Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas

ilustraciones, fotografías, gráficas, mapas, tablas

Autores:
Jiménez López, Andrés Fernando
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79927
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79927
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas
Riego automático
Automatic irrigation
Agente inteligente
Agricultura de precisión
Inteligencia artificial
Modelo basado en agentes
Multi-agente
Riego de precisión
Agent based model
Artificial intelligence
Intelligent agent
Multi-agent
Precision agriculture
Precision irrigation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_1deb12667720cbe2f2f99ff93d4ab531
oai_identifier_str oai:repositorio.unal.edu.co:unal/79927
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
dc.title.translated.eng.fl_str_mv Intelligent agent-based model to support irrigation management in agricultural crops
title Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
spellingShingle Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
630 - Agricultura y tecnologías relacionadas
Riego automático
Automatic irrigation
Agente inteligente
Agricultura de precisión
Inteligencia artificial
Modelo basado en agentes
Multi-agente
Riego de precisión
Agent based model
Artificial intelligence
Intelligent agent
Multi-agent
Precision agriculture
Precision irrigation
title_short Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
title_full Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
title_fullStr Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
title_full_unstemmed Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
title_sort Modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas
dc.creator.fl_str_mv Jiménez López, Andrés Fernando
dc.contributor.advisor.none.fl_str_mv Cárdenas Herrera, Pedro Fabián
dc.contributor.author.none.fl_str_mv Jiménez López, Andrés Fernando
dc.contributor.financer.none.fl_str_mv Gobernación de Boyacá
dc.contributor.researchgroup.spa.fl_str_mv UNROBOT-Grupo de Plataformas Robóticas
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas
topic 630 - Agricultura y tecnologías relacionadas
Riego automático
Automatic irrigation
Agente inteligente
Agricultura de precisión
Inteligencia artificial
Modelo basado en agentes
Multi-agente
Riego de precisión
Agent based model
Artificial intelligence
Intelligent agent
Multi-agent
Precision agriculture
Precision irrigation
dc.subject.agrovoc.none.fl_str_mv Riego automático
Automatic irrigation
dc.subject.proposal.spa.fl_str_mv Agente inteligente
Agricultura de precisión
Inteligencia artificial
Modelo basado en agentes
Multi-agente
Riego de precisión
dc.subject.proposal.eng.fl_str_mv Agent based model
Artificial intelligence
Intelligent agent
Multi-agent
Precision agriculture
Precision irrigation
description ilustraciones, fotografías, gráficas, mapas, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-12T15:29:51Z
dc.date.available.none.fl_str_mv 2021-08-12T15:29:51Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79927
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79927
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdullah, S.S., & Malek, M.A. 2016. Empirical penman-monteith equation and artificial intelligence techniques in predicting reference evapotranspiration: a review. International journal of water, 10 (1), 55-66.
Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Abd Rahman, M. K. I., Otuoze, A. O., Onotu, P., & Ramli, M. S. A. 2020. A review on monitoring and advanced control strategies for precision irrigation. Computers and electronics in agriculture, 173, 105441.
Adeyemi, O., Grove, I., Peets, S., & Norton, T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 9(3), 353.
Adeyemi, O., Grove, I., Peets, S., Domun, Y., & Norton, T. 2018. Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors, 18(10), 3408.
Adla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. 2020. Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors, 20(2), 363.
Adnan, S., & Khan, A. H. 2009. Effective rainfall for irrigated agriculture plains of pakistan. Pakistan journal of meteorology, 6(11), 61-72.
Agbemabiese, Y. K. 2015. Modelling biomass and bulb yield of onion (allium cepa) under different irrigation regimes using the aquacrop model. Ph.D. thesis.
Agbemabiese, Y.K., Shaibu, A.G., & Gbedzi, V.D. 2017. Validation of aquacrop for different irrigation regimes of onion (allium cepa) in bontanga irrigation scheme. International journal of irrigation and agricultural development (ijirad), 1(1), 1-12.
Akhbari, M., & Grigg, N. S. 2013. A framework for an agent-based model to manage water resources conflicts. Water resources management, 27(11), 4039-4052.
Al-Amin, S., Berglund, E.Z., & Mahinthakumar, K. 2015. Coupling agent-based and groundwater modeling to explore demand management strategies for shared resources. Pages 141- 150. World environmental and water resources congress 2016.
Al-Kaisi, M. M., Broner, I., & Andales, A.A. 2009. Crop water use and growth stages. Fact sheet (Colorado state university. extension). crop series; no. 4.715.
Alameen, A. A., Al-Gaadi, K. A., & Tola, E. 2019. Development and performance evaluation of a control system for variable rate granular fertilizer application. Computers and electronics in agriculture, 160, 31-39.
Alexakis, D. D., Mexis, F.D., Vozinaki, A.E., Daliakopoulos, I.N., & Tsanis, I.K. 2017. Soil moisture content estimation based on sentinel-1 and auxiliary earth observation products. A hydrological approach. Sensors, 17(6), 1455.
Ali, M.H., Abustan, I., & Puteh, A.B. 2013. Irrigation management strategies for winter wheat using aquacrop model. Journal of natural resources and development, 3(10), 106-113.
Ali, O., Germain, B., Van Belle, J., Valckenaers, P., Van Brussel, H., & Van Noten, J. 2010. Multiagent coordination and control system for multi-vehicle agricultural operations. Pages 1621-1622 of: Proceedings of the 9th international conference on autonomous agents and multiagent systems: volume 1-volume 1. International Foundation for Autonomous Agents and Multiagent Systems.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M.and others. 1998. Crop evapotranspiration guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, rome, 300(9), D05109.
Allen, R.G. 2006. Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. Vol. 56. Food & Agriculture Org.
Alvino, A., & Marino, S. 2017. Remote sensing for irrigation of horticultural crops. Horticulturae, 3(2), 40.
An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. 2005. Exploring complexity in a human-environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Annals of the association of american geographers, 95(1), 54-79.
Andales, A. A., Chávez, J. L., Bauder, T. A., & Broner, I. 2011. Irrigation scheduling: the water balance approach. Service in action; no. 4.707.
Aretouyap, Z., Nouck, N.P., Nouayou, R., Melii, J.L., Kemgang Ghomsi, F.E., Piepi Toko, A.D., & Asfahani, J. 2015. Influence of the variogram model on an interpolative survey using kriging technique. J earth sci clim change, 6(316), 2.
Atta, R., Boutraa, T., & Akhkha, A. 2011. Smart irrigation system for wheat in saudi arabia using wireless sensors network technology. International journal of water resources and arid environments, 1(6), 478-482.
Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Wal, T. V., Soto, I., Gómez-Barbero, M., Barnes, A., & Eory, V. 2017. Precision agriculture technologies positively contributing to emissions mitigation, farm productivity and economics. Sustainability, 9(8), 1339.
Barradas, J.M., Matula, S., & Dolezal, F. 2012. A decision support system-fertigation simulator (dss-fs) for design and optimization of sprinkler and drip irrigation systems. Computers and electronics in agriculture, 86, 111-119.
Barreteau, O., Bousquet, F., Millier, C., & Weber, J. 2004. Suitability of multi-agent simulations to study irrigated system viability: application to case studies in the senegal river valley. Agricultural systems, 80(3), 255-275.
Belaqziz, S., et al. 2011a. An agent-based modeling approach for decision-making in gravity irrigation systems. Pages 673{680 of: 2011 international conference for internet technology and secured transactions. IEEE.
Belaqziz, S., et al. 2011b. An agent-based modeling approach for decision-making in gravity irrigation systems. Pages 673{680 of: Internet technology and secured transactions (icitst), 2011 international conference for. IEEE.
Belaqziz, S., Fazziki, A.E., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S. E., Adnani, M. E., & Jarlan, L. 2013a. An agent based modeling for the gravity irrigation management. Procedia environmental sciences, 19, 804-813. Belaqziz, S., El Fazziki, A., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S., El Adnani, M., & Jarlan, L. 2013b. An agent based modeling for the gravity irrigation management. Procedia environmental sciences, 19, 804-813.
Belaqziz, S., Khabba, S., Er-Raki, S., Jarlan, L., Le Page, M., Kharrou, M.H., El Adnani, M., & Chehbouni, A. 2013c. A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agricultural water management, 119, 1-9.
Belaqziz, S., Mangiarotti, S., Le Page, M., Khabba, S., Er-Raki, S., Agouti, T., Drapeau, L., Kharrou, M.H., El Adnani, M., & Jarlan, L. 2014. Irrigation scheduling of a classical gravity network based on the covariance matrix adaptation evolutionary strategy algorithm. Computers and electronics in agriculture, 102, 64-72.
Belaqziz, S., Aparicio, C.F., Le Page, M., Kharrou, M.H., Khabba, S., El-Fazziki, A., Hennigan, P., & Jarlan, L. 2016. Simulating negotiations over limited water resources: A multi-agent system approach for irrigation systems. Conductual, 4(2).
Belokonov, I., Skobelev, P., Simonova, E., Travin, V., & Zhilyaev, A. 2015. Multi-agent planning of the network between nanosatellites and ground stations. Procedia engineering, 104,118-130.
Benayache, Z., Besancon, G., & Georges, D. 2008. A new nonlinear control methodology for irrigation canals based on a delayed input model. Ifac proceedings volumes, 41(2), 2544-2549.
Bendre, M.R., Thool, R.C., & Thool, V.R. 2015. Big data in precision agriculture: Weather forecasting for future farming. Pages 744{750 of: Proceedings of the next generation computing technologies (ngct), 2015 1st international conference on. IEEE.
Bergstra, J., & Bengio, Y. 2012. Random search for hyper-parameter optimization. The journal of machine learning research, 13(1), 281-305.
Beysolow II, T. 2017. Introduction to deep learning using r: A step-by-step guide to learning and implementing deep learning models using r. Apress.
Bezerra, B.G., Bezerra, J.R., Silva, B.B., & Santos, C.A. 2015. Surface energy exchange and evapotranspiration from cotton crop under full irrigation conditions in the rio grande do norte state, brazilian semi-arid. Bragantia, 74(1), 120-128.
Bhatt, R., Arora, S., & Chew, C. C. 2016. Improving irrigation water productivity using tensiometers. Journal of soil and water conservation, 15(2), 120-124.
Bondesan, L., Ortiz, B.V., Morata, G.T., Damianidis, D., Jimenez, A.F., Vellidis, G., & Morari, F. 2019. Evaluating and improving soil sensor-based variable irrigation scheduling on farmers fields in Alabama. Pages 713-720 of: Precision agriculture19. Wageningen Academic Publishers.
Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. 2018. A nonlinear autoregressive exogenous (narx) neural network model for the prediction of the daily directsolar radiation. Energies, 11(3), 620.
Bratman, M., et al. 1987. Intention, plans, and practical reason. Vol. 10. Harvard University Press Cambridge, MA.
Broner, I. 2005. Irrigation scheduling: The water-balance approach.
Byrski, A., Drezewski, R., Siwik, L., & Kisiel-Dorohinicki, M. 2015. Evolutionary multi-agent systems. The knowledge engineering review, 30(2), 171-186.
Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. 2016. Wind speed prediction using a univariate arima model and a multivariate narx model. Energies, 9(2), 109.
Cai, J., & Xiong, H. 2017. An agent-based simulation of cooperation in the use of irrigation systems. Complex adaptive systems modeling, 5(1), 9.
Calegari, R., Ciatto, G., Denti, E., & Omicini, A. 2020. Logic-based technologies for intelligent systems: State of the art and perspectives. Information, 11(3), 167.
Candea, C., Hu, H., Iocchi, L., Nardi, D., & Piaggio, M. 2001. Coordination in multi-agent robocup teams. Robotics and autonomous systems, 36(2-3), 67-86.
Cárdenas-Lailhacar, B., & Dukes, M. D. 2010. Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural water management, 97(5), 666-672.
Carrasco-Benavides, M., Mora, M., Maldonado, G., Olguín-Cáceres, J., von Bennewitz, E., Ortega-Faras, S., Gajardo, J., & Fuentes, S. 2016. Assessment of an automated digital method to estimate leaf area index (lai) in cherry trees. New zealand journal of crop and horticultural science, 44(4), 247-261.
Castelletti, A., & Soncini-Sessa, R. 2007. Bayesian networks and participatory modelling in water resource management. Environmental modelling & software, 22(8), 1075-1088.
Castro, H., Cely, G., & Vásquez, N. 2009. Criterios técnicos para un manejo eficiente del riego en cebolla de bulbo: Distrito de riego del alto Chicamocha-Boyacá.
Castro Franco, M., García Ramírez, D. Y., & Jiménez López, A. F. 2017. Comparación de técnicas de interpolación espacial de propiedades del suelo en el piedemonte llanero colombiano. Tecnura, 21(53), 78-95.
Caudill, M. 1989. Neural networks primer, part viii. Ai expert, 4(8), 61-67.
Cely, G. 2010. Determinación de parámetros de riego para el cultivo cebolla de bulbo en el distrito de riego del alto chicamocha. M.Phil. thesis, Universidad Nacional de Colombia, Bogotá.
Cerón, G. 2005. Economía aplicada a la valoración de impactos ambientales. Universidad de Caldas.
Cervenka, R., Trencansky, I., & Calisti, M. 2005. Modeling social aspects of multi-agent systems: The aml approach. Pages 28{39 of: International workshop on agent-oriented software engineering. Springer.
Chandler, D. G., Seyfried, M., Murdock, M., & McNamara, J.P. 2004. Field calibration of water content reflectometers. Soil science society of america journal, 68(5), 1501{1507.
Chen, Z., & Liu, G. 2010. Application of artificial intelligence technology in water resources planning of river basin. Pages 322{325 of: Information science and management engineering (isme), 2010 international conference of, vol. 1. IEEE.
Chitu, E., & Paltineanu, C. 2019. Relationships between mds, soil, and weather variables for topaz apple tree cultivated in coarse-textured soils. Journal of irrigation and drainage engineering, 145(2), 04018039.
Chollet, F., others. 2015. Keras.
Clemmens, A.J. 2006. Improving irrigated agriculture performance through an understanding of the water delivery process. Irrigation and drainage: The journal of the international commission on irrigation and drainage, 55(3), 223-234.
Clulow, A.D., Everson, C.S., Mengistu, M.G., Price, J.S., Nickless, A., & Jewitt, G.P.W. 2015. Extending periodic eddy covariance latent heat fluxes through tree sap flow measurements to estimate long-term total evaporation in a peat swamp forest. Hydrology and earth system sciences, 19(5), 2513.
Coelho, V.N., Cohen, M., Coelho, I., Liu, N., & Guimaraes, F. G. 2017. Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Applied energy, 187, 820-832.
Cong, D., Nguyen H. Ascough J. Maier H. Dandy G. Andales A. 2017. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. environ. modell. software.
Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Celleri, R. 2015. Evaluation of the penman-monteith (fao 56 pm) method for calculating reference evapotranspiration using limited data. Mountain research and development, 35(3), 230-239.
Daneshfar, F., & Bevrani, H. 2009. Multi-agent systems in control engineering: a survey. Journal of control science and engineering, 2009.
Daniyan, Lanre, Nwachukwu, Ezechi, Daniyan, Ilesanmi, & Bonaventure, Okere. 2019. Development and optimization of an automated irrigation system. Journal of automation, mobile robotics and intelligent systems, 37-45.
De la Cruz, Y., Martínez, C., & Pantoja, A. 2015a. Drip irrigation system based on distributed control|part 1: Design and model. Pages 1{6 of: 2015 ieee 2nd colombian conference on automatic control (ccac). IEEE.
