Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics
diagramas, ilustraciones a color, tablas
- Autores:
-
Bernal García, Diego Nicolás
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79529
- Palabra clave:
- 530 - Física
Electrodinámica
Electrodynamics
Quantum optics
Cavity quantum electrodynamics
Circuit quantum electrodynamics
Nonstationary quantum phenomena
Multiple-scale perturbation technique
Force sensing
Óptica cuántica
Electrodinámica cuántica de cavidades
Electrodinámica cuántica de circuitos
Fenómenos cuánticos no estacionarios
Técnica de perturbaciones de escalas múltiples
Sensado de fuerzas
Teoría cuántica
Quantum theory
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_1eda212bfe75039dde94f8c87a4a7300 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79529 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
dc.title.translated.spa.fl_str_mv |
Fenómenos cuánticos no estacionarios en electrodinámica cuántica de cavidades y optomecánica |
title |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
spellingShingle |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics 530 - Física Electrodinámica Electrodynamics Quantum optics Cavity quantum electrodynamics Circuit quantum electrodynamics Nonstationary quantum phenomena Multiple-scale perturbation technique Force sensing Óptica cuántica Electrodinámica cuántica de cavidades Electrodinámica cuántica de circuitos Fenómenos cuánticos no estacionarios Técnica de perturbaciones de escalas múltiples Sensado de fuerzas Teoría cuántica Quantum theory |
title_short |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
title_full |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
title_fullStr |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
title_full_unstemmed |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
title_sort |
Nonstationary quantum phenomena in cavity quantum electrodynamics and optomechanics |
dc.creator.fl_str_mv |
Bernal García, Diego Nicolás |
dc.contributor.advisor.none.fl_str_mv |
Vinck Posada, Herbert Rodríguez Rey, Boris Anghelo |
dc.contributor.author.none.fl_str_mv |
Bernal García, Diego Nicolás |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Óptica e Información Cuántica Superconductividad y nanotecnología |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Electrodinámica Electrodynamics Quantum optics Cavity quantum electrodynamics Circuit quantum electrodynamics Nonstationary quantum phenomena Multiple-scale perturbation technique Force sensing Óptica cuántica Electrodinámica cuántica de cavidades Electrodinámica cuántica de circuitos Fenómenos cuánticos no estacionarios Técnica de perturbaciones de escalas múltiples Sensado de fuerzas Teoría cuántica Quantum theory |
dc.subject.other.none.fl_str_mv |
Electrodinámica Electrodynamics |
dc.subject.proposal.eng.fl_str_mv |
Quantum optics Cavity quantum electrodynamics Circuit quantum electrodynamics Nonstationary quantum phenomena Multiple-scale perturbation technique Force sensing |
dc.subject.proposal.spa.fl_str_mv |
Óptica cuántica Electrodinámica cuántica de cavidades Electrodinámica cuántica de circuitos Fenómenos cuánticos no estacionarios Técnica de perturbaciones de escalas múltiples Sensado de fuerzas |
dc.subject.unesco.none.fl_str_mv |
Teoría cuántica Quantum theory |
description |
diagramas, ilustraciones a color, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-08 |
dc.date.accessioned.none.fl_str_mv |
2021-05-18T17:23:59Z |
dc.date.available.none.fl_str_mv |
2021-05-18T17:23:59Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79529 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79529 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
A. Reiserer and G. Rempe, ‘Cavity-based quantum networks with single atoms and optical photons’, Rev. Mod. Phys. 87, 1379 (2015). S. Haroche, ‘Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary’, Reviews of Modern Physics 85, 1083 (2013). D. Castelvecchi, ‘Quantum computers ready to leap out of the lab in 2017’, Nature 541, 9 (2017). H. J. Kimble, ‘The quantum internet’, Nature 453, 1023 (2008). I. Bloch, J. Dalibard and S. Nascimbène, ‘Quantum simulations with ultracold quantum gases’, Nature Physics 8, 267 (2012). L. M. Duan and C. Monroe, ‘Colloquium: Quantum networks with trapped ions’, Reviews of Modern Physics 82, 1209 (2010). S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann and G. Rempe, ‘An elementary quantum network of single atoms in optical cavities’, Nature 484, 195 (2012). A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, ‘Quantum information processing using quantum dot spins and cavity QED’, Physical Review Letters 83, 4204 (1999). D. Englund, A. Faraon, I. Fushman and J. Vuckovic, ‘Quantum information processing on photonic crystal chips’, SPIE Newsroom, 2 (2008). C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori and P. Delsing, ‘Observation of the dynamical Casimir effect in a superconducting circuit.’, Nature 479, 376 (2011). J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, ‘Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Net- work’, Physical Review Letters 78, 3221 (1997). B. Kraus and J. I. Cirac, ‘Discrete entanglement distribution with squeezed light.’, Physical Review Letters 92, 013602 (2004). S. Bose, P. L. Knight, M. B. Plenio and V. Vedral, ‘Proposal for Teleportation of an Atomic State via Cavity Decay’, Physical Review Letters 83, 5158 (1999). S. L. Braunstein and P. van Loock, ‘Quantum information with continuous variables’, Reviews of Modern Physics 77, 513 (2005). T. C. H. Liew and V. Savona, ‘Single photons from coupled quantum modes’, Physical Review Letters 104, 2 (2010). K. M. Birnbaum, A. Boca, R. Miller, a. D. Boozer, T. E. Northup and H. J. Kimble, ‘Photon blockade in an optical cavity with one trapped atom’, Nature 436, 87 (2005). A. Majumdar and D. Gerace, ‘Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity’, Physical Review B 87, 235319 (2013). K. Hammerer, A. S. Sørensen and E. S. Polzik, ‘Quantum interface between light and atomic ensembles’, Rev. Mod. Phys. 82, 1041 (2010). A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl and M. D. Lukin, ‘Photon-photon interactions via Rydberg blockade’, Phys. Rev. Lett. 107, 1 (2011). O. L. Berman, R. Y. Kezerashvili and Y. E. Lozovik, ‘Quantum entanglement for two qubits in a nonstationary cavity’, PhysicalReviewA052308,1(2016). I. Carusotto, S. De Liberato, D. Gerace and C. Ciuti, ‘Back-reaction effects of quantum vacuum in cavity quantum electrodynamics’, Physical Review A 85, 023805 (2012). D. Chang, V. Vuletic and M. Lukin, ‘Quantum nonlinear optics — photon by photon’, Nature Photonics 8, 685 (2014). E. del Valle Reboul, ‘Quantum Electrodynamics with Quantum Dots in Microcavities’, PhD thesis (Universidad Autónoma de Madrid, 2009), p. 260. J. I. Perea, D. Porras and C. Tejedor, ‘Dynamics of the excitations of a quantum dot in a microcavity’, Physical Review B 70, 115304 (2004). T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, ‘Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity’, Nature 432, 200 (2004). A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin and R. J. Schoelkopf, ‘Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation’, Physical Review A 69, 062320 (2004). J. Larson, ‘Dynamics of the jaynes-cummings and rabi models: old wine in new bottles’, Physica Scripta 76, 146 (2007). E. Jaynes and F. Cummings, ‘Comparison of quantum and semiclassical radiation theories with application to the beam maser’, Proceedings of the IEEE 51 (1963). N. Quesada, H. Vinck-Posada and B. A. Rodríguez, ‘Density operator of a system pumped with polaritons: a Jaynes-Cummings-like approach.’, Journal of physics. Condensed matter : an Institute of Physics journal 23, 025301 (2011). J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon and Y. Yamamoto, ‘En- hanced single-photon emission from a quantum dot in a micropost microcavity’, Applied Physics Letters 82, 3596 (2003). D. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez and D. Ballarini, ‘Entanglement properties of quantum polaritons’, Phys. Rev. B 93, 205302 (2016). J. P. Reithmaier, G. Sek, a. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and a. Forchel, ‘Strong coupling in a single quantum dot-semiconductor microcavity system.’, Nature 432, 197 (2004). T. Niemczyk et al., ‘Circuit quantum electrodynamics in the ultrastrong- coupling regime’, Nature Physics 6, 772 (2010). J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll and E. Solano, ‘Deep strong coupling regime of the jaynes-cummings model’, Phys. Rev. Lett. 105, 263603 (2010). P. Goy, J. M. Raimond, M. Gross and S. Haroche, ‘Observation of cavity- enhanced single-atom spontaneous emission’, Phys. Rev. Lett. 50, 1903 (1983). S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond and S. Haroche, ‘Reconstruction of non-classical cavity field states with snapshots of their decoherence’, Nature 455, 510 (2008). M. Saffman, T. G. Walker and K. Mølmer, ‘Quantum information with rydberg atoms’, Rev. Mod. Phys. 82, 2313 (2010). D. P. DiVicenzo, ‘Mesoscopic Electron Transport’, in , edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Springer Netherlands, 1997) Chap. Topics in Quantum Computation. G. Scalari et al., ‘Ultrastrong coupling of the cyclotron transition of a 2d electron gas to a thz metamaterial’, Science 335, 1323 (2012). A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin and R. J. Schoelkopf, ‘Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics’, Nature 431, 162 (2004). G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch and a. Scherer, ‘Vacuum Rabi splitting in semiconductors’, Nature Physics 2, 81 (2006). L. Jacak, P. Hawrylak and A. Wójs, Quantum Dots (Springer, 1998). F. P. Laussy, E. Del Valle and C. Tejedor, ‘Strong coupling of quantum dots in microcavities’, Physical Review Letters 101, 1 (2008). K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu and A. Imamoglu, ‘Quantum nature of a strongly-coupled single quantum dot-cavity system’, Nature 445, 896 (2006). D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel and Y. Yamamoto, ‘Photon antibunching from a single quantum- dot-microcavity system in the strong coupling regime’, Phys. Rev. Lett. 98, 117402 (2007). C. A. Vera, N. Quesada, H. Vinck-Posada and B. A. Rodríguez, ‘Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum dot system’, Journal of Physics: Condensed Matter 21, 395603 (2009). J. Kasprzak, S. Reitzenstein, E. a. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel and W. Langbein, ‘Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system’, Nature Materials 9, 304 (2010). Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu and J.