Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano

ilustraciones, diagramas

Autores:
Sepúlveda Sánchez, Lady Yohanna
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84624
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84624
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines
Algas marinas
Seaweed
Industria de cosméticos
Cosmetics industry
Productos Naturales Marinos
Algas Pardas
Algas Rojas
tirosinasa
colagenasa
Hialuronidasa
Perfilado metabólico
Redes moleculares
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_1ea9363edd55efa631fdf85111252a0d
oai_identifier_str oai:repositorio.unal.edu.co:unal/84624
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
dc.title.translated.eng.fl_str_mv Search for compounds with possible inhibitory activity of enzymes of cosmetic interest from seaweed from the Colombian Caribbean.
title Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
spellingShingle Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
540 - Química y ciencias afines
Algas marinas
Seaweed
Industria de cosméticos
Cosmetics industry
Productos Naturales Marinos
Algas Pardas
Algas Rojas
tirosinasa
colagenasa
Hialuronidasa
Perfilado metabólico
Redes moleculares
title_short Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
title_full Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
title_fullStr Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
title_full_unstemmed Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
title_sort Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano
dc.creator.fl_str_mv Sepúlveda Sánchez, Lady Yohanna
dc.contributor.advisor.none.fl_str_mv Castellanos Hernández, Leonardo
dc.contributor.author.none.fl_str_mv Sepúlveda Sánchez, Lady Yohanna
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación: Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.contributor.orcid.spa.fl_str_mv Lady Yohanna Sepulveda Sanchez [0009-0006-9716-7609]
dc.contributor.cvlac.spa.fl_str_mv rh_0001620161
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines
topic 540 - Química y ciencias afines
Algas marinas
Seaweed
Industria de cosméticos
Cosmetics industry
Productos Naturales Marinos
Algas Pardas
Algas Rojas
tirosinasa
colagenasa
Hialuronidasa
Perfilado metabólico
Redes moleculares
dc.subject.decs.spa.fl_str_mv Algas marinas
dc.subject.decs.eng.fl_str_mv Seaweed
dc.subject.lemb.spa.fl_str_mv Industria de cosméticos
dc.subject.lemb.eng.fl_str_mv Cosmetics industry
dc.subject.proposal.spa.fl_str_mv Productos Naturales Marinos
Algas Pardas
Algas Rojas
tirosinasa
colagenasa
Hialuronidasa
Perfilado metabólico
dc.subject.proposal.none.fl_str_mv Redes moleculares
description ilustraciones, diagramas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-08-31T21:28:49Z
dc.date.available.none.fl_str_mv 2023-08-31T21:28:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84624
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84624
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Statista. Cosmetics and personal care Market. https://www.statista.com/outlook/70000000/103/cosmetics-and-personal-care/latinamerica# (accessed 2018-04-02).
Statista Research Department. Valor del mercado de cosméticos en Colombia de 2019 a 2021. https://es.statista.com/estadisticas/1320185/colombia-tamano-delmercado-de-cosmeticos/ (accessed 2022-07-10).
AUNAP. Plan Nacional Para El Desarrollo de La Acuicultura Sostenible En Colombia - PlaNDAS; Bogotá, 2014. http://aunap.gov.co/wp-content/uploads/2016/04/PlanNacional-para-el-Desarrollo-de-la-Acuicultura-Sostenible-Colombia.pdf (accessed 2018-11-30).
Comisión de la Comunidad Andina. DECISIÓN 833 Modificación de la Decisión 516: “Armonización de legislaciones en materia de productos cosméticos.” http://www.sice.oas.org/trade/JUNAC/Decisiones/DEC833_s.pdf (accessed 2022- 07-13)
Cosmetics and Personal Care Products | TLC Exportador. http://ftaus.procolombia.co/offer-by-sector/manufacturing-and-supplies/cosmetics-andpersonal-care-products (accessed 2018-04-02).
inexmoda. INFORME DEL SECTOR COSMÉTICO. http://www.saladeprensainexmoda.com/wp-content/uploads/2019/01/informegastometria-cosmeticos-enero-2019.pdf (accessed 2019-04-21)
Decreto 476 de 2020. https://coronaviruscolombia.gov.co/Covid19/docs/decretos/minsalud/113_decreto_ 476.pdf (accessed 2022-01-03).
Ingredientes Naturales para Cosméticos-guia exportación. https://gqspcolombia.org/wp-content/uploads/2021/12/Guia_exportar-ingredientesnaturales_Suiza_UE.pdf (accessed 2022-01-09).
GQSP Colombia - Programa de Calidad para la Cadena de Químicos. Requisitos de calidad y sostenibilidad para ingredientes naturales en Suiza y la Unión Europea. https://gqspcolombia.org/wp-content/uploads/2021/12/Requisitos-de-calidad-ysostenibilidad-IN.pdf (accessed 2021-01-09).
GQSP Colombia – Programa de Calidad para la Cadena de Químicos. https://gqspcolombia.org/#laboratorios (accessed 2022-01-03)
Gupta, M. A.; Gilchrest, B. A. Psychosocial Aspects Of Aging Skin. Dermatol. Clin. 2005, 23 (4), 643–648. https://doi.org/10.1016/j.det.2005.05.012
Dayan, N. Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development (Personal Care and Cosmetic Technology), 1st Editio.; William Andrew: New York, 2008.
Couteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.
Couteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.
FDA. Prohibited & Restricted Ingredients in Cosmetics | FDA. https://www.fda.gov/cosmetics/cosmetics-laws-regulations/prohibited-restrictedingredients-cosmetics (accessed 2019-07-02)
Dreno, B.; Araviiskaia, E.; Berardesca, E.; Bieber, T.; Hawk, J.; Sanchez-Viera, M.; Wolkenstein, P. The Science of Dermocosmetics and Its Role in Dermatology. J. Eur. Acad. Dermatology Venereol. 2014, 28 (11), 1409–1417. https://doi.org/10.1111/jdv.12497
ONUDI Colombia. Análisis de la competitividad del sector cosméticos e ingredientes naturales.
Vermeer, B. J. Cosmeceuticals. Arch. Dermatol. 1996, 132 (3), 337. https://doi.org/10.1001/archderm.1996.03890270113017
Agrawal, S.; Adholeya, A.; Barrow, C. J.; Deshmukh, S. K. Marine Fungi: An Untapped Bioresource for Future Cosmeceuticals. Phytochem. Lett. 2018, 23 (October 2017), 15–20. https://doi.org/10.1016/j.phytol.2017.11.003
Kikuchi, K.; Tagami, H. Dermatological Benefits of Cosmetics; Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-12-802005-0.00007-0
Amaied, E.; Vargiolu, R.; Bergheau, J. M.; Zahouani, H. Aging Effect on Tactile Perception: Experimental and Modelling Studies. Wear 2015, 332–333, 715–724. https://doi.org/10.1016/j.wear.2015.02.030
Thieulin, C.; Pailler-Mattei, C.; Abdouni, A.; Djaghloul, M.; Zahouani, H. Mechanical and Topographical Anisotropy for Human Skin: Ageing Effect. J. Mech. Behav. Biomed. Mater. 2020, 103 (October 2019), 103551. https://doi.org/10.1016/j.jmbbm.2019.103551
Oomens, C. W. J.; van Vijven, M.; Peters, G. W. M. Skin Mechanics. In Biomechanics of Living Organs; Elsevier, 2017; pp 347–357. https://doi.org/10.1016/B978-0-12- 804009-6.00016-X
Gilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and Function of the Skin. In Nanoscience in Dermatology; Elsevier, 2016; pp 1–14. https://doi.org/10.1016/B978-0-12-802926-8.00001-X
Kim, H. M.; An, H. S.; Bae, J. S.; Kim, J. Y.; Choi, C. H.; Kim, J. Y.; Lim, J. H.; Choi, J. hun; Song, H.; Moon, S. H.; Park, Y. J.; Chang, S. J.; Choi, S. Y. Effects of Capítulo 1 39 Palmitoyl-KVK-L-Ascorbic Acid on Skin Wrinkles and Pigmentation. Arch. Dermatol. Res. 2017, 309 (5), 397–402. https://doi.org/10.1007/s00403-017-1731-6
Ganceviciene, R.; Liakou, A. I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C. C. Skin Anti-Aging Strategies. Dermatoendocrinol. 2012, 4 (3), 308–319. https://doi.org/10.4161/derm.22804
Tobin, D. J. Introduction to Skin Aging. J. Tissue Viability 2017, 26 (1), 37–46. https://doi.org/10.1016/j.jtv.2016.03.002
Jenkins, G. Molecular Mechanisms of Skin Ageing. Mech. Ageing Dev. 2002, 123 (7), 801–810. https://doi.org/10.1016/S0047-6374(01)00425-0
Hetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04
Freitas-Rodríguez, S.; Folgueras, A. R.; López-Otín, C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta - Mol. Cell Res. 2017, 1864 (11), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007
Ahmed, I. A.; Mikail, M. A.; Zamakshshari, N.; Abdullah, A.-S. H. Natural Anti-Aging Skincare: Role and Potential. Biogerontology 2020, 21 (3), 293–310. https://doi.org/10.1007/s10522-020-09865-z
Fisher, G. J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J. J. Mechanisms of Photoaging and Chronological Skin Aging. Arch. Dermatol. 2002, 138 (11), 1462–1470. https://doi.org/10.1001/archderm.138.11.1462
Hwang, K.-A.; Yi, B.-R.; Choi, K.-C. Molecular Mechanisms and In Vivo Mouse Models of Skin Aging Associated with Dermal Matrix Alterations. Lab. Anim. Res. 2011, 27 (1), 1–8. https://doi.org/10.5625/lar.2011.27.1.1.
Shah, H.; Rawal Mahajan, S. Photoaging: New Insights into Its Stimulators, Complications, Biochemical Changes and Therapeutic Interventions. Biomed. Aging Pathol. 2013, 3 (3), 161–169. https://doi.org/10.1016/j.biomag.2013.05.003
Mumtaz, S.; Ali, S.; Tahir, H. M.; Kazmi, S. A. R.; Shakir, H. A.; Mughal, T. A.; Mumtaz, S.; Summer, M.; Farooq, M. A. Aging and Its Treatment with Vitamin C: A Comprehensive Mechanistic Review. Mol. Biol. Rep. 2021, 48 (12), 8141–8153. https://doi.org/10.1007/S11033-021-06781-4.
Keen, M. Hyaluronic Acid in Dermatology. Skinmed 2017, 15, 441–448. (38) Hendry Henderson, A.; Nyoman Ehrich Lister, I.; Girsang, E.; Fachrial, E. Antioxidant and Anticollagenase Activity of Tomato (Solanum Lycopersicum L.) and Lycopene. Technol. Sci. Am. Sci. Res. J. Eng. 2019, 52 (1), 57–66
Garg, C.; Khurana, P.; Garg, M. Molecular Mechanisms of Skin Photoaging and Plant Inhibitors. Int. J. Green Pharm. 2017, 11 (2), 217–232
Fonseca, Y. M.; Catini, C. D.; Vicentini, F. T. M. C.; Nomizo, A.; Gerlach, R. F.; Fonseca, M. J. V. Protective Effect of Calendula Officinalis Extract against UVBInduced Oxidative Stress in Skin: Evaluation of Reduced Glutathione Levels and Matrix Metalloproteinase Secretion. J. Ethnopharmacol. 2010, 127 (3), 596–601. https://doi.org/10.1016/j.jep.2009.12.019
Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella Asiatica in Cosmetology. Adv. Dermatology Allergol. 2013, 1, 46–49. https://doi.org/10.5114/pdia.2013.33378
Senol Deniz, F. S.; Orhan, I. E.; Duman, H. Profiling Cosmeceutical Effects of Various Herbal Extracts through Elastase, Collagenase, Tyrosinase Inhibitory and Antioxidant Assays. Phytochem. Lett. 2021, 45, 171–183.
Roy, A.; Sahu, R.; Matlam, M.; Deshmukh, V.; Dwivedi, J.; Jha, A. In Vitro Techniques To Assess The Proficiency of Skin Care Cosmetic Formulations. Pharmacogn. Rev. 2013, 7 (14), 97–106. https://doi.org/10.4103/0973-7847.120507
Moon, J. K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry. March 11, 2009, pp 1655–1666. https://doi.org/10.1021/jf803537k
Zappelli, C.; Barbulova, A.; Apone, F.; Colucci, G. Effective Active Ingredients Obtained through Biotechnology. Cosmetics 2016, 3 (4), 39. https://doi.org/10.3390/cosmetics3040039
Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16 (2), 101–110. https://doi.org/10.1034/j.1600-0749.2003.00029.x
Virador, V. M.; Kobayashi, N.; Matsunaga, J.; Hearing, V. J. A Standardized Protocol for Assessing Regulators of Pigmentation. Anal. Biochem. 1999, 270 (2), 207–219. https://doi.org/10.1006/abio.1999.4090
Gunia-Krzyżak, A.; Popiol, J.; Marona, H. Melanogenesis Inhibitors: Strategies for Searching for and Evaluation of Active Compounds. Curr. Med. Chem. 2016, 23 (31), 3548–3574. https://doi.org/10.2174/0929867323666160627094938
Thomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5
Ghersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018
Liu, H.; Mander, L. Comprehensive Natural Products II - Chemistry and Biology - Volume_3, 1st editio.; Elsevier Science: Kidlington, 2010
SYN®-COLL. https://www.dsm.com/personal-care/en_US/products/skinbioactives/syn-coll.html (accessed 2022-02-09)
TRI-K Industries, I. DermaPep TM A440. Innovative Anti-Aging Tetrapeptide. https://www.ulprospector.com/documents/1185121.pdf?bs=1957&b=240140&st=20 &r=la&ind=personalcare (accessed 2022-02-18)
Inc., S.-C. I. SpecKare ® MBA (Maltobionic Acid). https://www.ulprospector.com/en/na/PersonalCare/Detail/5738/5492191/SpecKareMBA (accessed 2022-02-09)
Espinosa-Leal, C.; Garcia-Lara, S. Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications. Planta Med. 2019, 85 (07), 535–551. https://doi.org/10.1055/a-0857-6633
Harjo, B.; Wibowo, C.; Ng, K. M. Development of Natural Product Manufacturing Processes: Phytochemicals. Chem. Eng. Res. Des. 2004, 82 (8), 1010–1028. https://doi.org/10.1205/0263876041580695
Tracy, L. E.; Minasian, R. A.; Caterson, E. J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5 (3), 119–136. https://doi.org/10.1089/WOUND.2014.0561
Kim, S. W.; Kim, B.-H. A Web-Based Alternative Non-Animal Method Database for Safety Cosmetic Evaluations. Toxicol. Res. 2016, 32 (3), 259–267. https://doi.org/10.5487/TR.2016.32.3.259
Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036
Skoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103
Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440
Pillaiyar, T.; Namasivayam, V.; Manickam, M.; Jung, S.-H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 61 (17), 7395–7418. https://doi.org/10.1021/acs.jmedchem.7b00967
Park, H. Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B. A. Cellular Mechanisms Regulating Human Melanogenesis. Cell. Mol. Life Sci. 2009, 66 (9), 1493–1506. https://doi.org/10.1007/s00018-009-8703-8
Couteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027
Zhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatology Symp. Proc. 2008, 13 (1), 20–24. https://doi.org/10.1038/jidsymp.2008.8
European Commission. ANNEX II. List of Substances Prohibited in Cosmetic Products. https://ec.europa.eu/growth/tools-databases/cosing/pdf/COSING_Annex II_v2.pdf (accessed 2020-04-16)
Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic Acid, a Cosmetic Skin Whitening Agent, Is a Slow-Binding Inhibitor of Catecholase Activity of Tyrosinase. J. Pharm. Pharmacol. 1994, 46 (12), 982–985. https://doi.org/10.1111/j.2042- 7158.1994.tb03253.x
Hakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G. G.; Bissett, D. L.; Boissy, R. E. The Effect of Niacinamide on Reducing Cutaneous Pigmentation and Suppression of Melanosome Transfer. Br. J. Dermatol. 2002, 147 (1), 20–31. https://doi.org/10.1046/j.1365- 2133.2002.04834.x
Maeda, K.; Fukuda, M. Arbutin: Mechanism of Its Depigmenting Action in Human Melanocyte Culture. J. Pharmacol. Exp. Ther. 1996, 276 (2), 765–769
Bowes, L. The Science of Hydroxy Acids: Mechanisms of Action, Types and Cosmetic Applications. J. Aesthetic Nurs. 2013, 2 (2), 77–81. https://doi.org/10.12968/joan.2013.2.2.77
LP, X.; QX, C.; H, H.; HZ, W.; RQ, Z. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochem. (Mosc). 2003, 68 (4), 487–491
Arct, J.; Pytkowska, K. Flavonoids as Components of Biologically Active Cosmeceuticals. Clin. Dermatol. 2008, 26 (4), 347–357. https://doi.org/10.1016/j.clindermatol.2008.01.004
Ros, J. R.; Rodríguez-López, J. N.; García-Cánovas, F. Effect of L-Ascorbic Acid on the Monophenolase Activity of Tyrosinase. Biochem. J. 1993, 295 (1), 309–312. https://doi.org/10.1042/bj2950309
Lai, K.-Y.; Hu, H.-C.; Chiang, H.-M.; Liu, Y.-J.; Yang, J.-C.; Lin, Y.-A.; Chen, C.-J.; Chang, Y.-S.; Lee, C.-L. New Diterpenes Leojaponins G–L from Leonurus Japonicus. Fitoterapia 2018, 130 (June), 125–133. https://doi.org/10.1016/j.fitote.2018.08.014
Li, X.; Kim, M. K.; Lee, U.; Kim, S.-K.; Kang, J. S.; Choi, H. D.; Son, B. W. Myrothenones A and B, Cyclopentenone Derivatives with Tyrosinase Inhibitory Activity from the Marine-Derived Fungus Myrothecium Sp. Chem. Pharm. Bull. (Tokyo). 2005, 53 (4), 453–455. https://doi.org/10.1248/cpb.53.453
Deering, R. W.; Chen, J.; Sun, J.; Ma, H.; Dubert, J.; Barja, J. L.; Seeram, N. P.; Wang, H.; Rowley, D. C. N -Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea Sp. PP2-459. J. Nat. Prod. 2016, 79 (2), 447–450. https://doi.org/10.1021/acs.jnatprod.5b00972
Romero-González, R. R.; Ávila-Núñez, J. L.; Aubert, L.; Alonso-Amelot, M. E. Labdane Diterpenes from Leonurus Japonicus Leaves. Phytochemistry 2006, 67 (10), 965–970. https://doi.org/10.1016/j.phytochem.2006.03.015
Biodiversidad en cifras. https://cifras.biodiversidad.co/ (accessed 2020-06-17)
ANDI. Informe de sostenibilidad de Industria de cosmética y aseo 2015. http://www.andi.com.co/cica/Documents/Cosmeticos/Informes/InformeSostenibilida d.pdf (accessed 2022-01-12)
Sistema de Información de la Investigación - HERMES. http://www.hermes.unal.edu.co/pages/Consultas/Proyecto.xhtml?idProyecto=3867 3&opcion=1 (accessed 2020-07-06).
Bogotá le apuesta a la innovación natural - Cluster de Cosméticos, Cámara de Comercio de Bogotá. https://www.ccb.org.co/Clusters/Cluster-deCosmeticos/Noticias/2018/Septiembre-2018/Bogota-le-apuesta-a-la-innovacionnatural (accessed 2020-07-06)
Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007
European Commission. CosIng - Cosmetics - GROWTH - European Commission. http://ec.europa.eu/growth/tools-databases/cosing/ (accessed 2018-12-04)
Bautista Rodríguez, C. A. Una Mirada Al Estado Actual de La Investigación En Productos Naturales Marinos de Colombia-Tesis de Maestría., Universidad Nacional de Colombia, 2017. https://repositorio.unal.edu.co/handle/unal/62225
Kim, S. K. Marine Cosmeceuticals. J. Cosmet. Dermatol. 2014, 13 (1), 56–67. https://doi.org/10.1111/jocd.12057
Viscasillas Clerch, A.; Pozo, A. El Uso de Las Algas En Cosmética. Offarm Farm. y Soc. 2005, 24 (2), 126–127
López-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552
Kim, S. K. Handbook of Marine Biotecnology; Springer, 2015
Food and Agriculture Organization. Seaweeds And Microalgae: An Overview For Unlocking Their Potential In Global Aquaculture Development. NFIA/C1229 (En); Rome, 2021; Vol. 1229
Biotechnica | Extractos de algas, bioestimulantes y biofertilizantes. https://biotechnica.co.uk/ (accessed 2020-11-15).