De la Cruz, Y., Martinez, C., & Pantoja, A. 2015b. Drip irrigation system based on distributed control|part 2: Implementation. Pages 7{12 of: 2015 ieee 2nd colombian conference on automatic control (ccac). IEEE.
De Lorenzi, F., Aleri, S.M., Monaco, E., Bonfante, A., Basile, A., Patane, C., & Menenti, M. 2017. Adaptability to future climate of irrigated crops: The interplay of water management and cultivars responses. a case study on tomato. Biosystems engineering, 157, 45-62.
Dessalegne, T., & Nicklow, J.W. 2012. Artificial life algorithm for management of multi-reservoir river systems. Water resources management, 26(5), 1125-1141.
Divya, P., Sonkiya, S., Das, P., Manjusha, V.V., & Ramesh, M. V. 2014. Cawis: Context aware wireless irrigation system. Pages 310{315 of: 2014 international conference on computer, communications, and control technology (i4ct). IEEE.
Djaman, K., ONeill, M., Owen, C. K., Smeal, D., Koudahe, K., West, M., Allen, S., Lombard, K., & Irmak, S. 2018. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water, 10(4), 405.
Durner, W. 1992. Predicting the unsaturated hydraulic conductivity using multi-porosity water retention curves. Indirect methods for estimating the hydraulic properties of unsaturated soils, 185-202.
Ebrahimi-Mollabashi, E., Huth, N. I., Holzwoth, D. P., Ordóñez, R. A., Hateld, J. L., Huber, I., Castellano, M. J., & Archontoulis, S. V. 2019. Enhancing apsim to simulate excessive moisture effects on root growth. Field crops research, 236, 58-67.
Edwards, M., Ferrand, N., Goreaud, F., & Huet, S. 2005. The relevance of aggregating a water consumption model cannot be disconnected from the choice of information available on the resource. Simulation modelling practice and theory, 13(4), 287-307.
Entekhabi, D., Njoku, E. G., ONeill, P.E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., et al. 2010. The soil moisture active passive (smap) mission. Proceedings of the ieee, 98(5), 704-716.
Esmaeili, A., Mozayani, N., Motlagh, M. R. J., & Matson, E.T. 2017. A socially-based distributed self-organizing algorithm for holonic multi-agent systems: Case study in a task environment. Cognitive systems research, 43, 21-44.
Evans, R.G., LaRue, J., Stone, K. C., & King, B. A. 2013. Adoption of site-specific variable rate sprinkler irrigation systems. Irrigation science, 31(4), 871-887.
Evett, S. R., Peters, R.T., & Howell, T.A. 2006. Controlling water use efficiency with irrigation automation: Cases from drip and center pivot irrigation of corn and soybean. Pages 57-66 of: Proc. 28th annual southern conservation systems conf.
FAO. 2020. Food and agriculture organization of the united nations. onion. urlhttp://www.fao.org/land-water/databases-and-software/crop-information/onion/en.
Fard, F. H., & Far, B.H. 2014. On the usage of network visualization for multiagent system verification. Pages 201{228 of: Online social media analysis and visualization. Springer.
Farol., S., M uller, J., & Bonte, B. 2010. An iterative construction of multi-agent models to represent water supply and demand dynamics at the catchment level. Environmental modelling & software, 25(10), 1130-1148.
Farooq, M. S., Riaz, S., Abid, A., Umer, T., & Zikria, Y. B. 2020. Role of iot technology in agriculture: A systematic literature review. Electronics, 9(2), 319.
Fedra, K. 1994. Models, gis, and expert systems: integrated water resources models. Pages 297-308 of: Applications of geographic information systems in hydrology and water resources management. proc. international conference, Vienna, 1993. IAHS Press.
Feng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. 2017a. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural water management, 193, 163-173.
Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. 2017b. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and electronics in agriculture, 136, 71-78.
Fernández-Pacheco, D.G., Escarabajal-Henarejos, D., Ruiz-Canales, A., Conesa, J., & Molina Martínez, J.M. 2014. A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of spain. Biosystems engineering, 117, 23-34.
Flint, A.L., Campbell, G.S., Ellett, K.M., & Calissendor, C. 2002. Calibration and temperature correction of heat dissipation matric potential sensors. Soil science society of america journal, 66(5), 1439-1445.
Foster, T., Brozovic, N., Butler, A.P., Neale, C.M.U., Raes, D., Steduto, P., Fereres, E., & Hsiao, T. C. 2017. Aquacrop-os: An open source version of faos crop water productivity model. Agricultural water management, 181, 18-22.
Fougeres, A., & Ostrosi, E. 2018. Intelligent agents for feature modelling in computer aided design. Journal of computational design and engineering, 5(1), 19-40.
Gao, L., Zhang, M., & Chen, G. 2013. An intelligent irrigation system based on wireless sensor network and fuzzy control. Jnw, 8(5), 1080-1087.
García, M., Raes, D., & Jacobsen, S.E. 2003. Evapotranspiration analysis and irrigation requirements of quinoa (chenopodium quinoa) in the bolivian highlands. Agricultural water management, 60(2), 119-134.
Garrett, Hardin. 1968. The tragedy of the commons. Science, 162(3859), 1243-1248.
George, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. 1998. The belief-desire intention model of agency. Pages 1{10 of: International workshop on agent theories, architectures, and languages. Springer.
Gerhards, H., Wollschlager, Ute., Yu, Q., Schiwek, P., Pan, X., & Roth, K. 2008. Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics, 73(4), J15-J23.
Ghorbani, M.A., Shamshirband, S., Haghi, D.Z., Azani, A., Bonakdari, H., & Ebtehaj, I. 2017. Application of algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and tillage research, 172, 32-38.
Giusti, E., & Marsili-Libelli, S. 2015. A fuzzy decision support system for irrigation and water conservation in agriculture. Environmental modelling & software, 63, 73-86.
Goap, Amarendra, Sharma, Deepak, Shukla, A Krishna, & Krishna, C Rama. 2018. An iot based smart irrigation management system using machine learning and open source technologies. Computers and electronics in agriculture, 155, 41-49.
Gomes, J., Mariano, P., & Christensen, A. L. 2015. Cooperative coevolution of morphologically heterogeneous robots. Pages 312-319 of: Artificial life conference proceedings 13. MIT Press.
González, E., Pérez, A., Rodríguez, C., Manrique, M., Arévalo, Y., & Otálora, C. 2012. Robótica cooperativa experiencias de sistemas multiagentes sma. Editorial pontificia universidad javeriana, universidad de los andes, colciencias, maloka, Bogotá DC, Colombia.
González, J., & Yu, W. 2018. Non-linear system modeling using lstm neural networks. Ifac papersonline, 51(13), 485-489.
González-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P.A., Alarcón, J.J., Intrigliolo, D.S., & Fereres, E. 2013. Using high resolution uav thermal imagery to assess the variability in the water status of fruit tree species within a commercial orchard. Precision agriculture, 14(6), 660{678.
González-Dugo, V., Goldhamer, D., Zarco-Tejada, P.J., & Fereres, E. 2015. Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation science, 33(1), 43-52.
González-Esquiva, J.M., Oates, M.J., García-Mateos, G., Moros-Valle, B., Molina-Martínez, J.M., & Ruiz-Canales, A. 2017a. Development of a visual monitoring system for water balance estimation of horticultural crops using low cost cameras. Computers and electronics in agriculture, 141, 15-26.
González-Esquiva, J.M., García-Mateos, G., Escarabajal-Henarejos, D., Hernández-Hernández, J.L., Ruiz-Canales, A., & Molina-Martínez, J.M. 2017b. A new model for water balance estimation on lettuce crops using effective diameter obtained with image analysis. Agricultural water management, 183, 116-122.
González-Esquiva, J.M., García-Mateos, G., Hernández-Hernández, J.L., Ruiz-Canales, A., Escarabajal-Henerajos, D., & Molina-Martínez, J.M. 2017c. Web application for analysis of digital photography in the estimation of irrigation requirements for lettuce crops. Agricultural water management, 183, 136-145.
Goodfellow, I., Bengio, Y., & Courville, A. 2016. Deep learning. MIT press. Grafton, R.Q., Williams, J., Perry, C.J., Molle, F., Ringler, C., Steduto, P., Udall, B., Wheeler, S.A., Wang, Y., Garrick, D., et al. 2018. The paradox of irrigation effciency. Science, 361(6404), 748-750. Grashey-Jansen, S. 2014a. Optimizing irrigation efficiency through the consideration of soil hydrological properties examples and simulation approaches. Erdkunde, 33-48.
Grashey-Jansen, S. 2014b. Optimizing irrigation efficiency through the consideration of soil hydrological properties examples and simulation approaches. Erdkunde, 33-8.
Grovermann, C., Schreinemachers, P., Riwthong, S., & Berger, T. 2017. Policies to reduce pesticide use and avoid income trade-os: An agent-based model applied to thai agriculture. Ecological economics, 132, 91-103.
Gurgen, A., & Yldz, S. 2019. Artificial neural network approach for protection of the color of dried golden and pink oyster mushrooms with pretreatments. Color research & application, 44(6), 1006-1016.
Guyennon, N., Romano, E., & Portoghese, I. 2016. Long-term climate sensitivity of an integrated water supply system: The role of irrigation. Science of the total environment, 565, 68-81.
Hamouda, Y.E.M. 2017. Smart irrigation decision support based on fuzzy logic using wireless sensor network. Pages 109-113 of: Promising electronic technologies (icpet), 2017 international conference on. IEEE.
Han, J., Wang, C., & Yi, G. 2013. Cooperative control of uav based on multi-agent system. Pages 96{101 of: Industrial electronics and applications (iciea), 2013 8th ieee conference on. IEEE.
Harmouch, F. Z., Krami, N., Benhaddou, D., Hmina, N., Zayer, E., & Margoum, E. 2016. Survey of multiagents systems application in microgrids. Pages 270{275 of: Electrical and information technologies (iceit), 2016 international conference on. IEEE.
Harris, N. R., & Stonard, A. 2018. A printed capacitance sensor for soil moisture measurement. Page 705 of: Multidisciplinary digital publishing institute proceedings, vol. 2.
Hashem, A.and Engel, B., Bralts, V., Radwan, S., & Rashad, M. 2016. Performance evaluation and development of daily reference evapotranspiration model. Irrigation & drainage systems engineering, 5, 1-6.
Hernández, G., Jiménez, A. F., Ortiz, B. V., Lamadrid, A. P., & Cárdenas, P. F. 2018. Decision support system for precision irrigation using interactive maps and multi-agent concepts. Pages 21-41 of: International conference of ict for adapting agriculture to climate change. Springer.
Holloway-Phillips, M.M., Peng, W., Smith, D., & Terhorst, A. 2008. Adaptive scheduling in deficit irrigation a model-data fusion approach. Wit transactions on ecology and the environment, 112, 187-200.
Howden, S.M., Soussana, J., Tubiello, F.N., Chhetri, N., Dunlop, M., & Meinke, H. 2007. Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50), 19691-19696.
Howell, T.A. 2003. Irrigation efficiency. Encyclopedia of water science. marcel dekker, New York, 467-472. Ihuoma, S. O., & Madramootoo, C. A. 2017. Recent advances in crop water stress detection. Computers and electronics in agriculture, 141, 267-275.
Isern, D., Abello, S., & Moreno, A. 2012a. Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and electronics in agriculture, 87, 1-13.
Isern, D., Abello, S., & Moreno, A. 2012b. Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and electronics in agriculture, 87, 1-13.
Jackson, R.D., Idso, S.B., Reginato, R.J., & Pinter, P.J. 1981. Canopy temperature as a crop water stress indicator. Water resources research, 17(4), 1133-1138.
Jaiswal, Supriya, & Ballal, Makarand S. 2020. Fuzzy inference based irrigation controller for agricultural demand side management. Computers and electronics in agriculture, 175, 105537.
Janssen, M.A., & Baggio, J.A. 2016. Using agent-based models to compare behavioral theories on experimental data: Application for irrigation games. Journal of environmental psychology, 46, 106-115.
Jarchow, C.J., Nagler, P.L., Glenn, E.P., Ramírez-Hernández, J., & Rodríguez-Burgueño, J. E. 2017. Evapotranspiration by remote sensing: An analysis of the colorado river delta before and after the minute pulse to mexico. Ecological engineering, 106, 725-732.
Jaxa-Rozen, M., Kwakkel, J. H., & Bloemendal, M. 2019. A coupled simulation architecture for agent-based/geohydrological modelling with netlogo and modflow. Environmental modelling & software, 115, 19-37.
Jensen, M. E. 2007. Beyond irrigation efficiency. Irrigation science, 25(3), 233-245. Jiang, Yao, Xiong, Lvyang, Yao, Fuqi, & Xu, Zongxue. 2019. Optimizing regional irrigation water allocation for multi-stage pumping-water irrigation system based on multi-level optimization coordination model. Journal of hydrology x, 4, 100038.
Jiang-Ping, H., Zhi-Xin, L., Jin-Huan, W., Lin, W., & Xiao-Ming, H. 2013. Estimation, intervention and interaction of multi-agent systems. Acta automatica sinica, 39(11), 1796-1804.
Jiménez, A.F., Ravelo, D., & Gómez, J. 2010. Acquisition, storage and analysis system of phenological information for the management of pests and diseases of peach trees using precision agriculture technologies. Revista tecnura, 14, 41-51.
Jiménez, A.F., Herrera, E. F., Ortiz, B. V., Ruiz, A., & Cardenas, P.F. 2018. Inference system for irrigation scheduling with an intelligent agent. Pages 1-20 of: International conference of ict for adapting agriculture to climate change. Springer.
Jiménez, A.F., Ortiz, B.V., Bondesan, L., Morata, G., & Damianidis, D. 2019. Artificial neural networks for irrigation management: a case study from southern Alabama, USA. Pages 918-929 of: Precision agriculture19. Wageningen Academic Publishers.
Jiménez, A.F., Cárdenas, P.F., Jiménez, F., Canales, A., & López, A. 2020a. A cyber-physical intelligent agent for irrigation scheduling in horticultural crops. Computers and electronics in agriculture, 178, 105777.
Jiménez, A.F., Ortiz, B. V., Bondesan, L., Morata, G., & Damianidis, D. 2020b. Evaluation of two recurrent neural network methods for prediction of irrigation rate and timing. Transactions of the ASABE, 63(5), 1327-1348.
Jiménez, A.F., Ortiz, B. V., Bondesan, L., Morata, G., & Damianidis, D. 2020c. Long short-term memory neural network for irrigation management: a case study from southern Alabama, USA. Precision agriculture, 1-18.
Jiménez, A.F., Cárdenas, P.F., Canales, A., Jiménez, F., & Portacio, A. 2020d. A survey on intelligent agents and multi-agents for irrigation scheduling. Computers and electronics in agriculture, 105474.
Jiménez-Carvajal, C., Ruiz-Penalver, L., Vera-Repullo, J.A., Jiménez-Buendía, M., Antolino - Merino, A., & Molina-Martínez, J.M. 2017. Weighing lysimetric system for the determination of the water balance during irrigation in potted plants. Agricultural water management, 183, 78-85.
Jones, H.G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of experimental botany, 55(407), 2427-2436.
Jones, H.G. 2006. Irrigation scheduling comparison of soil, plant and atmosphere monitoring approaches. Pages 391{403 of: V international symposium on irrigation of horticultural crops 792.
Josh, W., Jason, S., twmeggs, Alexandre, M. S., Aishwarya, U., Guilherme, C., Fernando, B., Badger, The Gitter, & Himanshu, M. 2017 (Oct.). Jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3.1.
Kajitani, Y., Hipel, K.W., & McLeod, A. I. 2005. Forecasting nonlinear time series with feedforward neural networks: a case study of canadian lynx data. Journal of forecasting, 24(2), 105-117.
