Relaciones entre los grupos de brauer de anillos conmutativos y ciertos anillos cocientes
Let S be a commutative R-algebra, R a commutative ring, then the application of R-algebras At → A ⨂RS induces a homomorphism Br(R) → Br(S) between the Brauer groups of R and S, respectively. It is known that the homomorphism Br(R) →Br(R/m) is an isomorphism when R is a complete local ring with maxim...
- Autores:
-
Casal, Paulina
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1983
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42784
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42784
http://bdigital.unal.edu.co/32881/
- Palabra clave:
- Commutative ring
homomorphism
Brauer groups
isomorphism
Jacobson radical / Conmutativa anillo
homomorfismo
grupos Brauer
isomorfismo
Jacobson radical
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let S be a commutative R-algebra, R a commutative ring, then the application of R-algebras At → A ⨂RS induces a homomorphism Br(R) → Br(S) between the Brauer groups of R and S, respectively. It is known that the homomorphism Br(R) →Br(R/m) is an isomorphism when R is a complete local ring with maximal ideal m. This article shows that Br(R) → Br(R/I) is an isomorphism whenever I is a nil-ideal and also when I is contained in the Jacobson radical of R and R is complete in the I-adic topology. |
---|