Seaweed Solutions. https://seaweedsolutions.com/ (accessed 2020-11-15)
An innovative approach to develop sustainable marine active ingredients from macroalgae | SEPPIC. https://www.seppic.com/en/scientificcommunications/innovative-approach-develop-sustainable-marine-activeingredients (accessed 2020-11-15)
Mekideche, N. Brown Algae Cell Lyophilisate, Method For The Obtention Thereof . 20080089851, April 17, 2018. https://patents.justia.com/patent/20080089851 (accessed 2020-11-15)
Cattuzzato, L.; Le Gelebart, E. Method for Culturing Cells of Acrochaetium moniliforme Red Algae, Method for Obtaining an Extract of the Biomass Thereof, and Use of Same in Cosmetics. https://patents.justia.com/patent/20180117106 (accessed 2020-11-15)
Yong, W. T. L.; Thien, V. Y.; Rupert, R.; Rodrigues, K. F. Seaweed: A Potential Climate Change Solution. Renew. Sustain. Energy Rev. 2022, 159 (September 2021), 112222. https://doi.org/10.1016/j.rser.2022.112222
Rincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqe
Rincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)
Arias-Echeverri, J. P.; Zapata-Ramírez, P. A.; Ramírez-Carmona, M.; RendónCastrillón, L.; Ocampo-López, C. Present and Future of Seaweed Cultivation and Its Applications in Colombia. J. Mar. Sci. Eng. 2022, 10 (2), 243. https://doi.org/10.3390/jmse10020243
UTadeo. Establecimiento y desarrollo de un proyecto piloto de cultivo de algas y desarrollo de productos basados en su derivados | Universidad de Bogotá Jorge Tadeo Lozano. https://www.utadeo.edu.co/es/evento/academicos/establecimientoy-desarrollo-de-un-proyecto-piloto-de-cultivo-de-algas-y?page=5 (accessed 2018- 09-16)
Molina-Vargas, J. N. Resultados Preliminares Del Cultivo Experimental de Gracilaria Verrucosa (Hudson) Papenfuss (=G. Caudata J. Agardh) (Rhodophyta: Gracilariaceae) En La Costa Caribe de Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2014, 38 (146), 79. https://doi.org/10.18257/raccefyn.41
Camacho, O.; Montaña-Fernández, J. Cultivo Experimental En El Mar Del Alga Roja Hypnea Musciformis En El Area de Santa Marta, Caribe Colombiano. Bol. Investig. Mar. y Costeras 2012, 41 (1), 29–46. https://doi.org/10.25268/bimc.invemar.2012.41.1.71
Ariede, M. B.; Candido, T. M.; Jacome, A. L. M.; Velasco, M. V. R.; de Carvalho, J. C. M.; Baby, A. R. Cosmetic Attributes of Algae - A Review. Algal Res. 2017, 25 (May), 483–487. https://doi.org/10.1016/j.algal.2017.05.019
Salehi; Sharifi-Rad; Seca; Pinto; Michalak; Trincone; Mishra; Nigam; Zam; Martins. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24 (22), 4182. https://doi.org/10.3390/molecules24224182
Faulkner, D. J. Marine Natural Products: Metabolites of Marine Invertebrates. Nat. Prod. Rep. 1984, 1 (6), 551–598. https://doi.org/10.1039/NP9840100551
Pereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018
Sudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100
El Gamal, A. A. Biological Importance of Marine Algae. Saudi Pharm. J. 2010, 18 (1), 1–25. https://doi.org/10.1016/j.jsps.2009.12.001
McHugh, D. J.; Food and Agriculture Organization of the United Nations. A Guide to the Seaweed Industry; Food and Agriculture Organization of the United Nations, 2003
Sanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027
Morton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106
Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A. V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules. July 9, 2020, p 3152. https://doi.org/10.3390/molecules25143152
Pádua, D.; Rocha, E.; Gargiulo, D.; Ramos, A. A. Bioactive Compounds from Brown Seaweeds: Phloroglucinol, Fucoxanthin and Fucoidan as Promising Therapeutic Agents against Breast Cancer. Phytochem. Lett. 2015, 14, 91–98. https://doi.org/10.1016/j.phytol.2015.09.007
Pradhan, B.; Bhuyan, P. P.; Patra, S.; Nayak, R.; Behera, P. K.; Behera, C.; Behera, A. K.; Ki, J.-S.; Jena, M. Beneficial Effects of Seaweeds and Seaweed-Derived Bioactive Compounds: Current Evidence and Future Prospective. Biocatal. Agric. Biotechnol. 2022, 39 (November 2021), 102242. https://doi.org/10.1016/j.bcab.2021.102242
Yi, H.; Hong, J.; Xiangzhao, M. A. O.; Fangfang, C. I. Laminarin and Laminarin Oligosaccharides Originating from Brown Algae : Preparation, Biological Activities, and Potential Applications. 2021, 20 (3), 641–653. https://doi.org/10.1007/s11802- 021-4584-8
Kadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50 (1), 24– 31. https://doi.org/10.1111/ijfs.12692
Marinova. What is Fucoidan? https://www.marinova.com.au/what-is-fucoidan/ (accessed 2022-02-16).
Lemesheva, V.; Tarakhovskaya, E. Physiological Functions of Phlorotannins. Biol. Commun. 2018, 63 (1), 70–76. https://doi.org/10.21638/spbu03.2018.108
Halvorson, H. O.; Quezada, F. Handbook of Marine Biotechnology; 2009.
Rubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/
Pardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/
Teixeira, V. L.; Kelecom, A. A Chemotaxonomic Study of Diterpenes from Marine Brown Algae of the Genus Dictyota. Sci. Total Environ. 1988, 75 (2–3), 271–283. https://doi.org/10.1016/0048-9697(88)90040-X
Ko, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401
de Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079
Hur, S.; Lee, H.; Kim, Y.; Lee, B. H.; Shin, J.; Kim, T. Y. Sargaquinoic Acid and Sargachromenol, Extracts of Sargassum Sagamianum, Induce Apoptosis in HaCaT Cells and Mice Skin: Its Potentiation of UVB-Induced Apoptosis. Eur. J. Pharmacol. 2008, 582 (1–3), 1–11. https://doi.org/10.1016/j.ejphar.2007.12.025
Pardo-Vargas, A.; de Barcelos Oliveira, I.; Stephens, P.; Cirne-Santos, C.; de Palmer Paixão, I.; Ramos, F.; Jiménez, C.; Rodríguez, J.; Resende, J.; Teixeira, V.; Castellanos, L. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota Pfaffii. Mar. Drugs 2014, 12 (7), 4247–4259. https://doi.org/10.3390/md12074247
Soares, D. C.; Calegari-Silva, T. C.; Lopes, U. G.; Teixeira, V. L.; de Palmer Paixão, I. C. N.; Cirne-Santos, C.; Bou-Habib, D. C.; Saraiva, E. M. Dolabelladienetriol, a Compound from Dictyota Pfaffii Algae, Inhibits the Infection by Leishmania Amazonensis. PLoS Negl. Trop. Dis. 2012, 6 (9), 1–12. https://doi.org/10.1371/journal.pntd.0001787
Rubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021.
Echavarría, B. Z.; Franco, A. S.; Martínez, A. M. Evaluación de La Actividad Antioxidante y Determinación Del Contenido de Compuestos Fenólicos En Extractos de Macroalgas Del Caribe Colombiano. Vitae 2009, 16, 126–131
Yamthe, L. R. T.; Appiah-Opong, R.; Fokou, P. V. T.; Tsabang, N.; Boyom, F. F.; Nyarko, A. K.; Wilson, M. D. Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Mar. Drugs 2017, 15 (11), 1–28. https://doi.org/10.3390/md15110323
Balboa, E. M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In Vitro Antioxidant Properties of Crude Extracts and Compounds from Brown Algae. Food Chem. 2013, 138 (2–3), 1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026
Sanjeewa, K. K. A.; Lee, J. S.; Kim, W. S.; Jeon, Y. J. The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177 (September), 451–459. https://doi.org/10.1016/j.carbpol.2017.09.005
de Souza Barros, C.; Garrido, V.; Melchiades, V.; Gomes, R.; Gomes, M. W. L.; Teixeira, V. L.; de Palmer Paixão, I. C. N. Therapeutic Efficacy in BALB/C Mice of Extract from Marine Alga Canistrocarpus Cervicornis (Phaeophyceae) against Herpes Simplex Virus Type 1. J. Appl. Phycol. 2017, 29 (2), 769–773. https://doi.org/10.1007/s10811-016-0865-9
Koishi, A. C.; Zanello, P. R.; Bianco, É. M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay. PLoS One 2012, 7 (12), 1–11. https://doi.org/10.1371/journal.pone.0051089
Kremb, S.; Helfer, M.; Kraus, B.; Wolff, H.; Wild, C.; Schneider, M.; Voolstra, C. R.; Brack-Werner, R. Aqueous Extracts of the Marine Brown Alga Lobophora Variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells. PLoS One 2014, 9 (8), 1–12. https://doi.org/10.1371/journal.pone.0103895
Barbosa, J. P.; Pereira, R. C.; Abrantes, J. L.; Cirne Dos Santos, C. C.; Rebello, M. A.; De Palmer Paixão Frugulhetti, I. C.; Teixeira, V. L. In Vitro Antiviral Diterpenes from the Brazilian Brown Alga Dictyota Pfaffii. Planta Med. 2004, 70 (9), 856–860. https://doi.org/10.1055/s-2004-827235
Bianco, É. M.; Rogers, R.; Teixeira, V. L.; Pereira, R. C. Antifoulant Diterpenes Produced by the Brown Seaweed Canistrocarpus Cervicornis. J. Appl. Phycol. 2009, 21 (3), 341–346. https://doi.org/10.1007/s10811-008-9374-9
Barbosa, J. P.; Fleury, B. G.; da Gama, B. A. P.; Teixeira, V. L.; Pereira, R. C. Natural Products as Antifoulants in the Brazilian Brown Alga Dictyota Pfaffii (Phaeophyta, Dictyotales). Biochem. Syst. Ecol. 2007, 35 (8), 549–553. https://doi.org/10.1016/j.bse.2007.01.010
Schmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017
Schmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017
Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008
Torres, M. D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17 (6), 314. https://doi.org/10.3390/md17060314
Qiu, Y.; Jiang, H.; Fu, L.; Ci, F.; Mao, X. Porphyran and Oligo-Porphyran Originating from Red Algae Porphyra: Preparation, Biological Activities, and Potential Applications. Food Chem. 2021, 349 (February), 129209. https://doi.org/10.1016/j.foodchem.2021.129209
Bhatia, S.; Sharma, A.; Sharma, K.; Kavale, M.; Chaugule, B.; Dhalwal, K.; Mahadik, K. Novel Algal Polysaccharides from Marine Source : Porphyran. Pharmacogn. Rev. 2008, 2 (4), 271–276
Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107
mibellebiochemistry. HelioguardTM 365 A natural UV-screening active to protect against photo-aging. https://mibellebiochemistry.com/helioguardtm-365 (accessed 2022-02-23)
Schmid, D.; Cornelia, S.; Fred, Z. UV-A Sunscreen from Red Algae for Protection against Premature Skin Aging. Cosmetics 2004, 139–143
Cardoso, S.; Carvalho, L.; Silva, P.; Rodrigues, M.; Pereira, O.; Pereira, L. Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr. Org. Chem. 2014, 18 (7), 896–917. https://doi.org/10.2174/138527281807140515154116
Dong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411
Pierre, G.; Delattre, C.; Laroche, C.; Michaud, P. Galactans and Its Applications. Polysaccharides 2014, No. ii, 1–37. https://doi.org/10.1007/978-3-319-03751-6
Pangestuti, R.; Siahaan, E.; Kim, S.-K. Photoprotective Substances Derived from Marine Algae. Mar. Drugs 2018, 16 (11), 399. https://doi.org/10.3390/md16110399
Monsalve-Bustamante, Y.; Rincón-Valencia, S.; Mejía-Giraldo, J.; Moreno-Tirado, D.; Puertas-Mejía, M. Screening of the UV Absorption Capacity, Proximal and Chemical Characterization of Extracts, and Polysaccharide Fractions of the Gracilariopsis Tenuifrons Cultivated in Colombia. J. Appl. Pharm. Sci. 2019, 9 (10), 103–109. https://doi.org/10.7324/JAPS.2019.91014
Rozo, G.; Rozo, C.; Puyana, M.; Ramos, F. A.; Almonacid, C.; Castro, H. Two Compounds of the Colombian Algae Hypnea Musciformis Prevent Oxidative Damage in Human Low Density Lipoproteins LDLs. J. Funct. Foods 2019, 60 (May), 103399. https://doi.org/10.1016/j.jff.2019.06.001.
Vargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296.
Rozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661.
van Santen, J. A.; Jacob, G.; Singh, A. L.; Aniebok, V.; Balunas, M. J.; Bunsko, D.; Neto, F. C.; Castaño-Espriu, L.; Chang, C.; Clark, T. N.; Cleary Little, J. L.; Delgadillo, D. A.; Dorrestein, P. C.; Duncan, K. R.; Egan, J. M.; Galey, M. M.; Haeckl, F. P. J.; Hua, A.; Hughes, A. H.; Iskakova, D.; Khadilkar, A.; Lee, J.-H.; Lee, S.; LeGrow, N.; Liu, D. Y.; Macho, J. M.; McCaughey, C. S.; Medema, M. H.; Neupane, R. P.; O’Donnell, T. J.; Paula, J. S.; Sanchez, L. M.; Shaikh, A. F.; Soldatou, S.; Terlouw, B. R.; Tran, T. A.; Valentine, M.; van der Hooft, J. J. J.; Vo, D. A.; Wang, M.; Wilson, D.; Zink, K. E.; Linington, R. G. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent. Sci. 2019, 5 (11), 1824–1833. https://doi.org/10.1021/acscentsci.9b00806
Thirumurugan, D.; Cholarajan, A.; Raja, S. S. S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications; InTech, 2018; pp 3–22. https://doi.org/10.5772/intechopen.79766
Ahmed, E.; Arshad, M.; Khan, M.; Amjad, M.; Sadaf, H.; Riaz, I.; Sabir, S.; Ahmad, N.; Sabaoon; Correspondence Ejaz Ahmed, P.; Sabir, S. Secondary Metabolites and Their Multidimensional Prospective in Plant Life. J. Pharmacogn. Phytochem. 2017, 6 (2), 205–214
Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20 (3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
Reynolds, W. F. Natural Product Structure Elucidation by NMR Spectroscopy. In Pharmacognosy; Elsevier, 2017; pp 567–596. https://doi.org/10.1016/B978-0-12- 802104-0.00029-9
Manchester, M.; Anand, A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. In Advances in Virus Research; Elsevier Inc., 2017; Vol. 98, pp 57–81. https://doi.org/10.1016/bs.aivir.2017.02.001
Braga, C. P.; Adamec, J. Metabolome Analysis. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 2018, 1–3, 463–475. https://doi.org/10.1016/B978-0-12-809633- 8.20134-9
Wishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155– 161. https://doi.org/10.1016/j.jmr.2019.07.013
Kim, H. K.; Choi, Y. H.; Verpoorte, R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010, 5 (3), 536–549. https://doi.org/10.1038/nprot.2009.237
Puchades-Carrasco, L.; Palomino-Schätzlein, M.; Pérez-Rambla, C.; PinedaLucena, A. Bioinformatics Tools for the Analysis of NMR Metabolomics Studies Focused on the Identification of Clinically Relevant Biomarkers. Brief. Bioinform. 2016, 17 (3), 541–552. https://doi.org/10.1093/bib/bbv077
Mandal, S.; Moudgil, M.; Mandal, S. K. Rational Drug Design. European Journal of Pharmacology. Elsevier December 2009, pp 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065
Zuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147
Pardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/.
Rubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021
Orfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical Profiling of Mycosporine‐like Amino Acids in Twenty‐three Red Algal Species. J. Phycol. 2019, 55 (2), 393–403. https://doi.org/10.1111/jpy.12827
Xia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356
Ko, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401
Generalić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187
Generalić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187
Arguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41
Vargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296
Dragan, A.-M.-L.; Sirbu, R.; Cadar, E. Valuable Bioactive Compounds Extracted from Ceramium Rubrum on the Romanian Seaside with Medical Interest. Eur. J. Med. Nat. Sci. 2022, 5 (1), 63. https://doi.org/10.26417/283lyu42
Morton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106
Buedenbender, L.; Astone, F. A.; Tasdemir, D. Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus Vesiculosus. Mar. Drugs 2020, 18 (6), 311. https://doi.org/10.3390/md18060311
Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008
Bustamam, M. S. A.; Pantami, H. A.; Azizan, A.; Shaari, K.; Min, C. C.; Abas, F.; Nagao, N.; Maulidiani, M.; Banerjee, S.; Sulaiman, F.; Ismail, I. S. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis Galbana. Mar. Drugs 2021, 19 (3), 139. https://doi.org/10.3390/md19030139
Jayalakshmi, K.; Ghoshal, U. C.; Kumar, S.; Misra, A.; Roy, R.; Khetrapal, C. L. Assessment of Small Intestinal Permeability Using 1H-NMR Spectroscopy. J Gastrointest. Liver Dis. 2009, 18 (1), 27–32
Williams, R. B.; O’Neil-Johnson, M.; Williams, A. J.; Wheeler, P.; Pol, R.; Moser, A. Dereplication of Natural Products Using Minimal NMR Data Inputs. Org. Biomol. Chem. 2015, 13 (39), 9957–9962. https://doi.org/10.1039/C5OB01713K
Carpena, M.; Garcia-Perez, P.; Garcia-Oliveira, P.; Chamorro, F.; Otero, P.; Lourenço-Lopes, C.; Cao, H.; Simal-Gandara, J.; Prieto, M. A. Biological Properties and Potential of Compounds Extracted from Red Seaweeds. Phytochem. Rev. 2022, 1–32. https://doi.org/10.1007/s11101-022-09826-z
Gutbrod, P.; Yang, W.; Grujicic, G. V.; Peisker, H.; Gutbrod, K.; Du, L. F.; Dörmann, P. Phytol Derived from Chlorophyll Hydrolysis in Plants Is Metabolized via Phytenal. J. Biol. Chem. 2021, 296, 100530. https://doi.org/10.1016/j.jbc.2021.100530
Sohn, S.-I.; Rathinapriya, P.; Balaji, S.; Jaya Balan, D.; Swetha, T. K.; Durgadevi, R.; Alagulakshmi, S.; Singaraj, P.; Pandian, S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int. J. Mol. Sci. 2021, 22 (23), 12691. https://doi.org/10.3390/ijms222312691.
Hannan, M. A.; Sohag, A. A. M.; Dash, R.; Haque, M. N.; Mohibbullah, M.; Oktaviani, D. F.; Hossain, M. T.; Choi, H. J.; Moon, I. S. Phytosterols of Marine Algae: Insights into the Potential Health Benefits and Molecular Pharmacology. Phytomedicine 2020, 69 (February), 153201. https://doi.org/10.1016/j.phymed.2020.153201
da Costa, E.; Melo, T.; Reis, M.; Domingues, P.; Calado, R.; Abreu, M. H.; Domingues, M. R. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia Turuturu. Mar. Drugs 2021, 19 (8), 414. https://doi.org/10.3390/md19080414
Plouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.
Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.; Tsiafoulis, C.; Gerothanassis, I. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22 (10), 1663. https://doi.org/10.3390/molecules22101663
Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice. Nutrients 2015, 7 (3), 1672–1687. https://doi.org/10.3390/nu7031672
Moriya, H.; Takita, Y.; Matsumoto, A.; Yamahata, Y.; Nishimukai, M.; Miyazaki, M.; Shimoi, H.; Kawai, S.-J.; Yamada, M. Cobetia Sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria Sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front. Bioeng. Biotechnol. 2020, 8 (August). https://doi.org/10.3389/fbioe.2020.00974
Huamán-Castilla, N. L.; Allcca-Alca, E. E.; Allcca-Alca, G. J.; Quispe-Pérez, M. L. Biopolymers Produced by Azotobacter: Synthesis and Production, PhysicoMechanical Properties, and Potential Industrial Applications. Sci. Agropecu. 2021, 12 (3), 369–377. https://doi.org/10.17268/sci.agropecu.2021.040.