Kaluzny, S. P., Vega, S. C., Cardoso, T. P., & Shelly, A. A. 1998. Analyzing geostatistical data. Pages 67-109 of: S+ spatialstats. Springer.
Kanda, Edwin Kimutai, Senzanje, Aidan, & Mabhaudhi, Tafadzwanashe. 2020. Calibration and validation of the aquacrop model for full and deficit irrigated cowpea (vigna unguiculata (l.) walp). Physics and chemistry of the earth, parts a/b/c, 102941.
Karasekreter, N., Bascifti, F., & Fidan, U. 2013. A new suggestion for an irrigation schedule with an artificial neural network. Journal of experimental & theoretical artificial intelligence, 25(1), 93-104.
Karlik, B., & Olgac, A. V. 2011. Performance analysis of various activation functions in generalized MLP architectures of neural networks. International journal of artificial intelligence and expert systems, 1(4), 111-122.
Karthikeyan, L., Pan, M.and Wanders, N., Kumar, D. N., & Wood, E.F. 2017. Four decades of microwave satellite soil moisture observations: Part 1. a review of retrieval algorithms. Advances in water resources, 109, 106-120.
Karuku, G., & Mbindah, B. 2020. Validation of aquacrop model for simulation of rainfed bulb onion (allium cepa l.) yields in west ugenya sub-county, kenya. Tropical and subtropical agroecosystems, 23(1).
Kaur, K. 2016. Machine learning: Applications in indian agriculture. International journal of advanced research in computer and communication engineering, 5(4).
Keyhani, A. 2001. Development of mini-gypsum blocks for soil moisture measurement and their calibration to compensate for temperature.
Khosla, R., Westfall, D.G., Reich, R.M., Mahal, J.S., & Ganglo, W.J. 2010. Spatial variation and site-specific management zones. Pages 195-219 of: Geostatistical applications for precision agriculture. Springer.
King, B.A., & Shellie, K.C. 2016. Evaluation of neural network modeling to predict non-waterstressed leaf temperature in wine grape for calculation of crop water stress index. Agricultural water management, 167, 38-52.
Koch, P., Wujek, B., Golovidov, O., & Gardner, S. 2017. Automated hyperparameter tuning for effective machine learning. Pages 1{23 of: Proceedings of the sas global forum 2017 conference. SAS Institute Inc. Cary, NC.
Koestler, A. 1968. The ghost in the machine.
Krishnan, R Santhana, Julie, E Golden, Robinson, Y Harold, Raja, S, Kumar, Raghvendra, Thong, Pham Huy, et al. 2020. Fuzzy logic based smart irrigation system using internet of things. Journal of cleaner production, 252, 119902.
Krupakar, H., Jayakumar, A., et al. 2016. A review of intelligent practices for irrigation prediction. arxiv preprint arxiv:1612.02893.
Kubicek, P., Kozel, J., Stampach, R., & Lukas, V. 2013. Prototyping the visualization of geographic and sensor data for agriculture. Computers and electronics in agriculture, 97, 83-91.
Kuhn, M., Johnson, K., et al. 2013. Applied predictive modeling. Vol. 26. Springer.
Kullberg, E.G., DeJonge, K.C., & Chávez, J. 2017. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural water management, 179, 64-73.
Kumar, B. D., Srivastava, P., Agrawal, R., & Tiwari, V. 2017. Microcontroller based automatic plant irrigation system. International research journal of engineering and technology, 4(5), 1436-1439.
Kumar, R., Shankar, V., & Jat, M.K. 2013. Soil moisture dynamics modeling considering multilayer root zone. Water science and technology, 67(8), 1778-1785. Kumar Manaswi, N. 2018. Deep learning with applications using python: chatbots and face, object, and speech recognition with tensor ow and keras.
Kushwaha, D., Taram M. Taram A. 2015. A framework for technologically advanced smart agriculture scenario in india based on internet of things model.
Kyte, R. 2014 (January). Climate change is a challenge for sustainable development. [Online; posted 15-January-2014].
Lee, E. A., & Seshia, S. A. 2016. Introduction to embedded systems: A cyber-physical systems approach. Mit Press.
Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. 2016. Smart agents in industrial cyber{physical systems. Proceedings of the ieee, 104(5), 1086-1101.
Lena, B.P., Ortiz, B. V., Jiménez-López, A. F., Sanz-Sez, A., OShaughnessy, S. A., Durstock, M. K., & Pate, G. 2020. Evaluation of infrared canopy temperature data in relation to soil water-based irrigation scheduling in a humid subtropical climate. Transactions of the ASABE, 63(5), 1217-1231.
Leppanen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Narhi, P., Riekki, J., & Ojala, T. 2013. Mobile agents for integration of internet of things and wireless sensor networks. Pages 14{21 of: Systems, man, and cybernetics (smc), ieee. IEEE.
Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. 2014. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural water management, 146, 84-94.
Li, H., Karray, F., Basir, O. A., & Song, I. 2006. Multi-agent based control of a heterogeneous system. Jaciii, 10(2), 161-167.
Li, L., Sigrimis, N., Anastasiou, A., Wang, M., & Patil, VC. 2012. A roadmap from internet of things to intelligent agriculture and wot. Pages 297{304 of: Aipa2012 agro-informatics and precision agriculture conference proceedings, august 1-3, 2012, hyderabad, india.
Li, M., Lu, Y., & He, B. 2013a. Collaborative signal and information processing for target detection with heterogeneous sensor networks. International journal of sensor networks and data communications, 1(1), 112.
Li, M., Lu, Y., & He, B. 2013b. Collaborative signal and information processing for target detection with heterogeneous sensor networks. International journal of sensor networks and data communications, 1(1), 112.
Li, X., & Yeh, A.G. 2004. Multitemporal SAR images for monitoring cultivation systems using case-based reasoning. Remote sensing of environment, 90(4), 524-534.
Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., & Li, X. 2017. Mapping daily evapotranspiration based on spatiotemporal fusion of aster and MODIS images over irrigated agricultural areas in the heihe river basin, northwest china. Agricultural and forest meteorology, 244, 82-97.
Liu, G. P. 2017. Predictive control of networked multiagent systems via cloud computing. Ieee transactions on cybernetics, 47(8), 1852-1859.
Liu, Y. Y., Dorigo, W. A., Parinussa, R.M., de Jeu, R. A.M.,Wagner, W., McCabe, M. F., Evans, J.P., & Van Dijk, A.I.J.M. 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote sensing of environment, 123, 280-297.
Lu, Z., Chai, L., Ye, Q., & Zhang, T. 2015. Reconstruction of time-series soil moisture from amsr2 and smos data by using recurrent nonlinear autoregressive neural networks. Pages 980{983 of: 2015 ieee international geoscience and remote sensing symposium (igarss). IEEE.
Malamos, N., Barouchas, P.E., Tsirogiannis, I.L., Liopa-Tsakalidi, A., & Koromilas, Th. 2015. Estimation of monthly fao penman-monteith evapotranspiration in gis environment, through a geometry independent algorithm. Agriculture and agricultural science procedia, 4, 290-299.
Mango, N., Makate, C., Tamene, L., Mponela, P., & Ndengu, G. 2018. Adoption of smallscale irrigation farming as a climate-smart agriculture practice and its in uence on household income in the chinyanja triangle, southern africa. Land, 7(2), 49.
Marshall, M., Thenkabail, P., Biggs, T., & Post, K. 2016. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and forest meteorology, 218, 122-134.
MartÍnez, Q., RodrÍguez, L.F., Medina, C., et al. 2014. Estudio de factibilidad de una planta empacadora (packing house) para cebolla de bulbo (allium cepa l.) en el distrito de riego del alto chicamocha (Boyacá). Revista colombiana de ciencias hortÍcolas, 8(2), 287-301.
Masbruch, K., & Ferre, T.P.A. 2003. A time domain transmission method for determining the dependence of the dielectric permittivity on volumetric water content. Vadose zone journal, 2(2), 186-192.
Matthews, R. 2006. The people and landscape model (palm): Towards full integration of human decision-making and biophysical simulation models. Ecological modelling, 194(4), 329-343.
McCarthy, A. C., Hancock, N. H., & Raine, S. R. 2014. Simulation of irrigation control strategies for cotton using model predictive control within the variwise simulation framework. Computers and electronics in agriculture, 101, 135-147. Mercadal, E., Robles, S., Martín, R., Sreenan, C. J., & Borrell, J. 2011. Heterogeneous multiagent architecture for dynamic triage of victims in emergency scenarios. Pages 237-246 of: Advances on practical applications of agents and multiagent systems. Springer.
Montes, G. A., & Goertzel, B. 2019. Distributed, decentralized, and democratized artificial intelligence. Technological forecasting and social change, 141, 354-358.
Moorhead, J.E., Marek, G.W., Colaizzi, P.D., Gowda, P.H., Evett, S.R., Brauer, D.K., Marek, T.H., & Porter, D.O. 2017. Evaluation of sensible heat flux and evapotranspiration estimates using a surface layer scintillometer and a large weighing lysimeter. Sensors, 17(10), 2350.
Morillo, J., Martín, M., Camacho, E., Díaz, J.A., & Montesinos, P. 2015. Toward precision irrigation for intensive strawberry cultivation. Agricultural water management, 151, 43-51.
Moroizumi, T., & Sasaki, Y. 2008. Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry. Soil science society of america journal, 72(6), 1520-1526.
Mousa, A.K., Croock, M.S., & Abdullah, M.N. 2014. Fuzzy based decision support model for irrigation system management. International journal of computer applications, 104(9).
Mrinmayi, G.and Bhagyashri, D., & Atul, V. 2016. A smart irrigation system for agriculture based on wireless sensors. International journal of innovative research in science, engineering and technology, 5, 6893-6899.
Mullins, C. E., Smith, K.A., & Mullins, C. 2000. Matric potential. Soil and environmental analysis: Physical methods. eds ka smith and ce mullins, 65-93.
Nautiyal, M., Grabow, G.L., Miller, G.L., & Hu man, R.L. 2010. Evaluation of two smart irrigation technologies in cary, north carolina. Page 1 of: 2010 pittsburgh, pennsylvania, June 20-june 23, 2010. American Society of Agricultural and Biological Engineers.
Neverova, N. 2016. Deep learning for human motion analysis. Ph.D. thesis, Universite de Lyon.
Nguyen, D. C. H., Ascough II, J. C., Maier, H. R., Dandy, G. C., & Andales, A. A. 2017. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental modelling & software, 97, 32-45.
Nie, J., Sun, R. Z., & Li, X. H. 2014. A precision agriculture architecture with cyber-physical systems design technology. Pages 1567{1570 of: Applied mechanics and materials, vol. 543. Trans Tech Publ.
Nizetic, S., Solic, P., González-de, D. L., Patrono, L., et al. 2020. Internet of things (iot): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877.
Nolf, M., Beikircher, B., Rosner, S., Nolf, A., & Mayr, S. 2015. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New phytologist, 208(2), 625-632.
Ojha, T., Misra, S., & Raghuwanshi, N. S. 2015. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and electronics in agriculture, 118, 66-84.
OShaughnessy, S.A., & Evett, S.R. 2010. Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agricultural water management, 97(9), 1310-1316.
Oshaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. 2011. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural water management, 98(10), 1523-1535.
OShaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural water management, 107, 122-132.
Osroosh, Y., Peters, R. T., Campbell, C.S., & Zhang, Q. 2016. Comparison of irrigation automation algorithms for drip-irrigated apple trees. Computers and electronics in agriculture, 128, 87-99.
¬Yen, S. 2018. Forecasting multivariate time series data using neural networks. M.Phil. thesis, NTNU.
OShaughnessy, S. A., Evett, S. R., & Colaizzi, P. D. 2015. Dynamic prescription maps for site-specific variable rate irrigation of cotton. Agricultural water management, 159, 123-138.
Pant, M., Thangaraj, R., Rani, D., Abraham, A., & Srivastava, D. K. 2010. Estimation of optimal crop plan using nature inspired metaheuristics. World journal of modelling and simulation, 6(2), 97-109.
Parker, D. C., Manson, S. M., Janssen, M. A., Hofmann, M.J., & Deadman, P. 2002. Multiagent systems for the simulation of land-use and land-cover change: A review. forthcoming. In: Workshop on agent-based models of land use (nag 56406), vol. 75.
Patil, P., & Desai, B. 2013. Intelligent irrigation control system by employing wireless sensor networks. International journal of computer applications, 79(11).
Perea, R., Poyato, E.C., Montesinos, P., & Díaz, J.A. 2015. Irrigation demand forecasting using artificial neuro-genetic networks. Water resources management, 29(15), 5551-5567.
Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. 2015. Crop evapotranspiration estimation with fao56: Past and future. Agricultural water management, 147, 4-20.
Pereira, L.S., & Alves, I. 2013. Crop water requirements. reference module in earth systems and environmental sciences.
Pérez, C. R., & Jury, M. R. 2013. Spatial and temporal analysis of climate change in hispañola. Theoretical and applied climatology, 113(1-2), 213-224.
Pérez Ortola, M. 2013. Modelling the impacts of infield soil and irrigation variability on onion yield.
Peters, R.T., & Evett, S.R. 2007. Spatial and temporal analysis of crop conditions using multiple canopy temperature maps created with center-pivot-mounted infrared thermometers. Transactions of the asabe, 50(3), 919-927.
Pisoni, E., Farina, M., Carnevale, C., & Piroddi, L. 2009. Forecasting peak air pollution levels using narx models. Engineering applications of artificial intelligence, 22(4-5), 593-602.
Poblete-Echeverría, C.A., & Ortega-Farias, S.O. 2013. Evaluation of single and dual crop coefficients over a drip-irrigated m erlot vineyard (v itis vinifera l.) using combined measurements of sap flow sensors and an eddy covariance system. Australian journal of grape and wine research, 19(2), 249-260.
Pohlmeier, A., Oros-Peusquens, A., Javaux, M., Menzel, M.I., Vanderborght, J., Ka anke, J., Romanzetti, S., Lindenmair, J., Vereecken, H., & Shah, N.J. 2008. Changes in soil water content resulting from ricinus root uptake monitored by magnetic resonance imaging. Vadose zone journal, 7(3), 1010 - 1017.
Pokhrel, B., Paudel, K., & Segarra, E. 2018. Factors affecting the choice, intensity, and allocation of irrigation technologies by us cotton farmers. Water, 10(6), 706.
Proulx-McInnis, S., St-Hilaire, A., Rousseau, A.N., Jutras, S., Carrer, G., & Levrel, G. 2012. Automated soil lysimeter for determination of actual evapotranspiration of a bog in quebec, canada. Journal of hydrologic engineering, 19(1), 60-68.
Purnomo, H., & Guizol, P. 2006. Simulating forest plantation co-management with a multi-agent system. Mathematical and computer modelling, 44(5-6), 535-552.
Rad, C.R., Hancu, O., Takacs, I.A., & Olteanu, G. 2015. Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture. Agriculture and agricultural science procedia, 6, 73-79.
Raes, D., Steduto, P., HSIAO, T.C., & Fereres, E. 2018. Chapter 1: Fao crop-water productivity model to simulate yield response to water: Aquacrop: version 6.0-6.1: reference manual. Rome: FAO, 2018b. 19p.
Rafea, A., & Hassen, H.and Hazman, M. 2003. Automatic knowledge acquisition tool for irrigation and fertilization expert systems. Expert systems with applications, 24(1), 49-57.
Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. 2010. Cyber-physical systems: the next computing revolution. Pages 731-736 of: Design automation conference. IEEE.
