaciones de álgebras1 recurso en línea (135 páginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasAuslander-Reiten quiverCategorificationBrauer configurationBrauer configuration algebraCatalan triangleCluster algebrasDyck pathsDynkin algebraDynkin functionFrieze patternsLattice pathMutation classPerfect matchingsPosetQuiver representationSectionTriangulationsCarcaj de Auslander-ReitenConfiguración de BrauerÁlgebra de Configuración de BrauerTriángulo de CatalanÁlgebra de ConglomeradoCaminos de DyckÁlgebra DynkinFunción DynkinPatrones de frizoCamino reticularClases de mutaciónEmparejamiento perfectoConjunto parcialmente ordenadoRepresentación de carcajSecciónTriangulacionesCategorizaciónAnálisis matemáticoMathematical analysisDynkin Functions and Its ApplicationsFunciones Dynkin y sus AplicacionesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] G. Andrews, The Theory of Partitions, Cambridge University. Press, Cambridge, 1998.[2] D.M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS Books in Mathematics, vol. 2, Springer, 2000.[3] I. Assem, D. Simson, and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Cambridge University Press, Cambridge UK, 2006.[4] I. Assem, C. Reutenauer, and D. Smith, Friezes, Adv. Math. 225 (2010), 3134-3165.[5] M. Auslander, I. Reiten, and S. O. Smalo , Representation theory of Artin algebras, volume 36 of Cambridge Studies in Advanced Mathematics., Cambridge University Press, Cambridge, 1995.[6] E. Barcucci, A. Del Lungo, S. Fezzi, and R. Pinzani, Nondecreasing Dyck paths and q-Fibonacci numbers, Discrete Mathematics 170 (1997), 211-217.[7] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Mutation of friezes, Bull. Sci. Math 142 (2018), 1-48.[8] K. Baur, E. Faber, S. Gratz, K. Serhiyenko, and G. Todorov, Conway-Coxeter Friezes and Mutation: A Survey, Advances in the Mathematical Sciences. 2017. Association for Women in Mathematics Series 15 (2018), 47-68.[9] K. Baur and R. Marsh, Frieze patterns for punctured discs, J. Algebraic Combin 30 (2009), 349-379.[10] S. Bilotta, F. Disanto, R. Pinzani, and S. Rinaldi, Catalan structures and Catalan pairs, Theoretical Computer Science 502 (2013), 239-248.[11] V. M. Bondarenko and A. G. Zavadskij, Posets with an equivalence relation of tame type and of finite gowth, Can, Math. Soc. Conf. Proc. 11 (1991), 67-88.[12] M. Bousquet-Melou, Square lattice walks avoiding a quadrant, Journal of Combinatorial Theory 144 (2016), 37-79.[13] A. Buan, M. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2006), 572-628.[14] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), 323-332.[15] A. Buan, M. Marsh, and I. Reiten, Cluster mutation via quiver representations, Commentarii Mathematici Helvetici 83 (2008), no. 1, 143-177.[16] A. Buan, M. Marsh, and I. Reiten, Cluster-tilted algebras of finite representation type, Journal of Algebra 306 (2006), no. 2, 412-431.[17] P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations arising from clusters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347-1364.[18] P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Commentarii Mathematici Helvetici 81 (2006), 595-616.[19] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.[20] I. Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z 281 (2015), 55-102.[21] I. Canakci and R. Schiffler, Snake Graph Calculus and Cluster Algebras from Surfaces III: Band Graphs and Snake Rings, International Mathematics Research Notices 4 (2019), 1145-1226.[22] I. Canakci and R. Schiffler, Cluster algebras and continued fractions, Compositio Mathematica 154 (2018), 565-593.[23] I. Canakci and R. Schiffler, Snake Graphs and continued fractions, European Journal of Combinatorics. 86 (2020), 103081.[24] A.M. Cañadas, Descripción categórica de algunos algoritmos de diferenciación, (Tesis de Doctorado) Universidad Nacional de Colombia (2007).[25] A.M. Cañadas, Morphisms in categories of representations of equipped posets, JPANTA 25 (2012), no. 2,145-176.[26] A.M. Cañadas, Some categorical properties of the algorithm of differentiation VII for equipped posets, JPANTA 25 (2012), no. 2, 177-213.[27] A.M. Cañadas, P.F.F. Espinosa, and I.D.M. Gaviria, Categorification of some integer sequences via Kronecker modules, JPANTA 38 (2016), no. 4, 339-347.[28] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, Categorical properties of the algorithm of differentiation D-VIII, and on the algorithm of differentiation DIX for equipped posets, JPANTA 29 (2013), no. 2, 133-156.