Li, R.; Jiang, Y.; Wang, X.; Yang, J.; Gao, Y.; Zi, X.; Zhang, X.; Gao, H.; Hu, N. Psychrotrophic Pseudomonas Mandelii CBS-1 Produces High Levels of Poly-βHydroxybutyrate. Springerplus 2013, 2 (1), 335. https://doi.org/10.1186/2193-1801- 2-335
Sabarinathan, D.; Chandrika, S. P.; Venkatraman, P.; Easwaran, M.; Sureka, C. S.; Preethi, K. Production of Polyhydroxybutyrate (PHB) from Pseudomonas Plecoglossicida and Its Application towards Cancer Detection. Informatics Med. Unlocked 2018, 11 (May), 61–67. https://doi.org/10.1016/j.imu.2018.04.009
Pereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018
Sudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100
Silberfeld, T.; Rousseau, F.; Reviers, B. de. An Updated Classification of Brown Algae (Ochrophyta, Phaeophyceae). Cryptogam. Algol. 2014, 35 (2), 117–156. https://doi.org/10.7872/crya.v35.iss2.2014.117
Rincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)
de Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079
Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Update on Monoterpenes from Red Macroalgae: Isolation, Analysis, and Bioactivity. Mar. Drugs 2019, 17 (9), 537. https://doi.org/10.3390/md17090537
Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S. A. Towards a Better Understanding of Medicinal Uses of the Brown Seaweed Sargassum in Traditional Chinese Medicine: A Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2012, 142 (3), 591–619. https://doi.org/10.1016/j.jep.2012.05.046
Rushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Abdelmohsen, U. R. The Genus Turbinaria : Chemical and Pharmacological Diversity. Nat. Prod. Res. 2021, 35 (22), 4560–4578. https://doi.org/10.1080/14786419.2020.1731741
Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on Sesquiterpenes from Red Macroalgae of the Laurencia Genus and Their Biological Activities (2015–2020). Algal Res. 2021, 56 (February), 102330. https://doi.org/10.1016/j.algal.2021.102330
Chakraborty, K.; Joseph, D.; Joy, M.; Raola, V. K. Characterization of Substituted Aryl Meroterpenoids from Red Seaweed Hypnea Musciformis as Potential Antioxidants. Food Chem. 2016, 212, 778–788. https://doi.org/10.1016/j.foodchem.2016.06.039
Rubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/.
Nunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.
Nunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.
Alarado, A. B.; Gerwick, W. H. Dictyol H, a New Tricyclic Diterpenoid from the Brown Seaweed Dictyota Dentata. J. Nat. Prod. 1985, 48 (1), 132–134. https://doi.org/10.1021/np50037a026.
Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.
Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.
Mikami, K.; Hosokawa, M. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. Int. J. Mol. Sci. 2013, 14 (7), 13763–13781. https://doi.org/10.3390/ijms140713763.
Miller, E. P.; Wu, Y.; Carrano, C. J. Boron Uptake, Localization, and Speciation in Marine Brown Algae. Metallomics 2016, 8 (2), 161–169. https://doi.org/10.1039/C5MT00238A
Usoltseva, R. V.; Anastyuk, S. D.; Shevchenko, N. M.; Surits, V. V.; Silchenko, A. S.; Isakov, V. V.; Zvyagintseva, T. N.; Thinh, P. D.; Ermakova, S. P. Polysaccharides from Brown Algae Sargassum Duplicatum: The Structure and Anticancer Activity in Vitro. Carbohydr. Polym. 2017, 175 (July), 547–556. https://doi.org/10.1016/j.carbpol.2017.08.044
Badrinathan, S.; Shiju, T. M.; Suneeva Sharon Christa, A.; Arya, R.; Pragasam, V. Purification and Structural Characterization of Sulfated Polysaccharide from Sargassum Myriocystum and Its Efficacy in Scavenging Free Radicals. Indian J. Pharm. Sci. 2012, 74 (6), 549–555. https://doi.org/10.4103/0250-474X.110600.
Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y. New Cytotoxic Oxygenated Fucosterols from the Brown Alga Turbinaria Conoides. J. Nat. Prod. 1999, 62 (2), 224–227. https://doi.org/10.1021/np980233s
Pontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795
Perinu, C.; Arstad, B.; Bouzga, A. M.; Svendsen, J. A.; Jens, K. J. NMR-Based Carbamate Decomposition Constants of Linear Primary Alkanolamines for CO2 Capture. Ind. Eng. Chem. Res. 2014, 53 (38), 14571–14578. https://doi.org/10.1021/ie5020603
Rozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661
Kim, S. K.; Ravichandran, Y. D.; Khan, S. B.; Kim, Y. T. Prospective of the Cosmeceuticals Derived from Marine Organisms. Biotechnol. Bioprocess Eng. 2008, 13 (5), 511–523. https://doi.org/10.1007/s12257-008-0113-5
Costa, R.; Santos, L. Delivery Systems for Cosmetics - From Manufacturing to the Skin of Natural Antioxidants. Powder Technol. 2017, 322, 402–416. https://doi.org/10.1016/j.powtec.2017.07.086
Kim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187
Teas, J.; Irhimeh, M. R. Melanoma and Brown Seaweed: An Integrative Hypothesis. J. Appl. Phycol. 2017, 29 (2), 941–948. https://doi.org/10.1007/s10811-016-0979-0
Gaudêncio, S. P.; Pereira, F. Dereplication: Racing to Speed up the Natural Products Discovery Process. Nat. Prod. Rep. 2015, 32 (6), 779–810. https://doi.org/10.1039/c4np00134f.
Wishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155–161. https://doi.org/10.1016/j.jmr.2019.07.013
Davies, V.; Wandy, J.; Weidt, S.; van der Hooft, J. J. J.; Miller, A.; Daly, R.; Rogers, S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93 (14), 5676–5683. https://doi.org/10.1021/acs.analchem.0c03895
Nothias, L. F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A. A.; Alka, O.; Allard, P. M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A. M.; Da Silva, R. R.; Dang, T.; Garg, N.; Gauglitz, J. M.; Gurevich, A.; Isaac, G.; Jarmusch, A. K.; Kameník, Z.; Kang, K. Bin; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin H, C.; McCall, L. I.; McSayles, J.; Meyer, S. W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N. H.; NothiasEsposito, M.; Paolini, J.; Phelan, V. V.; Pluskal, T.; Quinn, R. A.; Rogers, S.; Shrestha, B.; Tripathi, A.; van der Hooft, J. J. J.; Vargas, F.; Weldon, K. C.; Witting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov, T.; Bandeira, N.; Wang, M.; Dorrestein, P. C. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17 (9), 905–908. https://doi.org/10.1038/s41592-020-0933-6
Schmid, R.; Petras, D.; Nothias, L. F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.; Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.; Bauermeister, A.; Albarracin Orio, A.; Grundmann, C. O.; Vargas, F.; Koester, I.; Gauglitz, J. M.; Gentry, E. C.; Hövelmann, Y.; Kalinina, S. A.; Pendergraft, M. A.; Panitchpakdi, M.; Tehan, R.; Le Gouellec, A.; Aleti, G.; Mannochio Russo, H.; Arndt, B.; Hübner, F.; Hayen, H.; Zhi, H.; Raffatellu, M.; Prather, K. A.; Aluwihare, L. I.; Böcker, S.; McPhail, K. L.; Humpf, H. U.; Karst, U.; Dorrestein, P. C. Ion Identity Molecular Networking for Mass Spectrometry-Based Metabolomics in the GNPS Environment. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-23953-9
Wang, M.; Carver, J. J.; Phelan, V. V; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828–837. https://doi.org/10.1038/nbt.3597.
Van Der Hooft, J. J. J.; Wandy, J.; Barrett, M. P.; Burgess, K. E. V.; Rogers, S. Topic Modeling for Untargeted Substructure Exploration in Metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (48), 13738–13743. https://doi.org/10.1073/pnas.1608041113
Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8 (1), 1–20. https://doi.org/10.1186/s13321-016- 0174-y.
da Silva, R. R.; Wang, M.; Nothias, L.-F.; van der Hooft, J. J. J.; CaraballoRodríguez, A. M.; Fox, E.; Balunas, M. J.; Klassen, J. L.; Lopes, N. P.; Dorrestein, P. C. Propagating Annotations of Molecular Networks Using in Silico Fragmentation. PLOS Comput. Biol. 2018, 14 (4), e1006089. https://doi.org/10.1371/journal.pcbi.1006089
Gurevich, A.; Mikheenko, A.; Shlemov, A.; Korobeynikov, A.; Mohimani, H.; Pevzner, P. A. Increased Diversity of Peptidic Natural Products Revealed by Modification-Tolerant Database Search of Mass Spectra. Nat. Microbiol. 2018, 3 (3), 319–327. https://doi.org/10.1038/s41564-017-0094-2.
Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P. C.; Pevzner, P. A. Dereplication of Microbial Metabolites through Database Search of Mass Spectra. Nat. Commun. 2018, 9 (1), 4035. https://doi.org/10.1038/s41467-018-06082-8.
Ernst, M.; Kang, K. Bin; Caraballo-Rodríguez, A. M.; Nothias, L.-F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M. H.; Dorrestein, P. C.; van der Hooft, J. J. J. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 2019, 9 (7), 144. https://doi.org/10.3390/metabo9070144.
Cao, L.; Guler, M.; Tagirdzhanov, A.; Lee, Y.-Y.; Gurevich, A.; Mohimani, H. MolDiscovery: Learning Mass Spectrometry Fragmentation of Small Molecules. Nat. Commun. 2021, 12 (1), 3718. https://doi.org/10.1038/s41467-021-23986-0.
Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16 (4), 299–302. https://doi.org/10.1038/s41592-019-0344-8
Sashidhara, K. V; Rosaiah, J. N. Various Dereplication Strategies Using LC-MS for Rapid Natural Product Lead Identification and Drug Discovery. Nat. Prod. Commun. 2007, 2 (2), 1934578X0700200. https://doi.org/10.1177/1934578X0700200218.
Gross, J. H. Mass Spectrometry; Springer International Publishing: Cham, 2017. https://doi.org/10.1007/978-3-319-54398-7.
Ford, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6),
Hubert, J.; Nuzillard, J. M.; Renault, J. H. Dereplication Strategies in Natural Product Research: How Many Tools and Methodologies behind the Same Concept? Phytochem. Rev. 2017, 16 (1), 55–95. https://doi.org/10.1007/s11101- 015-9448-7.
Schripsema, J. Application of NMR in Plant Metabolomics: Techniques, Problems and Prospects. Phytochem. Anal. 2010, 21 (1), 14–21. https://doi.org/10.1002/pca.1185.
Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763
Milenković, S. M.; Zvezdanović, J. B.; Andelković, T. D.; Marković, D. Z. The Identification of Chlorophyll and Its Derivatives in the Pigment Mixtures: HPLCChromatography, Visible and Mass Spectroscopy Studies. Adv. Technol. 2012, 1 (1), 16–24
Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589
Seger, C.; Sturm, S.; Stuppner, H. Mass Spectrometry and NMR Spectroscopy: Modern High-End Detectors for High Resolution Separation Techniques – State of the Art in Natural Product HPLC-MS, HPLC-NMR, and CE-MS Hyphenations. Nat. Prod. Rep. 2013, 30 (7), 970. https://doi.org/10.1039/c3np70015a.
Guido F. Pauli, Birgit U. Jaki, David C. Lankin, John A. Walter, I. W. B. Quantitative NMR of Bioactive Natural Products. In Bioactive Natural Products; CRC Press, 2007; pp 127–156. https://doi.org/10.1201/9781420006889-8
Ka-Wing Cheng, Feng Chen, M. W. Liquid Chromatography-Mass Spectrometry in Natural Product Research. In Bioactive Natural Products; CRC Press, 2007; pp 259–280. https://doi.org/10.1201/9781420006889-13
Kruve, A.; Kaupmees, K.; Liigand, J.; Leito, I. Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Anal. Chem. 2014, 86 (10), 4822–4830. https://doi.org/10.1021/ac404066v.
Blunt, J.; Munro, M.; Upjohn, M. The Role of Databases in Marine Natural Products Research. In Handbook of Marine Natural Products; Springer Netherlands: Dordrecht, 2012; pp 389–421. https://doi.org/10.1007/978-90-481-3834-0_6
Guo, Z.; Ma, S.; Khan, S.; Zhu, H.; Zhang, B.; Zhang, S.; Jiao, R. Zhaoshumycins A and B, Two Unprecedented Antimycin-Type Depsipeptides Produced by the Marine-Derived Streptomyces Sp. ITBB-ZKa6. Mar. Drugs 2021, 19 (11), 624. https://doi.org/10.3390/md19110624
Winter, A.; Jarvis, B. B. Halipeptins A and B: Two Novel Potent Anti-Inflammatory Cyclic Depsipeptides from the Vanuatu Marine Sponge Haliclona Species. Chemtracts 2003, 16 (11), 688–691
Andrianasolo, E. H.; Haramaty, L.; McPhail, K. L.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. Bathymodiolamides A and B, Ceramide Derivatives from a Deep-Sea Hydrothermal Vent Invertebrate Mussel, Bathymodiolus Thermophilus. J. Nat. Prod. 2011, 74 (4), 842–846. https://doi.org/10.1021/np100601w
Rangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130
Fu, M.; Deng, B.; Lü, H.; Yao, W.; Su, S.; Wang, D. The Bioaccumulation and Biodegradation of Testosterone by Chlorella Vulgaris. Int. J. Environ. Res. Public Health 2019, 16 (7), 1253. https://doi.org/10.3390/ijerph16071253
Lemoine, F.; Maupin, I.; Lemée, L.; Lavoie, J.-M.; Lemberton, J.-L.; Pouilloux, Y.; Pinard, L. Alternative Fuel Production by Catalytic Hydroliquefaction of Solid Municipal Wastes, Primary Sludges and Microalgae. Bioresour. Technol. 2013, 142, 1–8. https://doi.org/10.1016/j.biortech.2013.04.123
Pontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164– 7171. https://doi.org/10.1021/acs.analchem.0c04795
Williams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301
Morton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106
Whitehead, K.; Hedges, J. I. Electrospray Ionization Tandem Mass Spectrometric and Electron Impact Mass Spectrometric Characterization of Mycosporine-like Amino Acids. Rapid Commun. Mass Spectrom. 2003, 17 (18), 2133–2138. https://doi.org/10.1002/rcm.1162
Kalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954
Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008
MARTÍN, J. D.; DARIAS, J. Algal Sesquiterpenoids. In Marine Natural Products; Elsevier, 1978; pp 125–173. https://doi.org/10.1016/B978-0-12-624001-6.50008-4.
Namikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768
Zhao, W.; Jiang, H.; Liu, X.-W.; Zhou, J.; Wu, B. Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar. Drugs 2022, 20 (6), 360. https://doi.org/10.3390/md20060360
Kumari, P. Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective. In Systems Biology of Marine Ecosystems; Springer International Publishing: Cham, 2017; pp 49–97. https://doi.org/10.1007/978-3-319-62094-7_4
Li, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46 (12), 2219–2224. https://doi.org/10.1016/j.procbio.2011.09.015
Maciel, O. M. C.; Tavares, R. S. N.; Caluz, D. R. E.; Gaspar, L. R.; Debonsi, H. M. Photoprotective Potential of Metabolites Isolated from Algae-Associated Fungi Annulohypoxylon Stygium. J. Photochem. Photobiol. B Biol. 2018, 178 (November 2017), 316–322. https://doi.org/10.1016/j.jphotobiol.2017.11.018
Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245
Kim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187.
Kadam, S. U.; Álvarez, C.; Tiwari, B. K.; O’Donnell, C. P. Extraction of Biomolecules from Seaweeds; Elsevier Inc., 2015. https://doi.org/10.1016/B978-0- 12-418697-2.00009-X
Mateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.
Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742.
Gam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381.
Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.
Kalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313.
Plouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.
Couteau, C.; Coiffard, L. Seaweed Application in Cosmetics; 2016. https://doi.org/10.1016/B978-0-12-802772-1.00014-2.
Kalasariya, H. S.; Patel, N. B.; Yadav, A.; Perveen, K.; Yadav, V. K.; Munshi, F. M.; Yadav, K. K.; Alam, S.; Jung, Y. K.; Jeon, B. H. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha Crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021, 26 (24). https://doi.org/10.3390/molecules26247515
Kim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605
Tamanna Ferdous, U.; Norhana Balia Yusof, Z. Algal Terpenoids: A Potential Source of Antioxidants for Cancer Therapy. In Terpenes and Terpenoids - Recent Advances; 2021. https://doi.org/10.5772/intechopen.94122
Taglialatela-Scafati, O.; Craig, K. S.; Rebérioux, D.; Roberge, M.; Andersen, R. J. Briarane, Erythrane, and Aquariane Diterpenoids from the Caribbean Gorgonian Erythropodium Caribaeorum. European J. Org. Chem. 2003, No. 18, 3515–3523. https://doi.org/10.1002/ejoc.200300214.
Mendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63
Janarthanan, M.; Senthil Kumar, M. The Properties of Bioactive Substances Obtained from Seaweeds and Their Applications in Textile Industries; 2018; Vol. 48. https://doi.org/10.1177/1528083717692596
Hahn, J. L.; Van Alstyne, K. L.; Gaydos, J. K.; Wallis, L. K.; West, J. E.; Hollenhorst, S. J.; Ylitalo, G. M.; Poppenga, R. H.; Bolton, J. L.; McBride, D. E.; Sofield, R. M. Chemical Contaminant Levels in Edible Seaweeds of the Salish Sea and Implications for Their Consumption; 2022; Vol. 17. https://doi.org/10.1371/journal.pone.0269269
Dong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411
López-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552
Pangestuti, R.; Shin, K. H.; Kim, S. K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19 (3). https://doi.org/10.3390/MD19030172
Bedoux, G.; Hardouin, K.; Burlot, A. S.; Bourgougnon, N. Bioactive Components from Seaweeds: Cosmetic Applications and Future Development; Elsevier, 2014; Vol. 71. https://doi.org/10.1016/B978-0-12-408062-1.00012-3
Grillo, G.; Tabasso, S.; Solarino, R.; Cravotto, G.; Toson, C.; Ghedini, E.; Menegazzo, F.; Signoretto, M. From Seaweeds to Cosmeceutics: A Multidisciplinar Approach. Sustain. 2021, 13 (23), 1–13. https://doi.org/10.3390/su132313443
Jimenez-Carvelo, A. M.; Cuadros-Rodríguez, L. Data Mining/Machine Learning Methods in Foodomics. Curr. Opin. Food Sci. 2021, 37, 76–82. https://doi.org/10.1016/j.cofs.2020.09.008
Kuddus, M. Chapter 1 - Introduction to Food Enzymes; Kuddus, M. B. T.-E. in F. B., Ed.; Academic Press, 2019; pp 1–18. https://doi.org/https://doi.org/10.1016/B978-0- 12-813280-7.00001-3
Bisswanger, H. Enzyme Assays. Perspect. Sci. 2014, 1 (1–6), 41–55. https://doi.org/10.1016/j.pisc.2014.02.005
Messerschmidt, A. Copper Metalloenzymes. In Comprehensive Natural Products II; Liu, H.-W. (Ben), Mander, L., Eds.; Elsevier: Oxford, 2010; pp 489–545. https://doi.org/10.1016/B978-008045382-8.00180-5
Skoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103.
Couteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027.
Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440
Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036.
Marmion, C. J.; Parker, J. P.; Nolan, K. B. Hydroxamic Acids: An Important Class of Metalloenzyme Inhibitors. In Comprehensive Inorganic Chemistry II; Elsevier, 2013; Vol. 3, pp 683–708. https://doi.org/10.1016/B978-0-08-097774-4.00328-4.
Thomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5.
Ghersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018
Girish, K.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Curr. Med. Chem. 2009, 16 (18), 2261– 2288. https://doi.org/10.2174/092986709788453078
Hetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04
Bor, E.; Koca Caliskan, U.; Anlas, C.; Durbilmez, G. D.; Bakirel, T.; Ozdemir, N. Synthesis of Persea Americana Extract Based Hybrid Nanoflowers as a New Strategy to Enhance Hyaluronidase and Gelatinase Inhibitory Activity and the Evaluation of Their Toxicity Potential. Inorg. Nano-Metal Chem. 2022, 0 (0), 1–13. https://doi.org/10.1080/24701556.2022.2072342
Bravo, K.; Alzate, F.; Osorio, E. Fruits of Selected Wild and Cultivated Andean Plants as Sources of Potential Compounds with Antioxidant and Anti-Aging Activity. Ind. Crop. Prod. 2016, 85, 341–352. https://doi.org/10.1016/j.indcrop.2015.12.074
Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007
Plazas, E. A.; Avila, M. C.; Delgado, W. A.; Patino, O. J.; Cuca, L. E. In Vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Res. J. Med. Plants 2018, 12 (1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18
Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104
Anuar, N.; Sultan, S.; Ashraf, K. An Overview of Antimicrobial and Antioxidant Bioautography Method Analysis : C Osmos Caudatus and Orthosiphon Stamineus. 2022, 5 (March), 1–12
Manandhar, B.; Wagle, A.; Seong, S. H.; Paudel, P.; Kim, H. R.; Jung, H. A.; Choi, J. S. Phlorotannins with Potential Anti-Tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia Stolonifera. Antioxidants 2019, 8 (8). https://doi.org/10.3390/antiox8080240
Kim, M. M.; Ta, Q. Van; Mendis, E.; Rajapakse, N.; Jung, W. K.; Byun, H. G.; Jeon, Y. J.; Kim, S. K. Phlorotannins in Ecklonia Cava Extract Inhibit Matrix Metalloproteinase Activity. Life Sci. 2006, 79 (15), 1436–1443. https://doi.org/10.1016/j.lfs.2006.04.022
Mateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.
Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107
Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245
Ospina, M.; Castro-Vargas, H. I.; Parada-Alfonso, F. Antioxidant Capacity of Colombian Seaweeds: 1. Extracts Obtained from Gracilaria Mammillaris by Means of Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 128, 314–322. https://doi.org/10.1016/j.supflu.2017.02.023
Budhiyanti, S. A.; Raharjo, S.; Marseno, D. W.; Lelana, I. Y. B. Antioxidant Activity of Brown Algae Sargassum Species Extract from the Coastline of Java Island. Am. J. Agric. Biol. Sci. 2012, 7 (3), 337–346. https://doi.org/10.3844/ajabssp.2012.337.346.
Bomfeh, K. Report of the Expert Meeting on Food Safety for Seaweed – Current Status and Future Perspectives; Food and Agriculture Organization of the United Nations: Rome, 2021. https://doi.org/10.4060/cc0846en.
Warneke, A. M.; Long, J. D. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness. PLoS One 2015, 10 (8), 1–14. https://doi.org/10.1371/journal.pone.0135395.
Lozano Muñoz, I.; Díaz, N. F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62 (6), 1592–1607. https://doi.org/10.1080/10408398.2020.1844637
Date, R.; Date, P. M.; Report, T.; January, P. C. Safety Assessment of Brown AlgaeDerived Ingredients as Used in Cosmetics.; Washington (DC), 2019
Sanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027.
Kalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313
Arunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036
Laguna, D. Análisis de Extractos Promisiorios de Productos Naturales Marinos Por Redes Moleculares., Universidad Nacional de Colombia, 2021
Piza, A. Búsqueda de Compuestos Activos Provenientes de Algas Con Potencial Aplicación En Cosmética y Accidente Ofídico, Universidad Nacional de Colombia, 2022.
Kim, J. K.; Kang, S. M. Antioxidant and Whitening Effect of Dictyopteris Spp. Extract. J. Korean Soc. Cosmetol. 2021, 27 (3), 614–623. https://doi.org/10.52660/jksc.2021.27.3.614
Mendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63
Arguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41
Rushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Hassan, H. M.; Elmaidomy, A. H.; Abdelmohsen, U. R. Pharmacological and Natural Products Diversity of the Brown Algae Genus: Sargassum. RSC Adv. 2020, 10 (42), 24951–24972. https://doi.org/10.1039/d0ra03576a
Generalić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187
Ko, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401
Farvin, K. H. S.; Surendraraj, A.; Al-Ghunaim, A.; Al-Yamani, F. Chemical Profile and Antioxidant Activities of 26 Selected Species of Seaweeds from Kuwait Coast. J. Appl. Phycol. 2019, 31 (4), 2653–2668. https://doi.org/10.1007/s10811-019-1739-8.
Rincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqe.
Orfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356
Orfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356
Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P. A.; Scaccabarozzi, D.; Calvieri, S.; Gismondi, A.; Taramelli, D.; Dell’Agli, M. HaCaT Cells as a Reliable in Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm. 2017, 2017. https://doi.org/10.1155/2017/7435621
Vinken, M.; Rogiers, V. Protocols in In Vitro Hepatocyte Research; Vinken, M., Rogiers, V., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2015; Vol. 1250. https://doi.org/10.1007/978-1-4939-2074-7
Walter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484
De Lara-Isassi, G.; Álvarez-Hernández, S.; Collado-Vides, L. Ichtyotoxic Activity of Extracts from Mexican Marine Macroalgae. J. Appl. Phycol. 2000, 12 (1), 45–52. https://doi.org/10.1023/A:1008103609841.
Walter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484.
Gerwick, W. H.; Fenical, W. Ichthyotoxic and Cytotoxic Metabolites of the Tropical Brown Alga Stypopodium Zonale (Lamouroux) Papenfuss. J. Org. Chem. 1981, 46 (1), 22–27. https://doi.org/10.1021/jo00314a005
Williams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301.
Mendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63.
Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763.
Zatelli, G. A.; Philippus, A. C.; Falkenberg, M. An Overview of Odoriferous Marine Seaweeds of the Dictyopteris Genus: Insights into Their Chemical Diversity, Biological Potential and Ecological Roles. Rev. Bras. Farmacogn. 2018, 28 (2), 243– 260. https://doi.org/10.1016/j.bjp.2018.01.005.
Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis.” Biodiversidad Del Mar de Los Siete Colores
Zuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147.
Xia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356.
Miyashita, K.; Mikami, N.; Hosokawa, M. Chemical and Nutritional Characteristics of Brown Seaweed Lipids: A Review. J. Funct. Foods 2013, 5 (4), 1507–1517. https://doi.org/10.1016/j.jff.2013.09.019.
Rangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130
Zhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. MarineDerived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs 2021, 19 (4). https://doi.org/10.3390/MD19040180
Ford, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6), 587– 599. https://doi.org/10.1002/pca.2851.
Pontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795.
Namikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768
Stengel, D. B.; Connan, S.; Popper, Z. A. Algal Chemodiversity and Bioactivity: Sources of Natural Variability and Implications for Commercial Application. Biotechnol. Adv. 2011, 29 (5), 483–501. https://doi.org/10.1016/j.biotechadv.2011.05.016.
Gisbert, M.; Sineiro, J.; Moreira, R. Influence of Oxidation and Dialysis of Phlorotannins on Bioactivity and Composition of Ultrasound-Assisted Extracts from Ascophyllum Nodosum. Mar. Drugs 2022, 20 (11), 706. https://doi.org/10.3390/md20110706
W.; Saati, E. A. The Solvent Effectiveness on Extraction Process of Seaweed Pigment. MAKARA Technol. Ser. 2011, 15 (1), 5–8. https://doi.org/10.7454/mst.v15i1.850
Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104.
Aguilera-Sáez, L. M.; Abreu, A. C.; Camacho-Rodríguez, J.; González-López, C. V.; del Carmen Cerón-García, M.; Fernández, I. NMR Metabolomics as an Effective Tool To Unravel the Effect of Light Intensity and Temperature on the Composition of the Marine Microalgae Isochrysis Galbana. J. Agric. Food Chem. 2019, 67 (14), 3879–3889. https://doi.org/10.1021/acs.jafc.8b06840
Cérantola, S.; Breton, F.; Gall, E. A.; Deslandes, E. Co-Occurrence and Antioxidant Activities of Fucol and Fucophlorethol Classes of Polymeric Phenols in Fucus Spiralis. Bot. Mar. 2006, 49 (4), 347–351. https://doi.org/10.1515/BOT.2006.042.
Kazimierczuk, K.; Orekhov, V. Y. Accelerated NMR Spectroscopy by Using Compressed Sensing. Angew. Chemie - Int. Ed. 2011, 50 (24), 5556–5559. https://doi.org/10.1002/anie.201100370
Zhou, X.; Yi, M.; Ding, L.; He, S.; Yan, X. Isolation and Purification of a Neuroprotective Phlorotannin from the Marine Algae Ecklonia Maxima by Size Exclusion and High-Speed Counter-Current Chromatography. Mar. Drugs 2019, 17 (4), 212. https://doi.org/10.3390/md17040212.
Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589
Isaza Martínez, J. H.; Torres Castañeda, H. G. Preparation and Chromatographic Analysis of Phlorotannins. J. Chromatogr. Sci. 2013, 51 (8), 825–838. https://doi.org/10.1093/chromsci/bmt045.
Kalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954.
Gowda, S. G. B.; Yifan, C.; Gowda, D.; Tsuboi, Y.; Chiba, H.; Hui, S.-P. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants 2022, 11 (8), 1538. https://doi.org/10.3390/antiox11081538
Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742
Fernando, I. P. S.; Lee, W. W.; Ahn, G. Marine Algal Flavonoids and Phlorotannins; an Intriguing Frontier of Biofunctional Secondary Metabolites. Crit. Rev. Biotechnol. 2022, 42 (1), 23–45. https://doi.org/10.1080/07388551.2021.1922351
Rushdi, M. I.; Abdel-Rahman, I. A. M.; Attia, E. Z.; Saber, H.; Saber, A. A.; Bringmann, G.; Abdelmohsen, U. R. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules 2022, 27 (3), 1–30. https://doi.org/10.3390/molecules27030672
Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.
Gam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381
Kalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313
Kim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605
Arunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxxvi, 309 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.coverage.region.none.fl_str_mv Caribe
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84624/2/1020796917.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84624/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84624/3/1020796917.2022.pdf.jpg
bitstream.checksum.fl_str_mv 7c2bf2a5ce3f927639172c826e59b909
eb34b1cf90b7e1103fc9dfd26be24b4a
7c60e32beb1c04b4d7e1f61874dd78af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090147367485440
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Hernández, Leonardo9c4e8ddd4b7613c65a26e343a7abbea6Sepúlveda Sánchez, Lady Yohanna6c1f913ad876da7bbfdd8dd5b05c7a84Grupo de Investigación: Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de ColombiaLady Yohanna Sepulveda Sanchez [0009-0006-9716-7609]rh_00016201612023-08-31T21:28:49Z2023-08-31T21:28:49Z2022https://repositorio.unal.edu.co/handle/unal/84624Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasLa proliferación de las algas marinas en los arrecifes del Caribe colombiano ha causado una perdida en la biodiversidad de estos ecosistemas. Con el fin de darle un aprovechamiento a esta biomasa, en este documento se investigó su potencial en la producción de cosméticos despigmentantes y antienvejecimiento. Este estudio se compone de cinco capítulos que abarcan aspectos como la revisión bibliográfica, la extracción de compuestos químicos, el análisis mediante Resonancia Magnética Nuclear (RMN) y espectrometría de masas (EM), la evaluación de la actividad inhibitoria enzimática, así como un estudio químico detallado de una de las algas más prometedoras. La revisión bibliográfica se enfoca en los antecedentes de la industria cosmética en Colombia y los avances en formulaciones antienvejecimiento . Además, se profundiza en las características y el potencial de las algas marinas como ingredientes cosméticos. En el segundo capítulo, se exploran diferentes metodologías de extracción de algas pardas y rojas, y se llevó a cabo el perfilado químico de las muestras seleccionadas usando RMN. El tercer capítulo se centra en el análisis de los extractos utilizando espectrometría de masas (LC-MS/MS) con el fin de obtener una visión detallada de su diversidad química, empleando redes moleculares construidas en la plataforma GNPS Global Natural Products Social Molecular Networking. En el cuarto capítulo, se evaluó la actividad antioxidante (DPPH) e inhibitoria de los extractos previamente obtenidos frente a las enzimas tirosinasa, colagenasa y hialuronidasa. Para los extractos más promisorios se evaluó su actividad citotóxica frente a queratinocitos humanos inmortalizados HaCaT y se encontró que Dictyopteris justii, un alga colectada en Providencia, tiene un potencial prometedor para la industria cosmética debido a su actividad inhibidora de las enzimas de interés y su baja toxicidad. Además, se encontró que algunas especies de Sargassum también son candidatas para futuros estudios. Por consiguiente, en el quinto capítulo se realizó el estudio químico de los extractos butanólicos de muestras de D. justii en diferentes locaciones y en diferentes épocas del año en Providencia, encontrando que, sin importar la muestra, la actividad antioxidante y su capacidad de inhibir las enzimas de interés se mantiene, además los compuestos responsables de dicha actividad corresponden a los florotaninos. Como conclusión, se destaca el potencial de estas algas marinas como valiosas materias primas en la industria cosmética, subrayando la importancia de realizar pruebas de seguridad rigurosas antes de su aplicación comercial. Esta tesis integra herramientas de machine learning, metabolómica y análisis multivariado, con el propósito de explorar el potencial de las algas marinas del Caribe colombiano en la industria cosmética. Los resultados destacan el extracto de Dictyopteris justii como un candidato prometedor y resaltan la necesidad de realizar más investigaciones en este campo.(Texto tomado de la fuente)The proliferation of marine algae in the Colombian Caribbean reefs has led to biodiversity loss in these ecosystems. In order to find a use for this biomass, this document explores its potential in the production of depigmenting and anti-aging cosmetics. This study consists of five chapters covering aspects such as literature review, chemical compound extraction, analysis through Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), evaluation of enzymatic inhibitory activity, as well as a detailed chemical study of one of the most promising algae. The literature review focuses on Colombia's cosmetic industry background and advances in anti-aging formulations. Additionally, it delves into the characteristics and potential of marine algae as cosmetic ingredients. In the second chapter, various methodologies for extracting brown and red algae are explored, and the chemical profiling of selected samples was carried out using NMR. The third chapter analyzes the extracts using mass spectrometry (LC-MS/MS) to obtain a detailed view of their chemical diversity, employing molecular networks built on the GNPS platform Global Natural Products Social Molecular Networking. The fourth chapter evaluated the antioxidant (DPPH) and inhibitory activity of the previously obtained extracts against tyrosinase, collagenase, and hyaluronidase enzymes. For the most promising extracts, their cytotoxic activity against immortalized human keratinocytes (HaCaT) was evaluated, and it was found that Dictyopteris justii, algae collected in Providencia, holds promising potential for the cosmetic industry due to its inhibitory activity on the enzymes of interest and low toxicity. Furthermore, certain species of Sargassum were also identified as candidates for future studies. Consequently, the fifth chapter conducted a chemical study of butanol extracts from samples of D. justii in different locations and times of the year in Providencia. It was found that, regardless of the sample, the antioxidant activity and its ability to inhibit the enzymes of interest remained consistent. Additionally, the compounds responsible for this activity were identified as phlorotannins. In conclusion, the potential of these marine algae as valuable raw materials in the cosmetic industry is emphasized, underscoring the importance of conducting rigorous safety tests before commercial application. This thesis integrates machine learning, metabolomics, and multivariate analysis tools to explore the potential of marine algae from the Colombian Caribbean in the cosmetic industry. The results highlight the extract of Dictyopteris justii as a promising candidate and emphasize the need for further research.MaestríaMagister en Ciencias - QuímicaProductos Naturalesxxxvi, 309 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afinesAlgas marinasSeaweedIndustria de cosméticosCosmetics industryProductos Naturales MarinosAlgas PardasAlgas RojastirosinasacolagenasaHialuronidasaPerfilado metabólicoRedes molecularesBúsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombianoSearch for compounds with possible inhibitory activity of enzymes of cosmetic interest from seaweed from the Colombian Caribbean.