Ramezani Dooraki, A., & Lee, D.J. 2018. An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in unknown environments. Sensors, 18(10), 3575.
Ranjithan, S.R. 2005. Role of evolutionary computation in environmental and water resources systems analysis.
Reddy, M.J., & Kumar, D.N. 2008. Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrigation science, 26(2), 177-190.
Rege, S., Gutiérrez, T. N., Marvuglia, A., Benetto, E., & Stilmant, D. 2015. Modelling price discovery in an agent based model for agriculture in luxembourg. Pages 91{112 of: Computing in economics and finance. Springer.
Riediger, J., Breckling, B., Svoboda, N., & Schr oder, W. 2016. Modelling regional variability of irrigation requirements due to climate change in northern germany. Science of the total environment, 541, 329-340.
Rodríguez-Ortega, W.M., Martínez, V., Rivero, R.M., Camara-Zapata, J.M., Mestre, T., & García-Sánchez, F. 2017. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural water management, 183, 158-168.
Romero, R., Muriel, J.L.and García, I., & de la Peña, D. M. 2012. Research on automatic irrigation control: State of the art and recent results. Agricultural water management, 114, 59-66.
Romero Vicente, R. 2011. Hydraulic modelling and control of the soil-plant-atmosphere continuum in woody crops.
Ruiz, L. Gonzaga B., Cuellar, M. P., Calvo-Flores, M. D., & Jiménez, M. 2016. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies, 9(9), 684.
Russell, S. J., & Norvig, P. 2016. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited.
Sabzi, S., Abbaspour-Gilandeh, Y., & Javadikia, H. 2017. Machine vision system for the automatic segmentation of plants under different lighting conditions. Biosystems engineering, 161, 157-173. Sakellariou, I., Kefalas, P., & Stamatopoulou, I. 2008. Enhancing netlogo to simulate bdi communicating agents. Pages 263{275 of: Hellenic conference on artificial intelligence. Springer.
Salazar, R., Rangel, J.C., Pinzón, C., & Rodríguez, A. 2013a. Irrigation system through intelligent agents implemented with arduino technology. Adcaij: Advances in distributed computing and artificial intelligence journal, 2(3), 29-36.
Salazar, R., Rangel, J. C., Pinzón, C., & Rodríguez, A. 2013b. Irrigation system through intelligent agents implemented with arduino technology.
Sample, D., Owen, J. S., Fields, J. S., Barlow, S., et al. 2016. Understanding soil moisture sensors: A fact sheet for irrigation professionals in virginia.
Seidel, S. J.,Werisch, S., Barfus, K.,Wagner, M., Sch utze, N., & Laber, H. 2016. Field evaluation of irrigation scheduling strategies using a mechanistic crop growth model. Irrigation and drainage, 65(2), 214-223.
Selmani, Abdelouahed, Oubehar, Hassan, Outanoute, Mohamed, Ed-Dahhak, Abdelali, Guerbaoui, Mohammed, Lachhab, Abdeslam, & Bouchikhi, Benachir. 2019. Agricultural cyberphysical system enabled for remote management of solar-powered precision irrigation. Biosystems engineering, 177, 18-30.
Shabani, A., Ghaary, K.A., Sepaskhah, A.R., & Kamgar-Haghighi, A.A. 2017. Using the artificial neural network to estimate leaf area. Scientia horticulturae, 216, 103-110.
Sha, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. 2019. Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.
Shamshirband, S., & Zafari, A. 2012. Evaluation of the performance of intelligent spray networks based on fuzzy logic. Research journal of recent sciences issn, 2277, 2502.
Sharp, R.E., & Davies, W.J. 1985. Root growth and water uptake by maize plants in drying soil. Journal of experimental botany, 36(9), 1441-1456.
Shekhar, Y., Dagur, E., Mishra, S., & Sankaranarayanan, S. 2017. Intelligent iot based automated irrigation system. International journal of applied engineering research, 12(18), 7306-7320.
Shock, C. C., & Wang, F.X. 2011. Soil water tension, a powerful measurement for productivity and stewardship. Hortscience, 46(2), 178-185.
Skansi, S. 2018. Introduction to deep learning: from logical calculus to artificial intelligence. Springer.
Skobelev, P., Simonova, E. V., Ivanov, A., Mayorov, I., Travin, V., & Zhilyaev, A. 2014. Real time scheduling of data transmission sessions in a microsatellites swarm and ground stations network based on multi-agent technology. Pages 153{159 of: Ijcci (ecta).
Skobelev, P., Simonova, E., & Zhilyaev, A. 2016. Using multi-agent technology for the distributed management of a cluster of remote sensing satellites. Complex syst: Fundament appl, 90, 287.
Smajstrla, A. G. 2008. Technical manual: Agricultural field scale irrigation requirements simulation (afsirs) model, version 5.5. St. Johns River Water Management District.
Smith, D., & Peng, W. 2009. Machine learning approaches for soil classification in a multi-agent deficit irrigation control system. Pages 1{6 of: 2009 ieee international conference on industrial technology. IEEE.
Smith, M., Steduto, P., et al. 2012. Yield response to water: the original fao water production function. Fao irrigation and drainage paper, 6-13.
Smith, R. 2011a. Review of precision irrigation technologies and their applications. Tech. rept. University of Southern Queensland.
Smith, R. 2011b. Review of precision irrigation technologies and their applications. Tech. rept. University of Southern Queensland.
Soane, B.D. 2006. Irrigation and drainage performance assessment: Practical guidelines. by mg bos, ma burton and dj molden. wallingford, uk: Cabi publishing (2005), pp. 176,£ 40.00. isbn 0-85-199-967-0. Experimental agriculture, 42(1), 125-125.
Spectrum Technologies, Inc. 2011. Waterscout sm100 soil moisture sensor { product manual, item 6460: Aurora, il, usa 20 pp.
Spiliotopoulos, M., & Loukas, A. 2019. Hybrid methodology for the estimation of crop coefficients based on satellite imagery and ground-based measurements. Water, 11(7), 1364.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.
Subedi, A., & Chavez, J.L. 2015. Crop evapotranspiration (et) estimation models: a review and discussion of the applicability and limitations of et methods. Journal of agricultural science, 7(6), 50.
Tal, A. 2016. Rethinking the sustainability of israels irrigation practices in the drylands. Water research, 90, 387-394.
Talavera, J. M., Tobón, L. E., Gómez, J. A. and Culman, M. A., Aranda, J.M., Parra, D. T., Quiroz, L. A., Hoyos, A., & Garreta, L. E. 2017. Review of iot applications in agro-industrial and environmental fields. Computers and electronics in agriculture, 142, 283-297.
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. 2020. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial intelligence in agriculture.
Todorovic, M., Lamaddalena, N., Trisorio Liuzzi, G., et al. 2008. Modern strategies and tools for water saving and drought mitigation in southern italy. Drought management: Scientific and technological innovation.
Tolk, A., Diallo, S.D., Ryzhov, I.O., Yilmaz, L., Buckley, S., & Miller, J.A. 2014. Evaluation of kriging-based methods for simulation optimization with homogeneous noise.
Touati, F., Al-Hitmi, M., & Benhmed, K.and Tabish, R. 2013. A fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of qatar. Computers and electronics in agriculture, 98, 233-241.
Trencansky, I., & Cervenka, R. 2005. Agent modeling language (aml): A comprehensive approach to modeling mas. Informatica-ljubljana, 29(4), 391.
Tsang, S.W., & Jim, C. Y. 2016a. Applying artificial intelligence modeling to optimize green roof irrigation. Energy and buildings, 127, 360-369.
Tsang, S.W., & Jim, C.Y. 2016b. Applying artificial intelligence modeling to optimize green roof irrigation. Energy and buildings, 127, 360-369.
Van Der Maaten, E., van der Maaten-Theunissen, M., Smiljanic, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., & Bouriaud, O. 2016. dendrometer: Analyzing the pulse of trees in r. Dendrochronologia, 40, 12-16.
Van Genuchten, R. 1978. Calculating the unsaturated hydraulic conductivity with a new closedform analytical model. Research report, no. 78-wr-08, princeton university.
Van Rossum, G., & Drake, F. L. 2009. Python 2.6 reference manual.
Vellidis, G., Liakos, V., Porter, W., Tucker, M., & Liang, X. 2016. A dynamic variable rate irrigation control system. In: Proceedings of the 13th international conference on precision agriculture, louis, mi, usa, vol. 31.
Viani, F., Bertolli, M., Salucci, M., & Polo, A. 2017. Low-cost wireless monitoring and decision support for water saving in agriculture. Ieee sensors journal, 17(13), 4299-4309.
Villarrubia, G., Paz, J.F., Iglesia, D.H., & Bajo, J. 2017. Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors, 17(8), 1775.
Von Rosing, M., White, S., Cummins, F., & de Man, H. 2015. Business process model and notation-bpmn.
Wang, X., Liu, Y., Sun, C.J., Wang, B., & Wang, X. 2015. Predicting polarities of tweet by composing word embeddings with long short-term memory. Pages 1343{1353 of: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: Long papers).
Wanjura, D.F., Upchurch, D.R., & Mahan, J.R. 2004. Establishing differential irrigation levels using temperature-time thresholds. Applied engineering in agriculture, 20(2), 201.
Wanyama, T., & Far, B. 2017. Multi-agent system for irrigation using fuzzy logic algorithm and open platform communication data access. World academy of science, engineering and technology, international journal of computer, electrical, automation, control and information engineering, 11(6), 691-696.
Wardlaw, R., & Bhaktikul, K. 2004. Application of genetic algorithms for irrigation water scheduling. Irrigation and drainage, 53(4), 397-414.
Warner, J., & Sexauer, J. 2017. scikit fuzzy, twmeggs, ams, a. Unnikrishnan, g. castelo, f. batista, tg badger, & h. mishra (2017, october). jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3, 1.
Weather, S. 2018. Average weather in samson alabama, united states. urlhttps://weatherspark.com/y/14512/Average-Weather-in-Samson-Alabama-United-States- Year-Round.
Weather, S. 2020. Average weather in nobsa, colombia states. urlhttps://weatherspark.com/y/25267/Average-Weather-in-Nobsa-Colombia-Year-Round.
Weiss, G. 2013. Multiagent systems. MIT press.
Weller, U., Leuther, F., Schl uter, S., & Vogel, H. 2018. Quantitative analysis of water infiltration in soil cores using x-ray. Vadose zone journal, 17(1).
Werbos, P. J. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the ieee, 78(10), 1550-1560.
Wilensky, U., & Rand, W. 2015. An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with netlogo. MIT Press.
Winter, J.M., Young, C.A., Mehta, V.K., Ruane, A.C., Azarderakhsh, M., Davitt, A., McDonald, K., Haden, V.R., & Rosenzweig, C. 2017. Integrating water supply constraints into irrigated agricultural simulations of california. Environmental modelling & software, 96, 335-346.
Wooldridge, M.J., & Jennings, N. R. 1995. Intelligent agents: Theory and practice. The knowledge engineering review, 10(2), 115-152.
Xu, J., Ma, X., Logsdon, S. D., & Horton, R. 2012. Short, multineedle frequency domain reflectometry sensor suitable for measuring soil water content. Soil science society of America journal, 76(6), 1929-1937.
Ye-ping, Z., & Sheng-ping, L. 2011a. Technology of agent-based crop collaborative simulation and management decision. Pages 158{162 of: Data mining and intelligent information technology applications (icmia), 2011 3rd international conference on. IEEE.
Ye-ping, Z., & Sheng-ping, L. 2011b. Technology of agent-based crop collaborative simulation and management decision. Pages 158{162 of: The 3rd international conference on data mining and intelligent information technology applications. IEEE.
Zacepins, A., Stalidzans, E., & Meitalovs, J. 2012. Application of information technologies in precision apiculture. In: Proceedings of the 13th international conference on precision agriculture (icpa 2012).
Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. 2019. Smart farming iot platform based on edge and cloud computing. Biosystems engineering, 177, 4-17.
Zhang, C., & Guo, P. 2018. Flfp: A fuzzy linear fractional programming approach with doublesided fuzziness for optimal irrigation water allocation. Agricultural water management, 199, 105-119.
Zhang, C., & Noguchi, N. 2017. Development of a multi-robot tractor system for agriculture field work. Computers and electronics in agriculture, 142, 79-90.
Zhang, D., Lin, Junqiang, Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., & Zhuang, J. 2018a. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. Journal of hydrology, 565, 720-736.
Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. 2018b. Developing a long short-term memory (lstm) based model for predicting water table depth in agricultural areas. Journal of hydrology, 561, 918-929.
Zhao, T., Ding, R., & Man, Z. 2011. Long-range monitoring system of irrigated area wateruse based on multi-agent. Pages 580{583 of: Mechatronic science, electric engineering and computer (mec), 2011 international conference on. IEEE.
Zhao, T., Stark, B., Chen, Y., Ray, A.L., & Doll, D. 2017. Challenges in water stress quantification using small unmanned aerial system (suas): Lessons from a growing season of almond. Journal of intelligent & robotic systems, 88(2-4), 721-735.