[29] A.M. Cañadas, I.D.M. Gaviria, and P.F.F. Espinosa, On the algorithm of differentiation D-IX for equipped posets, JPANTA 29 (2013), no. 12, 157-173.[30] A.M. Cañadas and H. Giraldo, Completion for equipped posets, JPANTA 26 (2012), no. 2, 173-196.[31] A.M. Cañadas, H. Giraldo, and P.F.F. Espinosa, Categorification of some integer sequences, FJMS 92 (2014), no. 2, 125-139.[32] A.M. Cañadas, H. Giraldo, and G.B. Rios, On the number of sections in the Auslander-Reiten quiver of algebras of Dynkin type, FJMS 101 (2017), no. 8, 1631-1654.[33] A.M. Cañadas, H. Giraldo, and G.B. Rios, An algebraic approach to the number of some antichains in the powerset 2^n, JPANTA 38 (2016), no. 1, 45-62.[34] A.M. Cañadas, H. Giraldo, and R.J. Serna, Some integer partitions induced by orbits of Dynkin type, FJMS 101 (2017), no. 12, 2745-2766.[35] A.M. Cañadas, H. Giraldo, and V. C Vargas, Categorification of some integer sequences and Higher Dimensional Partitions, FJMS 93 (2014), no. 2, 133-149.[36] A.M. Cañadas, J.S. Mora, and I.D.M. Gaviria, On the Gabriel's quiver of some equipped posets, JPANTA 36 (2015), no. 1, 63-90.[37] A.M. Cañadas, N. P. Quitian, and A. M. Palma, Algorithms of differentiation of posets to analyze tactics of war, FJMS Specc. (Comput. Sci.) (2013), 501-525.[38] A.M. Cañadas, G. B. Rios, and H. Giraldo, Integer sequences arising from Auslander-Reiten quivers of some hereditary artin algebras, Journal of Algebra and Its Applications. (2020), 1-33.[39] A.M. Cañadas and V. C. Vargas, On the apparatus of differentiation DI-DV for posets, Sao Paulo Journal of Mathematical Sciences 14 (2020), 249-286.[40] A.M. Cañadas, V. C. Vargas, and P. F. F. Espinosa, On sums of figurate numbers by using algorithms of differentiation of posets, FJMS 32 (2014), no. 2, 99-140.[41] A.M. Cañadas, V. C. Vargas, and A. F. Gonzales, On the number of two-point antichains in the powerset of an n-element set ordered by inclusion, JPANTA 38 (2016), no. 3, 279-293.[42] A.M. Cañadas and A.G. Zavadskij, Categorical description of some differentiation algorithms, Journal of Algebra and Its Applications 5 (2006), no. 5, 629-652.[43] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 87-94.[44] J.H. Conway and H.S.M. Coxeter, Triangulated polygons and frieze patterns, Math. Gaz. 57 (1973), 175-183.[45] H.S.M. Coxeter, Frieze patterns, Acta Arith 18 (1971), 297-310.[46] B. A. Davey and H. A. Priestley, Introduction to lattices and order, 2nd ed.,Cambridge University Press, 2002.[47] M. Delest and X.G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci. 34 (1984), 169-206.[48] P. Duchon, On the enumeration and generation of generalized Dyck words, Discrete Mathematics 225 (2000), 121-135.[49] P. Fahr, C. Ringel, and D. Thurston, A partition formula for Fibonacci numbers, Journal of integer sequences 11 (2008), no. 08.14.[50] P. Fahr and C. Ringel, Categorification of the Fibonacci numbers using representation of quiver, Journal of integer sequences 15 (2012), no. 12.2.1.[51] A. Felikson, M. Shapiro, and P. Tumarkin, Skew-symmetric cluster algebras of finite mutation type, J. Eur. Math. Soc. 14 (2012), 1135-1180.[52] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008), 83-146.[53] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda Lengths, Mem. Amer. Math. Soc. 255 (2018), no. 1223.[54] S. Fomin and A. Zelevinsky, Cluster algebra. I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.[55] S. Fomin and A. Zelevinsky, Cluster algebra. II: Finite type classification, Invent. Math. 154 (2003), no. 1, 63-121.[56] S. Fomin and A. Zelevinsky, Cluster algebra. IV: Coefficients, Compositio Mathematica 143 (2007), 112-164.[57] B. Fontaine and P.-G. Plamondon, Counting friezes in type Dn, J. Algebraic Combin. 44 (2016), no. 2, 433-445.[58] P. Gabriel, Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.[59] P. Gabriel and J. A. De la Peña, Quotients of representation-finite algebras, Comm.Algebra 15 (1987), 279-307.[60] P. Gabriel and A.V. Roiter, Representations of Finite-Dimensional Algebras, Algebra VIII, Encyclopedia of Math.Sc., vol. 73, Springer-Verlag, Berlin, New York, 1992.[61] E. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math 141 (2017), no. 6, 539-572.[62] E. Gunawan and R. Schiffler, Frieze Vectors and Unitary Friezes, Journal of Combinatorics 11 (2020), no. 4, 681-703.[63] M.M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math 23 (1975), no. 5, 607-615.[64] A.C.M. Lopez, Emparejamientos perfectos, álgebras de conglomerado y algunas de sus aplicaciones, (Tesis de Maestría) Universidad Nacional de Colombia (2019), 74-77 p.