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaCaribeStatista. Cosmetics and personal care Market. https://www.statista.com/outlook/70000000/103/cosmetics-and-personal-care/latinamerica# (accessed 2018-04-02).Statista Research Department. Valor del mercado de cosméticos en Colombia de 2019 a 2021. https://es.statista.com/estadisticas/1320185/colombia-tamano-delmercado-de-cosmeticos/ (accessed 2022-07-10).AUNAP. Plan Nacional Para El Desarrollo de La Acuicultura Sostenible En Colombia - PlaNDAS; Bogotá, 2014. http://aunap.gov.co/wp-content/uploads/2016/04/PlanNacional-para-el-Desarrollo-de-la-Acuicultura-Sostenible-Colombia.pdf (accessed 2018-11-30).Comisión de la Comunidad Andina. DECISIÓN 833 Modificación de la Decisión 516: “Armonización de legislaciones en materia de productos cosméticos.” http://www.sice.oas.org/trade/JUNAC/Decisiones/DEC833_s.pdf (accessed 2022- 07-13)Cosmetics and Personal Care Products | TLC Exportador. http://ftaus.procolombia.co/offer-by-sector/manufacturing-and-supplies/cosmetics-andpersonal-care-products (accessed 2018-04-02).inexmoda. INFORME DEL SECTOR COSMÉTICO. http://www.saladeprensainexmoda.com/wp-content/uploads/2019/01/informegastometria-cosmeticos-enero-2019.pdf (accessed 2019-04-21)Decreto 476 de 2020. https://coronaviruscolombia.gov.co/Covid19/docs/decretos/minsalud/113_decreto_ 476.pdf (accessed 2022-01-03).Ingredientes Naturales para Cosméticos-guia exportación. https://gqspcolombia.org/wp-content/uploads/2021/12/Guia_exportar-ingredientesnaturales_Suiza_UE.pdf (accessed 2022-01-09).GQSP Colombia - Programa de Calidad para la Cadena de Químicos. Requisitos de calidad y sostenibilidad para ingredientes naturales en Suiza y la Unión Europea. https://gqspcolombia.org/wp-content/uploads/2021/12/Requisitos-de-calidad-ysostenibilidad-IN.pdf (accessed 2021-01-09).GQSP Colombia – Programa de Calidad para la Cadena de Químicos. https://gqspcolombia.org/#laboratorios (accessed 2022-01-03)Gupta, M. A.; Gilchrest, B. A. Psychosocial Aspects Of Aging Skin. Dermatol. Clin. 2005, 23 (4), 643–648. https://doi.org/10.1016/j.det.2005.05.012Dayan, N. Skin Aging Handbook: An Integrated Approach to Biochemistry and Product Development (Personal Care and Cosmetic Technology), 1st Editio.; William Andrew: New York, 2008.Couteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.Couteau, C.; Coiffard, L. Pourquoi Les Cosmétiques Bio Ne Sont Pas Meilleurs Que Les Autres? Actual. Pharm. 2010, 49 (495), 32–35. https://doi.org/10.1016/S0515- 3700(10)70673-X.FDA. Prohibited & Restricted Ingredients in Cosmetics | FDA. https://www.fda.gov/cosmetics/cosmetics-laws-regulations/prohibited-restrictedingredients-cosmetics (accessed 2019-07-02)Dreno, B.; Araviiskaia, E.; Berardesca, E.; Bieber, T.; Hawk, J.; Sanchez-Viera, M.; Wolkenstein, P. The Science of Dermocosmetics and Its Role in Dermatology. J. Eur. Acad. Dermatology Venereol. 2014, 28 (11), 1409–1417. https://doi.org/10.1111/jdv.12497ONUDI Colombia. Análisis de la competitividad del sector cosméticos e ingredientes naturales.Vermeer, B. J. Cosmeceuticals. Arch. Dermatol. 1996, 132 (3), 337. https://doi.org/10.1001/archderm.1996.03890270113017Agrawal, S.; Adholeya, A.; Barrow, C. J.; Deshmukh, S. K. Marine Fungi: An Untapped Bioresource for Future Cosmeceuticals. Phytochem. Lett. 2018, 23 (October 2017), 15–20. https://doi.org/10.1016/j.phytol.2017.11.003Kikuchi, K.; Tagami, H. Dermatological Benefits of Cosmetics; Elsevier Inc., 2017. https://doi.org/10.1016/B978-0-12-802005-0.00007-0Amaied, E.; Vargiolu, R.; Bergheau, J. M.; Zahouani, H. Aging Effect on Tactile Perception: Experimental and Modelling Studies. Wear 2015, 332–333, 715–724. https://doi.org/10.1016/j.wear.2015.02.030Thieulin, C.; Pailler-Mattei, C.; Abdouni, A.; Djaghloul, M.; Zahouani, H. Mechanical and Topographical Anisotropy for Human Skin: Ageing Effect. J. Mech. Behav. Biomed. Mater. 2020, 103 (October 2019), 103551. https://doi.org/10.1016/j.jmbbm.2019.103551Oomens, C. W. J.; van Vijven, M.; Peters, G. W. M. Skin Mechanics. In Biomechanics of Living Organs; Elsevier, 2017; pp 347–357. https://doi.org/10.1016/B978-0-12- 804009-6.00016-XGilaberte, Y.; Prieto-Torres, L.; Pastushenko, I.; Juarranz, Á. Anatomy and Function of the Skin. In Nanoscience in Dermatology; Elsevier, 2016; pp 1–14. https://doi.org/10.1016/B978-0-12-802926-8.00001-XKim, H. M.; An, H. S.; Bae, J. S.; Kim, J. Y.; Choi, C. H.; Kim, J. Y.; Lim, J. H.; Choi, J. hun; Song, H.; Moon, S. H.; Park, Y. J.; Chang, S. J.; Choi, S. Y. Effects of Capítulo 1 39 Palmitoyl-KVK-L-Ascorbic Acid on Skin Wrinkles and Pigmentation. Arch. Dermatol. Res. 2017, 309 (5), 397–402. https://doi.org/10.1007/s00403-017-1731-6Ganceviciene, R.; Liakou, A. I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C. C. Skin Anti-Aging Strategies. Dermatoendocrinol. 2012, 4 (3), 308–319. https://doi.org/10.4161/derm.22804Tobin, D. J. Introduction to Skin Aging. J. Tissue Viability 2017, 26 (1), 37–46. https://doi.org/10.1016/j.jtv.2016.03.002Jenkins, G. Molecular Mechanisms of Skin Ageing. Mech. Ageing Dev. 2002, 123 (7), 801–810. https://doi.org/10.1016/S0047-6374(01)00425-0Hetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04Freitas-Rodríguez, S.; Folgueras, A. R.; López-Otín, C. The Role of Matrix Metalloproteinases in Aging: Tissue Remodeling and Beyond. Biochim. Biophys. Acta - Mol. Cell Res. 2017, 1864 (11), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007Ahmed, I. A.; Mikail, M. A.; Zamakshshari, N.; Abdullah, A.-S. H. Natural Anti-Aging Skincare: Role and Potential. Biogerontology 2020, 21 (3), 293–310. https://doi.org/10.1007/s10522-020-09865-zFisher, G. J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J. J. Mechanisms of Photoaging and Chronological Skin Aging. Arch. Dermatol. 2002, 138 (11), 1462–1470. https://doi.org/10.1001/archderm.138.11.1462Hwang, K.-A.; Yi, B.-R.; Choi, K.-C. Molecular Mechanisms and In Vivo Mouse Models of Skin Aging Associated with Dermal Matrix Alterations. Lab. Anim. Res. 2011, 27 (1), 1–8. https://doi.org/10.5625/lar.2011.27.1.1.Shah, H.; Rawal Mahajan, S. Photoaging: New Insights into Its Stimulators, Complications, Biochemical Changes and Therapeutic Interventions. Biomed. Aging Pathol. 2013, 3 (3), 161–169. https://doi.org/10.1016/j.biomag.2013.05.003Mumtaz, S.; Ali, S.; Tahir, H. M.; Kazmi, S. A. R.; Shakir, H. A.; Mughal, T. A.; Mumtaz, S.; Summer, M.; Farooq, M. A. Aging and Its Treatment with Vitamin C: A Comprehensive Mechanistic Review. Mol. Biol. Rep. 2021, 48 (12), 8141–8153. https://doi.org/10.1007/S11033-021-06781-4.Keen, M. Hyaluronic Acid in Dermatology. Skinmed 2017, 15, 441–448. (38) Hendry Henderson, A.; Nyoman Ehrich Lister, I.; Girsang, E.; Fachrial, E. Antioxidant and Anticollagenase Activity of Tomato (Solanum Lycopersicum L.) and Lycopene. Technol. Sci. Am. Sci. Res. J. Eng. 2019, 52 (1), 57–66Garg, C.; Khurana, P.; Garg, M. Molecular Mechanisms of Skin Photoaging and Plant Inhibitors. Int. J. Green Pharm. 2017, 11 (2), 217–232Fonseca, Y. M.; Catini, C. D.; Vicentini, F. T. M. C.; Nomizo, A.; Gerlach, R. F.; Fonseca, M. J. V. Protective Effect of Calendula Officinalis Extract against UVBInduced Oxidative Stress in Skin: Evaluation of Reduced Glutathione Levels and Matrix Metalloproteinase Secretion. J. Ethnopharmacol. 2010, 127 (3), 596–601. https://doi.org/10.1016/j.jep.2009.12.019Bylka, W.; Znajdek-Awiżeń, P.; Studzińska-Sroka, E.; Brzezińska, M. Centella Asiatica in Cosmetology. Adv. Dermatology Allergol. 2013, 1, 46–49. https://doi.org/10.5114/pdia.2013.33378Senol Deniz, F. S.; Orhan, I. E.; Duman, H. Profiling Cosmeceutical Effects of Various Herbal Extracts through Elastase, Collagenase, Tyrosinase Inhibitory and Antioxidant Assays. Phytochem. Lett. 2021, 45, 171–183.Roy, A.; Sahu, R.; Matlam, M.; Deshmukh, V.; Dwivedi, J.; Jha, A. In Vitro Techniques To Assess The Proficiency of Skin Care Cosmetic Formulations. Pharmacogn. Rev. 2013, 7 (14), 97–106. https://doi.org/10.4103/0973-7847.120507Moon, J. K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry. March 11, 2009, pp 1655–1666. https://doi.org/10.1021/jf803537kZappelli, C.; Barbulova, A.; Apone, F.; Colucci, G. Effective Active Ingredients Obtained through Biotechnology. Cosmetics 2016, 3 (4), 39. https://doi.org/10.3390/cosmetics3040039Briganti, S.; Camera, E.; Picardo, M. Chemical and Instrumental Approaches to Treat Hyperpigmentation. Pigment Cell Res. 2003, 16 (2), 101–110. https://doi.org/10.1034/j.1600-0749.2003.00029.xVirador, V. M.; Kobayashi, N.; Matsunaga, J.; Hearing, V. J. A Standardized Protocol for Assessing Regulators of Pigmentation. Anal. Biochem. 1999, 270 (2), 207–219. https://doi.org/10.1006/abio.1999.4090Gunia-Krzyżak, A.; Popiol, J.; Marona, H. Melanogenesis Inhibitors: Strategies for Searching for and Evaluation of Active Compounds. Curr. Med. Chem. 2016, 23 (31), 3548–3574. https://doi.org/10.2174/0929867323666160627094938Thomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5Ghersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018Liu, H.; Mander, L. Comprehensive Natural Products II - Chemistry and Biology - Volume_3, 1st editio.; Elsevier Science: Kidlington, 2010SYN®-COLL. https://www.dsm.com/personal-care/en_US/products/skinbioactives/syn-coll.html (accessed 2022-02-09)TRI-K Industries, I. DermaPep TM A440. Innovative Anti-Aging Tetrapeptide. https://www.ulprospector.com/documents/1185121.pdf?bs=1957&b=240140&st=20 &r=la&ind=personalcare (accessed 2022-02-18)Inc., S.-C. I. SpecKare ® MBA (Maltobionic Acid). https://www.ulprospector.com/en/na/PersonalCare/Detail/5738/5492191/SpecKareMBA (accessed 2022-02-09)Espinosa-Leal, C.; Garcia-Lara, S. Current Methods for the Discovery of New Active Ingredients from Natural Products for Cosmeceutical Applications. Planta Med. 2019, 85 (07), 535–551. https://doi.org/10.1055/a-0857-6633Harjo, B.; Wibowo, C.; Ng, K. M. Development of Natural Product Manufacturing Processes: Phytochemicals. Chem. Eng. Res. Des. 2004, 82 (8), 1010–1028. https://doi.org/10.1205/0263876041580695Tracy, L. E.; Minasian, R. A.; Caterson, E. J. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv. Wound Care 2016, 5 (3), 119–136. https://doi.org/10.1089/WOUND.2014.0561Kim, S. W.; Kim, B.-H. A Web-Based Alternative Non-Animal Method Database for Safety Cosmetic Evaluations. Toxicol. Res. 2016, 32 (3), 259–267. https://doi.org/10.5487/TR.2016.32.3.259Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036Skoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440Pillaiyar, T.; Namasivayam, V.; Manickam, M.; Jung, S.-H. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 61 (17), 7395–7418. https://doi.org/10.1021/acs.jmedchem.7b00967Park, H. Y.; Kosmadaki, M.; Yaar, M.; Gilchrest, B. A. Cellular Mechanisms Regulating Human Melanogenesis. Cell. Mol. Life Sci. 2009, 66 (9), 1493–1506. https://doi.org/10.1007/s00018-009-8703-8Couteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027Zhu, W.; Gao, J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J. Investig. Dermatology Symp. Proc. 2008, 13 (1), 20–24. https://doi.org/10.1038/jidsymp.2008.8European Commission. ANNEX II. List of Substances Prohibited in Cosmetic Products. https://ec.europa.eu/growth/tools-databases/cosing/pdf/COSING_Annex II_v2.pdf (accessed 2020-04-16)Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. Kojic Acid, a Cosmetic Skin Whitening Agent, Is a Slow-Binding Inhibitor of Catecholase Activity of Tyrosinase. J. Pharm. Pharmacol. 1994, 46 (12), 982–985. https://doi.org/10.1111/j.2042- 7158.1994.tb03253.xHakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G. G.; Bissett, D. L.; Boissy, R. E. The Effect of Niacinamide on Reducing Cutaneous Pigmentation and Suppression of Melanosome Transfer. Br. J. Dermatol. 2002, 147 (1), 20–31. https://doi.org/10.1046/j.1365- 2133.2002.04834.xMaeda, K.; Fukuda, M. Arbutin: Mechanism of Its Depigmenting Action in Human Melanocyte Culture. J. Pharmacol. Exp. Ther. 1996, 276 (2), 765–769Bowes, L. The Science of Hydroxy Acids: Mechanisms of Action, Types and Cosmetic Applications. J. Aesthetic Nurs. 2013, 2 (2), 77–81. https://doi.org/10.12968/joan.2013.2.2.77LP, X.; QX, C.; H, H.; HZ, W.; RQ, Z. Inhibitory Effects of Some Flavonoids on the Activity of Mushroom Tyrosinase. Biochem. (Mosc). 2003, 68 (4), 487–491Arct, J.; Pytkowska, K. Flavonoids as Components of Biologically Active Cosmeceuticals. Clin. Dermatol. 2008, 26 (4), 347–357. https://doi.org/10.1016/j.clindermatol.2008.01.004Ros, J. R.; Rodríguez-López, J. N.; García-Cánovas, F. Effect of L-Ascorbic Acid on the Monophenolase Activity of Tyrosinase. Biochem. J. 1993, 295 (1), 309–312. https://doi.org/10.1042/bj2950309Lai, K.-Y.; Hu, H.-C.; Chiang, H.-M.; Liu, Y.-J.; Yang, J.-C.; Lin, Y.-A.; Chen, C.-J.; Chang, Y.-S.; Lee, C.-L. New Diterpenes Leojaponins G–L from Leonurus Japonicus. Fitoterapia 2018, 130 (June), 125–133. https://doi.org/10.1016/j.fitote.2018.08.014Li, X.; Kim, M. K.; Lee, U.; Kim, S.-K.; Kang, J. S.; Choi, H. D.; Son, B. W. Myrothenones A and B, Cyclopentenone Derivatives with Tyrosinase Inhibitory Activity from the Marine-Derived Fungus Myrothecium Sp. Chem. Pharm. Bull. (Tokyo). 2005, 53 (4), 453–455. https://doi.org/10.1248/cpb.53.453Deering, R. W.; Chen, J.; Sun, J.; Ma, H.; Dubert, J.; Barja, J. L.; Seeram, N. P.; Wang, H.; Rowley, D. C. N -Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea Sp. PP2-459. J. Nat. Prod. 2016, 79 (2), 447–450. https://doi.org/10.1021/acs.jnatprod.5b00972Romero-González, R. R.; Ávila-Núñez, J. L.; Aubert, L.; Alonso-Amelot, M. E. Labdane Diterpenes from Leonurus Japonicus Leaves. Phytochemistry 2006, 67 (10), 965–970. https://doi.org/10.1016/j.phytochem.2006.03.015Biodiversidad en cifras. https://cifras.biodiversidad.co/ (accessed 2020-06-17)ANDI. Informe de sostenibilidad de Industria de cosmética y aseo 2015. http://www.andi.com.co/cica/Documents/Cosmeticos/Informes/InformeSostenibilida d.pdf (accessed 2022-01-12)Sistema de Información de la Investigación - HERMES. http://www.hermes.unal.edu.co/pages/Consultas/Proyecto.xhtml?idProyecto=3867 3&opcion=1 (accessed 2020-07-06).Bogotá le apuesta a la innovación natural - Cluster de Cosméticos, Cámara de Comercio de Bogotá. https://www.ccb.org.co/Clusters/Cluster-deCosmeticos/Noticias/2018/Septiembre-2018/Bogota-le-apuesta-a-la-innovacionnatural (accessed 2020-07-06)Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007European Commission. CosIng - Cosmetics - GROWTH - European Commission. http://ec.europa.eu/growth/tools-databases/cosing/ (accessed 2018-12-04)Bautista Rodríguez, C. A. Una Mirada Al Estado Actual de La Investigación En Productos Naturales Marinos de Colombia-Tesis de Maestría., Universidad Nacional de Colombia, 2017. https://repositorio.unal.edu.co/handle/unal/62225Kim, S. K. Marine Cosmeceuticals. J. Cosmet. Dermatol. 2014, 13 (1), 56–67. https://doi.org/10.1111/jocd.12057Viscasillas Clerch, A.; Pozo, A. El Uso de Las Algas En Cosmética. Offarm Farm. y Soc. 2005, 24 (2), 126–127López-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552Kim, S. K. Handbook of Marine Biotecnology; Springer, 2015Food and Agriculture Organization. Seaweeds And Microalgae: An Overview For Unlocking Their Potential In Global Aquaculture Development. NFIA/C1229 (En); Rome, 2021; Vol. 1229Biotechnica | Extractos de algas, bioestimulantes y biofertilizantes. https://biotechnica.co.uk/ (accessed 2020-11-15).Seaweed Solutions. https://seaweedsolutions.com/ (accessed 2020-11-15)An innovative approach to develop sustainable marine active ingredients from macroalgae | SEPPIC. https://www.seppic.com/en/scientificcommunications/innovative-approach-develop-sustainable-marine-activeingredients (accessed 2020-11-15)Mekideche, N. Brown Algae Cell Lyophilisate, Method For The Obtention Thereof . 20080089851, April 17, 2018. https://patents.justia.com/patent/20080089851 (accessed 2020-11-15)Cattuzzato, L.; Le Gelebart, E. Method for Culturing Cells of Acrochaetium moniliforme Red Algae, Method for Obtaining an Extract of the Biomass Thereof, and Use of Same in Cosmetics. https://patents.justia.com/patent/20180117106 (accessed 2020-11-15)Yong, W. T. L.; Thien, V. Y.; Rupert, R.; Rodrigues, K. F. Seaweed: A Potential Climate Change Solution. Renew. Sustain. Energy Rev. 2022, 159 (September 2021), 112222. https://doi.org/10.1016/j.rser.2022.112222Rincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqeRincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)Arias-Echeverri, J. P.; Zapata-Ramírez, P. A.; Ramírez-Carmona, M.; RendónCastrillón, L.; Ocampo-López, C. Present and Future of Seaweed Cultivation and Its Applications in Colombia. J. Mar. Sci. Eng. 2022, 10 (2), 243. https://doi.org/10.3390/jmse10020243UTadeo. Establecimiento y desarrollo de un proyecto piloto de cultivo de algas y desarrollo de productos basados en su derivados | Universidad de Bogotá Jorge Tadeo Lozano. https://www.utadeo.edu.co/es/evento/academicos/establecimientoy-desarrollo-de-un-proyecto-piloto-de-cultivo-de-algas-y?page=5 (accessed 2018- 09-16)Molina-Vargas, J. N. Resultados Preliminares Del Cultivo Experimental de Gracilaria Verrucosa (Hudson) Papenfuss (=G. Caudata J. Agardh) (Rhodophyta: Gracilariaceae) En La Costa Caribe de Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 2014, 38 (146), 79. https://doi.org/10.18257/raccefyn.41Camacho, O.; Montaña-Fernández, J. Cultivo Experimental En El Mar Del Alga Roja Hypnea Musciformis En El Area de Santa Marta, Caribe Colombiano. Bol. Investig. Mar. y Costeras 2012, 41 (1), 29–46. https://doi.org/10.25268/bimc.invemar.2012.41.1.71Ariede, M. B.; Candido, T. M.; Jacome, A. L. M.; Velasco, M. V. R.; de Carvalho, J. C. M.; Baby, A. R. Cosmetic Attributes of Algae - A Review. Algal Res. 2017, 25 (May), 483–487. https://doi.org/10.1016/j.algal.2017.05.019Salehi; Sharifi-Rad; Seca; Pinto; Michalak; Trincone; Mishra; Nigam; Zam; Martins. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24 (22), 4182. https://doi.org/10.3390/molecules24224182Faulkner, D. J. Marine Natural Products: Metabolites of Marine Invertebrates. Nat. Prod. Rep. 1984, 1 (6), 551–598. https://doi.org/10.1039/NP9840100551Pereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018Sudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100El Gamal, A. A. Biological Importance of Marine Algae. Saudi Pharm. J. 2010, 18 (1), 1–25. https://doi.org/10.1016/j.jsps.2009.12.001McHugh, D. J.; Food and Agriculture Organization of the United Nations. A Guide to the Seaweed Industry; Food and Agriculture Organization of the United Nations, 2003Sanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027Morton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A. V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules. July 9, 2020, p 3152. https://doi.org/10.3390/molecules25143152Pádua, D.; Rocha, E.; Gargiulo, D.; Ramos, A. A. Bioactive Compounds from Brown Seaweeds: Phloroglucinol, Fucoxanthin and Fucoidan as Promising Therapeutic Agents against Breast Cancer. Phytochem. Lett. 2015, 14, 91–98. https://doi.org/10.1016/j.phytol.2015.09.007Pradhan, B.; Bhuyan, P. P.; Patra, S.; Nayak, R.; Behera, P. K.; Behera, C.; Behera, A. K.; Ki, J.-S.; Jena, M. Beneficial Effects of Seaweeds and Seaweed-Derived Bioactive Compounds: Current Evidence and Future Prospective. Biocatal. Agric. Biotechnol. 2022, 39 (November 2021), 102242. https://doi.org/10.1016/j.bcab.2021.102242Yi, H.; Hong, J.; Xiangzhao, M. A. O.; Fangfang, C. I. Laminarin and Laminarin Oligosaccharides Originating from Brown Algae : Preparation, Biological Activities, and Potential Applications. 2021, 20 (3), 641–653. https://doi.org/10.1007/s11802- 021-4584-8Kadam, S. U.; Tiwari, B. K.; O’Donnell, C. P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50 (1), 24– 31. https://doi.org/10.1111/ijfs.12692Marinova. What is Fucoidan? https://www.marinova.com.au/what-is-fucoidan/ (accessed 2022-02-16).Lemesheva, V.; Tarakhovskaya, E. Physiological Functions of Phlorotannins. Biol. Commun. 2018, 63 (1), 70–76. https://doi.org/10.21638/spbu03.2018.108Halvorson, H. O.; Quezada, F. Handbook of Marine Biotechnology; 2009.Rubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/Pardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/Teixeira, V. L.; Kelecom, A. A Chemotaxonomic Study of Diterpenes from Marine Brown Algae of the Genus Dictyota. Sci. Total Environ. 1988, 75 (2–3), 271–283. https://doi.org/10.1016/0048-9697(88)90040-XKo, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401de Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079Hur, S.; Lee, H.; Kim, Y.; Lee, B. H.; Shin, J.; Kim, T. Y. Sargaquinoic Acid and Sargachromenol, Extracts of Sargassum Sagamianum, Induce Apoptosis in HaCaT Cells and Mice Skin: Its Potentiation of UVB-Induced Apoptosis. Eur. J. Pharmacol. 2008, 582 (1–3), 1–11. https://doi.org/10.1016/j.ejphar.2007.12.025Pardo-Vargas, A.; de Barcelos Oliveira, I.; Stephens, P.; Cirne-Santos, C.; de Palmer Paixão, I.; Ramos, F.; Jiménez, C.; Rodríguez, J.; Resende, J.; Teixeira, V.; Castellanos, L. Dolabelladienols A–C, New Diterpenes Isolated from Brazilian Brown Alga Dictyota Pfaffii. Mar. Drugs 2014, 12 (7), 4247–4259. https://doi.org/10.3390/md12074247Soares, D. C.; Calegari-Silva, T. C.; Lopes, U. G.; Teixeira, V. L.; de Palmer Paixão, I. C. N.; Cirne-Santos, C.; Bou-Habib, D. C.; Saraiva, E. M. Dolabelladienetriol, a Compound from Dictyota Pfaffii Algae, Inhibits the Infection by Leishmania Amazonensis. PLoS Negl. Trop. Dis. 2012, 6 (9), 1–12. https://doi.org/10.1371/journal.pntd.0001787Rubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021.Echavarría, B. Z.; Franco, A. S.; Martínez, A. M. Evaluación de La Actividad Antioxidante y Determinación Del Contenido de Compuestos Fenólicos En Extractos de Macroalgas Del Caribe Colombiano. Vitae 2009, 16, 126–131Yamthe, L. R. T.; Appiah-Opong, R.; Fokou, P. V. T.; Tsabang, N.; Boyom, F. F.; Nyarko, A. K.; Wilson, M. D. Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Mar. Drugs 2017, 15 (11), 1–28. https://doi.org/10.3390/md15110323Balboa, E. M.; Conde, E.; Moure, A.; Falqué, E.; Domínguez, H. In Vitro Antioxidant Properties of Crude Extracts and Compounds from Brown Algae. Food Chem. 2013, 138 (2–3), 1764–1785. https://doi.org/10.1016/j.foodchem.2012.11.026Sanjeewa, K. K. A.; Lee, J. S.; Kim, W. S.; Jeon, Y. J. The Potential of Brown-Algae Polysaccharides for the Development of Anticancer Agents: An Update on Anticancer Effects Reported for Fucoidan and Laminaran. Carbohydr. Polym. 2017, 177 (September), 451–459. https://doi.org/10.1016/j.carbpol.2017.09.005de Souza Barros, C.; Garrido, V.; Melchiades, V.; Gomes, R.; Gomes, M. W. L.; Teixeira, V. L.; de Palmer Paixão, I. C. N. Therapeutic Efficacy in BALB/C Mice of Extract from Marine Alga Canistrocarpus Cervicornis (Phaeophyceae) against Herpes Simplex Virus Type 1. J. Appl. Phycol. 2017, 29 (2), 769–773. https://doi.org/10.1007/s10811-016-0865-9Koishi, A. C.; Zanello, P. R.; Bianco, É. M.; Bordignon, J.; Nunes Duarte dos Santos, C. Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay. PLoS One 2012, 7 (12), 1–11. https://doi.org/10.1371/journal.pone.0051089Kremb, S.; Helfer, M.; Kraus, B.; Wolff, H.; Wild, C.; Schneider, M.; Voolstra, C. R.; Brack-Werner, R. Aqueous Extracts of the Marine Brown Alga Lobophora Variegata Inhibit HIV-1 Infection at the Level of Virus Entry into Cells. PLoS One 2014, 9 (8), 1–12. https://doi.org/10.1371/journal.pone.0103895Barbosa, J. P.; Pereira, R. C.; Abrantes, J. L.; Cirne Dos Santos, C. C.; Rebello, M. A.; De Palmer Paixão Frugulhetti, I. C.; Teixeira, V. L. In Vitro Antiviral Diterpenes from the Brazilian Brown Alga Dictyota Pfaffii. Planta Med. 2004, 70 (9), 856–860. https://doi.org/10.1055/s-2004-827235Bianco, É. M.; Rogers, R.; Teixeira, V. L.; Pereira, R. C. Antifoulant Diterpenes Produced by the Brown Seaweed Canistrocarpus Cervicornis. J. Appl. Phycol. 2009, 21 (3), 341–346. https://doi.org/10.1007/s10811-008-9374-9Barbosa, J. P.; Fleury, B. G.; da Gama, B. A. P.; Teixeira, V. L.; Pereira, R. C. Natural Products as Antifoulants in the Brazilian Brown Alga Dictyota Pfaffii (Phaeophyta, Dictyotales). Biochem. Syst. Ecol. 2007, 35 (8), 549–553. https://doi.org/10.1016/j.bse.2007.01.010Schmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017Schmitt, T. M.; Lindquist, N.; Hay, M. E. Seaweed Secondary Metabolites as Antifoulants: Effects of Dictyota Spp. Diterpenes on Survivorship, Settlement, and Development of Marine Invertebrate Larvae. Chemoecology 1998, 8 (3), 125–131. https://doi.org/10.1007/s000490050017Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008Torres, M. D.; Flórez-Fernández, N.; Domínguez, H. Integral Utilization of Red Seaweed for Bioactive Production. Mar. Drugs 2019, 17 (6), 314. https://doi.org/10.3390/md17060314Qiu, Y.; Jiang, H.; Fu, L.; Ci, F.; Mao, X. Porphyran and Oligo-Porphyran Originating from Red Algae Porphyra: Preparation, Biological Activities, and Potential Applications. Food Chem. 2021, 349 (February), 129209. https://doi.org/10.1016/j.foodchem.2021.129209Bhatia, S.; Sharma, A.; Sharma, K.; Kavale, M.; Chaugule, B.; Dhalwal, K.; Mahadik, K. Novel Algal Polysaccharides from Marine Source : Porphyran. Pharmacogn. Rev. 2008, 2 (4), 271–276Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107mibellebiochemistry. HelioguardTM 365 A natural UV-screening active to protect against photo-aging. https://mibellebiochemistry.com/helioguardtm-365 (accessed 2022-02-23)Schmid, D.; Cornelia, S.; Fred, Z. UV-A Sunscreen from Red Algae for Protection against Premature Skin Aging. Cosmetics 2004, 139–143Cardoso, S.; Carvalho, L.; Silva, P.; Rodrigues, M.; Pereira, O.; Pereira, L. Bioproducts from Seaweeds: A Review with Special Focus on the Iberian Peninsula. Curr. Org. Chem. 2014, 18 (7), 896–917. https://doi.org/10.2174/138527281807140515154116Dong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411Pierre, G.; Delattre, C.; Laroche, C.; Michaud, P. Galactans and Its Applications. Polysaccharides 2014, No. ii, 1–37. https://doi.org/10.1007/978-3-319-03751-6Pangestuti, R.; Siahaan, E.; Kim, S.-K. Photoprotective Substances Derived from Marine Algae. Mar. Drugs 2018, 16 (11), 399. https://doi.org/10.3390/md16110399Monsalve-Bustamante, Y.; Rincón-Valencia, S.; Mejía-Giraldo, J.; Moreno-Tirado, D.; Puertas-Mejía, M. Screening of the UV Absorption Capacity, Proximal and Chemical Characterization of Extracts, and Polysaccharide Fractions of the Gracilariopsis Tenuifrons Cultivated in Colombia. J. Appl. Pharm. Sci. 2019, 9 (10), 103–109. https://doi.org/10.7324/JAPS.2019.91014Rozo, G.; Rozo, C.; Puyana, M.; Ramos, F. A.; Almonacid, C.; Castro, H. Two Compounds of the Colombian Algae Hypnea Musciformis Prevent Oxidative Damage in Human Low Density Lipoproteins LDLs. J. Funct. Foods 2019, 60 (May), 103399. https://doi.org/10.1016/j.jff.2019.06.001.Vargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296.Rozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661.van Santen, J. A.; Jacob, G.; Singh, A. L.; Aniebok, V.; Balunas, M. J.; Bunsko, D.; Neto, F. C.; Castaño-Espriu, L.; Chang, C.; Clark, T. N.; Cleary Little, J. L.; Delgadillo, D. A.; Dorrestein, P. C.; Duncan, K. R.; Egan, J. M.; Galey, M. M.; Haeckl, F. P. J.; Hua, A.; Hughes, A. H.; Iskakova, D.; Khadilkar, A.; Lee, J.-H.; Lee, S.; LeGrow, N.; Liu, D. Y.; Macho, J. M.; McCaughey, C. S.; Medema, M. H.; Neupane, R. P.; O’Donnell, T. J.; Paula, J. S.; Sanchez, L. M.; Shaikh, A. F.; Soldatou, S.; Terlouw, B. R.; Tran, T. A.; Valentine, M.; van der Hooft, J. J. J.; Vo, D. A.; Wang, M.; Wilson, D.; Zink, K. E.; Linington, R. G. The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent. Sci. 2019, 5 (11), 1824–1833. https://doi.org/10.1021/acscentsci.9b00806Thirumurugan, D.; Cholarajan, A.; Raja, S. S. S.; Vijayakumar, R. An Introductory Chapter: Secondary Metabolites. In Secondary Metabolites - Sources and Applications; InTech, 2018; pp 3–22. https://doi.org/10.5772/intechopen.79766Ahmed, E.; Arshad, M.; Khan, M.; Amjad, M.; Sadaf, H.; Riaz, I.; Sabir, S.; Ahmad, N.; Sabaoon; Correspondence Ejaz Ahmed, P.; Sabir, S. Secondary Metabolites and Their Multidimensional Prospective in Plant Life. J. Pharmacogn. Phytochem. 2017, 6 (2), 205–214Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20 (3), 200–216. https://doi.org/10.1038/s41573-020-00114-zReynolds, W. F. Natural Product Structure Elucidation by NMR Spectroscopy. In Pharmacognosy; Elsevier, 2017; pp 567–596. https://doi.org/10.1016/B978-0-12- 802104-0.00029-9Manchester, M.; Anand, A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. In Advances in Virus Research; Elsevier Inc., 2017; Vol. 98, pp 57–81. https://doi.org/10.1016/bs.aivir.2017.02.001Braga, C. P.; Adamec, J. Metabolome Analysis. Encycl. Bioinforma. Comput. Biol. ABC Bioinforma. 2018, 1–3, 463–475. https://doi.org/10.1016/B978-0-12-809633- 8.20134-9Wishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155– 161. https://doi.org/10.1016/j.jmr.2019.07.013Kim, H. K.; Choi, Y. H.; Verpoorte, R. NMR-Based Metabolomic Analysis of Plants. Nat. Protoc. 2010, 5 (3), 536–549. https://doi.org/10.1038/nprot.2009.237Puchades-Carrasco, L.; Palomino-Schätzlein, M.; Pérez-Rambla, C.; PinedaLucena, A. Bioinformatics Tools for the Analysis of NMR Metabolomics Studies Focused on the Identification of Clinically Relevant Biomarkers. Brief. Bioinform. 2016, 17 (3), 541–552. https://doi.org/10.1093/bib/bbv077Mandal, S.; Moudgil, M.; Mandal, S. K. Rational Drug Design. European Journal of Pharmacology. Elsevier December 2009, pp 90–100. https://doi.org/10.1016/j.ejphar.2009.06.065Zuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147Pardo-Vargas, A. Bioprospección de Productos Naturales Marinos de Organismos Bentónicos Del Litoral Brasileño y Caribe Colombiano- Fase I Tribu Dictyoteae. Tesis de Maestría., Universidad Nacional de Colombia, 2013. http://www.bdigital.unal.edu.co/45387/.Rubiano-Buitrago, P.; Duque, F.; Puyana, M.; Ramos, F. A.; Castellanos, L. Bacterial Biofilm Inhibitor Diterpenes from Dictyota Pinnatifida Collected from the Colombian Caribbean. Phytochem. Lett. 2019, 30, 74–80. https://doi.org/10.1016/j.phytol.2019.01.021Orfanoudaki, M.; Hartmann, A.; Karsten, U.; Ganzera, M. Chemical Profiling of Mycosporine‐like Amino Acids in Twenty‐three Red Algal Species. J. Phycol. 2019, 55 (2), 393–403. https://doi.org/10.1111/jpy.12827Xia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356Ko, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401Generalić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187Generalić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187Arguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41Vargas Aya, P. A.; Torres, G. R. Sunscreen and Moisturizer Cream Effects of Cosmetic Formulations Containing Extracts of Hypnea Musciformis Collected in the Colombian Caribbean. Pharm. Pharmacol. Int. J. 2020, 8 (3), 192–199. https://doi.org/10.15406/ppij.2020.08.00296Dragan, A.-M.-L.; Sirbu, R.; Cadar, E. Valuable Bioactive Compounds Extracted from Ceramium Rubrum on the Romanian Seaside with Medical Interest. Eur. J. Med. Nat. Sci. 2022, 5 (1), 63. https://doi.org/10.26417/283lyu42Morton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106Buedenbender, L.; Astone, F. A.; Tasdemir, D. Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus Vesiculosus. Mar. Drugs 2020, 18 (6), 311. https://doi.org/10.3390/md18060311Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008Bustamam, M. S. A.; Pantami, H. A.; Azizan, A.; Shaari, K.; Min, C. C.; Abas, F.; Nagao, N.; Maulidiani, M.; Banerjee, S.; Sulaiman, F.; Ismail, I. S. Complementary Analytical Platforms of NMR Spectroscopy and LCMS Analysis in the Metabolite Profiling of Isochrysis Galbana. Mar. Drugs 2021, 19 (3), 139. https://doi.org/10.3390/md19030139Jayalakshmi, K.; Ghoshal, U. C.; Kumar, S.; Misra, A.; Roy, R.; Khetrapal, C. L. Assessment of Small Intestinal Permeability Using 1H-NMR Spectroscopy. J Gastrointest. Liver Dis. 2009, 18 (1), 27–32Williams, R. B.; O’Neil-Johnson, M.; Williams, A. J.; Wheeler, P.; Pol, R.; Moser, A. Dereplication of Natural Products Using Minimal NMR Data Inputs. Org. Biomol. Chem. 2015, 13 (39), 9957–9962. https://doi.org/10.1039/C5OB01713KCarpena, M.; Garcia-Perez, P.; Garcia-Oliveira, P.; Chamorro, F.; Otero, P.; Lourenço-Lopes, C.; Cao, H.; Simal-Gandara, J.; Prieto, M. A. Biological Properties and Potential of Compounds Extracted from Red Seaweeds. Phytochem. Rev. 2022, 1–32. https://doi.org/10.1007/s11101-022-09826-zGutbrod, P.; Yang, W.; Grujicic, G. V.; Peisker, H.; Gutbrod, K.; Du, L. F.; Dörmann, P. Phytol Derived from Chlorophyll Hydrolysis in Plants Is Metabolized via Phytenal. J. Biol. Chem. 2021, 296, 100530. https://doi.org/10.1016/j.jbc.2021.100530Sohn, S.-I.; Rathinapriya, P.; Balaji, S.; Jaya Balan, D.; Swetha, T. K.; Durgadevi, R.; Alagulakshmi, S.; Singaraj, P.; Pandian, S. Phytosterols in Seaweeds: An Overview on Biosynthesis to Biomedical Applications. Int. J. Mol. Sci. 2021, 22 (23), 12691. https://doi.org/10.3390/ijms222312691.Hannan, M. A.; Sohag, A. A. M.; Dash, R.; Haque, M. N.; Mohibbullah, M.; Oktaviani, D. F.; Hossain, M. T.; Choi, H. J.; Moon, I. S. Phytosterols of Marine Algae: Insights into the Potential Health Benefits and Molecular Pharmacology. Phytomedicine 2020, 69 (February), 153201. https://doi.org/10.1016/j.phymed.2020.153201da Costa, E.; Melo, T.; Reis, M.; Domingues, P.; Calado, R.; Abreu, M. H.; Domingues, M. R. Polar Lipids Composition, Antioxidant and Anti-Inflammatory Activities of the Atlantic Red Seaweed Grateloupia Turuturu. Mar. Drugs 2021, 19 (8), 414. https://doi.org/10.3390/md19080414Plouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.; Tsiafoulis, C.; Gerothanassis, I. High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules 2017, 22 (10), 1663. https://doi.org/10.3390/molecules22101663Suttiarporn, P.; Chumpolsri, W.; Mahatheeranont, S.; Luangkamin, S.; Teepsawang, S.; Leardkamolkarn, V. Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice. Nutrients 2015, 7 (3), 1672–1687. https://doi.org/10.3390/nu7031672Moriya, H.; Takita, Y.; Matsumoto, A.; Yamahata, Y.; Nishimukai, M.; Miyazaki, M.; Shimoi, H.; Kawai, S.-J.; Yamada, M. Cobetia Sp. Bacteria, Which Are Capable of Utilizing Alginate or Waste Laminaria Sp. for Poly(3-Hydroxybutyrate) Synthesis, Isolated From a Marine Environment. Front. Bioeng. Biotechnol. 2020, 8 (August). https://doi.org/10.3389/fbioe.2020.00974Huamán-Castilla, N. L.; Allcca-Alca, E. E.; Allcca-Alca, G. J.; Quispe-Pérez, M. L. Biopolymers Produced by Azotobacter: Synthesis and Production, PhysicoMechanical Properties, and Potential Industrial Applications. Sci. Agropecu. 2021, 12 (3), 369–377. https://doi.org/10.17268/sci.agropecu.2021.040.Li, R.; Jiang, Y.; Wang, X.; Yang, J.; Gao, Y.; Zi, X.; Zhang, X.; Gao, H.; Hu, N. Psychrotrophic Pseudomonas Mandelii CBS-1 Produces High Levels of Poly-βHydroxybutyrate. Springerplus 2013, 2 (1), 335. https://doi.org/10.1186/2193-1801- 2-335Sabarinathan, D.; Chandrika, S. P.; Venkatraman, P.; Easwaran, M.; Sureka, C. S.; Preethi, K. Production of Polyhydroxybutyrate (PHB) from Pseudomonas Plecoglossicida and Its Application towards Cancer Detection. Informatics Med. Unlocked 2018, 11 (May), 61–67. https://doi.org/10.1016/j.imu.2018.04.009Pereira, L. Therapeutical and Nutritional Uses of Algae; CRC Press: Coimbra, Portugal, 2018Sudhakar, K.; Mamat, R.; Samykano, M.; Azmi, W. H.; Ishak, W. F. W.; Yusaf, T. An Overview of Marine Macroalgae as Bioresource. Renew. Sustain. Energy Rev. 2018, 91 (May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100Silberfeld, T.; Rousseau, F.; Reviers, B. de. An Updated Classification of Brown Algae (Ochrophyta, Phaeophyceae). Cryptogam. Algol. 2014, 35 (2), 117–156. https://doi.org/10.7872/crya.v35.iss2.2014.117Rincon-Díaz, M. N. Diversidad de Macroalgas Marinas del Caribe colombiano. http://ipt.biodiversidad.co/sibm/resource?r=macroalgas_caribe_colombia#downloa ds (accessed 2018-12-05)de Paula, J. C.; Vallim, M. A.; Teixeira, V. L. What Are and Where Are the Bioactive Terpenoids Metabolites from Dictyotaceae (Phaeophyceae). Brazilian Journal of Pharmacognosy. 2011, pp 216–228. https://doi.org/10.1590/S0102- 695X2011005000079Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Jokić, S.; Jerković, I. Update on Monoterpenes from Red Macroalgae: Isolation, Analysis, and Bioactivity. Mar. Drugs 2019, 17 (9), 537. https://doi.org/10.3390/md17090537Liu, L.; Heinrich, M.; Myers, S.; Dworjanyn, S. A. Towards a Better Understanding of Medicinal Uses of the Brown Seaweed Sargassum in Traditional Chinese Medicine: A Phytochemical and Pharmacological Review. J. Ethnopharmacol. 