Relaciones entre los grupos de brauer de anillos conmutativos y ciertos anillos cocientes

Let S be a commutative R-algebra, R a commutative ring, then the application of R-algebras At → A ⨂RS induces a homomorphism Br(R) → Br(S) between the Brauer groups of R and S, respectively. It is known that the homomorphism Br(R) →Br(R/m) is an isomorphism when R is a complete local ring with maxim...

Full description

Autores:
Casal, Paulina
Tipo de recurso:
Article of journal
Fecha de publicación:
1983
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42784
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42784
http://bdigital.unal.edu.co/32881/
Palabra clave:
Commutative ring
homomorphism
Brauer groups
isomorphism
Jacobson radical / Conmutativa anillo
homomorfismo
grupos Brauer
isomorfismo
Jacobson radical
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let S be a commutative R-algebra, R a commutative ring, then the application of R-algebras At → A ⨂RS induces a homomorphism Br(R) → Br(S) between the Brauer groups of R and S, respectively. It is known that the homomorphism Br(R) →Br(R/m) is an isomorphism when R is a complete local ring with maximal ideal m. This article shows that Br(R) → Br(R/I) is an isomorphism whenever I is a nil-ideal and also when I is contained in the Jacobson radical of R and R is complete in the I-adic topology.