[65] R. Marczinzik, M. Rubey, and C. Stump, A combinatorial classification of 2-regular simple modules for Nakayama algebras, Journal of Pure and Applied Algebra 225 (2020), no. 3.[66] S. Morier-Genoud, Coxeter's frieze patterns at the crossroads of algebra, geometry and combinatorics, Bull. Lond. Math. Soc. 47 (2015), no. 6, 895-938.[67] S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Ann. Inst. Fourier. 62 (2012), no. 3, 937-987.[68] G. Musiker and R. Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), no. 2, 187-209.[69] G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.[70] T.K. Petersen, Enriched P-partitions and peak algebras, Advances in Mathematics 209 (2007), no. 2, 561-610.[71] J. Propp, The combinatorics of frieze patterns and Markoff numbers, Integers 20 (2020), 1-38.[72] L.A. Nazarova, Representations of quivers of infinite type, Izv. Akad. Nauk SSSR 37 (1973), 752-791 (in Russian.)[73] L.A. Nazarova, Partially ordered sets of infinite type, Math. USSR Izvestija 9 (1975), 911-938.[74] L.A. Nazarova and A.V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.[75] L.A. Nazarova and A.V. Roiter, Categorical matrix problems and the Brauer-Thrall conjecture, Preprint Ins. Math. AN UkSSR, Ser. Mat. 73.9 (1973), 1-100 (in Russian); English transl. in oin Mitt. Math. Semin. Giessen 115 (1975).[76] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of tame type, Akad. Nauk Ukrain. SSR Inst. Mat., Kiev (1977), 122-143 (Russian).[77] L.A. Nazarova and A.G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen., 19 (1982), no. 2, 72-73 (in Russian); English transl., Functional. Anal. Appl., 16 (1982), 135-137.[78] C. M. Ringel, The Catalan combinatorics of the hereditary artin algebras, Recent Developments in Representation Theory. Contemp Math 673 (2016).[79] C. M. Ringel, Tame algebras and integral quadratic forms, LNM, Springer- Verlag 1099 (1984), 1-371.[80] R. Schiffler, Quiver Representations, Springer, 2010.[81] R. Schiffler, A cluster expansion formula (An), Electron J. Combin. 15 (2008), no. 1, R64.[82] B.S.W Schröder, Ordered sets. An Introduction, Birkhäuser, 2003.[83] A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.[84] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.[85] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A083329, The OEIS Foundation.[86] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A000295, The OEIS Foundation.[87] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A049611, The OEIS Foundation.[88] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A176448, The OEIS Foundation.[89] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A052951, The OEIS Foundation.[90] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Vol. http://oeis.org/A009766, The OEIS Foundation.[91] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, 1986.[92] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999.[93] R. Stanley, Ordered structures and partitions, Mem. Amer, Math. Soc. 1-111 (1972).[94] J. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997).[95] H. A. Torkildsen, Counting cluster-tilted algebras of type An, Int Elec J Algebra 4 (2008), 149-158.[96] M. Wallner, Combinatorics of Lattice Paths and Tree-Like Structures, PhD thesis, PhD thesis, 2016. 1-4p.[97] A.G. Zavadskij, Differentiation with respect to a pair of points, Matrix problems, Collect. sci. Works. Kiev (1977), 115-121 (in Russian).[98] A.G. Zavadskij, An algorithm for posets with an equivalence relation, Canad. Math. Soc. Conf. Proc. 11 (1991), 299-322.[99] A.G. Zavadskij, On Two Point Differentiation and its Generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376 (2005), 413-436.Dynkin Functions and Its ApplicationsCOLCIENCIASORIGINAL1012346226.2020.pdf1012346226.2020.pdfTesis de Doctorado en Ciencias - Matemáticasapplication/pdf1031279https://repositorio.unal.edu.co/bitstream/unal/79480/1/1012346226.2020.pdf2c1f2dd4ffc33d13fb7559230a8566dbMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79480/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79480/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1012346226.2020.pdf.jpg1012346226.2020.pdf.jpgGenerated Thumbnailimage/jpeg3759https://repositorio.unal.edu.co/bitstream/unal/79480/4/1012346226.2020.pdf.jpge7e278831d6705906ceed4c3ab002b27MD54unal/79480oai:repositorio.unal.edu.co:unal/794802023-07-29 23:03:54.222Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==