2012, 142 (3), 591–619. https://doi.org/10.1016/j.jep.2012.05.046Rushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Abdelmohsen, U. R. The Genus Turbinaria : Chemical and Pharmacological Diversity. Nat. Prod. Res. 2021, 35 (22), 4560–4578. https://doi.org/10.1080/14786419.2020.1731741Cikoš, A.-M.; Jurin, M.; Čož-Rakovac, R.; Gašo-Sokač, D.; Jokić, S.; Jerković, I. Update on Sesquiterpenes from Red Macroalgae of the Laurencia Genus and Their Biological Activities (2015–2020). Algal Res. 2021, 56 (February), 102330. https://doi.org/10.1016/j.algal.2021.102330Chakraborty, K.; Joseph, D.; Joy, M.; Raola, V. K. Characterization of Substituted Aryl Meroterpenoids from Red Seaweed Hypnea Musciformis as Potential Antioxidants. Food Chem. 2016, 212, 778–788. https://doi.org/10.1016/j.foodchem.2016.06.039Rubiano-Buitrago, P. A. Estudio de Diterpenos Marinos de Algas Del Género Dictyota Del Caribe Colombiano. Tesis de Maestría., Universidad Nacional de Colombia, 2017. http://www.bdigital.unal.edu.co/59276/.Nunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.Nunes Pinheiro, A. D.; Pereira Lopes-Filho, E. A.; De-Paula, J. C.; Pereira Netto, A. D.; Teixeira, V. L. Diterpenes from the Brown Alga Dictyota Mertensii. Biochem. Syst. Ecol. 2019, 86 (May), 103926. https://doi.org/10.1016/j.bse.2019.103926.Alarado, A. B.; Gerwick, W. H. Dictyol H, a New Tricyclic Diterpenoid from the Brown Seaweed Dictyota Dentata. J. Nat. Prod. 1985, 48 (1), 132–134. https://doi.org/10.1021/np50037a026.Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20.Mikami, K.; Hosokawa, M. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds. Int. J. Mol. Sci. 2013, 14 (7), 13763–13781. https://doi.org/10.3390/ijms140713763.Miller, E. P.; Wu, Y.; Carrano, C. J. Boron Uptake, Localization, and Speciation in Marine Brown Algae. Metallomics 2016, 8 (2), 161–169. https://doi.org/10.1039/C5MT00238AUsoltseva, R. V.; Anastyuk, S. D.; Shevchenko, N. M.; Surits, V. V.; Silchenko, A. S.; Isakov, V. V.; Zvyagintseva, T. N.; Thinh, P. D.; Ermakova, S. P. Polysaccharides from Brown Algae Sargassum Duplicatum: The Structure and Anticancer Activity in Vitro. Carbohydr. Polym. 2017, 175 (July), 547–556. https://doi.org/10.1016/j.carbpol.2017.08.044Badrinathan, S.; Shiju, T. M.; Suneeva Sharon Christa, A.; Arya, R.; Pragasam, V. Purification and Structural Characterization of Sulfated Polysaccharide from Sargassum Myriocystum and Its Efficacy in Scavenging Free Radicals. Indian J. Pharm. Sci. 2012, 74 (6), 549–555. https://doi.org/10.4103/0250-474X.110600.Sheu, J.-H.; Wang, G.-H.; Sung, P.-J.; Duh, C.-Y. New Cytotoxic Oxygenated Fucosterols from the Brown Alga Turbinaria Conoides. J. Nat. Prod. 1999, 62 (2), 224–227. https://doi.org/10.1021/np980233sPontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795Perinu, C.; Arstad, B.; Bouzga, A. M.; Svendsen, J. A.; Jens, K. J. NMR-Based Carbamate Decomposition Constants of Linear Primary Alkanolamines for CO2 Capture. Ind. Eng. Chem. Res. 2014, 53 (38), 14571–14578. https://doi.org/10.1021/ie5020603Rozo, G.; Rozo, C. Procedimiento Para Extraer y Purificar Kappa Carragenina Obtenida a Partir de Hypnea Musciformis. Patente de Invención., 2008. http://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=637816726784178661Kim, S. K.; Ravichandran, Y. D.; Khan, S. B.; Kim, Y. T. Prospective of the Cosmeceuticals Derived from Marine Organisms. Biotechnol. Bioprocess Eng. 2008, 13 (5), 511–523. https://doi.org/10.1007/s12257-008-0113-5Costa, R.; Santos, L. Delivery Systems for Cosmetics - From Manufacturing to the Skin of Natural Antioxidants. Powder Technol. 2017, 322, 402–416. https://doi.org/10.1016/j.powtec.2017.07.086Kim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187Teas, J.; Irhimeh, M. R. Melanoma and Brown Seaweed: An Integrative Hypothesis. J. Appl. Phycol. 2017, 29 (2), 941–948. https://doi.org/10.1007/s10811-016-0979-0Gaudêncio, S. P.; Pereira, F. Dereplication: Racing to Speed up the Natural Products Discovery Process. Nat. Prod. Rep. 2015, 32 (6), 779–810. https://doi.org/10.1039/c4np00134f.Wishart, D. S. NMR Metabolomics: A Look Ahead. J. Magn. Reson. 2019, 306, 155–161. https://doi.org/10.1016/j.jmr.2019.07.013Davies, V.; Wandy, J.; Weidt, S.; van der Hooft, J. J. J.; Miller, A.; Daly, R.; Rogers, S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93 (14), 5676–5683. https://doi.org/10.1021/acs.analchem.0c03895Nothias, L. F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A. A.; Alka, O.; Allard, P. M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A. M.; Da Silva, R. R.; Dang, T.; Garg, N.; Gauglitz, J. M.; Gurevich, A.; Isaac, G.; Jarmusch, A. K.; Kameník, Z.; Kang, K. Bin; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin H, C.; McCall, L. I.; McSayles, J.; Meyer, S. W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N. H.; NothiasEsposito, M.; Paolini, J.; Phelan, V. V.; Pluskal, T.; Quinn, R. A.; Rogers, S.; Shrestha, B.; Tripathi, A.; van der Hooft, J. J. J.; Vargas, F.; Weldon, K. C.; Witting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov, T.; Bandeira, N.; Wang, M.; Dorrestein, P. C. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17 (9), 905–908. https://doi.org/10.1038/s41592-020-0933-6Schmid, R.; Petras, D.; Nothias, L. F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.; Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.; Bauermeister, A.; Albarracin Orio, A.; Grundmann, C. O.; Vargas, F.; Koester, I.; Gauglitz, J. M.; Gentry, E. C.; Hövelmann, Y.; Kalinina, S. A.; Pendergraft, M. A.; Panitchpakdi, M.; Tehan, R.; Le Gouellec, A.; Aleti, G.; Mannochio Russo, H.; Arndt, B.; Hübner, F.; Hayen, H.; Zhi, H.; Raffatellu, M.; Prather, K. A.; Aluwihare, L. I.; Böcker, S.; McPhail, K. L.; Humpf, H. U.; Karst, U.; Dorrestein, P. C. Ion Identity Molecular Networking for Mass Spectrometry-Based Metabolomics in the GNPS Environment. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-23953-9Wang, M.; Carver, J. J.; Phelan, V. V; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V; Meehan, M. J.; Liu, W.-T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C.-C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C.-C.; Yang, Y.-L.; Humpf, H.-U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya P, C. A.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P.-M.; Phapale, P.; Nothias, L.-F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.-L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D.-T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B. Ø.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34 (8), 828–837. https://doi.org/10.1038/nbt.3597.Van Der Hooft, J. J. J.; Wandy, J.; Barrett, M. P.; Burgess, K. E. V.; Rogers, S. Topic Modeling for Untargeted Substructure Exploration in Metabolomics. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (48), 13738–13743. https://doi.org/10.1073/pnas.1608041113Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D. S. ClassyFire: Automated Chemical Classification with a Comprehensive, Computable Taxonomy. J. Cheminform. 2016, 8 (1), 1–20. https://doi.org/10.1186/s13321-016- 0174-y.da Silva, R. R.; Wang, M.; Nothias, L.-F.; van der Hooft, J. J. J.; CaraballoRodríguez, A. M.; Fox, E.; Balunas, M. J.; Klassen, J. L.; Lopes, N. P.; Dorrestein, P. C. Propagating Annotations of Molecular Networks Using in Silico Fragmentation. PLOS Comput. Biol. 2018, 14 (4), e1006089. https://doi.org/10.1371/journal.pcbi.1006089Gurevich, A.; Mikheenko, A.; Shlemov, A.; Korobeynikov, A.; Mohimani, H.; Pevzner, P. A. Increased Diversity of Peptidic Natural Products Revealed by Modification-Tolerant Database Search of Mass Spectra. Nat. Microbiol. 2018, 3 (3), 319–327. https://doi.org/10.1038/s41564-017-0094-2.Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.-F.; Dorrestein, P. C.; Pevzner, P. A. Dereplication of Microbial Metabolites through Database Search of Mass Spectra. Nat. Commun. 2018, 9 (1), 4035. https://doi.org/10.1038/s41467-018-06082-8.Ernst, M.; Kang, K. Bin; Caraballo-Rodríguez, A. M.; Nothias, L.-F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M. H.; Dorrestein, P. C.; van der Hooft, J. J. J. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 2019, 9 (7), 144. https://doi.org/10.3390/metabo9070144.Cao, L.; Guler, M.; Tagirdzhanov, A.; Lee, Y.-Y.; Gurevich, A.; Mohimani, H. MolDiscovery: Learning Mass Spectrometry Fragmentation of Small Molecules. Nat. Commun. 2021, 12 (1), 3718. https://doi.org/10.1038/s41467-021-23986-0.Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S. SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into Metabolite Structure Information. Nat. Methods 2019, 16 (4), 299–302. https://doi.org/10.1038/s41592-019-0344-8Sashidhara, K. V; Rosaiah, J. N. Various Dereplication Strategies Using LC-MS for Rapid Natural Product Lead Identification and Drug Discovery. Nat. Prod. Commun. 2007, 2 (2), 1934578X0700200. https://doi.org/10.1177/1934578X0700200218.Gross, J. H. Mass Spectrometry; Springer International Publishing: Cham, 2017. https://doi.org/10.1007/978-3-319-54398-7.Ford, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6),Hubert, J.; Nuzillard, J. M.; Renault, J. H. Dereplication Strategies in Natural Product Research: How Many Tools and Methodologies behind the Same Concept? Phytochem. Rev. 2017, 16 (1), 55–95. https://doi.org/10.1007/s11101- 015-9448-7.Schripsema, J. Application of NMR in Plant Metabolomics: Techniques, Problems and Prospects. Phytochem. Anal. 2010, 21 (1), 14–21. https://doi.org/10.1002/pca.1185.Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763Milenković, S. M.; Zvezdanović, J. B.; Andelković, T. D.; Marković, D. Z. The Identification of Chlorophyll and Its Derivatives in the Pigment Mixtures: HPLCChromatography, Visible and Mass Spectroscopy Studies. Adv. Technol. 2012, 1 (1), 16–24Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589Seger, C.; Sturm, S.; Stuppner, H. Mass Spectrometry and NMR Spectroscopy: Modern High-End Detectors for High Resolution Separation Techniques – State of the Art in Natural Product HPLC-MS, HPLC-NMR, and CE-MS Hyphenations. Nat. Prod. Rep. 2013, 30 (7), 970. https://doi.org/10.1039/c3np70015a.Guido F. Pauli, Birgit U. Jaki, David C. Lankin, John A. Walter, I. W. B. Quantitative NMR of Bioactive Natural Products. In Bioactive Natural Products; CRC Press, 2007; pp 127–156. https://doi.org/10.1201/9781420006889-8Ka-Wing Cheng, Feng Chen, M. W. Liquid Chromatography-Mass Spectrometry in Natural Product Research. In Bioactive Natural Products; CRC Press, 2007; pp 259–280. https://doi.org/10.1201/9781420006889-13Kruve, A.; Kaupmees, K.; Liigand, J.; Leito, I. Negative Electrospray Ionization via Deprotonation: Predicting the Ionization Efficiency. Anal. Chem. 2014, 86 (10), 4822–4830. https://doi.org/10.1021/ac404066v.Blunt, J.; Munro, M.; Upjohn, M. The Role of Databases in Marine Natural Products Research. In Handbook of Marine Natural Products; Springer Netherlands: Dordrecht, 2012; pp 389–421. https://doi.org/10.1007/978-90-481-3834-0_6Guo, Z.; Ma, S.; Khan, S.; Zhu, H.; Zhang, B.; Zhang, S.; Jiao, R. Zhaoshumycins A and B, Two Unprecedented Antimycin-Type Depsipeptides Produced by the Marine-Derived Streptomyces Sp. ITBB-ZKa6. Mar. Drugs 2021, 19 (11), 624. https://doi.org/10.3390/md19110624Winter, A.; Jarvis, B. B. Halipeptins A and B: Two Novel Potent Anti-Inflammatory Cyclic Depsipeptides from the Vanuatu Marine Sponge Haliclona Species. Chemtracts 2003, 16 (11), 688–691Andrianasolo, E. H.; Haramaty, L.; McPhail, K. L.; White, E.; Vetriani, C.; Falkowski, P.; Lutz, R. Bathymodiolamides A and B, Ceramide Derivatives from a Deep-Sea Hydrothermal Vent Invertebrate Mussel, Bathymodiolus Thermophilus. J. Nat. Prod. 2011, 74 (4), 842–846. https://doi.org/10.1021/np100601wRangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130Fu, M.; Deng, B.; Lü, H.; Yao, W.; Su, S.; Wang, D. The Bioaccumulation and Biodegradation of Testosterone by Chlorella Vulgaris. Int. J. Environ. Res. Public Health 2019, 16 (7), 1253. https://doi.org/10.3390/ijerph16071253Lemoine, F.; Maupin, I.; Lemée, L.; Lavoie, J.-M.; Lemberton, J.-L.; Pouilloux, Y.; Pinard, L. Alternative Fuel Production by Catalytic Hydroliquefaction of Solid Municipal Wastes, Primary Sludges and Microalgae. Bioresour. Technol. 2013, 142, 1–8. https://doi.org/10.1016/j.biortech.2013.04.123Pontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164– 7171. https://doi.org/10.1021/acs.analchem.0c04795Williams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301Morton DW, A.-K. S.; Morton, D. W. Cosmeceuticals Derived from Bioactive Substances Found in Marine Algae. Oceanogr. Open Access 2013, 01 (02), 1–11. https://doi.org/10.4172/2332-2632.1000106Whitehead, K.; Hedges, J. I. Electrospray Ionization Tandem Mass Spectrometric and Electron Impact Mass Spectrometric Characterization of Mycosporine-like Amino Acids. Rapid Commun. Mass Spectrom. 2003, 17 (18), 2133–2138. https://doi.org/10.1002/rcm.1162Kalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8 (1), 1–28. https://doi.org/10.3390/COSMETICS8010008MARTÍN, J. D.; DARIAS, J. Algal Sesquiterpenoids. In Marine Natural Products; Elsevier, 1978; pp 125–173. https://doi.org/10.1016/B978-0-12-624001-6.50008-4.Namikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768Zhao, W.; Jiang, H.; Liu, X.-W.; Zhou, J.; Wu, B. Polyene Macrolactams from Marine and Terrestrial Sources: Structure, Production Strategies, Biosynthesis and Bioactivities. Mar. Drugs 2022, 20 (6), 360. https://doi.org/10.3390/md20060360Kumari, P. Seaweed Lipidomics in the Era of ‘Omics’ Biology: A Contemporary Perspective. In Systems Biology of Marine Ecosystems; Springer International Publishing: Cham, 2017; pp 49–97. https://doi.org/10.1007/978-3-319-62094-7_4Li, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as Bioactive Agents from Brown Algae. Process Biochem. 2011, 46 (12), 2219–2224. https://doi.org/10.1016/j.procbio.2011.09.015Maciel, O. M. C.; Tavares, R. S. N.; Caluz, D. R. E.; Gaspar, L. R.; Debonsi, H. M. Photoprotective Potential of Metabolites Isolated from Algae-Associated Fungi Annulohypoxylon Stygium. J. Photochem. Photobiol. B Biol. 2018, 178 (November 2017), 316–322. https://doi.org/10.1016/j.jphotobiol.2017.11.018Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245Kim, J. A.; Ahn, B. N.; Kong, C. S.; Kim, S. K. The Chromene Sargachromanol e Inhibits Ultraviolet A-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168 (5), 968–976. https://doi.org/10.1111/bjd.12187.Kadam, S. U.; Álvarez, C.; Tiwari, B. K.; O’Donnell, C. P. Extraction of Biomolecules from Seaweeds; Elsevier Inc., 2015. https://doi.org/10.1016/B978-0- 12-418697-2.00009-XMateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742.Gam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381.Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.Kalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313.Plouguerne, E.; da Gama, B. A. P.; Pereira, R. C.; Barreto-Bergter, E. Glycolipids from Seaweeds and Their Potential Biotechnological Applications. Front. Cell. Infect. Microbiol. 2014, 4 (NOV), 1–5. https://doi.org/10.3389/fcimb.2014.00174.Couteau, C.; Coiffard, L. Seaweed Application in Cosmetics; 2016. https://doi.org/10.1016/B978-0-12-802772-1.00014-2.Kalasariya, H. S.; Patel, N. B.; Yadav, A.; Perveen, K.; Yadav, V. K.; Munshi, F. M.; Yadav, K. K.; Alam, S.; Jung, Y. K.; Jeon, B. H. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha Crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021, 26 (24). https://doi.org/10.3390/molecules26247515Kim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605Tamanna Ferdous, U.; Norhana Balia Yusof, Z. Algal Terpenoids: A Potential Source of Antioxidants for Cancer Therapy. In Terpenes and Terpenoids - Recent Advances; 2021. https://doi.org/10.5772/intechopen.94122Taglialatela-Scafati, O.; Craig, K. S.; Rebérioux, D.; Roberge, M.; Andersen, R. J. Briarane, Erythrane, and Aquariane Diterpenoids from the Caribbean Gorgonian Erythropodium Caribaeorum. European J. Org. Chem. 2003, No. 18, 3515–3523. https://doi.org/10.1002/ejoc.200300214.Mendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63Janarthanan, M.; Senthil Kumar, M. The Properties of Bioactive Substances Obtained from Seaweeds and Their Applications in Textile Industries; 2018; Vol. 48. https://doi.org/10.1177/1528083717692596Hahn, J. L.; Van Alstyne, K. L.; Gaydos, J. K.; Wallis, L. K.; West, J. E.; Hollenhorst, S. J.; Ylitalo, G. M.; Poppenga, R. H.; Bolton, J. L.; McBride, D. E.; Sofield, R. M. Chemical Contaminant Levels in Edible Seaweeds of the Salish Sea and Implications for Their Consumption; 2022; Vol. 17. https://doi.org/10.1371/journal.pone.0269269Dong, H.; Dong, S.; Hansen, P. E.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18 (8), 32–34. https://doi.org/10.3390/MD18080411López-Hortas, L.; Flórez-Fernández, N.; Torres, M. D.; Ferreira-Anta, T.; Casas, M. P.; Balboa, E. M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19 (10), 552. https://doi.org/10.3390/md19100552Pangestuti, R.; Shin, K. H.; Kim, S. K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19 (3). https://doi.org/10.3390/MD19030172Bedoux, G.; Hardouin, K.; Burlot, A. S.; Bourgougnon, N. Bioactive Components from Seaweeds: Cosmetic Applications and Future Development; Elsevier, 2014; Vol. 71. https://doi.org/10.1016/B978-0-12-408062-1.00012-3Grillo, G.; Tabasso, S.; Solarino, R.; Cravotto, G.; Toson, C.; Ghedini, E.; Menegazzo, F.; Signoretto, M. From Seaweeds to Cosmeceutics: A Multidisciplinar Approach. Sustain. 2021, 13 (23), 1–13. https://doi.org/10.3390/su132313443Jimenez-Carvelo, A. M.; Cuadros-Rodríguez, L. Data Mining/Machine Learning Methods in Foodomics. Curr. Opin. Food Sci. 2021, 37, 76–82. https://doi.org/10.1016/j.cofs.2020.09.008Kuddus, M. Chapter 1 - Introduction to Food Enzymes; Kuddus, M. B. T.