Zhemukhov, R. S.h., & Zhemukhova, M. M. 2016. System of mathematical models to manage water and land resources at the regional level in case of anthropogenous climate changes taking into account economic indicators and ecological consequences. Pages 256{261 of: Quality management, transport and information security, information technologies (it&mq&is), ieee conference on. IEEE.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos reservados al autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 321 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79927/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79927/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79927/2/74184838.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79927/4/74184838.2020.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
cccfe52f796b7c63423298c2d3365fc6
abfcbe1d5a20268a0976a99d981bbf19
65cad70a35983dafe15e1745ea164044
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090014702698496
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cárdenas Herrera, Pedro Fabiánf2a5d883628e057fb0a0370af163e714Jiménez López, Andrés Fernandob7f6e5b7465d291fc4fd0d3236e7758dGobernación de BoyacáUNROBOT-Grupo de Plataformas Robóticas2021-08-12T15:29:51Z2021-08-12T15:29:51Z2020https://repositorio.unal.edu.co/handle/unal/79927Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, mapas, tablasEl uso eficiente del agua es fundamental para la sostenibilidad de la agricultura y la seguridad alimentaria, al reducir la vulnerabilidad en la producción de cultivos, causada por la escasez o el desperdicio del recurso. El objetivo principal de esta tesis fue desarrollar un modelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolas. Se buscó avanzar más allá de la simulación de un sistema multi-agente a su implementación en un escenario real. El modelo se implementó en el Distrito de Riego de Usochicamocha, ubicado en Boyacá, Colombia. Se desarrolló un agente ciber-físico de riego que permite determinar y aplicar las cantidades de agua en los cultivos de acuerdo con criterios técnicos y un modelo basado en agentes (MBA) para la distribución del agua utilizando funciones de utilidad basadas en el estado de los cultivos y aspectos sociales entre los agentes de la vecindad. En los resultados, el sistema permitió mantener la humedad del suelo dentro de los valores del déficit máximo permitido para varios cultivos. En conclusión, el modelo propuesto es promisorio en el diseño de sistemas distribuidos para el manejo del riego agrícola, ya que integra múltiples tecnologías y permite el manejo del riego a nivel de finca y de distrito de riego. Además, se ha demostrado, que se puede mejorar la eficiencia en el uso del agua, incorporando inteligencia artificial, sistemas multi-agente e internet de las cosas en el riego de precisión, de acuerdo con las variaciones espacio-temporales del sistema suelo-planta-atmósfera. (Texto tomado de la fuente)The efficient use of water is essential for the sustainability of agriculture and food security, by reducing vulnerability in crop production, caused by scarcity or waste of the resource. The main objective of this thesis was to develop a model based on intelligent agents to support irrigation management in agricultural crops. It was sought to advance beyond the simulation of a multi-agent system to its implementation in a real scenario. The model was implemented in the Usochicamocha Irrigation District, located in Boyacá, Colombia. A cyber-physical irrigation agent was developed that allows determining and applying the amounts of water in crops according to technical criteria and an agent-based model (MBA) for the distribution of water was established using utility functions based on the state of the crops and social aspects among the agents of the neighborhood. In the results, the system allowed to maintain soil moisture within the values of the maximum deficit allowed for various crops. In conclusion, the proposed model is promising in the design of distributed systems for agricultural irrigation management since it integrates multiple technologies and allows irrigation management at the farm and irrigation district level. In addition, it was proved that efficiency in the use of water can be improved, by incorporating artificial intelligence, multi-agent systems and the internet of things in precision irrigation, according to the spatio-temporal variations of the soil-plant-atmosphere system. (Text taken from source)DoctoradoDoctor en Ingeniería - Ingeniería Mecánica y MecatrónicaAutomatización - Agricultura de PrecisiónIngeniería de Automatización, Control y Mecatrónica321 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y MecatrónicaDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadasRiego automáticoAutomatic irrigationAgente inteligenteAgricultura de precisiónInteligencia artificialModelo basado en agentesMulti-agenteRiego de precisiónAgent based modelArtificial intelligenceIntelligent agentMulti-agentPrecision agriculturePrecision irrigationModelo basado en agentes inteligentes como soporte a la gestión del riego en cultivos agrícolasIntelligent agent-based model to support irrigation management in agricultural cropsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbdullah, S.S., & Malek, M.A. 2016. Empirical penman-monteith equation and artificial intelligence techniques in predicting reference evapotranspiration: a review. International journal of water, 10 (1), 55-66.Abioye, E. A., Abidin, M. S. Z., Mahmud, M. S. A., Buyamin, S., Ishak, M. H. I., Abd Rahman, M. K. I., Otuoze, A. O., Onotu, P., & Ramli, M. S. A. 2020. A review on monitoring and advanced control strategies for precision irrigation. Computers and electronics in agriculture, 173, 105441.Adeyemi, O., Grove, I., Peets, S., & Norton, T. 2017. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability, 9(3), 353.Adeyemi, O., Grove, I., Peets, S., Domun, Y., & Norton, T. 2018. Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors, 18(10), 3408.Adla, S., Rai, N. K., Karumanchi, S. H., Tripathi, S., Disse, M., & Pande, S. 2020. Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors. Sensors, 20(2), 363.Adnan, S., & Khan, A. H. 2009. Effective rainfall for irrigated agriculture plains of pakistan. Pakistan journal of meteorology, 6(11), 61-72.Agbemabiese, Y. K. 2015. Modelling biomass and bulb yield of onion (allium cepa) under different irrigation regimes using the aquacrop model. Ph.D. thesis.Agbemabiese, Y.K., Shaibu, A.G., & Gbedzi, V.D. 2017. Validation of aquacrop for different irrigation regimes of onion (allium cepa) in bontanga irrigation scheme. International journal of irrigation and agricultural development (ijirad), 1(1), 1-12.Akhbari, M., & Grigg, N. S. 2013. A framework for an agent-based model to manage water resources conflicts. Water resources management, 27(11), 4039-4052.Al-Amin, S., Berglund, E.Z., & Mahinthakumar, K. 2015. Coupling agent-based and groundwater modeling to explore demand management strategies for shared resources. Pages 141- 150. World environmental and water resources congress 2016.Al-Kaisi, M. M., Broner, I., & Andales, A.A. 2009. Crop water use and growth stages. Fact sheet (Colorado state university. extension). crop series; no. 4.715.Alameen, A. A., Al-Gaadi, K. A., & Tola, E. 2019. Development and performance evaluation of a control system for variable rate granular fertilizer application. Computers and electronics in agriculture, 160, 31-39.Alexakis, D. D., Mexis, F.D., Vozinaki, A.E., Daliakopoulos, I.N., & Tsanis, I.K. 2017. Soil moisture content estimation based on sentinel-1 and auxiliary earth observation products. A hydrological approach. Sensors, 17(6), 1455.Ali, M.H., Abustan, I., & Puteh, A.B. 2013. Irrigation management strategies for winter wheat using aquacrop model. Journal of natural resources and development, 3(10), 106-113.Ali, O., Germain, B., Van Belle, J., Valckenaers, P., Van Brussel, H., & Van Noten, J. 2010. Multiagent coordination and control system for multi-vehicle agricultural operations. Pages 1621-1622 of: Proceedings of the 9th international conference on autonomous agents and multiagent systems: volume 1-volume 1. International Foundation for Autonomous Agents and Multiagent Systems.Allen, R. G., Pereira, L. S., Raes, D., & Smith, M.and others. 1998. Crop evapotranspiration guidelines for computing crop water requirements-fao irrigation and drainage paper 56. Fao, rome, 300(9), D05109.Allen, R.G. 2006. Evapotranspiración del cultivo: guías para la determinación de los requerimientos de agua de los cultivos. Vol. 56. Food & Agriculture Org.Alvino, A., & Marino, S. 2017. Remote sensing for irrigation of horticultural crops. Horticulturae, 3(2), 40.An, L., Linderman, M., Qi, J., Shortridge, A., & Liu, J. 2005. Exploring complexity in a human-environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Annals of the association of american geographers, 95(1), 54-79.Andales, A. A., Chávez, J. L., Bauder, T. A., & Broner, I. 2011. Irrigation scheduling: the water balance approach. Service in action; no. 4.707.Aretouyap, Z., Nouck, N.P., Nouayou, R., Melii, J.L., Kemgang Ghomsi, F.E., Piepi Toko, A.D., & Asfahani, J. 2015. Influence of the variogram model on an interpolative survey using kriging technique. J earth sci clim change, 6(316), 2.Atta, R., Boutraa, T., & Akhkha, A. 2011. Smart irrigation system for wheat in saudi arabia using wireless sensors network technology. International journal of water resources and arid environments, 1(6), 478-482.Balafoutis, A., Beck, B., Fountas, S., Vangeyte, J., Wal, T. V., Soto, I., Gómez-Barbero, M., Barnes, A., & Eory, V. 2017. Precision agriculture technologies positively contributing to emissions mitigation, farm productivity and economics. Sustainability, 9(8), 1339.Barradas, J.M., Matula, S., & Dolezal, F. 2012. A decision support system-fertigation simulator (dss-fs) for design and optimization of sprinkler and drip irrigation systems. Computers and electronics in agriculture, 86, 111-119.Barreteau, O., Bousquet, F., Millier, C., & Weber, J. 2004. Suitability of multi-agent simulations to study irrigated system viability: application to case studies in the senegal river valley. Agricultural systems, 80(3), 255-275.Belaqziz, S., et al. 2011a. An agent-based modeling approach for decision-making in gravity irrigation systems. Pages 673{680 of: 2011 international conference for internet technology and secured transactions. IEEE.Belaqziz, S., et al. 2011b. An agent-based modeling approach for decision-making in gravity irrigation systems. Pages 673{680 of: Internet technology and secured transactions (icitst), 2011 international conference for. IEEE.Belaqziz, S., Fazziki, A.E., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S. E., Adnani, M. E., & Jarlan, L. 2013a. An agent based modeling for the gravity irrigation management. Procedia environmental sciences, 19, 804-813. Belaqziz, S., El Fazziki, A., Mangiarotti, S., Le Page, M., Khabba, S., Raki, S., El Adnani, M., & Jarlan, L. 2013b. An agent based modeling for the gravity irrigation management. Procedia environmental sciences, 19, 804-813.Belaqziz, S., Khabba, S., Er-Raki, S., Jarlan, L., Le Page, M., Kharrou, M.H., El Adnani, M., & Chehbouni, A. 2013c. A new irrigation priority index based on remote sensing data for assessing the networks irrigation scheduling. Agricultural water management, 119, 1-9.Belaqziz, S., Mangiarotti, S., Le Page, M., Khabba, S., Er-Raki, S., Agouti, T., Drapeau, L., Kharrou, M.H., El Adnani, M., & Jarlan, L. 2014. Irrigation scheduling of a classical gravity network based on the covariance matrix adaptation evolutionary strategy algorithm. Computers and electronics in agriculture, 102, 64-72.Belaqziz, S., Aparicio, C.F., Le Page, M., Kharrou, M.H., Khabba, S., El-Fazziki, A., Hennigan, P., & Jarlan, L. 2016. Simulating negotiations over limited water resources: A multi-agent system approach for irrigation systems. Conductual, 4(2).Belokonov, I., Skobelev, P., Simonova, E., Travin, V., & Zhilyaev, A. 2015. Multi-agent planning of the network between nanosatellites and ground stations. Procedia engineering, 104,118-130.Benayache, Z., Besancon, G., & Georges, D. 2008. A new nonlinear control methodology for irrigation canals based on a delayed input model. Ifac proceedings volumes, 41(2), 2544-2549.Bendre, M.R., Thool, R.C., & Thool, V.R. 2015. Big data in precision agriculture: Weather forecasting for future farming. Pages 744{750 of: Proceedings of the next generation computing technologies (ngct), 2015 1st international conference on. IEEE.Bergstra, J., & Bengio, Y. 2012. Random search for hyper-parameter optimization. The journal of machine learning research, 13(1), 281-305.Beysolow II, T. 2017. Introduction to deep learning using r: A step-by-step guide to learning and implementing deep learning models using r. Apress.Bezerra, B.G., Bezerra, J.R., Silva, B.B., & Santos, C.A. 2015. Surface energy exchange and evapotranspiration from cotton crop under full irrigation conditions in the rio grande do norte state, brazilian semi-arid. Bragantia, 74(1), 120-128.Bhatt, R., Arora, S., & Chew, C. C. 2016. Improving irrigation water productivity using tensiometers. Journal of soil and water conservation, 15(2), 120-124.Bondesan, L., Ortiz, B.V., Morata, G.T., Damianidis, D., Jimenez, A.F., Vellidis, G., & Morari, F. 2019. Evaluating and improving soil sensor-based variable irrigation scheduling on farmers fields in Alabama. Pages 713-720 of: Precision agriculture19. Wageningen Academic Publishers.Boussaada, Z., Curea, O., Remaci, A., Camblong, H., & Mrabet Bellaaj, N. 2018. A nonlinear autoregressive exogenous (narx) neural network model for the prediction of the daily directsolar radiation. Energies, 11(3), 620.Bratman, M., et al. 1987. Intention, plans, and practical reason. Vol. 10. Harvard University Press Cambridge, MA.Broner, I. 2005. Irrigation scheduling: The water-balance approach.Byrski, A., Drezewski, R., Siwik, L., & Kisiel-Dorohinicki, M. 2015. Evolutionary multi-agent systems. The knowledge engineering review, 30(2), 171-186.Cadenas, E., Rivera, W., Campos-Amezcua, R., & Heard, C. 2016. Wind speed prediction using a univariate arima model and a multivariate narx model. Energies, 9(2), 109.Cai, J., & Xiong, H. 2017. An agent-based simulation of cooperation in the use of irrigation systems. Complex adaptive systems modeling, 5(1), 9.Calegari, R., Ciatto, G., Denti, E., & Omicini, A. 2020. Logic-based technologies for intelligent systems: State of the art and perspectives. Information, 11(3), 167.Candea, C., Hu, H., Iocchi, L., Nardi, D., & Piaggio, M. 2001. Coordination in multi-agent robocup teams. Robotics and autonomous systems, 36(2-3), 67-86.Cárdenas-Lailhacar, B., & Dukes, M. D. 2010. Precision of soil moisture sensor irrigation controllers under field conditions. Agricultural water management, 97(5), 666-672.Carrasco-Benavides, M., Mora, M., Maldonado, G., Olguín-Cáceres, J., von Bennewitz, E., Ortega-Faras, S., Gajardo, J., & Fuentes, S. 2016. Assessment of an automated digital method to estimate leaf area index (lai) in cherry trees. New zealand journal of crop and horticultural science, 44(4), 247-261.Castelletti, A., & Soncini-Sessa, R. 2007. Bayesian networks and participatory modelling in water resource management. Environmental modelling & software, 22(8), 1075-1088.Castro, H., Cely, G., & Vásquez, N. 2009. Criterios técnicos para un manejo eficiente del riego en cebolla de bulbo: Distrito de riego del alto Chicamocha-Boyacá.Castro Franco, M., García Ramírez, D. Y., & Jiménez López, A. F. 2017. Comparación de técnicas de interpolación espacial de propiedades del suelo en el piedemonte llanero colombiano. Tecnura, 21(53), 78-95.Caudill, M. 1989. Neural networks primer, part viii. Ai expert, 4(8), 61-67.Cely, G. 2010. Determinación de parámetros de riego para el cultivo cebolla de bulbo en el distrito de riego del alto chicamocha. M.Phil. thesis, Universidad Nacional de Colombia, Bogotá.Cerón, G. 2005. Economía aplicada a la valoración de impactos ambientales. Universidad de Caldas.Cervenka, R., Trencansky, I., & Calisti, M. 2005. Modeling social aspects of multi-agent systems: The aml approach. Pages 28{39 of: International workshop on agent-oriented software engineering. Springer.Chandler, D. G., Seyfried, M., Murdock, M., & McNamara, J.P. 2004. Field calibration of water content reflectometers. Soil science society of america journal, 68(5), 1501{1507.Chen, Z., & Liu, G. 2010. Application of artificial intelligence technology in water resources planning of river basin. Pages 322{325 of: Information science and management engineering (isme), 2010 international conference of, vol. 1. IEEE.Chitu, E., & Paltineanu, C. 2019. Relationships between mds, soil, and weather variables for topaz apple tree cultivated in coarse-textured soils. Journal of irrigation and drainage engineering, 145(2), 04018039.Chollet, F., others. 