-W. Pan, ‘On-demand semiconductor single-photon source with near-unity indistinguishability’, Nature nanotechnology 8, 213 (2013). R. Oulton, ‘Quantum dots: Electrifying cavities’, Nature Nanotechnology 9, 169 (2014). J. Clarke and F. K. Wilhelm, ‘Superconducting quantum bits’, Nature 453, 1031 (2008). Y.-x. Liu, J. Q. You, L. F. Wei, C. P. Sun and F. Nori, ‘Optical Selection Rules and Phase-Dependent Adiabatic State Control in a Superconducting Quantum Circuit’, Physical Review Letters 95, 087001 (2005). C. Navarrete-Benlloch, J. J. García-Ripoll and D. Porras, ‘Inducing Non- classical Lasing via Periodic Drivings in Circuit Quantum Electrodynamics’, Physical Review Letters 113, 193601 (2014). A. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba and F. Beltram, ‘Signatures of the ultrastrong light-matter coupling regime’, Physical Review B 79, 201303 (2009). P. D. Nation, J. R. Johansson, M. P. Blencowe and F. Nori, ‘Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits’, Rev. Mod. Phys. 84, 1 (2012). G. T. Moore, ‘Quantum Theory of the Electromagnetic Field in a Variable- Length One-Dimensional Cavity’, Journal of Mathematical Physics 11, 2679 (1970). A. Dodonov and V. Dodonov, ‘Nonstationary casimir effect in cavities with two resonantly coupled modes’, Physics Letters A 289, 291 (2001). E. Yablonovitch, ‘Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: unruh-davies-fulling-dewitt radiation and the nonadiabatic casimir effect’, Phys. Rev. Lett. 62, 1742 (1989). C. K. Law, ‘Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium’, Physical Review A 49, 433 (1994). M. Razavy and J. Terning, ‘Quantum radiation in a one-dimensional cavity with moving boundaries’, Physical Review D 31, 307 (1985). C. K. Law, ‘Resonance response of the quantum vacuum to an oscillating boundary’, Physical Review Letters 73, 1931 (1994). C. K. Law, ‘Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation’, Physical Review A 51, 2537 (1995). A. M. Fedotov, N. B. Narozhny and Y. E. Lozovik, ‘’Shaking’ of an atom in a non-stationary cavity’, Phys. Lett. A 274, 213 (2000). J. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, ‘Dynamical casimir effect in a superconducting coplanar waveguide’, Phys. Rev. Lett. 103, 147003 (2009). P. Lähteenmäki, G. S. Paraoanu, J. Hassel and P. J. Hakonen, ‘Dynamical Casimir effect in a Josephson metamaterial.’, Proceedings of the National Academy of Sciences of the United States of America 110, 4234 (2013). S. Vezzoli, A. Mussot, N. Westerberg, A. Kudlinski, H. Dinparasti Saleh, A. Prain, F. Biancalana, E. Lantz and D. Faccio, ‘Optical analogue of the dy- namical Casimir effect in a dispersion-oscillating fibre’, Commun. Phys. 2, 1 (2019). H. Wang, X. Gu, Y.-x. Liu, A. Miranowicz and F. Nori, ‘Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system’, Phys. Rev. A 92, 033806 (2015). A. V. Dodonov, R. L. Nardo, R. Migliore, A. Messina and V. V. Dodonov, ‘Analytical and numerical analysis of the atom-field dynamics in non-stationary cavity QED’, J. Phys. B: At. Mol. Opt. Phys. 44, 225502 (2011). J. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, ‘The dynamical Casimir effect in superconducting microwave circuits’, Physical Review A 052509, 18 (2010). M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, ‘Cavity optomechanics’, Rev. Mod. Phys. 86, 1391 (2014). J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert and R. W. Simmonds, ‘Sideband cool- ing of micromechanical motion to the quantum ground state’, Nature 475, 359 (2011). J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer and O. Painter, ‘Laser cooling of a nanomechanical oscillator into its quantum ground state’, Nature 478, 89 (2011). U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel and M. Aspelmeyer, ‘Cooling of a levitated nanoparticle to the motional quantum ground state’, Science 367, 892 (2020). T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala and H. J. Kimble, ‘Observation of strong coupling between one atom and a monolithic microresonator’, Nature 443, 671 (2006). S. Gröblacher, K. Hammerer, M. R. Vanner and M. Aspelmeyer, ‘Observa- tion of strong coupling between a micromechanical resonator and an optical cavity field’, Nature 460, 724 (2009). J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker and R. W. Simmonds, ‘Circuit cavity electromechanics in the strong-coupling regime’, Nature 471, 204 (2011). D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms and D. M. Stamper-Kurn, ‘Non-classical light generated by quantum-noise-driven cavity optomechanics’, Nature 488, 476 (2012). A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer and O. Painter, ‘Squeezed light from a silicon micromechanical resonator’, Nature 500, 185 (2013). T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel and C. A. Regal, ‘Strong Optomechanical Squeezing of Light’, Phys. Rev. X 3, 031012 (2013). S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser and T. J. Kippenberg, ‘Optomechanically Induced Transparency’, Science 330, 1520 (2010). A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang and O. Painter, ‘Electromagnetically induced transparency and slow light with optomechanics’, Nature 472, 69 (2011). T. A. Palomaki, J. D. Teufel, R. W. Simmonds and K. W. Lehnert, ‘Entangling Mechanical Motion with Microwave Fields’, Science 342, 710 (2013). C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley and M. A. Sillanpää, ‘Stabilized entanglement of massive mechanical oscillators’, Nature 556, 478 (2018). K. W. Murch, K. L. Moore, S. Gupta and D. M. Stamper-Kurn, ‘Observa- tion of quantum-measurement backaction with an ultracold atomic gas’, Nat. Phys. 4, 561 (2008). M. H. Schleier-Smith, I. D. Leroux, H. Zhang, M. A. Van Camp and V. Vuletić, ‘Optomechanical cavity cooling of an atomic ensemble’, Phys. Rev. Lett. 107, 1 (2011). A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg, ‘Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction’, Phys. Rev. Lett. 97, 243905 (2006). S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer and A. Zeilinger, ‘Self-cooling of a micromirror by radiation pressure’, Nature 444, 67 (2006). O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard and A. Heidmann, ‘Radiation- pressure cooling and optomechanical instability of a micromirror’, Nature 444, 71 (2006). R. Glauber and M. Lewenstein, ‘Quantum optics of dielectric media’, Physical Review A 43, 467 (1991). J. Bjorken and S. Drell, Relativistic quantum mechanics, International series in pure and applied physics (McGraw-Hill, 1964). R. Loudon, The quantum theory of light (OUP Oxford, 2000). C. W. Gardiner and M. J. Collett, ‘Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation’, Phys. Rev. A 31, 3761 (1985). M. J. Collett and C. W. Gardiner, ‘Squeezing of intracavity and traveling- wave light fields produced in parametric amplification’, Phys. Rev. A 30, 1386 (1984). C. Gardiner and P. Zoller, Quantum noise, A handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics (Springer-Verlag, Berlin, Heidelberg, 2004). J. Combes, J. Kerckhoff and M. Sarovar, ‘The SLH framework for modeling quantum input-output networks’, Adv. Phys. X 2, 784 (2017). D. F. Walls and G. J. Milburn, Quantum optics, 2nd (Springer-Verlag, Berlin, Heidelberg, 2008). C. Gardiner, Stochastic methods (Springer Berlin, 2009). K. Jacobs, Stochastic processes for physicists (Cambridge University Press, Cambridge, 2010). H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge University Press, Cambridge, 2009). H. Carmichael, Statistical methods in quantum optics 1 (Springer, 1999). H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2007). D. N. Bernal-García, B. A. Rodríguez and H. Vinck-Posada, ‘Multiple-scale analysis of open quantum systems’, Phys. Lett. A 383, 1698 (2019). A. Kavokin, J. J. Baumberg, G. Malpuech and F. P. Laussy, Microcavities (Oxford University Press, Oxford, 2007). Á. Rivas and S. F. Huelga, Open Quantum Systems, SpringerBriefs in Physics (Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2012). M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In- formation, Vol. 52, 6 (Cambridge University Press, Cambridge, Nov. 2010), pp. 604–605. H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009), p. 460. H. J. Carmichael, Statistical Methods in Quantum Optics 2, Theoretical and Mathematical Physics (Springer-Verlag Berlin Heidelberg, 2008). W. Magnus, ‘On the exponential solution of differential equations for a linear operator’, Commun. Pure Appl. Math. 7, 649 (1954). X. X. Yi, C. Li and J. C. Su, ‘Perturbative expansion for the master equation and its applications’, Phys. Rev. A 62, 013819 (2000). C. H. Fleming and N. I. Cummings, ‘Accuracy of perturbative master equations’, Phys. Rev. E 83, 031117 (2011). F. B. Anders and A. Schiller, ‘Real-time dynamics in quantum-impurity systems: a time-dependent numerical renormalization-group approach’, Phys. Rev. Lett. 95, 196801 (2005). R. Bulla, T. A. Costi and T. Pruschke, ‘Numerical renormalization group method for quantum impurity systems’, Rev. Mod. Phys. 80, 395 (2008). M. J. Hartmann, J. Prior, S. R. Clark and M. B. Plenio, ‘Density matrix renormalization group in the heisenberg picture’, Phys. Rev. Lett. 102, 057202 (2009). F. Reiter and A. S. Sørensen, ‘Effective operator formalism for open quantum systems’, Phys. Rev. A 85, 032111 (2012). E. M. Kessler, ‘Generalized schrieffer-wolff formalism for dissipative systems’, Phys. Rev. A 86, 012126 (2012). D. Chru ści ński and A. Kossakowski, ‘Feshbach projection formalism for open quantum systems’, Phys. Rev. Lett. 111, 050402 (2013). J. Cui, J. I. Cirac and M. C. Bañuls, ‘Variational matrix product operators for the steady state of dissipative quantum systems’, Phys. Rev. Lett. 114, 220601 (2015). A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2011). L. M. Sieberer, M. Buchhold and S. Diehl, ‘Keldysh field theory for driven open quantum systems’, Rep. Prog. Phys. 79, 096001 (2016). A. C. Y. Li, F. Petruccione and J. Koch, ‘Perturbative approach to Markovian open quantum systems’, Sci. Rep. 4, 4887 (2015). A. C. Y. Li, F. Petruccione and J. Koch, ‘Resummation for nonequilibrium perturbation theory and application to open quantum lattices’, Phys. Rev. X 6, 021037 (2016). C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scient- ists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer- Verlag New York, 1999). M. Janowicz, ‘Method of multiple scales in quantum optics’, Phys. Rep. 375, 327 (2003). W. Scherer, ‘Quantum averaging. I. Poincare-von Zeipel is Rayleigh Schrodinger’, J. Phys. A: Math. Gen. 27, 8231 (1994). G. Sandri, ‘A new method of expansion in mathematical physics - I’, Nuovo Cim. 36, 67 (1965). R. Ramnath and G. Sandri, ‘A generalized multiple scales approach to a class of linear differential equations’, J. Math. Anal. Appl. 28, 339 (1969). J. K. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Vol. 114, Applied Mathematical Sciences (Springer-Verlag New York, 1996). A. H. Nayfeh, Perturbation methods (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2004). S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Westview Press, Boulder, CO, 2014). C. M. Bender and L. M. A. Bettencourt, ‘Multiple-Scale Analysis of the Quantum Anharmonic Oscillator.’, Phys. Rev. Lett. 77, 4114 (1996). C. M. Bender and L. M. A. Bettencourt, ‘Multiple-scale analysis of quantum systems’, Phys. Rev. D 54, 7710 (1996). G. Auberson and M. Capdequi Peyranère, ‘Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques’, Phys. Rev. A 65, 032120 (2002). M. W. Janowicz and J. M. a. Ashbourn, ‘Dynamics of the four-level Λ system in a two-mode cavity’, Phys. Rev. A 55, 2348 (1997). M. Janowicz, ‘Suppression of the Rabi oscillations in a cavity partially filled with a dielectric having a time-dependent refractive index’, Phys. Rev. A 57, 5016 (1998). M. Janowicz, ‘Evolution of wave fields and atom-field interactions in a cavity with one oscillating mirror’, Phys. Rev. A 57, 4784 (1998). D. A. R. Dalvit and F. D. Mazzitelli, ‘Creation of photons in an oscillating cavity with two moving mirrors’, Phys. Rev. A 59, 3049 (1999). M. Crocce, D. A. R. Dalvit and F. D. Mazzitelli, ‘Resonant photon creation in a three-dimensional oscillating cavity’, Phys. Rev. A 64, 013808 (2001). M. Crocce, D. A. R. Dalvit and F. D. Mazzitelli, ‘Quantum electromagnetic field in a three-dimensional oscillating cavity’, Phys. Rev. A 66, 033811 (2002). A. V. Dodonov and V. V. Dodonov, ‘Approximate analytical results on the cavity dynamical Casimir effect in the presence of a two-level atom’, 015805, 1 (2012). P. B. Kahn and Y. Zarmi, ‘Consistent Application of the Method of Multiple- Time Scales to Nonlinear Systems’, in Nonlinear phenomena research perspectives, edited by C. W. Wang (Nova Science Publishers, Inc, New York, 2007) Chap. 4, pp. 103–30. K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, edited by K. Kraus, A. Böhm, J. D. Dollard and W. H. Wootters, Vol. 190, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, Ber- lin, Heidelberg, 1983). G. Schaller, Open Quantum Systems Far from Equilibrium, Vol. 881, Lecture Notes in Physics (Springer International Publishing, 2014). D. Bruß and G. Leuchs, eds., Lectures on Quantum Information (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2006). H.-P. Breuer, E.-M. Laine, J. Piilo and B. Vacchini, ‘Colloquium : Non-Markovian dynamics in open quantum systems’, Rev. Mod. Phys. 88, 021002 (2016). K. Kraus, ‘General state changes in quantum theory’, Ann. Phys. 64, 311 (1971). M. D. Choi, ‘Completely positive linear maps on complex matrices’, Linear Algebra Appl. 10, 285 (1975). V. Gorini, A. Kossakowski and E. C. G. Sudarshan, ‘Completely positive dynamical semigroups of N-level systems’, J. Math. Phys. 17, 821 (1976). E. Andersson, J. D. Cresser and M. J. W. Hall, ‘Finding the Kraus decomposition from a master equation and vice versa’, J. Mod. Opt. 54, 1695 (2007). L.Li, M.J.W.Halland, H.M.Wiseman,‘Concepts of quantum non-markovianity: a hierarchy’, Physics Reports 759, 1 (2018). Á. Rivas, S. F. Huelga and M. B. Plenio, ‘Entanglement and non-Markovianity of quantum evolutions’, Phys. Rev. Lett. 105, 1 (2010). Á. Rivas, S. F. Huelga and M. B. Plenio, ‘Quantum non-Markovianity: Characterization, quantification and detection’, Rep. Prog. Phys. 77 (2014). R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Vol. 717, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, 2007). G. Lindblad, ‘On the generators of quantum dynamical semigroups’, Commun. Math. Phys. 48, 119 (1976). M. J. W. Hall, J. D. Cresser, L. Li and E. Andersson, ‘Canonical form of master equations and characterization of non-Markovianity’, Phys. Rev. A 89, 042120 (2014). M. R. Hush, I. Lesanovsky and J. P. Garrahan, ‘Generic map from non- Lindblad to Lindblad master equations’, Phys. Rev. A 91, 032113 (2015). D. Chruściński and A. Kossakowski, ‘Non-Markovian Quantum Dynamics: Local versus Nonlocal’, Phys. Rev. Lett. 104, 070406 (2010). F. P. Laussy, E. del Valle and C. Tejedor, ‘Luminescence spectra of quantum dots in microcavities. i. bosons’, Phys. Rev. B 79, 235325 (2009). P. Lodahl, S. Mahmoodian and S. Stobbe, ‘Interfacing single photons and single quantum dots with photonic nanostructures’, Rev. Mod. Phys. 87, 347 (2015). D. N. Bernal-García, H. Vinck-Posada and M. J. Woolley, ‘Nonstationary force sensing under dissipative mechanical quantum squeezing’, (2020), arXiv:2007. 13051 [quant-ph]. V. B. Braginsky, Y. I. Vorontsov and K. S. Thorne, ‘Quantum Nondemolition Measurements’, Science 209, 547 (1980). C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg and M. Zimmermann, ‘On the measurement of a weak classical force coupled to a quantum- mechanical oscillator. I. Issues of principle’, Rev. Mod. Phys. 52, 341 (1980). C. M. Caves and G. J. Milburn, ‘Quantum-mechanical model for continuous position measurements’, Phys. Rev. A 36, 5543 (1987). V. B. Braginsky, F. Y. Khalili and K. S. Thorne, Quantum measurement (Cambridge University Press, Cambridge, 1992). M. F. Bocko and R. Onofrio, ‘On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress’, Rev. Mod. Phys. 68, 755 (1996). Y. Chen, ‘Macroscopic quantum mechanics: theory and experimental concepts of optomechanics’, J. Phys. B 46, 104001 (2013). S. L. Danilishin and F. Y. Khalili, ‘Quantum Measurement Theory in Gravitational- Wave Detectors’, Living Rev. Relativ. 15, 5 (2012). E. Zeuthen, E. S. Polzik and F. Y. Khalili, ‘Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity’, (2019), arXiv:1908.03416 [gr-qc]. G. J. Milburn, K. Jacobs and D. F. Walls, ‘Quantum-limited measurements with the atomic force microscope’, Phys. Rev. A 50, 5256 (1994). H.-J. Butt, B. Cappella and M. Kappl, ‘Force measurements with the atomic force microscope: Technique, interpretation and applications’, Surf. Sci. Rep. 59, 1 (2005). M. Poggio and C. L. Degen, ‘Force-detected nuclear magnetic resonance: recent advances and future challenges’, Nanotechnology 21, 342001 (2010). S. Davuluri, ‘Optomechanics for absolute rotation detection’, Phys. Rev. A 94, 013808 (2016). S. Davuluri and Y. Li, ‘Absolute rotation detection by coriolis force measurement using optomechanics’, New Journal of Physics 18, 103047 (2016). D. Carney, S. Ghosh, G. Krnjaic and J. M. Taylor, ‘Gravitational Direct Detection of Dark Matter’, (2019), arXiv:1903.00492 [hep-ph]. D. Carney, A. Hook, Z. Liu, J. M. Taylor and Y. Zhao, ‘Ultralight dark matter detection with mechanical quantum sensors’, (2019), arXiv:1908.04797 [hep-ph]. S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toro š, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim and G. Milburn, ‘Spin entanglement witness for quantum gravity’, Phys. Rev. Lett. 119, 240401 (2017). C. Marletto and V. Vedral, ‘Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity’, Phys. Rev. Lett. 119, 240402 (2017). D. Carney, P. C. E. Stamp and J. M. Taylor, ‘Tabletop experiments for quantum gravity: a user’s manual’, Classical and Quantum Gravity 36, 034001 (2019). M. Carlesso, A. Bassi, M. Paternostro and H. Ulbricht, ‘Testing the gravitational field generated by a quantum superposition’, (2019), arXiv:1906. 04513 [quant-ph]. M. Carlesso and M. Paternostro, ‘Opto-mechanical test of collapse models’, (2019), arXiv:1906.11041 [quant-ph]. V. B. Braginsky, ‘Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator’, Zh. Eksp. Teor. Fiz 53, 1434 (1967); J. Exp. Theor. Phys 26, 831 (1968). C. M. Caves, ‘Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer’, Phys. Rev. Lett. 45, 75 (1980). A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt and R. J. Schoelkopf, ‘Introduction to quantum noise, measurement, and amplification’, Rev. Mod. Phys. 82, 1155 (2010). V. B. Braginsky and Y. I. Vorontsov, ‘Quantum-mechanical limitations in macroscopic experiments and modern experimental technique’, Usp. Fiz. Nauk. 114, 41 (1974); Sov. Phys. Usp. 17, 644 (1975). R. P. Giffard, ‘Ultimate sensitivity limit of a resonant gravitational wave an- tenna using a linear motion detector’, Phys. Rev. D 14, 2478 (1976). M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, eds., Cavity optomechanics, Nano- and Micromechanical Resonators Interacting with Light (Springer- Verlag, Berlin, Heidelberg, 2014). B. P. A. et al, ‘Observation of Gravitational Waves from a Binary Black Hole Merger’, Phys. Rev. Lett. 116, 061102 (2016). D. Mason, J. Chen, M. Rossi, Y. Tsaturyan and A. Schliesser, ‘Continuous force and displacement measurement below the standard quantum limit’, Nat. Phys. 15, 745 (2019). S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leib- fried, D. H. Slichter and D. T. C. Allcock, ‘Quantum amplification of mechanical oscillator motion’, Science 364, 1163 (2019). S. Huang and G. S. Agarwal, ‘Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier’, Phys. Rev. A 95, 023844 (2017). W. Zhao, S.-D. Zhang, A. Miranowicz and H. Jing, ‘Weak-force sensing with squeezed optomechanics’, Sci. China-Phys. Mech. Astron. 63, 224211 (2019). X.-Y. Wang, B. Xiong, W.-Z. Zhang and L. Zhou, ‘Improve the sensitivity of an optomechanical sensor with the auxiliary mechanical oscillator’, Eur. Phys. J. D 72, 117 (2018). W.-Z. Zhang, L.-B. Chen, J. Cheng and Y.-F. Jiang, ‘Quantum-correlation- enhanced weak-field detection in an optomechanical system’, Phys. Rev. A 99, 063811 (2019). P. A. Ivanov, K. Singer, N. V. Vitanov and D. Porras, ‘Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces’, Phys. Rev. Applied 4, 054007 (2015). A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh and D. Vitali, ‘Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection’, New J. Phys. 18, 073040 (2016). A. Motazedifard, A. Dalafi, F. Bemani and M. H. Naderi, ‘Force sensing in hybrid bose-einstein-condensate optomechanics based on parametric amplification’, Phys. Rev. A 100, 023815 (2019). S. Davuluri and Y. Li, ‘Shot-noise-limited interferometry for measuring a classical force’, Phys. Rev. A 98, 043809 (2018). A. A. Clerk, F. Marquardt and K. Jacobs, ‘Back-action evasion and squeezing of a mechanical resonator using a cavity detector’, New J. Phys. 10, 095010 (2008). M. J. Woolley, A. C. Doherty, G. J. Milburn and K. C. Schwab, ‘Nanomechanical squeezing with detection via a microwave cavity’, Phys. Rev. A 78, 062303 (2008). J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk and K. C. Schwab, ‘Back-action-evading measurements of nanomechanical motion’, Nat. Phys. 6, 213 (2010). J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk and K. C. Schwab, ‘Mechanically detecting and avoiding the quantum fluctuations of a microwave field’, Science 344, 1262 (2014). I. Shomroni, L. Qiu, D. Malz, A. Nunnenkamp and T. J. Kippenberg, ‘Optical backaction-evading measurement of a mechanical oscillator’, Nat.Commun. 