-E. in F. B., Ed.; Academic Press, 2019; pp 1–18. https://doi.org/https://doi.org/10.1016/B978-0- 12-813280-7.00001-3Bisswanger, H. Enzyme Assays. Perspect. Sci. 2014, 1 (1–6), 41–55. https://doi.org/10.1016/j.pisc.2014.02.005Messerschmidt, A. Copper Metalloenzymes. In Comprehensive Natural Products II; Liu, H.-W. (Ben), Mander, L., Eds.; Elsevier: Oxford, 2010; pp 489–545. https://doi.org/10.1016/B978-008045382-8.00180-5Skoczyńska, A.; Budzisz, E.; Trznadel-grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. 2017, 97–103.Couteau, C.; Coiffard, L. Overview of Skin Whitening Agents: Drugs and Cosmetic Products. Cosmetics 2016, 3 (3), 27. https://doi.org/10.3390/cosmetics3030027.Chang, T.-S. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10 (6), 2440–2475. https://doi.org/10.3390/ijms10062440Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3 (4), 36. https://doi.org/10.3390/cosmetics3040036.Marmion, C. J.; Parker, J. P.; Nolan, K. B. Hydroxamic Acids: An Important Class of Metalloenzyme Inhibitors. In Comprehensive Inorganic Chemistry II; Elsevier, 2013; Vol. 3, pp 683–708. https://doi.org/10.1016/B978-0-08-097774-4.00328-4.Thomas, N. V.; Kim, S.-K. Fucoidans from Marine Algae as Potential Matrix Metalloproteinase Inhibitors. In Advances in Food and Nutrition Research; Elsevier Inc., 2014; Vol. 72, pp 177–193. https://doi.org/10.1016/B978-0-12-800269-8.00010- 5.Ghersetich, I.; Troiano, M.; De Giorgi, V.; Lotti, T. Receptors in Skin Ageing and Antiageing Agents. Dermatol. Clin. 2007, 25 (4), 655–662. https://doi.org/10.1016/j.det.2007.06.018Girish, K.; Kemparaju, K.; Nagaraju, S.; Vishwanath, B. Hyaluronidase Inhibitors: A Biological and Therapeutic Perspective. Curr. Med. Chem. 2009, 16 (18), 2261– 2288. https://doi.org/10.2174/092986709788453078Hetta, M. Hyaluronidase Inhibitors as Skin Rejuvenating Agents from Natural Source. Int. J. Phytocosmetics Nat. Ingredients 2020, 7, e4. https://doi.org/10.15171/ijpni.2020.04Bor, E.; Koca Caliskan, U.; Anlas, C.; Durbilmez, G. D.; Bakirel, T.; Ozdemir, N. Synthesis of Persea Americana Extract Based Hybrid Nanoflowers as a New Strategy to Enhance Hyaluronidase and Gelatinase Inhibitory Activity and the Evaluation of Their Toxicity Potential. Inorg. Nano-Metal Chem. 2022, 0 (0), 1–13. https://doi.org/10.1080/24701556.2022.2072342Bravo, K.; Alzate, F.; Osorio, E. Fruits of Selected Wild and Cultivated Andean Plants as Sources of Potential Compounds with Antioxidant and Anti-Aging Activity. Ind. Crop. Prod. 2016, 85, 341–352. https://doi.org/10.1016/j.indcrop.2015.12.074Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng Database Analysis and Experimental Studies to Promote Latin American Plant Biodiversity for Cosmetic Use. Ind. Crops Prod. 2020, 144 (May), 112007. https://doi.org/10.1016/j.indcrop.2019.112007Plazas, E. A.; Avila, M. C.; Delgado, W. A.; Patino, O. J.; Cuca, L. E. In Vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. Res. J. Med. Plants 2018, 12 (1), 9–18. https://doi.org/10.3923/rjmp.2018.9.18Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104Anuar, N.; Sultan, S.; Ashraf, K. An Overview of Antimicrobial and Antioxidant Bioautography Method Analysis : C Osmos Caudatus and Orthosiphon Stamineus. 2022, 5 (March), 1–12Manandhar, B.; Wagle, A.; Seong, S. H.; Paudel, P.; Kim, H. R.; Jung, H. A.; Choi, J. S. Phlorotannins with Potential Anti-Tyrosinase and Antioxidant Activity Isolated from the Marine Seaweed Ecklonia Stolonifera. Antioxidants 2019, 8 (8). https://doi.org/10.3390/antiox8080240Kim, M. M.; Ta, Q. Van; Mendis, E.; Rajapakse, N.; Jung, W. K.; Byun, H. G.; Jeon, Y. J.; Kim, S. K. Phlorotannins in Ecklonia Cava Extract Inhibit Matrix Metalloproteinase Activity. Life Sci. 2006, 79 (15), 1436–1443. https://doi.org/10.1016/j.lfs.2006.04.022Mateos, R.; Pérez-Correa, J. R.; Domínguez, H. Bioactive Properties of Marine Phenolics. Marine Drugs. 2020. https://doi.org/10.3390/md18100501.Bhatia, S.; Garg, A.; Sharma, K.; Kumar, S.; Sharma, A.; Purohit, A. P. Mycosporine and Mycosporine-like Amino Acids: A Paramount Tool against Ultra Violet Irradiation. Pharmacogn. Rev. 2011, 5 (10), 138–146. https://doi.org/10.4103/0973-7847.91107Lomartire, S.; Cotas, J.; Pacheco, D.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. Environmental Impact on Seaweed Phenolic Production and Activity: An Important Step for Compound Exploitation. Mar. Drugs 2021, 19 (5), 1–20. https://doi.org/10.3390/md19050245Ospina, M.; Castro-Vargas, H. I.; Parada-Alfonso, F. Antioxidant Capacity of Colombian Seaweeds: 1. Extracts Obtained from Gracilaria Mammillaris by Means of Supercritical Fluid Extraction. J. Supercrit. Fluids 2017, 128, 314–322. https://doi.org/10.1016/j.supflu.2017.02.023Budhiyanti, S. A.; Raharjo, S.; Marseno, D. W.; Lelana, I. Y. B. Antioxidant Activity of Brown Algae Sargassum Species Extract from the Coastline of Java Island. Am. J. Agric. Biol. Sci. 2012, 7 (3), 337–346. https://doi.org/10.3844/ajabssp.2012.337.346.Bomfeh, K. Report of the Expert Meeting on Food Safety for Seaweed – Current Status and Future Perspectives; Food and Agriculture Organization of the United Nations: Rome, 2021. https://doi.org/10.4060/cc0846en.Warneke, A. M.; Long, J. D. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness. PLoS One 2015, 10 (8), 1–14. https://doi.org/10.1371/journal.pone.0135395.Lozano Muñoz, I.; Díaz, N. F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2022, 62 (6), 1592–1607. https://doi.org/10.1080/10408398.2020.1844637Date, R.; Date, P. M.; Report, T.; January, P. C. Safety Assessment of Brown AlgaeDerived Ingredients as Used in Cosmetics.; Washington (DC), 2019Sanjeewa, K. K. A.; Kim, E. A.; Son, K. T.; Jeon, Y. J. Bioactive Properties and Potentials Cosmeceutical Applications of Phlorotannins Isolated from Brown Seaweeds: A Review. J. Photochem. Photobiol. B Biol. 2016, 162, 100–105. https://doi.org/10.1016/j.jphotobiol.2016.06.027.Kalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313Arunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036Laguna, D. Análisis de Extractos Promisiorios de Productos Naturales Marinos Por Redes Moleculares., Universidad Nacional de Colombia, 2021Piza, A. Búsqueda de Compuestos Activos Provenientes de Algas Con Potencial Aplicación En Cosmética y Accidente Ofídico, Universidad Nacional de Colombia, 2022.Kim, J. K.; Kang, S. M. Antioxidant and Whitening Effect of Dictyopteris Spp. Extract. J. Korean Soc. Cosmetol. 2021, 27 (3), 614–623. https://doi.org/10.52660/jksc.2021.27.3.614Mendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63Arguelles, E. D. L. R.; Sapin, A. B. Bioprospecting of Turbinaria Ornata (Fucales, Phaeophyceae) for Cosmetic Application: Antioxidant, Tyrosinase Inhibition and Antibacterial Activities. J. Int. Soc. Southeast Asian Agric. Sci. 2020, 26 (2), 30–41Rushdi, M. I.; Abdel-Rahman, I. A. M.; Saber, H.; Attia, E. Z.; Abdelraheem, W. M.; Madkour, H. A.; Hassan, H. M.; Elmaidomy, A. H.; Abdelmohsen, U. R. Pharmacological and Natural Products Diversity of the Brown Algae Genus: Sargassum. RSC Adv. 2020, 10 (42), 24951–24972. https://doi.org/10.1039/d0ra03576aGeneralić Mekinić, I.; Šimat, V.; Botić, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Čagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown Algae Dictyota Dichotoma and Padina Pavonica (Dictyotaceae). Foods 2021, 10 (6), 1187. https://doi.org/10.3390/foods10061187Ko, R. K.; Kang, M.-C.; Kim, S. S.; Oh, T. H.; Kim, G.-O.; Hyun, C.-G.; Hyun, J. W.; Lee, N. H. Anti-Melanogenesis Constituents from the Seaweed Dictyota Coriacea. Nat. Prod. Commun. 2013, 8 (4), 1934578X1300800. https://doi.org/10.1177/1934578X1300800401Farvin, K. H. S.; Surendraraj, A.; Al-Ghunaim, A.; Al-Yamani, F. Chemical Profile and Antioxidant Activities of 26 Selected Species of Seaweeds from Kuwait Coast. J. Appl. Phycol. 2019, 31 (4), 2653–2668. https://doi.org/10.1007/s10811-019-1739-8.Rincón Díaz M N, G. B. Diversidad de Macroalgas Marinas Del Caribe Colombiano. Inst. Investig. Mar. y Costeras - Invemar. Dataset/Checklist. 2020, 2.8. https://doi.org/10.15472/alecqe.Orfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356Orfanoudaki, M.; Hartmann, A.; Miladinovic, H.; Nguyen Ngoc, H.; Karsten, U.; Ganzera, M. Bostrychines A – F , Six Novel Mycosporine-Like Amino-Acids and a Novel Betaine from The. Mar. Drugs 2019, 17 (6), 356Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P. A.; Scaccabarozzi, D.; Calvieri, S.; Gismondi, A.; Taramelli, D.; Dell’Agli, M. HaCaT Cells as a Reliable in Vitro Differentiation Model to Dissect the Inflammatory/Repair Response of Human Keratinocytes. Mediators Inflamm. 2017, 2017. https://doi.org/10.1155/2017/7435621Vinken, M.; Rogiers, V. Protocols in In Vitro Hepatocyte Research; Vinken, M., Rogiers, V., Eds.; Methods in Molecular Biology; Springer New York: New York, NY, 2015; Vol. 1250. https://doi.org/10.1007/978-1-4939-2074-7Walter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484De Lara-Isassi, G.; Álvarez-Hernández, S.; Collado-Vides, L. Ichtyotoxic Activity of Extracts from Mexican Marine Macroalgae. J. Appl. Phycol. 2000, 12 (1), 45–52. https://doi.org/10.1023/A:1008103609841.Walter, L. O.; Maioral, M. F.; Silva, L. O.; Speer, D. B.; Campbell, S. C.; Gallimore, W.; Falkenberg, M. B.; Santos‐Silva, M. C. Involvement of the NF-ΚB and PI3K/Akt/MTOR Pathways in Cell Death Triggered by Stypoldione, an o-Quinone Isolated from the Brown Algae Stypopodium Zonale. Environ. Toxicol. 2022, 37 (6), 1297–1309. https://doi.org/10.1002/tox.23484.Gerwick, W. H.; Fenical, W. Ichthyotoxic and Cytotoxic Metabolites of the Tropical Brown Alga Stypopodium Zonale (Lamouroux) Papenfuss. J. Org. Chem. 1981, 46 (1), 22–27. https://doi.org/10.1021/jo00314a005Williams, R. S.; Brownlow, A.; Baillie, A.; Barber, J. L.; Barnett, J.; Davison, N. J.; Deaville, R.; ten Doeschate, M.; Penrose, R.; Perkins, M.; Williams, R.; Jepson, P. D.; Lyashevska, O.; Murphy, S. Evaluation of a Marine Mammal Status and Trends Contaminants Indicator for European Waters. Sci. Total Environ. 2023, 866, 161301. https://doi.org/10.1016/j.scitotenv.2022.161301.Mendoza-Gonzalez, A. C.; Mateo-Cid, L. E. El Género Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) En Las Costas de México The Genus Dictyopteris J . V . Lamouroux ( Dictyotales , Phaeophyceae ) in the Shores of Mexico. Hidrobiologica 2005, 15 (1), 43–63.Lyu, C.; Chen, T.; Qiang, B.; Liu, N.; Wang, H.; Zhang, L.; Liu, Z. CMNPD: A Comprehensive Marine Natural Products Database towards Facilitating Drug Discovery from the Ocean. Nucleic Acids Res. 2021, 49 (D1), D509–D515. https://doi.org/10.1093/nar/gkaa763.Zatelli, G. A.; Philippus, A. C.; Falkenberg, M. An Overview of Odoriferous Marine Seaweeds of the Dictyopteris Genus: Insights into Their Chemical Diversity, Biological Potential and Ecological Roles. Rev. Bras. Farmacogn. 2018, 28 (2), 243– 260. https://doi.org/10.1016/j.bjp.2018.01.005.Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andreis.” Biodiversidad Del Mar de Los Siete ColoresZuschin, M.; Hohenegger, J.; Steininger, F. Book Review of Littler DM. Littler MM (2000) Caribbean Reef Plants An Identification Guide to the Reef Plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Coral Reefs 2001, 20 (2), 106– 106. https://doi.org/10.1007/s003380100147.Xia, J.; Psychogios, N.; Young, N.; Wishart, D. S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37 (SUPPL. 2). https://doi.org/10.1093/nar/gkp356.Miyashita, K.; Mikami, N.; Hosokawa, M. Chemical and Nutritional Characteristics of Brown Seaweed Lipids: A Review. J. Funct. Foods 2013, 5 (4), 1507–1517. https://doi.org/10.1016/j.jff.2013.09.019.Rangel, M.; Santana, C.; Pinheiro, A.; Anjos, L.; Barth, T.; Júnior, O.; Fontes, W.; Castro, M. Marine Depsipeptides as Promising Pharmacotherapeutic Agents. Curr. Protein Pept. Sci. 2016, 18 (1), 72–91. https://doi.org/10.2174/1389203717666160526122130Zhang, H.; Zou, J.; Yan, X.; Chen, J.; Cao, X.; Wu, J.; Liu, Y.; Wang, T. MarineDerived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Mar. Drugs 2021, 19 (4). https://doi.org/10.3390/MD19040180Ford, L.; Theodoridou, K.; Sheldrake, G. N.; Walsh, P. J. A Critical Review of Analytical Methods Used for the Chemical Characterisation and Quantification of Phlorotannin Compounds in Brown Seaweeds. Phytochem. Anal. 2019, 30 (6), 587– 599. https://doi.org/10.1002/pca.2851.Pontrelli, S.; Sauer, U. Salt-Tolerant Metabolomics for Exometabolomic Measurements of Marine Bacterial Isolates. Anal. Chem. 2021, 93 (19), 7164–7171. https://doi.org/10.1021/acs.analchem.0c04795.Namikoshi, M.; Rinehart, K. Bioactive Compounds Produced by Cyanobacteria. J. Ind. Microbiol. Biotechnol. 1996, 17 (5–6), 373–384. https://doi.org/10.1007/BF01574768Stengel, D. B.; Connan, S.; Popper, Z. A. Algal Chemodiversity and Bioactivity: Sources of Natural Variability and Implications for Commercial Application. Biotechnol. Adv. 2011, 29 (5), 483–501. https://doi.org/10.1016/j.biotechadv.2011.05.016.Gisbert, M.; Sineiro, J.; Moreira, R. Influence of Oxidation and Dialysis of Phlorotannins on Bioactivity and Composition of Ultrasound-Assisted Extracts from Ascophyllum Nodosum. Mar. Drugs 2022, 20 (11), 706. https://doi.org/10.3390/md20110706W.; Saati, E. A. The Solvent Effectiveness on Extraction Process of Seaweed Pigment. MAKARA Technol. Ser. 2011, 15 (1), 5–8. https://doi.org/10.7454/mst.v15i1.850Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and Anti-Tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by CAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front. Pharmacol. 2017, 8 (MAR), 1–9. https://doi.org/10.3389/fphar.2017.00104.Aguilera-Sáez, L. M.; Abreu, A. C.; Camacho-Rodríguez, J.; González-López, C. V.; del Carmen Cerón-García, M.; Fernández, I. NMR Metabolomics as an Effective Tool To Unravel the Effect of Light Intensity and Temperature on the Composition of the Marine Microalgae Isochrysis Galbana. J. Agric. Food Chem. 2019, 67 (14), 3879–3889. https://doi.org/10.1021/acs.jafc.8b06840Cérantola, S.; Breton, F.; Gall, E. A.; Deslandes, E. Co-Occurrence and Antioxidant Activities of Fucol and Fucophlorethol Classes of Polymeric Phenols in Fucus Spiralis. Bot. Mar. 2006, 49 (4), 347–351. https://doi.org/10.1515/BOT.2006.042.Kazimierczuk, K.; Orekhov, V. Y. Accelerated NMR Spectroscopy by Using Compressed Sensing. Angew. Chemie - Int. Ed. 2011, 50 (24), 5556–5559. https://doi.org/10.1002/anie.201100370Zhou, X.; Yi, M.; Ding, L.; He, S.; Yan, X. Isolation and Purification of a Neuroprotective Phlorotannin from the Marine Algae Ecklonia Maxima by Size Exclusion and High-Speed Counter-Current Chromatography. Mar. Drugs 2019, 17 (4), 212. https://doi.org/10.3390/md17040212.Erpel, F.; Mateos, R.; Pérez-Jiménez, J.; Pérez-Correa, J. R. Phlorotannins: From Isolation and Structural Characterization, to the Evaluation of Their Antidiabetic and Anticancer Potential. Food Res. Int. 2020, 137 (June), 109589. https://doi.org/10.1016/j.foodres.2020.109589Isaza Martínez, J. H.; Torres Castañeda, H. G. Preparation and Chromatographic Analysis of Phlorotannins. J. Chromatogr. Sci. 2013, 51 (8), 825–838. https://doi.org/10.1093/chromsci/bmt045.Kalasariya, H. S.; Pereira, L. Dermo-Cosmetic Benefits of Marine MacroalgaeDerived Phenolic Compounds. Appl. Sci. 2022, 12 (23). https://doi.org/10.3390/app122311954.Gowda, S. G. B.; Yifan, C.; Gowda, D.; Tsuboi, Y.; Chiba, H.; Hui, S.-P. Analysis of Antioxidant Lipids in Five Species of Dietary Seaweeds by Liquid Chromatography/Mass Spectrometry. Antioxidants 2022, 11 (8), 1538. https://doi.org/10.3390/antiox11081538Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20 (12). https://doi.org/10.3390/md20120742Fernando, I. P. S.; Lee, W. W.; Ahn, G. Marine Algal Flavonoids and Phlorotannins; an Intriguing Frontier of Biofunctional Secondary Metabolites. Crit. Rev. Biotechnol. 2022, 42 (1), 23–45. https://doi.org/10.1080/07388551.2021.1922351Rushdi, M. I.; Abdel-Rahman, I. A. M.; Attia, E. Z.; Saber, H.; Saber, A. A.; Bringmann, G.; Abdelmohsen, U. R. The Biodiversity of the Genus Dictyota: Phytochemical and Pharmacological Natural Products Prospectives. Molecules 2022, 27 (3), 1–30. https://doi.org/10.3390/molecules27030672Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory Activity of Brown Algal Phlorotannins against Hyaluronidase. Int. J. Food Sci. Technol. 2002, 37 (6), 703–709. https://doi.org/10.1046/j.1365-2621.2002.00603.x.Gam, D.-H.; Park, J.; Hong, J.; Jeon, S.; Kim, J.-H.; Kim, J. Effects of Sargassum Thunbergii Extract on Skin Whitening and Anti-Wrinkling through Inhibition of TRP-1 and MMPs. Molecules 2021, 26 (23), 7381. https://doi.org/10.3390/molecules26237381Kalasariya, H. S.; Yadav, V. K.; Yadav, K. K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26 (17), 5313. https://doi.org/10.3390/molecules26175313Kim, H. K. J. H. M.-J. J.-M. K. S. J. S. Y.-S. The Skin-Whitening Effects of Padina Gymnospora and Its Active Compound, Fucosterol. J. Life Sci. 2020, 30 (7), 598– 605Arunkumar, K.; Raj, R.; Raja, R.; Carvalho, I. S. Brown Seaweeds as a Source of Anti-Hyaluronidase Compounds. South African J. Bot. 2021, 139, 470–477. https://doi.org/10.1016/j.sajb.2021.03.036EstudiantesORIGINAL1020796917.2022.pdf1020796917.2022.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf24920107https://repositorio.unal.edu.co/bitstream/unal/84624/2/1020796917.2022.pdf7c2bf2a5ce3f927639172c826e59b909MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84624/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1020796917.2022.pdf.jpg1020796917.2022.pdf.jpgGenerated Thumbnailimage/jpeg4811https://repositorio.unal.edu.co/bitstream/unal/84624/3/1020796917.2022.pdf.jpg7c60e32beb1c04b4d7e1f61874dd78afMD53unal/84624oai:repositorio.unal.edu.co:unal/846242024-08-12 01:55:46.068Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=