2015. Keras.Clemmens, A.J. 2006. Improving irrigated agriculture performance through an understanding of the water delivery process. Irrigation and drainage: The journal of the international commission on irrigation and drainage, 55(3), 223-234.Clulow, A.D., Everson, C.S., Mengistu, M.G., Price, J.S., Nickless, A., & Jewitt, G.P.W. 2015. Extending periodic eddy covariance latent heat fluxes through tree sap flow measurements to estimate long-term total evaporation in a peat swamp forest. Hydrology and earth system sciences, 19(5), 2513.Coelho, V.N., Cohen, M., Coelho, I., Liu, N., & Guimaraes, F. G. 2017. Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids. Applied energy, 187, 820-832.Cong, D., Nguyen H. Ascough J. Maier H. Dandy G. Andales A. 2017. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. environ. modell. software.Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B., & Celleri, R. 2015. Evaluation of the penman-monteith (fao 56 pm) method for calculating reference evapotranspiration using limited data. Mountain research and development, 35(3), 230-239.Daneshfar, F., & Bevrani, H. 2009. Multi-agent systems in control engineering: a survey. Journal of control science and engineering, 2009.Daniyan, Lanre, Nwachukwu, Ezechi, Daniyan, Ilesanmi, & Bonaventure, Okere. 2019. Development and optimization of an automated irrigation system. Journal of automation, mobile robotics and intelligent systems, 37-45.De la Cruz, Y., Martínez, C., & Pantoja, A. 2015a. Drip irrigation system based on distributed control|part 1: Design and model. Pages 1{6 of: 2015 ieee 2nd colombian conference on automatic control (ccac). IEEE.De la Cruz, Y., Martinez, C., & Pantoja, A. 2015b. Drip irrigation system based on distributed control|part 2: Implementation. Pages 7{12 of: 2015 ieee 2nd colombian conference on automatic control (ccac). IEEE.De Lorenzi, F., Aleri, S.M., Monaco, E., Bonfante, A., Basile, A., Patane, C., & Menenti, M. 2017. Adaptability to future climate of irrigated crops: The interplay of water management and cultivars responses. a case study on tomato. Biosystems engineering, 157, 45-62.Dessalegne, T., & Nicklow, J.W. 2012. Artificial life algorithm for management of multi-reservoir river systems. Water resources management, 26(5), 1125-1141.Divya, P., Sonkiya, S., Das, P., Manjusha, V.V., & Ramesh, M. V. 2014. Cawis: Context aware wireless irrigation system. Pages 310{315 of: 2014 international conference on computer, communications, and control technology (i4ct). IEEE.Djaman, K., ONeill, M., Owen, C. K., Smeal, D., Koudahe, K., West, M., Allen, S., Lombard, K., & Irmak, S. 2018. Crop evapotranspiration, irrigation water requirement and water productivity of maize from meteorological data under semiarid climate. Water, 10(4), 405.Durner, W. 1992. Predicting the unsaturated hydraulic conductivity using multi-porosity water retention curves. Indirect methods for estimating the hydraulic properties of unsaturated soils, 185-202.Ebrahimi-Mollabashi, E., Huth, N. I., Holzwoth, D. P., Ordóñez, R. A., Hateld, J. L., Huber, I., Castellano, M. J., & Archontoulis, S. V. 2019. Enhancing apsim to simulate excessive moisture effects on root growth. Field crops research, 236, 58-67.Edwards, M., Ferrand, N., Goreaud, F., & Huet, S. 2005. The relevance of aggregating a water consumption model cannot be disconnected from the choice of information available on the resource. Simulation modelling practice and theory, 13(4), 287-307.Entekhabi, D., Njoku, E. G., ONeill, P.E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., et al. 2010. The soil moisture active passive (smap) mission. Proceedings of the ieee, 98(5), 704-716.Esmaeili, A., Mozayani, N., Motlagh, M. R. J., & Matson, E.T. 2017. A socially-based distributed self-organizing algorithm for holonic multi-agent systems: Case study in a task environment. Cognitive systems research, 43, 21-44.Evans, R.G., LaRue, J., Stone, K. C., & King, B. A. 2013. Adoption of site-specific variable rate sprinkler irrigation systems. Irrigation science, 31(4), 871-887.Evett, S. R., Peters, R.T., & Howell, T.A. 2006. Controlling water use efficiency with irrigation automation: Cases from drip and center pivot irrigation of corn and soybean. Pages 57-66 of: Proc. 28th annual southern conservation systems conf.FAO. 2020. Food and agriculture organization of the united nations. onion. urlhttp://www.fao.org/land-water/databases-and-software/crop-information/onion/en.Fard, F. H., & Far, B.H. 2014. On the usage of network visualization for multiagent system verification. Pages 201{228 of: Online social media analysis and visualization. Springer.Farol., S., M uller, J., & Bonte, B. 2010. An iterative construction of multi-agent models to represent water supply and demand dynamics at the catchment level. Environmental modelling & software, 25(10), 1130-1148.Farooq, M. S., Riaz, S., Abid, A., Umer, T., & Zikria, Y. B. 2020. Role of iot technology in agriculture: A systematic literature review. Electronics, 9(2), 319.Fedra, K. 1994. Models, gis, and expert systems: integrated water resources models. Pages 297-308 of: Applications of geographic information systems in hydrology and water resources management. proc. international conference, Vienna, 1993. IAHS Press.Feng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. 2017a. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural water management, 193, 163-173.Feng, Y., Peng, Y., Cui, N., Gong, D., & Zhang, K. 2017b. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and electronics in agriculture, 136, 71-78.Fernández-Pacheco, D.G., Escarabajal-Henarejos, D., Ruiz-Canales, A., Conesa, J., & Molina Martínez, J.M. 2014. A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of spain. Biosystems engineering, 117, 23-34.Flint, A.L., Campbell, G.S., Ellett, K.M., & Calissendor, C. 2002. Calibration and temperature correction of heat dissipation matric potential sensors. Soil science society of america journal, 66(5), 1439-1445.Foster, T., Brozovic, N., Butler, A.P., Neale, C.M.U., Raes, D., Steduto, P., Fereres, E., & Hsiao, T. C. 2017. Aquacrop-os: An open source version of faos crop water productivity model. Agricultural water management, 181, 18-22.Fougeres, A., & Ostrosi, E. 2018. Intelligent agents for feature modelling in computer aided design. Journal of computational design and engineering, 5(1), 19-40.Gao, L., Zhang, M., & Chen, G. 2013. An intelligent irrigation system based on wireless sensor network and fuzzy control. Jnw, 8(5), 1080-1087.García, M., Raes, D., & Jacobsen, S.E. 2003. Evapotranspiration analysis and irrigation requirements of quinoa (chenopodium quinoa) in the bolivian highlands. Agricultural water management, 60(2), 119-134.Garrett, Hardin. 1968. The tragedy of the commons. Science, 162(3859), 1243-1248.George, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. 1998. The belief-desire intention model of agency. Pages 1{10 of: International workshop on agent theories, architectures, and languages. Springer.Gerhards, H., Wollschlager, Ute., Yu, Q., Schiwek, P., Pan, X., & Roth, K. 2008. Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics, 73(4), J15-J23.Ghorbani, M.A., Shamshirband, S., Haghi, D.Z., Azani, A., Bonakdari, H., & Ebtehaj, I. 2017. Application of algorithm-based support vector machines for prediction of field capacity and permanent wilting point. Soil and tillage research, 172, 32-38.Giusti, E., & Marsili-Libelli, S. 2015. A fuzzy decision support system for irrigation and water conservation in agriculture. Environmental modelling & software, 63, 73-86.Goap, Amarendra, Sharma, Deepak, Shukla, A Krishna, & Krishna, C Rama. 2018. An iot based smart irrigation management system using machine learning and open source technologies. Computers and electronics in agriculture, 155, 41-49.Gomes, J., Mariano, P., & Christensen, A. L. 2015. Cooperative coevolution of morphologically heterogeneous robots. Pages 312-319 of: Artificial life conference proceedings 13. MIT Press.González, E., Pérez, A., Rodríguez, C., Manrique, M., Arévalo, Y., & Otálora, C. 2012. Robótica cooperativa experiencias de sistemas multiagentes sma. Editorial pontificia universidad javeriana, universidad de los andes, colciencias, maloka, Bogotá DC, Colombia.González, J., & Yu, W. 2018. Non-linear system modeling using lstm neural networks. Ifac papersonline, 51(13), 485-489.González-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P.A., Alarcón, J.J., Intrigliolo, D.S., & Fereres, E. 2013. Using high resolution uav thermal imagery to assess the variability in the water status of fruit tree species within a commercial orchard. Precision agriculture, 14(6), 660{678.González-Dugo, V., Goldhamer, D., Zarco-Tejada, P.J., & Fereres, E. 2015. Improving the precision of irrigation in a pistachio farm using an unmanned airborne thermal system. Irrigation science, 33(1), 43-52.González-Esquiva, J.M., Oates, M.J., García-Mateos, G., Moros-Valle, B., Molina-Martínez, J.M., & Ruiz-Canales, A. 2017a. Development of a visual monitoring system for water balance estimation of horticultural crops using low cost cameras. Computers and electronics in agriculture, 141, 15-26.González-Esquiva, J.M., García-Mateos, G., Escarabajal-Henarejos, D., Hernández-Hernández, J.L., Ruiz-Canales, A., & Molina-Martínez, J.M. 2017b. A new model for water balance estimation on lettuce crops using effective diameter obtained with image analysis. Agricultural water management, 183, 116-122.González-Esquiva, J.M., García-Mateos, G., Hernández-Hernández, J.L., Ruiz-Canales, A., Escarabajal-Henerajos, D., & Molina-Martínez, J.M. 2017c. Web application for analysis of digital photography in the estimation of irrigation requirements for lettuce crops. Agricultural water management, 183, 136-145.Goodfellow, I., Bengio, Y., & Courville, A. 2016. Deep learning. MIT press. Grafton, R.Q., Williams, J., Perry, C.J., Molle, F., Ringler, C., Steduto, P., Udall, B., Wheeler, S.A., Wang, Y., Garrick, D., et al. 2018. The paradox of irrigation effciency. Science, 361(6404), 748-750. Grashey-Jansen, S. 2014a. Optimizing irrigation efficiency through the consideration of soil hydrological properties examples and simulation approaches. Erdkunde, 33-48.Grashey-Jansen, S. 2014b. Optimizing irrigation efficiency through the consideration of soil hydrological properties examples and simulation approaches. Erdkunde, 33-8.Grovermann, C., Schreinemachers, P., Riwthong, S., & Berger, T. 2017. Policies to reduce pesticide use and avoid income trade-os: An agent-based model applied to thai agriculture. Ecological economics, 132, 91-103.Gurgen, A., & Yldz, S. 2019. Artificial neural network approach for protection of the color of dried golden and pink oyster mushrooms with pretreatments. Color research & application, 44(6), 1006-1016.Guyennon, N., Romano, E., & Portoghese, I. 2016. Long-term climate sensitivity of an integrated water supply system: The role of irrigation. Science of the total environment, 565, 68-81.Hamouda, Y.E.M. 2017. Smart irrigation decision support based on fuzzy logic using wireless sensor network. Pages 109-113 of: Promising electronic technologies (icpet), 2017 international conference on. IEEE.Han, J., Wang, C., & Yi, G. 2013. Cooperative control of uav based on multi-agent system. Pages 96{101 of: Industrial electronics and applications (iciea), 2013 8th ieee conference on. IEEE.Harmouch, F. Z., Krami, N., Benhaddou, D., Hmina, N., Zayer, E., & Margoum, E. 2016. Survey of multiagents systems application in microgrids. Pages 270{275 of: Electrical and information technologies (iceit), 2016 international conference on. IEEE.Harris, N. R., & Stonard, A. 2018. A printed capacitance sensor for soil moisture measurement. Page 705 of: Multidisciplinary digital publishing institute proceedings, vol. 2.Hashem, A.and Engel, B., Bralts, V., Radwan, S., & Rashad, M. 2016. Performance evaluation and development of daily reference evapotranspiration model. Irrigation & drainage systems engineering, 5, 1-6.Hernández, G., Jiménez, A. F., Ortiz, B. V., Lamadrid, A. P., & Cárdenas, P. F. 2018. Decision support system for precision irrigation using interactive maps and multi-agent concepts. Pages 21-41 of: International conference of ict for adapting agriculture to climate change. Springer.Holloway-Phillips, M.M., Peng, W., Smith, D., & Terhorst, A. 2008. Adaptive scheduling in deficit irrigation a model-data fusion approach. Wit transactions on ecology and the environment, 112, 187-200.Howden, S.M., Soussana, J., Tubiello, F.N., Chhetri, N., Dunlop, M., & Meinke, H. 2007. Adapting agriculture to climate change. Proceedings of the national academy of sciences, 104(50), 19691-19696.Howell, T.A. 2003. Irrigation efficiency. Encyclopedia of water science. marcel dekker, New York, 467-472. Ihuoma, S. O., & Madramootoo, C. A. 2017. Recent advances in crop water stress detection. Computers and electronics in agriculture, 141, 267-275.Isern, D., Abello, S., & Moreno, A. 2012a. Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and electronics in agriculture, 87, 1-13.Isern, D., Abello, S., & Moreno, A. 2012b. Development of a multi-agent system simulation platform for irrigation scheduling with case studies for garden irrigation. Computers and electronics in agriculture, 87, 1-13.Jackson, R.D., Idso, S.B., Reginato, R.J., & Pinter, P.J. 1981. Canopy temperature as a crop water stress indicator. Water resources research, 17(4), 1133-1138.Jaiswal, Supriya, & Ballal, Makarand S. 2020. Fuzzy inference based irrigation controller for agricultural demand side management. Computers and electronics in agriculture, 175, 105537.Janssen, M.A., & Baggio, J.A. 2016. Using agent-based models to compare behavioral theories on experimental data: Application for irrigation games. Journal of environmental psychology, 46, 106-115.Jarchow, C.J., Nagler, P.L., Glenn, E.P., Ramírez-Hernández, J., & Rodríguez-Burgueño, J. E. 2017. Evapotranspiration by remote sensing: An analysis of the colorado river delta before and after the minute pulse to mexico. Ecological engineering, 106, 725-732.Jaxa-Rozen, M., Kwakkel, J. H., & Bloemendal, M. 2019. A coupled simulation architecture for agent-based/geohydrological modelling with netlogo and modflow. Environmental modelling & software, 115, 19-37.Jensen, M. E. 2007. Beyond irrigation efficiency. Irrigation science, 25(3), 233-245. Jiang, Yao, Xiong, Lvyang, Yao, Fuqi, & Xu, Zongxue. 