10, 2086 (2019). A. Kronwald, F. Marquardt and A. A. Clerk, ‘Arbitrarily large steady-state bosonic squeezing via dissipation’, Phys. Rev. A 88, 063833 (2013). A. Kronwald, F. Marquardt and A. A. Clerk, ‘Dissipative optomechanical squeezing of light’, New J. Phys. 16, 063058 (2014). F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado and J. D. Teufel, ‘Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object’, Phys. Rev. X 5, 041037 (2015). E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk and K. C. Schwab, ‘Quantum squeezing of motion in a mechanical resonator’, Science 349, 952 (2015). J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel and M. A. Sillanpää, ‘Squeezing of Quantum Noise of Motion in a Micromechanical Resonator’, Phys. Rev. Lett. 115, 243601 (2015). C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk and K. C. Schwab, ‘Quantum Nondemolition Measurement of a Quantum Squeezed State beyond the 3 dB Limit’, Phys. Rev. Lett. 117, 100801 (2016). I. Shomroni, A. Youssefi, N. Sauerwein, L. Qiu, P. Seidler, D. Malz, A. Nunnen- kamp and T. J. Kippenberg, ‘Two-tone optomechanical instability in backaction- evading measurements’, (2018), arXiv:1812.11022 [quant-ph]. M. J. Woolley and A. A. Clerk, ‘Two-mode back-action-evading measurements in cavity optomechanics’, Phys. Rev. A 87, 063846 (2013). C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, A. A. Clerk, M. J. Woolley and M. A. Sillanpää, ‘Quantum Backaction Evading Measurement of Collective Mechanical Modes’, Phys. Rev. Lett. 117, 140401 (2016). M. J. Woolley and A. A. Clerk, ‘Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir’, Phys. Rev. A 89, 063805 (2014). F. Massel, ‘Backaction-evading measurement of entanglement in optomechanics’, Phys. Rev. A 100, 023824 (2019). A. Papoulis and S. U. Pillai, Probability, random variables and stochastic processes, 4th (McGraw-Hill, New York, 2002). J. Anandan, ‘Geometric phase for cyclic motions and the quantum state space metric’, Phys. Lett. A 147, 3 (1990). A. K. Pati, U. Singh and U. Sinha, ‘Measuring non-hermitian operators via weak values’, Phys. Rev. A 92, 052120 (2015). G. R. Cooper and C. D. McGillem, Probabilistic methods of signal and system analysis, 3rd (Oxford University Press, Oxford, UK, 1998). R. Grover Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filtering, 4th (John Wiley & Sons, 2012). K. M. M. Prabhu, Window functions and their applications in signal processing (CRC Press, Boca Raton, 2014). M. Lucamarini, D. Vitali and P. Tombesi, ‘Scheme for a quantum-limited force measurement with an optomechanical device’, Phys. Rev. A 74, 063816 (2006). D. Vitali, S. Mancini and P. Tombesi, ‘Optomechanical scheme for the detection of weak impulsive forces’, Phys. Rev. A 64, 051401 (2001). ‘Erratum: optomechanical scheme for the detection of weak impulsive forces [Phys. Rev. A 64, 051401(R) (2001)]’, ibid. 69, 049904 (2004). D. Vitali, S. Mancini, L. Ribichini and P. Tombesi, ‘Mirror quiescence and high-sensitivity position measurements with feedback’, Phys. Rev. A 65, 063803 (2002). ‘Erratum: mirror quiescence and high-sensitivity positionmeasurements with feedback [Phys. Rev. A 65, 063803 (2002)]’, ibid. 69, 029901 (2004). R. D. Klauber, Student friendly quantum field theory (Sandtrove Press, 2013). J. Gea-Banacloche, N. Lu, L. M. Pedrotti, S. Prasad, M. O. Scully and K. Wódkiewicz, ‘Treatment of the spectrum of squeezing based on the modes of the universe. I. Theory and a physical picture’, Phys. Rev. A 41, 369 (1990). A. Dechant and E. Lutz, ‘Wiener-Khinchin Theorem for Nonstationary Scale-Invariant Processes’, Phys. Rev. Lett. 115, 080603 (2015). B. R. Kusse and E. A. Westwig, Mathematical physics, 2nd (Wiley-VCH Ver- lag GmbH, Weinheim, Germany, 2006). G. W. Ford, J. T. Lewis and R. F. O’Connell, ‘Quantum Langevin equation’, Physical Review A 37, 4419 (1988). V. Giovannetti and D. Vitali, ‘Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion’, Phys. Rev. A 63, 023812 (2001). W. Bowen and G. Milburn, Quantum optomechanics (CRCPress,BocaRaton, 2015). D. F. Walls and G. J. Milburn, Quantum optics, 2nd (Springer-Verlag, Berlin, Heidelberg, 2007). F. Marquardt, J. P. Chen, A. A. Clerk and S. M. Girvin, ‘Quantum theory of cavity-assisted sideband cooling of mechanical motion’, Phys. Rev. Lett. 99, 093902 (2007). I. Wilson-Rae, N. Nooshi, W. Zwerger and T. J. Kippenberg, ‘Theory of ground state cooling of a mechanical oscillator using dynamical backaction’, Phys. Rev. Lett. 99, 093901 (2007). D. G. Blair, ed., The detection of gravitational waves (Cambridge University Press, Cambridge, 1991). S. Bermúdez-Feijóo, D. N. Bernal-García and H. Vinck-Posada, ‘Statistical properties of light emitted from a nonstationary atom-cavity system’, in Quantum nanophotonics 2018, Vol. 10734, edited by J. A. Dionne, M. Lawrence and M. T. Sheldon (International Society for Optics and Photonics, 2018), pp. 17– 29. J. C. González-Espitia, D. N. Bernal-García and H. Vinck-Posada, ‘Statistical properties of light emitted by active media embedded on a microcavity system’, in Quantum nanophotonics 2018, Vol. 10734, edited by J. A. Dionne, M. Lawrence and M. T. Sheldon (International Society for Optics and Photonics, 2018), pp. 36–46. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 recurso en línea (187 páginas) |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Física |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79529/1/1098646876.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/79529/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/79529/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79529/4/1098646876.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
637f470bd95d98d4db2508c996e911f3 cccfe52f796b7c63423298c2d3365fc6 84a900c9dd4b2a10095a94649e1ce116 751fdda0b9118d558bc5e06360dcdf7f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089630511792128 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vinck Posada, Herbertcb451c328e333b7d420c1effb3732257Rodríguez Rey, Boris Anghelo9cb8e0b2ede73e1f578a0a0d2311341fBernal García, Diego Nicolás7764a2d8e09a7371831cfe8c9101f6a3Grupo de Óptica e Información CuánticaSuperconductividad y nanotecnología2021-05-18T17:23:59Z2021-05-18T17:23:59Z2020-08https://repositorio.unal.edu.co/handle/unal/79529Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, ilustraciones a color, tablasIn this thesis, I present methods and techniques for the study and use of non- stationary quantum phenomena in cavity quantum electrodynamics and optomechanics. Thus, I introduce a multiple-scale perturbation technique that allows us to find excellent approximate solutions to time-local master equations describing open quantum systems, both in the stationary and nonstationary regimes. The technique provides the time-evolution of the corresponding dynamical map and, consequently, the time-evolution of the system density matrix for arbitrary initial conditions, allowing us to identify in each order the characteristic time scales involved in the problem. Furthermore, I present a nonstationary protocol for the sensing of a classical force driving a mechanical oscillator coupled to an electromagnetic cavity under two-tone driving. The applied force shifts the position of the mechanical oscillator, whose change can be monitored through the output electromagnetic field. For the purpose of analysing the force sensitivity quantitatively, I develop a theoretical framework based on the signal-to-noise ratio of linear spectral measurements, stationary or nonstationary, and I determine the conditions for optimal sensitivity. The results presented here open the door to the exploration of new forms to enhance quantum effects far from the traditional stationary regime.En esta tesis, presento métodos y técnicas para el estudio y aprovechamiento de fenómenos cuánticos no estacionarios en electrodinámica y optomecánica cuántica de cavidades. De esta manera, presento una técnica de perturbaciones de escalas múltiples que nos permite encontrar excelentes soluciones aproximadas a ecuaciones maestras locales en el tiempo describiendo sistemas cuánticos abiertos, tanto en el régimen estacionario como no estacionario. La técnica provee la evolución en el tiempo del mapa dinámico correspondiente y, en consecuencia, la evolución en el tiempo de la matriz densidad del sistema para condiciones iniciales arbitrarias, lo que nos permite identificar en cada orden las escalas de tiempo características involucradas en el problema. Además, presento un protocolo no estacionario para la detección de una fuerza clásica que impulsa un oscilador mecánico acoplado a una cavidad electromagnética bajo bombeo a dos tonos. La fuerza aplicada cambia la posición del oscilador mecánico, cuyo cambio puede ser monitoreado a través del campo electromagnético de salida. Con el fin de analizar cuantitativamente la sensibilidad a la fuerza, desarrollo un marco teórico basado en la razón señal-ruido en mediciones espectrales lineales, estacionarias o no estacionarias, y determino las condiciones para una sensibilidad óptima. Los resultados aquí presentados abren la puerta a la exploración de nuevas formas para potenciar los efectos cuánticos lejos del tradicional régimen estacionario.DoctoradoDoctorado en Ciencias - Física1 recurso en línea (187 páginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotáUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaElectrodinámicaElectrodynamicsQuantum opticsCavity quantum electrodynamicsCircuit quantum electrodynamicsNonstationary quantum phenomenaMultiple-scale perturbation techniqueForce sensingÓptica cuánticaElectrodinámica cuántica de cavidadesElectrodinámica cuántica de circuitosFenómenos cuánticos no estacionariosTécnica de perturbaciones de escalas múltiplesSensado de fuerzasTeoría cuánticaQuantum theoryNonstationary quantum phenomena in cavity quantum electrodynamics and optomechanicsFenómenos cuánticos no estacionarios en electrodinámica cuántica de cavidades y optomecánicaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDA. Reiserer and G. Rempe, ‘Cavity-based quantum networks with single atoms and optical photons’, Rev. Mod. Phys. 87, 1379 (2015).S. Haroche, ‘Nobel Lecture: Controlling photons in a box and exploring the quantum to classical boundary’, Reviews of Modern Physics 85, 1083 (2013).D. Castelvecchi, ‘Quantum computers ready to leap out of the lab in 2017’, Nature 541, 9 (2017).H. J. Kimble, ‘The quantum internet’, Nature 453, 1023 (2008).
I. Bloch, J. Dalibard and S. Nascimbène, ‘Quantum simulations with ultracold quantum gases’, Nature Physics 8, 267 (2012).
L. M. Duan and C. Monroe, ‘Colloquium: Quantum networks with trapped ions’, Reviews of Modern Physics 82, 1209 (2010).S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann and G. Rempe, ‘An elementary quantum network of single atoms in optical cavities’, Nature 484, 195 (2012).A. Imamoglu, D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, ‘Quantum information processing using quantum dot spins and cavity QED’, Physical Review Letters 83, 4204 (1999).D. Englund, A. Faraon, I. Fushman and J. Vuckovic, ‘Quantum information processing on photonic crystal chips’, SPIE Newsroom, 2 (2008).C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori and P. Delsing, ‘Observation of the dynamical Casimir effect in a superconducting circuit.’, Nature 479, 376 (2011).J. I. Cirac, P. Zoller, H. J. Kimble and H. Mabuchi, ‘Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Net- work’, Physical Review Letters 78, 3221 (1997).B. Kraus and J. I. Cirac, ‘Discrete entanglement distribution with squeezed light.’, Physical Review Letters 92, 013602 (2004).S. Bose, P. L. Knight, M. B. Plenio and V. Vedral, ‘Proposal for Teleportation of an Atomic State via Cavity Decay’, Physical Review Letters 83, 5158 (1999).S. L. Braunstein and P. van Loock, ‘Quantum information with continuous variables’, Reviews of Modern Physics 77, 513 (2005).T. C. H. Liew and V. Savona, ‘Single photons from coupled quantum modes’, Physical Review Letters 104, 2 (2010).K. M. Birnbaum, A. Boca, R. Miller, a. D. Boozer, T. E. Northup and H. J. Kimble, ‘Photon blockade in an optical cavity with one trapped atom’, Nature 436, 87 (2005).A. Majumdar and D. Gerace, ‘Single-photon blockade in doubly resonant nanocavities with second-order nonlinearity’, Physical Review B 87, 235319 (2013).K. Hammerer, A. S. Sørensen and E. S. Polzik, ‘Quantum interface between light and atomic ensembles’, Rev. Mod. Phys. 82, 1041 (2010).A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl and M. D. Lukin, ‘Photon-photon interactions via Rydberg blockade’, Phys. Rev. Lett. 107, 1 (2011).O. L. Berman, R. Y. Kezerashvili and Y. E. Lozovik, ‘Quantum entanglement for two qubits in a nonstationary cavity’, PhysicalReviewA052308,1(2016).I. Carusotto, S. De Liberato, D. Gerace and C. Ciuti, ‘Back-reaction effects of quantum vacuum in cavity quantum electrodynamics’, Physical Review A 85, 023805 (2012).D. Chang, V. Vuletic and M. Lukin, ‘Quantum nonlinear optics — photon by photon’, Nature Photonics 8, 685 (2014).E. del Valle Reboul, ‘Quantum Electrodynamics with Quantum Dots in Microcavities’, PhD thesis (Universidad Autónoma de Madrid, 2009), p. 260.J. I. Perea, D. Porras and C. Tejedor, ‘Dynamics of the excitations of a quantum dot in a microcavity’, Physical Review B 70, 115304 (2004).T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, ‘Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity’, Nature 432, 200 (2004).A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin and R. J. Schoelkopf, ‘Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation’, Physical Review A 69, 062320 (2004).J. Larson, ‘Dynamics of the jaynes-cummings and rabi models: old wine in new bottles’, Physica Scripta 76, 146 (2007).E. Jaynes and F. Cummings, ‘Comparison of quantum and semiclassical radiation theories with application to the beam maser’, Proceedings of the IEEE 51 (1963).N. Quesada, H. Vinck-Posada and B. A. Rodríguez, ‘Density operator of a system pumped with polaritons: a Jaynes-Cummings-like approach.’, Journal of physics. Condensed matter : an Institute of Physics journal 23, 025301 (2011).J. Vuckovic, D. Fattal, C. Santori, G. S. Solomon and Y. Yamamoto, ‘En- hanced single-photon emission from a quantum dot in a micropost microcavity’, Applied Physics Letters 82, 3596 (2003).D. G. Suárez-Forero, G. Cipagauta, H. Vinck-Posada, K. M. Fonseca Romero, B. A. Rodríguez and D. Ballarini, ‘Entanglement properties of quantum polaritons’, Phys. Rev. B 93, 205302 (2016).J. P. Reithmaier, G. Sek, a. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke and a. Forchel, ‘Strong coupling in a single quantum dot-semiconductor microcavity system.’, Nature 432, 197 (2004).T. Niemczyk et al., ‘Circuit quantum electrodynamics in the ultrastrong- coupling regime’, Nature Physics 6, 772 (2010).J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll and E. Solano, ‘Deep strong coupling regime of the jaynes-cummings model’, Phys. Rev. Lett. 105, 263603 (2010).P. Goy, J. M. Raimond, M. Gross and S. Haroche, ‘Observation of cavity- enhanced single-atom spontaneous emission’, Phys. Rev. Lett. 50, 1903 (1983).S. Deléglise, I. Dotsenko, C. Sayrin, J. Bernu, M. Brune, J.-M. Raimond and S. Haroche, ‘Reconstruction of non-classical cavity field states with snapshots of their decoherence’, Nature 455, 510 (2008).M. Saffman, T. G. Walker and K. Mølmer, ‘Quantum information with rydberg atoms’, Rev. Mod. Phys. 82, 2313 (2010).D. P. DiVicenzo, ‘Mesoscopic Electron Transport’, in , edited by L. L. Sohn, L. P. Kouwenhoven and G. Schön (Springer Netherlands, 1997) Chap. Topics in Quantum Computation.G. Scalari et al., ‘Ultrastrong coupling of the cyclotron transition of a 2d electron gas to a thz metamaterial’, Science 335, 1323 (2012).A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin and R. J. Schoelkopf, ‘Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics’, Nature 431, 162 (2004).G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch and a. Scherer, ‘Vacuum Rabi splitting in semiconductors’, Nature Physics 2, 81 (2006).L. Jacak, P. Hawrylak and A. Wójs, Quantum Dots (Springer, 1998).F. P. Laussy, E. Del Valle and C. Tejedor, ‘Strong coupling of quantum dots in microcavities’, Physical Review Letters 101, 1 (2008).K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu and A. Imamoglu, ‘Quantum nature of a strongly-coupled single quantum dot-cavity system’, Nature 445, 896 (2006).D. Press, S. Götzinger, S. Reitzenstein, C. Hofmann, A. Löffler, M. Kamp, A. Forchel and Y. Yamamoto, ‘Photon antibunching from a single quantum- dot-microcavity system in the strong coupling regime’, Phys. Rev. Lett. 98, 117402 (2007).C. A. Vera, N. Quesada, H. Vinck-Posada and B. A. Rodríguez, ‘Characterization of dynamical regimes and entanglement sudden death in a microcavity quantum dot system’, Journal of Physics: Condensed Matter 21, 395603 (2009).J. Kasprzak, S. Reitzenstein, E. a. Muljarov, C. Kistner, C. Schneider, M. Strauss, S. Höfling, A. Forchel and W. Langbein, ‘Up on the Jaynes-Cummings ladder of a quantum-dot/microcavity system’, Nature Materials 9, 304 (2010).Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu and J.-W. Pan, ‘On-demand semiconductor single-photon source with near-unity indistinguishability’, Nature nanotechnology 8, 213 (2013).R. Oulton, ‘Quantum dots: Electrifying cavities’, Nature Nanotechnology 9, 169 (2014).J. Clarke and F. K. Wilhelm, ‘Superconducting quantum bits’, Nature 453, 1031 (2008).Y.