2019. Optimizing regional irrigation water allocation for multi-stage pumping-water irrigation system based on multi-level optimization coordination model. Journal of hydrology x, 4, 100038.Jiang-Ping, H., Zhi-Xin, L., Jin-Huan, W., Lin, W., & Xiao-Ming, H. 2013. Estimation, intervention and interaction of multi-agent systems. Acta automatica sinica, 39(11), 1796-1804.Jiménez, A.F., Ravelo, D., & Gómez, J. 2010. Acquisition, storage and analysis system of phenological information for the management of pests and diseases of peach trees using precision agriculture technologies. Revista tecnura, 14, 41-51.Jiménez, A.F., Herrera, E. F., Ortiz, B. V., Ruiz, A., & Cardenas, P.F. 2018. Inference system for irrigation scheduling with an intelligent agent. Pages 1-20 of: International conference of ict for adapting agriculture to climate change. Springer.Jiménez, A.F., Ortiz, B.V., Bondesan, L., Morata, G., & Damianidis, D. 2019. Artificial neural networks for irrigation management: a case study from southern Alabama, USA. Pages 918-929 of: Precision agriculture19. Wageningen Academic Publishers.Jiménez, A.F., Cárdenas, P.F., Jiménez, F., Canales, A., & López, A. 2020a. A cyber-physical intelligent agent for irrigation scheduling in horticultural crops. Computers and electronics in agriculture, 178, 105777.Jiménez, A.F., Ortiz, B. V., Bondesan, L., Morata, G., & Damianidis, D. 2020b. Evaluation of two recurrent neural network methods for prediction of irrigation rate and timing. Transactions of the ASABE, 63(5), 1327-1348.Jiménez, A.F., Ortiz, B. V., Bondesan, L., Morata, G., & Damianidis, D. 2020c. Long short-term memory neural network for irrigation management: a case study from southern Alabama, USA. Precision agriculture, 1-18.Jiménez, A.F., Cárdenas, P.F., Canales, A., Jiménez, F., & Portacio, A. 2020d. A survey on intelligent agents and multi-agents for irrigation scheduling. Computers and electronics in agriculture, 105474.Jiménez-Carvajal, C., Ruiz-Penalver, L., Vera-Repullo, J.A., Jiménez-Buendía, M., Antolino - Merino, A., & Molina-Martínez, J.M. 2017. Weighing lysimetric system for the determination of the water balance during irrigation in potted plants. Agricultural water management, 183, 78-85.Jones, H.G. 2004. Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of experimental botany, 55(407), 2427-2436.Jones, H.G. 2006. Irrigation scheduling comparison of soil, plant and atmosphere monitoring approaches. Pages 391{403 of: V international symposium on irrigation of horticultural crops 792.Josh, W., Jason, S., twmeggs, Alexandre, M. S., Aishwarya, U., Guilherme, C., Fernando, B., Badger, The Gitter, & Himanshu, M. 2017 (Oct.). Jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3.1.Kajitani, Y., Hipel, K.W., & McLeod, A. I. 2005. Forecasting nonlinear time series with feedforward neural networks: a case study of canadian lynx data. Journal of forecasting, 24(2), 105-117.Kaluzny, S. P., Vega, S. C., Cardoso, T. P., & Shelly, A. A. 1998. Analyzing geostatistical data. Pages 67-109 of: S+ spatialstats. Springer.Kanda, Edwin Kimutai, Senzanje, Aidan, & Mabhaudhi, Tafadzwanashe. 2020. Calibration and validation of the aquacrop model for full and deficit irrigated cowpea (vigna unguiculata (l.) walp). Physics and chemistry of the earth, parts a/b/c, 102941.Karasekreter, N., Bascifti, F., & Fidan, U. 2013. A new suggestion for an irrigation schedule with an artificial neural network. Journal of experimental & theoretical artificial intelligence, 25(1), 93-104.Karlik, B., & Olgac, A. V. 2011. Performance analysis of various activation functions in generalized MLP architectures of neural networks. International journal of artificial intelligence and expert systems, 1(4), 111-122.Karthikeyan, L., Pan, M.and Wanders, N., Kumar, D. N., & Wood, E.F. 2017. Four decades of microwave satellite soil moisture observations: Part 1. a review of retrieval algorithms. Advances in water resources, 109, 106-120.Karuku, G., & Mbindah, B. 2020. Validation of aquacrop model for simulation of rainfed bulb onion (allium cepa l.) yields in west ugenya sub-county, kenya. Tropical and subtropical agroecosystems, 23(1).Kaur, K. 2016. Machine learning: Applications in indian agriculture. International journal of advanced research in computer and communication engineering, 5(4).Keyhani, A. 2001. Development of mini-gypsum blocks for soil moisture measurement and their calibration to compensate for temperature.Khosla, R., Westfall, D.G., Reich, R.M., Mahal, J.S., & Ganglo, W.J. 2010. Spatial variation and site-specific management zones. Pages 195-219 of: Geostatistical applications for precision agriculture. Springer.King, B.A., & Shellie, K.C. 2016. Evaluation of neural network modeling to predict non-waterstressed leaf temperature in wine grape for calculation of crop water stress index. Agricultural water management, 167, 38-52.Koch, P., Wujek, B., Golovidov, O., & Gardner, S. 2017. Automated hyperparameter tuning for effective machine learning. Pages 1{23 of: Proceedings of the sas global forum 2017 conference. SAS Institute Inc. Cary, NC.Koestler, A. 1968. The ghost in the machine.Krishnan, R Santhana, Julie, E Golden, Robinson, Y Harold, Raja, S, Kumar, Raghvendra, Thong, Pham Huy, et al. 2020. Fuzzy logic based smart irrigation system using internet of things. Journal of cleaner production, 252, 119902.Krupakar, H., Jayakumar, A., et al. 2016. A review of intelligent practices for irrigation prediction. arxiv preprint arxiv:1612.02893.Kubicek, P., Kozel, J., Stampach, R., & Lukas, V. 2013. Prototyping the visualization of geographic and sensor data for agriculture. Computers and electronics in agriculture, 97, 83-91.Kuhn, M., Johnson, K., et al. 2013. Applied predictive modeling. Vol. 26. Springer.Kullberg, E.G., DeJonge, K.C., & Chávez, J. 2017. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agricultural water management, 179, 64-73.Kumar, B. D., Srivastava, P., Agrawal, R., & Tiwari, V. 2017. Microcontroller based automatic plant irrigation system. International research journal of engineering and technology, 4(5), 1436-1439.Kumar, R., Shankar, V., & Jat, M.K. 2013. Soil moisture dynamics modeling considering multilayer root zone. Water science and technology, 67(8), 1778-1785. Kumar Manaswi, N. 2018. Deep learning with applications using python: chatbots and face, object, and speech recognition with tensor ow and keras.Kushwaha, D., Taram M. Taram A. 2015. A framework for technologically advanced smart agriculture scenario in india based on internet of things model.Kyte, R. 2014 (January). Climate change is a challenge for sustainable development. [Online; posted 15-January-2014].Lee, E. A., & Seshia, S. A. 2016. Introduction to embedded systems: A cyber-physical systems approach. Mit Press.Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. 2016. Smart agents in industrial cyber{physical systems. Proceedings of the ieee, 104(5), 1086-1101.Lena, B.P., Ortiz, B. V., Jiménez-López, A. F., Sanz-Sez, A., OShaughnessy, S. A., Durstock, M. K., & Pate, G. 2020. Evaluation of infrared canopy temperature data in relation to soil water-based irrigation scheduling in a humid subtropical climate. Transactions of the ASABE, 63(5), 1217-1231.Leppanen, T., Liu, M., Harjula, E., Ramalingam, A., Ylioja, J., Narhi, P., Riekki, J., & Ojala, T. 2013. Mobile agents for integration of internet of things and wireless sensor networks. Pages 14{21 of: Systems, man, and cybernetics (smc), ieee. IEEE.Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. 2014. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural water management, 146, 84-94.Li, H., Karray, F., Basir, O. A., & Song, I. 2006. Multi-agent based control of a heterogeneous system. Jaciii, 10(2), 161-167.Li, L., Sigrimis, N., Anastasiou, A., Wang, M., & Patil, VC. 2012. A roadmap from internet of things to intelligent agriculture and wot. Pages 297{304 of: Aipa2012 agro-informatics and precision agriculture conference proceedings, august 1-3, 2012, hyderabad, india.Li, M., Lu, Y., & He, B. 2013a. Collaborative signal and information processing for target detection with heterogeneous sensor networks. International journal of sensor networks and data communications, 1(1), 112.Li, M., Lu, Y., & He, B. 2013b. Collaborative signal and information processing for target detection with heterogeneous sensor networks. International journal of sensor networks and data communications, 1(1), 112.Li, X., & Yeh, A.G. 2004. Multitemporal SAR images for monitoring cultivation systems using case-based reasoning. Remote sensing of environment, 90(4), 524-534.Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., & Li, X. 2017. Mapping daily evapotranspiration based on spatiotemporal fusion of aster and MODIS images over irrigated agricultural areas in the heihe river basin, northwest china. Agricultural and forest meteorology, 244, 82-97.Liu, G. P. 2017. Predictive control of networked multiagent systems via cloud computing. Ieee transactions on cybernetics, 47(8), 1852-1859.Liu, Y. Y., Dorigo, W. A., Parinussa, R.M., de Jeu, R. A.M.,Wagner, W., McCabe, M. F., Evans, J.P., & Van Dijk, A.I.J.M. 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote sensing of environment, 123, 280-297.Lu, Z., Chai, L., Ye, Q., & Zhang, T. 2015. Reconstruction of time-series soil moisture from amsr2 and smos data by using recurrent nonlinear autoregressive neural networks. Pages 980{983 of: 2015 ieee international geoscience and remote sensing symposium (igarss). IEEE.Malamos, N., Barouchas, P.E., Tsirogiannis, I.L., Liopa-Tsakalidi, A., & Koromilas, Th. 2015. Estimation of monthly fao penman-monteith evapotranspiration in gis environment, through a geometry independent algorithm. Agriculture and agricultural science procedia, 4, 290-299.Mango, N., Makate, C., Tamene, L., Mponela, P., & Ndengu, G. 2018. Adoption of smallscale irrigation farming as a climate-smart agriculture practice and its in uence on household income in the chinyanja triangle, southern africa. Land, 7(2), 49.Marshall, M., Thenkabail, P., Biggs, T., & Post, K. 2016. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agricultural and forest meteorology, 218, 122-134.MartÍnez, Q., RodrÍguez, L.F., Medina, C., et al. 2014. Estudio de factibilidad de una planta empacadora (packing house) para cebolla de bulbo (allium cepa l.) en el distrito de riego del alto chicamocha (Boyacá). Revista colombiana de ciencias hortÍcolas, 8(2), 287-301.Masbruch, K., & Ferre, T.P.A. 2003. A time domain transmission method for determining the dependence of the dielectric permittivity on volumetric water content. Vadose zone journal, 2(2), 186-192.Matthews, R. 2006. The people and landscape model (palm): Towards full integration of human decision-making and biophysical simulation models. Ecological modelling, 194(4), 329-343.McCarthy, A. C., Hancock, N. H., & Raine, S. R. 2014. Simulation of irrigation control strategies for cotton using model predictive control within the variwise simulation framework. Computers and electronics in agriculture, 101, 135-147. Mercadal, E., Robles, S., Martín, R., Sreenan, C. J., & Borrell, J. 2011. Heterogeneous multiagent architecture for dynamic triage of victims in emergency scenarios. Pages 237-246 of: Advances on practical applications of agents and multiagent systems. Springer.Montes, G. A., & Goertzel, B. 2019. Distributed, decentralized, and democratized artificial intelligence. Technological forecasting and social change, 141, 354-358.Moorhead, J.E., Marek, G.W., Colaizzi, P.D., Gowda, P.H., Evett, S.R., Brauer, D.K., Marek, T.H., & Porter, D.O. 2017. Evaluation of sensible heat flux and evapotranspiration estimates using a surface layer scintillometer and a large weighing lysimeter. Sensors, 17(10), 2350.Morillo, J., Martín, M., Camacho, E., Díaz, J.A., & Montesinos, P. 2015. Toward precision irrigation for intensive strawberry cultivation. Agricultural water management, 151, 43-51.Moroizumi, T., & Sasaki, Y. 2008. Estimating the nonaqueous-phase liquid content in saturated sandy soil using amplitude domain reflectometry. Soil science society of america journal, 72(6), 1520-1526.Mousa, A.K., Croock, M.S., & Abdullah, M.N. 2014. Fuzzy based decision support model for irrigation system management. International journal of computer applications, 104(9).Mrinmayi, G.and Bhagyashri, D., & Atul, V. 2016. A smart irrigation system for agriculture based on wireless sensors. International journal of innovative research in science, engineering and technology, 5, 6893-6899.Mullins, C. E., Smith, K.A., & Mullins, C. 2000. Matric potential. Soil and environmental analysis: Physical methods. eds ka smith and ce mullins, 65-93.Nautiyal, M., Grabow, G.L., Miller, G.L., & Hu man, R.L. 2010. Evaluation of two smart irrigation technologies in cary, north carolina. Page 1 of: 2010 pittsburgh, pennsylvania, June 20-june 23, 2010. American Society of Agricultural and Biological Engineers.Neverova, N. 2016. Deep learning for human motion analysis. Ph.D. thesis, Universite de Lyon.Nguyen, D. C. H., Ascough II, J. C., Maier, H. R., Dandy, G. C., & Andales, A. A. 2017. Optimization of irrigation scheduling using ant colony algorithms and an advanced cropping system model. Environmental modelling & software, 97, 32-45.Nie, J., Sun, R. Z., & Li, X. H. 2014. A precision agriculture architecture with cyber-physical systems design technology. Pages 1567{1570 of: Applied mechanics and materials, vol. 543. Trans Tech Publ.Nizetic, S., Solic, P., González-de, D. L., Patrono, L., et al. 2020. Internet of things (iot): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877.Nolf, M., Beikircher, B., Rosner, S., Nolf, A., & Mayr, S. 2015. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions. New phytologist, 208(2), 625-632.Ojha, T., Misra, S., & Raghuwanshi, N. S. 2015. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and electronics in agriculture, 118, 66-84.OShaughnessy, S.A., & Evett, S.R. 2010. Canopy temperature based system effectively schedules and controls center pivot irrigation of cotton. Agricultural water management, 97(9), 1310-1316.Oshaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. 2011. Using radiation thermography and thermometry to evaluate crop water stress in soybean and cotton. Agricultural water management, 98(10), 1523-1535.OShaughnessy, S.A., Evett, S.R., Colaizzi, P.D., & Howell, T.A. 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural water management, 107, 122-132.Osroosh, Y., Peters, R. T., Campbell, C.S., & Zhang, Q. 2016. Comparison of irrigation automation algorithms for drip-irrigated apple trees. Computers and electronics in agriculture, 128, 87-99.¬Yen, S. 2018. Forecasting multivariate time series data using neural networks. M.Phil. thesis, NTNU.OShaughnessy, S. A., Evett, S. R., & Colaizzi, P. D. 2015. Dynamic prescription maps for site-specific variable rate irrigation of cotton. Agricultural water management, 159, 123-138.Pant, M., Thangaraj, R., Rani, D., Abraham, A., & Srivastava, D. K. 2010. Estimation of optimal crop plan using nature inspired metaheuristics. World journal of modelling and simulation, 6(2), 97-109.Parker, D. C., Manson, S. M., Janssen, M. A., Hofmann, M.J., & Deadman, P. 2002. Multiagent systems for the simulation of land-use and land-cover change: A review. forthcoming. In: Workshop on agent-based models of land use (nag 56406), vol. 75.Patil, P., & Desai, B. 2013. Intelligent irrigation control system by employing wireless sensor networks. International journal of computer applications, 79(11).Perea, R., Poyato, E.C., Montesinos, P., & Díaz, J.A. 2015. Irrigation demand forecasting using artificial neuro-genetic networks. Water resources management, 29(15), 5551-5567.Pereira, L. S., Allen, R. G., Smith, M., & Raes, D. 2015. Crop evapotranspiration estimation with fao56: Past and future. Agricultural water management, 147, 4-20.Pereira, L.S., & Alves, I. 2013. Crop water requirements. reference module in earth systems and environmental sciences.Pérez, C. R., & Jury, M. R. 2013. Spatial and temporal analysis of climate change in hispañola. Theoretical and applied climatology, 113(1-2), 213-224.Pérez Ortola, M. 2013. Modelling the impacts of infield soil and irrigation variability on onion yield.Peters, R.T., & Evett, S.R. 2007. Spatial and temporal analysis of crop conditions using multiple canopy temperature maps created with center-pivot-mounted infrared thermometers. Transactions of the asabe, 50(3), 919-927.Pisoni, E., Farina, M., Carnevale, C., & Piroddi, L. 2009. Forecasting peak air pollution levels using narx models. Engineering applications of artificial intelligence, 22(4-5), 593-602.Poblete-Echeverría, C.A., & Ortega-Farias, S.O. 2013. Evaluation of single and dual crop coefficients over a drip-irrigated m erlot vineyard (v itis vinifera l.) using combined measurements of sap flow sensors and an eddy covariance system. Australian journal of grape and wine research, 19(2), 249-260.Pohlmeier, A., Oros-Peusquens, A., Javaux, M., Menzel, M.I., Vanderborght, J., Ka anke, J., Romanzetti, S., Lindenmair, J., Vereecken, H., & Shah, N.J. 2008. Changes in soil water content resulting from ricinus root uptake monitored by magnetic resonance imaging. Vadose zone journal, 7(3), 1010 - 1017.Pokhrel, B., Paudel, K., & Segarra, E. 2018. Factors affecting the choice, intensity, and allocation of irrigation technologies by us cotton farmers. Water, 10(6), 706.Proulx-McInnis, S., St-Hilaire, A., Rousseau, A.N., Jutras, S., Carrer, G., & Levrel, G. 2012. Automated soil lysimeter for determination of actual evapotranspiration of a bog in quebec, canada. Journal of hydrologic engineering, 19(1), 60-68.Purnomo, H., & Guizol, P. 2006. Simulating forest plantation co-management with a multi-agent system. Mathematical and computer modelling, 44(5-6), 535-552.Rad, C.R., Hancu, O., Takacs, I.A., & Olteanu, G. 2015. Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture. Agriculture and agricultural science procedia, 6, 73-79.Raes, D., Steduto, P., HSIAO, T.C., & Fereres, E. 2018. Chapter 1: Fao crop-water productivity model to simulate yield response to water: Aquacrop: version 6.0-6.1: reference manual. Rome: FAO, 2018b. 19p.Rafea, A., & Hassen, H.and Hazman, M. 2003. Automatic knowledge acquisition tool for irrigation and fertilization expert systems. Expert systems with applications, 24(1), 49-57.Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. 2010. Cyber-physical systems: the next computing revolution. Pages 731-736 of: Design automation conference. IEEE.Ramezani Dooraki, A., & Lee, D.J. 2018. An end-to-end deep reinforcement learning-based intelligent agent capable of autonomous exploration in unknown environments. Sensors, 18(10), 3575.Ranjithan, S.R. 2005. Role of evolutionary computation in environmental and water resources systems analysis.Reddy, M.J., & Kumar, D.N. 2008. Evolving strategies for crop planning and operation of irrigation reservoir system using multi-objective differential evolution. Irrigation science, 26(2), 177-190.Rege, S., Gutiérrez, T. N., Marvuglia, A., Benetto, E., & Stilmant, D. 2015. Modelling price discovery in an agent based model for agriculture in luxembourg. Pages 91{112 of: Computing in economics and finance. Springer.Riediger, J., Breckling, B., Svoboda, N., & Schr oder, W. 2016. Modelling regional variability of irrigation requirements due to climate change in northern germany. Science of the total environment, 541, 329-340.Rodríguez-Ortega, W.M., Martínez, V., Rivero, R.M., Camara-Zapata, J.M., Mestre, T., & García-Sánchez, F. 2017. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agricultural water management, 183, 158-168.Romero, R., Muriel, J.L.and García, I., & de la Peña, D. M. 2012. Research on automatic irrigation control: State of the art and recent results. Agricultural water management, 114, 59-66.Romero Vicente, R. 2011. Hydraulic modelling and control of the soil-plant-atmosphere continuum in woody crops.Ruiz, L. Gonzaga B., Cuellar, M. P., Calvo-Flores, M. D., & Jiménez, M. 2016. An application of non-linear autoregressive neural networks to predict energy consumption in public buildings. Energies, 9(9), 684.Russell, S. J., & Norvig, P. 2016. Artificial intelligence: a modern approach. Malaysia; Pearson Education Limited.Sabzi, S., Abbaspour-Gilandeh, Y., & Javadikia, H. 2017. Machine vision system for the automatic segmentation of plants under different lighting conditions. Biosystems engineering, 161, 157-173. Sakellariou, I., Kefalas, P., & Stamatopoulou, I. 2008. Enhancing netlogo to simulate bdi communicating agents. Pages 263{275 of: Hellenic conference on artificial intelligence. Springer.Salazar, R., Rangel, J.C., Pinzón, C., & Rodríguez, A. 2013a. Irrigation system through intelligent agents implemented with arduino technology. Adcaij: Advances in distributed computing and artificial intelligence journal, 2(3), 29-36.Salazar, R., Rangel, J. C., Pinzón, C., & Rodríguez, A. 2013b. Irrigation system through intelligent agents implemented with arduino technology.Sample, D., Owen, J. S., Fields, J. S., Barlow, S., et al. 2016. Understanding soil moisture sensors: A fact sheet for irrigation professionals in virginia.Seidel, S. J.,Werisch, S., Barfus, K.,Wagner, M., Sch utze, N., & Laber, H. 2016. Field evaluation of irrigation scheduling strategies using a mechanistic crop growth model. Irrigation and drainage, 65(2), 214-223.Selmani, Abdelouahed, Oubehar, Hassan, Outanoute, Mohamed, Ed-Dahhak, Abdelali, Guerbaoui, Mohammed, Lachhab, Abdeslam, & Bouchikhi, Benachir. 2019. Agricultural cyberphysical system enabled for remote management of solar-powered precision irrigation. Biosystems engineering, 177, 18-30.Shabani, A., Ghaary, K.A., Sepaskhah, A.R., & Kamgar-Haghighi, A.A. 2017. Using the artificial neural network to estimate leaf area. Scientia horticulturae, 216, 103-110.Sha, U., Mumtaz, R., García-Nieto, J., Hassan, S. A., Zaidi, S. A. R., & Iqbal, N. 2019. Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796.Shamshirband, S., & Zafari, A. 2012. Evaluation of the performance of intelligent spray networks based on fuzzy logic. Research journal of recent sciences issn, 2277, 2502.Sharp, R.E., & Davies, W.J. 1985. Root growth and water uptake by maize plants in drying soil. Journal of experimental botany, 36(9), 1441-1456.Shekhar, Y., Dagur, E., Mishra, S., & Sankaranarayanan, S. 2017. Intelligent iot based automated irrigation system. International journal of applied engineering research, 12(18), 7306-7320.Shock, C. C., & Wang, F.X. 2011. Soil water tension, a powerful measurement for productivity and stewardship. Hortscience, 46(2), 178-185.Skansi, S. 2018. Introduction to deep learning: from logical calculus to artificial intelligence. Springer.Skobelev, P., Simonova, E. V., Ivanov, A., Mayorov, I., Travin, V., & Zhilyaev, A. 2014. Real time scheduling of data transmission sessions in a microsatellites swarm and ground stations network based on multi-agent technology. Pages 153{159 of: Ijcci (ecta).Skobelev, P., Simonova, E., & Zhilyaev, A. 2016. Using multi-agent technology for the distributed management of a cluster of remote sensing satellites. Complex syst: Fundament appl, 90, 287.Smajstrla, A. G. 2008. Technical manual: Agricultural field scale irrigation requirements simulation (afsirs) model, version 5.5. St. Johns River Water Management District.Smith, D., & Peng, W. 2009. Machine learning approaches for soil classification in a multi-agent deficit irrigation control system. Pages 1{6 of: 2009 ieee international conference on industrial technology. IEEE.Smith, M., Steduto, P., et al. 2012. Yield response to water: the original fao water production function. Fao irrigation and drainage paper, 6-13.Smith, R. 2011a. Review of precision irrigation technologies and their applications. Tech. rept. University of Southern Queensland.Smith, R. 2011b. Review of precision irrigation technologies and their applications. Tech. rept. University of Southern Queensland.Soane, B.D. 2006. Irrigation and drainage performance assessment: Practical guidelines. by mg bos, ma burton and dj molden. wallingford, uk: Cabi publishing (2005), pp. 176,£ 40.00. isbn 0-85-199-967-0. Experimental agriculture, 42(1), 125-125.Spectrum Technologies, Inc. 2011. Waterscout sm100 soil moisture sensor { product manual, item 6460: Aurora, il, usa 20 pp.Spiliotopoulos, M., & Loukas, A. 2019. Hybrid methodology for the estimation of crop coefficients based on satellite imagery and ground-based measurements. Water, 11(7), 1364.Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958.Subedi, A., & Chavez, J.L. 2015. Crop evapotranspiration (et) estimation models: a review and discussion of the applicability and limitations of et methods. Journal of agricultural science, 7(6), 50.Tal, A. 2016. Rethinking the sustainability of israels irrigation practices in the drylands. Water research, 90, 387-394.Talavera, J. M., Tobón, L. E., Gómez, J. A. and Culman, M. A., Aranda, J.M., Parra, D. T., Quiroz, L. A., Hoyos, A., & Garreta, L. E. 2017. Review of iot applications in agro-industrial and environmental fields. Computers and electronics in agriculture, 142, 283-297.Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. 2020. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial intelligence in agriculture.Todorovic, M., Lamaddalena, N., Trisorio Liuzzi, G., et al. 2008. Modern strategies and tools for water saving and drought mitigation in southern italy. Drought management: Scientific and technological innovation.Tolk, A., Diallo, S.D., Ryzhov, I.O., Yilmaz, L., Buckley, S., & Miller, J.A. 2014. Evaluation of kriging-based methods for simulation optimization with homogeneous noise.Touati, F., Al-Hitmi, M., & Benhmed, K.and Tabish, R. 2013. A fuzzy logic based irrigation system enhanced with wireless data logging applied to the state of qatar. Computers and electronics in agriculture, 98, 233-241.Trencansky, I., & Cervenka, R. 2005. Agent modeling language (aml): A comprehensive approach to modeling mas. Informatica-ljubljana, 29(4), 391.Tsang, S.W., & Jim, C. Y. 2016a. Applying artificial intelligence modeling to optimize green roof irrigation. Energy and buildings, 127, 360-369.Tsang, S.W., & Jim, C.Y. 2016b. Applying artificial intelligence modeling to optimize green roof irrigation. Energy and buildings, 127, 360-369.Van Der Maaten, E., van der Maaten-Theunissen, M., Smiljanic, M., Rossi, S., Simard, S., Wilmking, M., Deslauriers, A., Fonti, P., von Arx, G., & Bouriaud, O. 2016. dendrometer: Analyzing the pulse of trees in r. Dendrochronologia, 40, 12-16.Van Genuchten, R. 1978. Calculating the unsaturated hydraulic conductivity with a new closedform analytical model. Research report, no. 78-wr-08, princeton university.Van Rossum, G., & Drake, F. L. 2009. Python 2.6 reference manual.Vellidis, G., Liakos, V., Porter, W., Tucker, M., & Liang, X. 2016. A dynamic variable rate irrigation control system. In: Proceedings of the 13th international conference on precision agriculture, louis, mi, usa, vol. 31.Viani, F., Bertolli, M., Salucci, M., & Polo, A. 2017. Low-cost wireless monitoring and decision support for water saving in agriculture. Ieee sensors journal, 17(13), 4299-4309.Villarrubia, G., Paz, J.F., Iglesia, D.H., & Bajo, J. 2017. Combining multi-agent systems and wireless sensor networks for monitoring crop irrigation. Sensors, 17(8), 1775.Von Rosing, M., White, S., Cummins, F., & de Man, H. 2015. Business process model and notation-bpmn.Wang, X., Liu, Y., Sun, C.J., Wang, B., & Wang, X. 2015. Predicting polarities of tweet by composing word embeddings with long short-term memory. Pages 1343{1353 of: Proceedings of the 53rd annual meeting of the association for computational linguistics and the 7th international joint conference on natural language processing (volume 1: Long papers).Wanjura, D.F., Upchurch, D.R., & Mahan, J.R. 2004. Establishing differential irrigation levels using temperature-time thresholds. Applied engineering in agriculture, 20(2), 201.Wanyama, T., & Far, B. 2017. Multi-agent system for irrigation using fuzzy logic algorithm and open platform communication data access. World academy of science, engineering and technology, international journal of computer, electrical, automation, control and information engineering, 11(6), 691-696.Wardlaw, R., & Bhaktikul, K. 2004. Application of genetic algorithms for irrigation water scheduling. Irrigation and drainage, 53(4), 397-414.Warner, J., & Sexauer, J. 2017. scikit fuzzy, twmeggs, ams, a. Unnikrishnan, g. castelo, f. batista, tg badger, & h. mishra (2017, october). jdwarner/scikit-fuzzy: Scikit-fuzzy 0.3, 1.Weather, S. 2018. Average weather in samson alabama, united states. urlhttps://weatherspark.com/y/14512/Average-Weather-in-Samson-Alabama-United-States- Year-Round.Weather, S. 2020. Average weather in nobsa, colombia states. urlhttps://weatherspark.com/y/25267/Average-Weather-in-Nobsa-Colombia-Year-Round.Weiss, G. 2013. Multiagent systems. MIT press.Weller, U., Leuther, F., Schl uter, S., & Vogel, H. 2018. Quantitative analysis of water infiltration in soil cores using x-ray. Vadose zone journal, 17(1).Werbos, P. J. 1990. Backpropagation through time: what it does and how to do it. Proceedings of the ieee, 78(10), 1550-1560.Wilensky, U., & Rand, W. 2015. An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with netlogo. MIT Press.Winter, J.M., Young, C.A., Mehta, V.K., Ruane, A.C., Azarderakhsh, M., Davitt, A., McDonald, K., Haden, V.R., & Rosenzweig, C. 2017. Integrating water supply constraints into irrigated agricultural simulations of california. Environmental modelling & software, 96, 335-346.Wooldridge, M.J., & Jennings, N. R. 1995. Intelligent agents: Theory and practice. The knowledge engineering review, 10(2), 115-152.Xu, J., Ma, X., Logsdon, S. D., & Horton, R. 2012. Short, multineedle frequency domain reflectometry sensor suitable for measuring soil water content. Soil science society of America journal, 76(6), 1929-1937.Ye-ping, Z., & Sheng-ping, L. 2011a. Technology of agent-based crop collaborative simulation and management decision. Pages 158{162 of: Data mining and intelligent information technology applications (icmia), 2011 3rd international conference on. IEEE.Ye-ping, Z., & Sheng-ping, L. 2011b. Technology of agent-based crop collaborative simulation and management decision. Pages 158{162 of: The 3rd international conference on data mining and intelligent information technology applications. IEEE.Zacepins, A., Stalidzans, E., & Meitalovs, J. 2012. Application of information technologies in precision apiculture. In: Proceedings of the 13th international conference on precision agriculture (icpa 2012).Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. 2019. Smart farming iot platform based on edge and cloud computing. Biosystems engineering, 177, 4-17.Zhang, C., & Guo, P. 2018. Flfp: A fuzzy linear fractional programming approach with doublesided fuzziness for optimal irrigation water allocation. Agricultural water management, 199, 105-119.Zhang, C., & Noguchi, N. 2017. Development of a multi-robot tractor system for agriculture field work. Computers and electronics in agriculture, 142, 79-90.Zhang, D., Lin, Junqiang, Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X., & Zhuang, J. 2018a. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm. Journal of hydrology, 565, 720-736.Zhang, J., Zhu, Y., Zhang, X., Ye, M., & Yang, J. 2018b. Developing a long short-term memory (lstm) based model for predicting water table depth in agricultural areas. Journal of hydrology, 561, 918-929.Zhao, T., Ding, R., & Man, Z. 2011. Long-range monitoring system of irrigated area wateruse based on multi-agent. Pages 580{583 of: Mechatronic science, electric engineering and computer (mec), 2011 international conference on. IEEE.Zhao, T., Stark, B., Chen, Y., Ray, A.L., & Doll, D. 2017. Challenges in water stress quantification using small unmanned aerial system (suas): Lessons from a growing season of almond. Journal of intelligent & robotic systems, 88(2-4), 721-735.Zhemukhov, R. S.h., & Zhemukhova, M. M. 2016. System of mathematical models to manage water and land resources at the regional level in case of anthropogenous climate changes taking into account economic indicators and ecological consequences. Pages 256{261 of: Quality management, transport and information security, information technologies (it&mq&is), ieee conference on. IEEE.EspecializadaModelo Basado en Agentes Inteligentes como soporte a la gestión del riego en cultivos agrícolasGobernación de BoyacáCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79927/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79927/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL74184838.2020.pdf74184838.2020.pdfTesis de Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaapplication/pdf13282441https://repositorio.unal.edu.co/bitstream/unal/79927/2/74184838.2020.pdfabfcbe1d5a20268a0976a99d981bbf19MD52THUMBNAIL74184838.2020.pdf.jpg74184838.2020.pdf.jpgGenerated Thumbnailimage/jpeg3843https://repositorio.unal.edu.co/bitstream/unal/79927/4/74184838.2020.pdf.jpg65cad70a35983dafe15e1745ea164044MD54unal/79927oai:repositorio.unal.edu.co:unal/799272024-07-27 00:14:58.874Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==