-x. Liu, J. Q. You, L. F. Wei, C. P. Sun and F. Nori, ‘Optical Selection Rules and Phase-Dependent Adiabatic State Control in a Superconducting Quantum Circuit’, Physical Review Letters 95, 087001 (2005).C. Navarrete-Benlloch, J. J. García-Ripoll and D. Porras, ‘Inducing Non- classical Lasing via Periodic Drivings in Circuit Quantum Electrodynamics’, Physical Review Letters 113, 193601 (2014).A. A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba and F. Beltram, ‘Signatures of the ultrastrong light-matter coupling regime’, Physical Review B 79, 201303 (2009).P. D. Nation, J. R. Johansson, M. P. Blencowe and F. Nori, ‘Colloquium: Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits’, Rev. Mod. Phys. 84, 1 (2012).G. T. Moore, ‘Quantum Theory of the Electromagnetic Field in a Variable- Length One-Dimensional Cavity’, Journal of Mathematical Physics 11, 2679 (1970).A. Dodonov and V. Dodonov, ‘Nonstationary casimir effect in cavities with two resonantly coupled modes’, Physics Letters A 289, 291 (2001).E. Yablonovitch, ‘Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: unruh-davies-fulling-dewitt radiation and the nonadiabatic casimir effect’, Phys. Rev. Lett. 62, 1742 (1989).C. K. Law, ‘Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium’, Physical Review A 49, 433 (1994).M. Razavy and J. Terning, ‘Quantum radiation in a one-dimensional cavity with moving boundaries’, Physical Review D 31, 307 (1985).C. K. Law, ‘Resonance response of the quantum vacuum to an oscillating boundary’, Physical Review Letters 73, 1931 (1994).C. K. Law, ‘Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation’, Physical Review A 51, 2537 (1995).A. M. Fedotov, N. B. Narozhny and Y. E. Lozovik, ‘’Shaking’ of an atom in a non-stationary cavity’, Phys. Lett. A 274, 213 (2000).J. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, ‘Dynamical casimir effect in a superconducting coplanar waveguide’, Phys. Rev. Lett. 103, 147003 (2009).P. Lähteenmäki, G. S. Paraoanu, J. Hassel and P. J. Hakonen, ‘Dynamical Casimir effect in a Josephson metamaterial.’, Proceedings of the National Academy of Sciences of the United States of America 110, 4234 (2013).S. Vezzoli, A. Mussot, N. Westerberg, A. Kudlinski, H. Dinparasti Saleh, A. Prain, F. Biancalana, E. Lantz and D. Faccio, ‘Optical analogue of the dy- namical Casimir effect in a dispersion-oscillating fibre’, Commun. Phys. 2, 1 (2019).H. Wang, X. Gu, Y.-x. Liu, A. Miranowicz and F. Nori, ‘Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system’, Phys. Rev. A 92, 033806 (2015).A. V. Dodonov, R. L. Nardo, R. Migliore, A. Messina and V. V. Dodonov, ‘Analytical and numerical analysis of the atom-field dynamics in non-stationary cavity QED’, J. Phys. B: At. Mol. Opt. Phys. 44, 225502 (2011).J. R. Johansson, G. Johansson, C. M. Wilson and F. Nori, ‘The dynamical Casimir effect in superconducting microwave circuits’, Physical Review A 052509, 18 (2010).M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, ‘Cavity optomechanics’, Rev. Mod. Phys. 86, 1391 (2014).J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert and R. W. Simmonds, ‘Sideband cool- ing of micromechanical motion to the quantum ground state’, Nature 475, 359 (2011).J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer and O. Painter, ‘Laser cooling of a nanomechanical oscillator into its quantum ground state’, Nature 478, 89 (2011).U. Delić, M. Reisenbauer, K. Dare, D. Grass, V. Vuletić, N. Kiesel and M. Aspelmeyer, ‘Cooling of a levitated nanoparticle to the motional quantum ground state’, Science 367, 892 (2020).T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala and H. J. Kimble, ‘Observation of strong coupling between one atom and a monolithic microresonator’, Nature 443, 671 (2006).S. Gröblacher, K. Hammerer, M. R. Vanner and M. Aspelmeyer, ‘Observa- tion of strong coupling between a micromechanical resonator and an optical cavity field’, Nature 460, 724 (2009).J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker and R. W. Simmonds, ‘Circuit cavity electromechanics in the strong-coupling regime’, Nature 471, 204 (2011).D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms and D. M. Stamper-Kurn, ‘Non-classical light generated by quantum-noise-driven cavity optomechanics’, Nature 488, 476 (2012).A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan, M. Aspelmeyer and O. Painter, ‘Squeezed light from a silicon micromechanical resonator’, Nature 500, 185 (2013).T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel and C. A. Regal, ‘Strong Optomechanical Squeezing of Light’, Phys. Rev. X 3, 031012 (2013).S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser and T. J. Kippenberg, ‘Optomechanically Induced Transparency’, Science 330, 1520 (2010).A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang and O. Painter, ‘Electromagnetically induced transparency and slow light with optomechanics’, Nature 472, 69 (2011).T. A. Palomaki, J. D. Teufel, R. W. Simmonds and K. W. Lehnert, ‘Entangling Mechanical Motion with Microwave Fields’, Science 342, 710 (2013).C. F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A. A. Clerk, F. Massel, M. J. Woolley and M. A. Sillanpää, ‘Stabilized entanglement of massive mechanical oscillators’, Nature 556, 478 (2018).K. W. Murch, K. L. Moore, S. Gupta and D. M. Stamper-Kurn, ‘Observa- tion of quantum-measurement backaction with an ultracold atomic gas’, Nat. Phys. 4, 561 (2008).M. H. Schleier-Smith, I. D. Leroux, H. Zhang, M. A. Van Camp and V. Vuletić, ‘Optomechanical cavity cooling of an atomic ensemble’, Phys. Rev. Lett. 107, 1 (2011).A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala and T. J. Kippenberg, ‘Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction’, Phys. Rev. Lett. 97, 243905 (2006).S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer and A. Zeilinger, ‘Self-cooling of a micromirror by radiation pressure’, Nature 444, 67 (2006).O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard and A. Heidmann, ‘Radiation- pressure cooling and optomechanical instability of a micromirror’, Nature 444, 71 (2006).R. Glauber and M. Lewenstein, ‘Quantum optics of dielectric media’, Physical Review A 43, 467 (1991).J. Bjorken and S. Drell, Relativistic quantum mechanics, International series in pure and applied physics (McGraw-Hill, 1964).R. Loudon, The quantum theory of light (OUP Oxford, 2000).C. W. Gardiner and M. J. Collett, ‘Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation’, Phys. Rev. A 31, 3761 (1985).M. J. Collett and C. W. Gardiner, ‘Squeezing of intracavity and traveling- wave light fields produced in parametric amplification’, Phys. Rev. A 30, 1386 (1984).C. Gardiner and P. Zoller, Quantum noise, A handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics (Springer-Verlag, Berlin, Heidelberg, 2004).J. Combes, J. Kerckhoff and M. Sarovar, ‘The SLH framework for modeling quantum input-output networks’, Adv. Phys. X 2, 784 (2017).D. F. Walls and G. J. Milburn, Quantum optics, 2nd (Springer-Verlag, Berlin, Heidelberg, 2008).C. Gardiner, Stochastic methods (Springer Berlin, 2009).K. Jacobs, Stochastic processes for physicists (Cambridge University Press, Cambridge, 2010).H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge University Press, Cambridge, 2009).H. Carmichael, Statistical methods in quantum optics 1 (Springer, 1999).H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2007).
D. N. Bernal-García, B. A. Rodríguez and H. Vinck-Posada, ‘Multiple-scale analysis of open quantum systems’, Phys. Lett. A 383, 1698 (2019).
A. Kavokin, J. J. Baumberg, G. Malpuech and F. P. Laussy, Microcavities (Oxford University Press, Oxford, 2007).Á. Rivas and S. F. Huelga, Open Quantum Systems, SpringerBriefs in Physics (Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg, 2012).M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In- formation, Vol. 52, 6 (Cambridge University Press, Cambridge, Nov. 2010), pp. 604–605.H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009), p. 460.H. J. Carmichael, Statistical Methods in Quantum Optics 2, Theoretical and Mathematical Physics (Springer-Verlag Berlin Heidelberg, 2008).W. Magnus, ‘On the exponential solution of differential equations for a linear operator’, Commun. Pure Appl. Math. 7, 649 (1954).X. X. Yi, C. Li and J. C. Su, ‘Perturbative expansion for the master equation and its applications’, Phys. Rev. A 62, 013819 (2000).C. H. Fleming and N. I. Cummings, ‘Accuracy of perturbative master equations’, Phys. Rev. E 83, 031117 (2011).F. B. Anders and A. Schiller, ‘Real-time dynamics in quantum-impurity systems: a time-dependent numerical renormalization-group approach’, Phys. Rev. Lett. 95, 196801 (2005).R. Bulla, T. A. Costi and T. Pruschke, ‘Numerical renormalization group method for quantum impurity systems’, Rev. Mod. Phys. 80, 395 (2008).M. J. Hartmann, J. Prior, S. R. Clark and M. B. Plenio, ‘Density matrix renormalization group in the heisenberg picture’, Phys. Rev. Lett. 102, 057202 (2009).F. Reiter and A. S. Sørensen, ‘Effective operator formalism for open quantum systems’, Phys. Rev. A 85, 032111 (2012).E. M. Kessler, ‘Generalized schrieffer-wolff formalism for dissipative systems’, Phys. Rev. A 86, 012126 (2012).D. Chru ści ński and A. Kossakowski, ‘Feshbach projection formalism for open quantum systems’, Phys. Rev. Lett. 111, 050402 (2013).J. Cui, J. I. Cirac and M. C. Bañuls, ‘Variational matrix product operators for the steady state of dissipative quantum systems’, Phys. Rev. Lett. 114, 220601 (2015).A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, Cambridge, 2011).L. M. Sieberer, M. Buchhold and S. Diehl, ‘Keldysh field theory for driven open quantum systems’, Rep. Prog. Phys. 79, 096001 (2016).A. C. Y. Li, F. Petruccione and J. Koch, ‘Perturbative approach to Markovian open quantum systems’, Sci. Rep. 4, 4887 (2015).A. C. Y. Li, F. Petruccione and J. Koch, ‘Resummation for nonequilibrium perturbation theory and application to open quantum lattices’, Phys. Rev. X 6, 021037 (2016).C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scient- ists and Engineers I: Asymptotic Methods and Perturbation Theory (Springer- Verlag New York, 1999).M. Janowicz, ‘Method of multiple scales in quantum optics’, Phys. Rep. 375, 327 (2003).W. Scherer, ‘Quantum averaging. I. Poincare-von Zeipel is Rayleigh Schrodinger’, J. Phys. A: Math. Gen. 27, 8231 (1994).G. Sandri, ‘A new method of expansion in mathematical physics - I’, Nuovo Cim. 36, 67 (1965).R. Ramnath and G. Sandri, ‘A generalized multiple scales approach to a class of linear differential equations’, J. Math. Anal. Appl. 28, 339 (1969).J. K. Kevorkian and J. D. Cole, Multiple Scale and Singular Perturbation Methods, Vol. 114, Applied Mathematical Sciences (Springer-Verlag New York, 1996).A. H. Nayfeh, Perturbation methods (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2004).S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Westview Press, Boulder, CO, 2014).C. M. Bender and L. M. A. Bettencourt, ‘Multiple-Scale Analysis of the Quantum Anharmonic Oscillator.’, Phys. Rev. Lett. 77, 4114 (1996).C. M. Bender and L. M. A. Bettencourt, ‘Multiple-scale analysis of quantum systems’, Phys. Rev. D 54, 7710 (1996).G. Auberson and M. Capdequi Peyranère, ‘Quantum anharmonic oscillator in the Heisenberg picture and multiple scale techniques’, Phys. Rev. A 65, 032120 (2002).M. W. Janowicz and J. M. a. Ashbourn, ‘Dynamics of the four-level Λ system in a two-mode cavity’, Phys. Rev. A 55, 2348 (1997).M. Janowicz, ‘Suppression of the Rabi oscillations in a cavity partially filled with a dielectric having a time-dependent refractive index’, Phys. Rev. A 57, 5016 (1998).M. Janowicz, ‘Evolution of wave fields and atom-field interactions in a cavity with one oscillating mirror’, Phys. Rev. A 57, 4784 (1998).D. A. R. Dalvit and F. D. Mazzitelli, ‘Creation of photons in an oscillating cavity with two moving mirrors’, Phys. Rev. A 59, 3049 (1999).M. Crocce, D. A. R. Dalvit and F. D. Mazzitelli, ‘Resonant photon creation in a three-dimensional oscillating cavity’, Phys. Rev. A 64, 013808 (2001).M. Crocce, D. A. R. Dalvit and F. D. Mazzitelli, ‘Quantum electromagnetic field in a three-dimensional oscillating cavity’, Phys. Rev. A 66, 033811 (2002).A. V. Dodonov and V. V. Dodonov, ‘Approximate analytical results on the cavity dynamical Casimir effect in the presence of a two-level atom’, 015805, 1 (2012).P. B. Kahn and Y. Zarmi, ‘Consistent Application of the Method of Multiple- Time Scales to Nonlinear Systems’, in Nonlinear phenomena research perspectives, edited by C. W. Wang (Nova Science Publishers, Inc, New York, 2007) Chap. 4, pp. 103–30.K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory, edited by K. Kraus, A. Böhm, J. D. Dollard and W. H. Wootters, Vol. 190, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, Ber- lin, Heidelberg, 1983).G. Schaller, Open Quantum Systems Far from Equilibrium, Vol. 881, Lecture Notes in Physics (Springer International Publishing, 2014).D. Bruß and G. Leuchs, eds., Lectures on Quantum Information (Wiley-VCH Verlag GmbH, Weinheim, Germany, 2006).H.-P. Breuer, E.-M. Laine, J. Piilo and B. Vacchini, ‘Colloquium : Non-Markovian dynamics in open quantum systems’, Rev. Mod. Phys. 88, 021002 (2016).K. Kraus, ‘General state changes in quantum theory’, Ann. Phys. 64, 311 (1971).M. D. Choi, ‘Completely positive linear maps on complex matrices’, Linear Algebra Appl. 10, 285 (1975).V. Gorini, A. Kossakowski and E. C. G. Sudarshan, ‘Completely positive dynamical semigroups of N-level systems’, J. Math. Phys. 17, 821 (1976).E. Andersson, J. D. Cresser and M. J. W. Hall, ‘Finding the Kraus decomposition from a master equation and vice versa’, J. Mod. Opt. 54, 1695 (2007).L.Li, M.J.W.Halland, H.M.Wiseman,‘Concepts of quantum non-markovianity: a hierarchy’, Physics Reports 759, 1 (2018).Á. Rivas, S. F. Huelga and M. B. Plenio, ‘Entanglement and non-Markovianity of quantum evolutions’, Phys. Rev. Lett. 105, 1 (2010).Á. Rivas, S. F. Huelga and M. B. Plenio, ‘Quantum non-Markovianity: Characterization, quantification and detection’, Rep. Prog. Phys. 77 (2014).R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, Vol. 717, Lecture Notes in Physics (Springer-Verlag Berlin Heidelberg, 2007).G. Lindblad, ‘On the generators of quantum dynamical semigroups’, Commun. Math. Phys. 48, 119 (1976).M. J. W. Hall, J. D. Cresser, L. Li and E. Andersson, ‘Canonical form of master equations and characterization of non-Markovianity’, Phys. Rev. A 89, 042120 (2014).M. R. Hush, I. Lesanovsky and J. P. Garrahan, ‘Generic map from non- Lindblad to Lindblad master equations’, Phys. Rev. A 91, 032113 (2015).D. Chruściński and A. Kossakowski, ‘Non-Markovian Quantum Dynamics: Local versus Nonlocal’, Phys. Rev. Lett. 104, 070406 (2010).F. P. Laussy, E. del Valle and C. Tejedor, ‘Luminescence spectra of quantum dots in microcavities. i. bosons’, Phys. Rev. B 79, 235325 (2009).P. Lodahl, S. Mahmoodian and S. Stobbe, ‘Interfacing single photons and single quantum dots with photonic nanostructures’, Rev. Mod. Phys. 87, 347 (2015).D. N. Bernal-García, H. Vinck-Posada and M. J. Woolley, ‘Nonstationary force sensing under dissipative mechanical quantum squeezing’, (2020), arXiv:2007. 13051 [quant-ph].V. B. Braginsky, Y. I. Vorontsov and K. S. Thorne, ‘Quantum Nondemolition Measurements’, Science 209, 547 (1980).C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg and M. Zimmermann, ‘On the measurement of a weak classical force coupled to a quantum- mechanical oscillator. I. Issues of principle’, Rev. Mod. Phys. 52, 341 (1980).C. M. Caves and G. J. Milburn, ‘Quantum-mechanical model for continuous position measurements’, Phys. Rev. A 36, 5543 (1987).V. B. Braginsky, F. Y. Khalili and K. S. Thorne, Quantum measurement (Cambridge University Press, Cambridge, 1992).M. F. Bocko and R. Onofrio, ‘On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress’, Rev. Mod. Phys. 68, 755 (1996).Y. Chen, ‘Macroscopic quantum mechanics: theory and experimental concepts of optomechanics’, J. Phys. B 46, 104001 (2013).S. L. Danilishin and F. Y. Khalili, ‘Quantum Measurement Theory in Gravitational- Wave Detectors’, Living Rev. Relativ. 15, 5 (2012).E. Zeuthen, E. S. Polzik and F. Y. Khalili, ‘Gravitational wave detection beyond the standard quantum limit using a negative-mass spin system and virtual rigidity’, (2019), arXiv:1908.03416 [gr-qc].G. J. Milburn, K. Jacobs and D. F. Walls, ‘Quantum-limited measurements with the atomic force microscope’, Phys. Rev. A 50, 5256 (1994).H.-J. Butt, B. Cappella and M. Kappl, ‘Force measurements with the atomic force microscope: Technique, interpretation and applications’, Surf. Sci. Rep. 59, 1 (2005).M. Poggio and C. L. Degen, ‘Force-detected nuclear magnetic resonance: recent advances and future challenges’, Nanotechnology 21, 342001 (2010).S. Davuluri, ‘Optomechanics for absolute rotation detection’, Phys. Rev. A 94, 013808 (2016).S. Davuluri and Y. Li, ‘Absolute rotation detection by coriolis force measurement using optomechanics’, New Journal of Physics 18, 103047 (2016).D. Carney, S. Ghosh, G. Krnjaic and J. M. Taylor, ‘Gravitational Direct Detection of Dark Matter’, (2019), arXiv:1903.00492 [hep-ph].D. Carney, A. Hook, Z. Liu, J. M. Taylor and Y. Zhao, ‘Ultralight dark matter detection with mechanical quantum sensors’, (2019), arXiv:1908.04797 [hep-ph].S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toro š, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim and G. Milburn, ‘Spin entanglement witness for quantum gravity’, Phys. Rev. Lett. 119, 240401 (2017).C. Marletto and V. Vedral, ‘Gravitationally Induced Entanglement between Two Massive Particles is Sufficient Evidence of Quantum Effects in Gravity’, Phys. Rev. Lett. 119, 240402 (2017).D. Carney, P. C. E. Stamp and J. M. Taylor, ‘Tabletop experiments for quantum gravity: a user’s manual’, Classical and Quantum Gravity 36, 034001 (2019).M. Carlesso, A. Bassi, M. Paternostro and H. Ulbricht, ‘Testing the gravitational field generated by a quantum superposition’, (2019), arXiv:1906. 04513 [quant-ph].M. Carlesso and M. Paternostro, ‘Opto-mechanical test of collapse models’, (2019), arXiv:1906.11041 [quant-ph].V. B. Braginsky, ‘Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator’, Zh. Eksp. Teor. Fiz 53, 1434 (1967); J. Exp. Theor. Phys 26, 831 (1968).C. M. Caves, ‘Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer’, Phys. Rev. Lett. 45, 75 (1980).A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt and R. J. Schoelkopf, ‘Introduction to quantum noise, measurement, and amplification’, Rev. Mod. Phys. 82, 1155 (2010).V. B. Braginsky and Y. I. Vorontsov, ‘Quantum-mechanical limitations in macroscopic experiments and modern experimental technique’, Usp. Fiz. Nauk. 114, 41 (1974); Sov. Phys. Usp. 17, 644 (1975).R. P. Giffard, ‘Ultimate sensitivity limit of a resonant gravitational wave an- tenna using a linear motion detector’, Phys. Rev. D 14, 2478 (1976).M. Aspelmeyer, T. J. Kippenberg and F. Marquardt, eds., Cavity optomechanics, Nano- and Micromechanical Resonators Interacting with Light (Springer- Verlag, Berlin, Heidelberg, 2014).B. P. A. et al, ‘Observation of Gravitational Waves from a Binary Black Hole Merger’, Phys. Rev. Lett. 116, 061102 (2016).D. Mason, J. Chen, M. Rossi, Y. Tsaturyan and A. Schliesser, ‘Continuous force and displacement measurement below the standard quantum limit’, Nat. Phys. 15, 745 (2019).S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leib- fried, D. H. Slichter and D. T. C. Allcock, ‘Quantum amplification of mechanical oscillator motion’, Science 364, 1163 (2019).S. Huang and G. S. Agarwal, ‘Robust force sensing for a free particle in a dissipative optomechanical system with a parametric amplifier’, Phys. Rev. A 95, 023844 (2017).W. Zhao, S.-D. Zhang, A. Miranowicz and H. Jing, ‘Weak-force sensing with squeezed optomechanics’, Sci. China-Phys. Mech. Astron. 63, 224211 (2019).X.-Y. Wang, B. Xiong, W.-Z. Zhang and L. Zhou, ‘Improve the sensitivity of an optomechanical sensor with the auxiliary mechanical oscillator’, Eur. Phys. J. D 72, 117 (2018).W.-Z. Zhang, L.-B. Chen, J. Cheng and Y.-F. Jiang, ‘Quantum-correlation- enhanced weak-field detection in an optomechanical system’, Phys. Rev. A 99, 063811 (2019).P. A. Ivanov, K. Singer, N. V. Vitanov and D. Porras, ‘Quantum sensors assisted by spontaneous symmetry breaking for detecting very small forces’, Phys. Rev. Applied 4, 054007 (2015).A. Motazedifard, F. Bemani, M. H. Naderi, R. Roknizadeh and D. Vitali, ‘Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection’, New J. Phys. 18, 073040 (2016).A. Motazedifard, A. Dalafi, F. Bemani and M. H. Naderi, ‘Force sensing in hybrid bose-einstein-condensate optomechanics based on parametric amplification’, Phys. Rev. A 100, 023815 (2019).S. Davuluri and Y. Li, ‘Shot-noise-limited interferometry for measuring a classical force’, Phys. Rev. A 98, 043809 (2018).A. A. Clerk, F. Marquardt and K. Jacobs, ‘Back-action evasion and squeezing of a mechanical resonator using a cavity detector’, New J. Phys. 10, 095010 (2008).M. J. Woolley, A. C. Doherty, G. J. Milburn and K. C. Schwab, ‘Nanomechanical squeezing with detection via a microwave cavity’, Phys. Rev. A 78, 062303 (2008).J. B. Hertzberg, T. Rocheleau, T. Ndukum, M. Savva, A. A. Clerk and K. C. Schwab, ‘Back-action-evading measurements of nanomechanical motion’, Nat. Phys. 6, 213 (2010).J. Suh, A. J. Weinstein, C. U. Lei, E. E. Wollman, S. K. Steinke, P. Meystre, A. A. Clerk and K. C. Schwab, ‘Mechanically detecting and avoiding the quantum fluctuations of a microwave field’, Science 344, 1262 (2014).I. Shomroni, L. Qiu, D. Malz, A. Nunnenkamp and T. J. Kippenberg, ‘Optical backaction-evading measurement of a mechanical oscillator’, Nat.Commun. 10, 2086 (2019).A. Kronwald, F. Marquardt and A. A. Clerk, ‘Arbitrarily large steady-state bosonic squeezing via dissipation’, Phys. Rev. A 88, 063833 (2013).A. Kronwald, F. Marquardt and A. A. Clerk, ‘Dissipative optomechanical squeezing of light’, New J. Phys. 16, 063058 (2014).F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado and J. D. Teufel, ‘Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object’, Phys. Rev. X 5, 041037 (2015).E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk and K. C. Schwab, ‘Quantum squeezing of motion in a mechanical resonator’, Science 349, 952 (2015).J.-M. Pirkkalainen, E. Damskägg, M. Brandt, F. Massel and M. A. Sillanpää, ‘Squeezing of Quantum Noise of Motion in a Micromechanical Resonator’, Phys. Rev. Lett. 115, 243601 (2015).C. U. Lei, A. J. Weinstein, J. Suh, E. E. Wollman, A. Kronwald, F. Marquardt, A. A. Clerk and K. C. Schwab, ‘Quantum Nondemolition Measurement of a Quantum Squeezed State beyond the 3 dB Limit’, Phys. Rev. Lett. 117, 100801 (2016).I. Shomroni, A. Youssefi, N. Sauerwein, L. Qiu, P. Seidler, D. Malz, A. Nunnen- kamp and T. J. Kippenberg, ‘Two-tone optomechanical instability in backaction- evading measurements’, (2018), arXiv:1812.11022 [quant-ph].M. J. Woolley and A. A. Clerk, ‘Two-mode back-action-evading measurements in cavity optomechanics’, Phys. Rev. A 87, 063846 (2013).C. F. Ockeloen-Korppi, E. Damskägg, J. M. Pirkkalainen, A. A. Clerk, M. J. Woolley and M. A. Sillanpää, ‘Quantum Backaction Evading Measurement of Collective Mechanical Modes’, Phys. Rev. Lett. 117, 140401 (2016).M. J. Woolley and A. A. Clerk, ‘Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir’, Phys. Rev. A 89, 063805 (2014).F. Massel, ‘Backaction-evading measurement of entanglement in optomechanics’, Phys. Rev. A 100, 023824 (2019).A. Papoulis and S. U. Pillai, Probability, random variables and stochastic processes, 4th (McGraw-Hill, New York, 2002).J. Anandan, ‘Geometric phase for cyclic motions and the quantum state space metric’, Phys. Lett. A 147, 3 (1990).A. K. Pati, U. Singh and U. Sinha, ‘Measuring non-hermitian operators via weak values’, Phys. Rev. A 92, 052120 (2015).G. R. Cooper and C. D. McGillem, Probabilistic methods of signal and system analysis, 3rd (Oxford University Press, Oxford, UK, 1998).R. Grover Brown and P. Y. C. Hwang, Introduction to random signals and applied Kalman filtering, 4th (John Wiley & Sons, 2012).K. M. M. Prabhu, Window functions and their applications in signal processing (CRC Press, Boca Raton, 2014).M. Lucamarini, D. Vitali and P. Tombesi, ‘Scheme for a quantum-limited force measurement with an optomechanical device’, Phys. Rev. A 74, 063816 (2006).D. Vitali, S. Mancini and P. Tombesi, ‘Optomechanical scheme for the detection of weak impulsive forces’, Phys. Rev. A 64, 051401 (2001). ‘Erratum: optomechanical scheme for the detection of weak impulsive forces [Phys. Rev. A 64, 051401(R) (2001)]’, ibid. 69, 049904 (2004).D. Vitali, S. Mancini, L. Ribichini and P. Tombesi, ‘Mirror quiescence and high-sensitivity position measurements with feedback’, Phys. Rev. A 65, 063803 (2002). ‘Erratum: mirror quiescence and high-sensitivity positionmeasurements with feedback [Phys. Rev. A 65, 063803 (2002)]’, ibid. 69, 029901 (2004).R. D. Klauber, Student friendly quantum field theory (Sandtrove Press, 2013).J. Gea-Banacloche, N. Lu, L. M. Pedrotti, S. Prasad, M. O. Scully and K. Wódkiewicz, ‘Treatment of the spectrum of squeezing based on the modes of the universe. I. Theory and a physical picture’, Phys. Rev. A 41, 369 (1990).A. Dechant and E. Lutz, ‘Wiener-Khinchin Theorem for Nonstationary Scale-Invariant Processes’, Phys. Rev. Lett. 115, 080603 (2015).B. R. Kusse and E. A. Westwig, Mathematical physics, 2nd (Wiley-VCH Ver- lag GmbH, Weinheim, Germany, 2006).G. W. Ford, J. T. Lewis and R. F. O’Connell, ‘Quantum Langevin equation’, Physical Review A 37, 4419 (1988).V. Giovannetti and D. Vitali, ‘Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion’, Phys. Rev. A 63, 023812 (2001).W. Bowen and G. Milburn, Quantum optomechanics (CRCPress,BocaRaton, 2015).D. F. Walls and G. J. Milburn, Quantum optics, 2nd (Springer-Verlag, Berlin, Heidelberg, 2007).F. Marquardt, J. P. Chen, A. A. Clerk and S. M. Girvin, ‘Quantum theory of cavity-assisted sideband cooling of mechanical motion’, Phys. Rev. Lett. 99, 093902 (2007).I. Wilson-Rae, N. Nooshi, W. Zwerger and T. J. Kippenberg, ‘Theory of ground state cooling of a mechanical oscillator using dynamical backaction’, Phys. Rev. Lett. 99, 093901 (2007).D. G. Blair, ed., The detection of gravitational waves (Cambridge University Press, Cambridge, 1991).S. Bermúdez-Feijóo, D. N. Bernal-García and H. Vinck-Posada, ‘Statistical properties of light emitted from a nonstationary atom-cavity system’, in Quantum nanophotonics 2018, Vol. 10734, edited by J. A. Dionne, M. Lawrence and
M. T. Sheldon (International Society for Optics and Photonics, 2018), pp. 17– 29.J. C. González-Espitia, D. N. Bernal-García and H. Vinck-Posada, ‘Statistical properties of light emitted by active media embedded on a microcavity system’, in Quantum nanophotonics 2018, Vol. 10734, edited by J. A. Dionne, M. Lawrence and M. T. Sheldon (International Society for Optics and Photonics, 2018), pp. 36–46.Electrodinámica cuántica de cavidades no estacionariasCOLCIENCIASORIGINAL1098646876.2020.pdf1098646876.2020.pdfTesis de Doctorado en Ciencias - Físicaapplication/pdf5382137https://repositorio.unal.edu.co/bitstream/unal/79529/1/1098646876.2020.pdf637f470bd95d98d4db2508c996e911f3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79529/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.unal.edu.co/bitstream/unal/79529/3/license_rdf84a900c9dd4b2a10095a94649e1ce116MD53THUMBNAIL1098646876.2020.pdf.jpg1098646876.2020.pdf.jpgGenerated Thumbnailimage/jpeg3943https://repositorio.unal.edu.co/bitstream/unal/79529/4/1098646876.2020.pdf.jpg751fdda0b9118d558bc5e06360dcdf7fMD54unal/79529oai:repositorio.unal.edu.co:unal/795292024-07-10 23:21:40.453Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |