Producción de polioles a partir de aceite de palma alto oleico
ilustraciones, gráficas, tablas
- Autores:
-
Bohorquez Malaver, Wilson Felipe
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82996
- Palabra clave:
- 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Aceites de palmas
Tecnología química
palm oils
Chemical technology
Epoxidation
Hydroxylation
high oleic palm oil
polyurethane foams
NIR
Epoxidación
Hidroxilación
Aceite de palma alto oleico
Aceite vegetal
Vegetable oils
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_1da8b0337d18765eb8d82a68bf501f58 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82996 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Producción de polioles a partir de aceite de palma alto oleico |
dc.title.translated.eng.fl_str_mv |
Production of polyols from high oleic palm oil |
title |
Producción de polioles a partir de aceite de palma alto oleico |
spellingShingle |
Producción de polioles a partir de aceite de palma alto oleico 660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales Aceites de palmas Tecnología química palm oils Chemical technology Epoxidation Hydroxylation high oleic palm oil polyurethane foams NIR Epoxidación Hidroxilación Aceite de palma alto oleico Aceite vegetal Vegetable oils |
title_short |
Producción de polioles a partir de aceite de palma alto oleico |
title_full |
Producción de polioles a partir de aceite de palma alto oleico |
title_fullStr |
Producción de polioles a partir de aceite de palma alto oleico |
title_full_unstemmed |
Producción de polioles a partir de aceite de palma alto oleico |
title_sort |
Producción de polioles a partir de aceite de palma alto oleico |
dc.creator.fl_str_mv |
Bohorquez Malaver, Wilson Felipe |
dc.contributor.advisor.spa.fl_str_mv |
Orjuela Londoño, Álvaro García Núñez, Jesús Alberto |
dc.contributor.author.spa.fl_str_mv |
Bohorquez Malaver, Wilson Felipe |
dc.contributor.researchgroup.spa.fl_str_mv |
Diseño de procesos químicos y bioquímicos |
dc.contributor.orcid.spa.fl_str_mv |
0000-0001-6735-2412 |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales |
topic |
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales Aceites de palmas Tecnología química palm oils Chemical technology Epoxidation Hydroxylation high oleic palm oil polyurethane foams NIR Epoxidación Hidroxilación Aceite de palma alto oleico Aceite vegetal Vegetable oils |
dc.subject.agrovoc.spa.fl_str_mv |
Aceites de palmas Tecnología química |
dc.subject.agrovoc.eng.fl_str_mv |
palm oils Chemical technology |
dc.subject.proposal.eng.fl_str_mv |
Epoxidation Hydroxylation high oleic palm oil polyurethane foams NIR |
dc.subject.proposal.spa.fl_str_mv |
Epoxidación Hidroxilación Aceite de palma alto oleico |
dc.subject.unesco.spa.fl_str_mv |
Aceite vegetal |
dc.subject.unesco.eng.fl_str_mv |
Vegetable oils |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-01-17T21:24:10Z |
dc.date.available.none.fl_str_mv |
2023-01-17T21:24:10Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82996 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82996 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Aarkstore Market Research. (2019). Globla Aliphatic Polyester Polyol Market. https://www.24chemicalresearch.com/download-sample/79382/global-aliphatic-polyester-polyol-2021-107 Al-Mulla, E. A. J., Yunus, W. Md. Z. W., Ibrahim, N. A. B., & Rahman, M. Z. Ab. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942–1946. https://doi.org/10.1007/s10853-009-4185-1 Al-Suod, H., Ligor, M., Rațiu, I.-A., Rafińska, K., Górecki, R., & Buszewski, B. (2017). A window on cyclitols: Characterization and analytics of inositols. Phytochemistry Letters, 20, 507–519. https://doi.org/10.1016/j.phytol.2016.12.009 Ang, K. P., Lee, C. S., Cheng, S. F., & Chuah, C. H. (2014). Synthesis of palm oil-based polyester polyol for polyurethane adhesive production. Journal of Applied Polymer Science, 131(6), n/a-n/a. https://doi.org/10.1002/app.39967 ASTM. (2016). Standard Test Methods for Polyurethane Raw Materials: Determination of Viscosity of Polyols. ASTM D4878-15 https://doi.org/10.1520/D4878-15 ASTM. (2017). Polyurethane Raw Materials: Determining Hydroxyl Numer of Polyols by Near Infrared (NIR) Spectroscopy. http://doi.org/10.1520/D6342-22 ASTM. (2018). Standard Test Methods for Polyurethane Raw Materials: Determination of Gardner and APHA Color of Polyols. ASTM D4890-18. https://doi.org/10.1520/D4890-18 ASTM. (2019). Standard Test Method for Epoxy Content of Epoxy Resins. American Society for Testing and Materials. ASTM D1652-11(2019) https://doi.org/10.1520/D1652-11R19 ASTM. (2021). Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols. ASTM D4274-21 https://doi.org/10.1520/D4274-21 Bayer Material Science AG. (2012). Ullmann’s Encyclopedia of Industrial Chemistry (pp. 546–600). Wiley VCH Verlag GmbH &Co. https://doi.org/10.1002/14356007 Beroe. (2020). Polyester and Polyether Polyols Category Intelligence. https://www.beroeinc.com/category-intelligence/polyester-and-polyether-polyols-market/ Bloomerg. (2019). Polyol Market Size Worth USD 45.17 Billion by 2025. : https://www.bloomberg.com/press-releases/2019-05-07/polyol-market-size-worth-usd-45-17-billion-by-2025-cagr-8-5-grand-view-research-inc. Burton, K. W. C., & Nickless, G. (1987). Optimisation via simplex. Chemometrics and Intelligent Laboratory Systems, 1(2), 135–149. https://doi.org/10.1016/0169-7439(87)80117-X de Lucas Freile, A. (2018). Síntesis y formulación de nuevas espumas de poliuretano flexibles con propiedades mejoraadas [Tesis doctoral]. Universitat d’Alacant. Derawi, D., & Salimon, J. (2010). Optimization on Epoxidation of Palm Olein by Using Performic Acid. E-Journal of Chemistry, 7(4), 1440–1448. https://doi.org/10.1155/2010/384948 Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38–79. https://doi.org/10.1080/15583724.2011.640443 Dinda, S., Patwardhan, A. v., Goud, V. v., & Pradhan, N. C. (2008a). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015 Dinda, S., Patwardhan, A. v., Goud, V. v., & Pradhan, N. C. (2008b). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015 Dumont, M.-J., Kharraz, E., & Qi, H. (2013). Production of polyols and mono-ols from 10 North-American vegetable oils by ozonolysis and hydrogenation: A characterization study. Industrial Crops and Products, 49, 830–836. https://doi.org/10.1016/j.indcrop.2013.07.016 FedePalma. (2021). Evolucion historica anual del fruto procesado, el aceite de palma y el palmiste extraídos. http://sispaweb.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccion Ghosh, S., & Sudha, M. L. (2012). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372–379. https://doi.org/10.3109/09637486.2011.627846 Gil, J., Herrera, M., Duitama, J., Sarria, G., Restrepo, S., & Romero, H. M. (2020). Genomic Variability of Phytophthora palmivora Isolates from Different Oil Palm Cultivation Regions in Colombia. Phytopathology®, 110(9), 1553–1564. https://doi.org/10.1094/PHYTO-06-19-0209-R Grand view research. (2018). Polyols Market Size, Share & Trends Analysis Report by product, by application and segment forecasts, 2018 – 2025. Chapter 4. https://www.grandviewresearch.com/industry-analysis/polyols-market Grand View Research. (2021). Natural Oil Polyols Market Size, Share & Trends Analysis. https://www.grandviewresearch.com/industry-analysis/natural-oil-polyols-nop-market Guo, A., Demydov, D., Zhang, W., & Petrovic, Z. S. (2002). Polyols and Polyurethanes from Hydroformylation of Soybean Oil. Journal of Polymers and the Environment, 10(1/2), 49–52. https://doi.org/10.1023/A:1021022123733 Guo, A., & Petrovic, Z. (2005). Vegetable Oils-Based Polyols. In S. Z. Erhan (Ed.), Industrial uses of vegetable oils (1st ed., pp. 110–130). AOCS Press. IAL Consultants. (2019). Global Market for Aromatic Polyester Polyols 2019. IHS Markit. (2018a). Chemical Econimic Handbook: Polyether Polyols for Urethanes. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook.html. IHS Markit. (2018b). Chemical Economics Handbook: Polyether Polyols for Urethanes. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook IHS Markit. (2018c, December). Polyether Polyols for Urethanes. Https://Ihsmarkit.Com/Products/Polyether-Polyols-Urethanes-Chemical-Economics-Handbook.Html. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook.html Ionescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes. Rapra Technology Limited. IHS Markit. (2019). Chemical Economic Handbook: Polyester Polyols. https://ihsmarkit.com/products/polyester-plyols-chemical-economics-handbook.html Ionescu, M., Radojčić, D., Wan, X., Petrović, Z. S., & Upshaw, T. A. (2015). Functionalized vegetable oils as precursors for polymers by thiol-ene reaction. European Polymer Journal, 67, 439–448. https://doi.org/10.1016/j.eurpolymj.2014.12.037 Jaengmee, T., Pongmuksuwan, P., & Kitisatorn, W. (2021). Development of bio-based epoxy resin from palm oil. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.10.059 Jalil, M. J. (2019). Optimization of Palm Oleic Acid Epoxidation via in Situ Generated Performic Acid Using Taguchi Orthogonal Array Design and the Study of Reaction Kinetics. Smart Science, 7(4), 252–259. https://doi.org/10.1080/23080477.2019.1663392 Janković, M. R., Govedarica, O. M., & Sinadinović-Fišer, S. v. (2020). The epoxidation of linseed oil with in situ formed peracetic acid: A model with included influence of the oil fatty acid composition. Industrial Crops and Products, 143. https://doi.org/10.1016/j.indcrop.2019.111881 Kurańska, M., Beneš, H., Prociak, A., Trhlíková, O., Walterová, Z., & Stochlińska, W. (2019). Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117615 Leveneur, S., Zheng, J., Taouk, B., Burel, F., Wärnå, J., & Salmi, T. (2014). Interaction of thermal and kinetic parameters for a liquid-liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1449–1458. https://doi.org/10.1016/j.jtice.2014.01.015 Li, Y., Luo, X., & Hu, S. (2015a). Bio-based Polyols and Polyurethanes. Springer International Publishing. https://doi.org/10.1007/978-3-319-21539-6 Li, Y., Luo, X., & Hu, S. (2015b). Polyols and Polyurethanes from Vegetable Oils and Their Derivatives (pp. 15–43). https://doi.org/10.1007/978-3-319-21539-6_2 Lim, S. (2018a). Drivers for high Oleics. Oils and Fats International, September, 18–20. Lim, S. (2018b). Drivers for high oleics. Oils and Fats International, 18–20. Lumcharoen, D., & Saravari, O. (2014). Preparation and Characterization of Flexible Polyurethane Foams from Palm Oil-Based Polyol. Advanced Materials Research, 911, 352–356. https://doi.org/10.4028/www.scientific.net/AMR.911.352 Maisonneuve, L., Chollet, G., Grau, E., & Cramail, H. (2016). Vegetable oils: a source of polyols for polyurethane materials. OCL, 23(5), D508. https://doi.org/10.1051/ocl/2016031 Mohd Nor, N., Derawi, D., & Salimon, J. (2018a). The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design. Sains Malaysiana, 47(07), 1359–1367. https://doi.org/10.17576/jsm-2018-4707-02 Mohd Nor, N., Derawi, D., & Salimon, J. (2018b). The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design. Sains Malaysiana, 47(07), 1359–1367. https://doi.org/10.17576/jsm-2018-4707-02 Mondragon, A., & Pinilla, C. (2015). Aceite de palma alto oleico: propiedades físico-químicas y beneficios para la salud humana. Palmas, 36, 57–66. Mondragón, A., & Pinilla, C. (2015). High oleic palm oil: Physicochemical properties and benefits for human health (Spanish). Palmas, 36(4), 57–66. Moore, Z. (2019, June 19). US polyether polyol prices move higher on stronger propylene. 1independent Commodity Intellignece Services (ICIS). https://www.icis.com/explore/resources/news/2019/06/12/10377708/us-polyether-polyol-prices-move-higher-on-stronger-propylene Nohra, B., Candy, L., Blanco, J.-F., Guerin, C., Raoul, Y., & Mouloungui, Z. (2013). From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. Macromolecules, 46(10), 3771–3792. https://doi.org/10.1021/ma400197c OECD-FAO. (2018). Agricultural Outlook 2018-2027. http://www.fao.org/3/i9166en/I9166EN.pdf Oertel, G., & Abele, L. (1994). Polyurethane handbook: chemistry, raw materials, processing, application, properties. Hanser Publishers. Olivero, J. A. (2019). The high oleic option. Olis Nad Fats International, January, 27–29. Omonov, T. S., & Curtis, J. M. (2016). Plant-oil based epoxy intermediates for polymers. In S. A. Madbouly, C. Zhang, & M. R. Kessler (Eds.), Bio-Based Plant Oil Polymers and Composites (pp. 99–125). Elsevier. PasticsEurope. (2018). An analysis of European plastics production, demand and waste data. Https://Plasticseurope.Org/Wp-Content/Uploads/2021/10/2018-Plastics-the-Facts.Pdf. Petrović, Z. S., Cvetković, I., Hong, D., Wan, X., Zhang, W., Abraham, T. W., & Malsam, J. (2010). Vegetable oil‐based triols from hydroformylated fatty acids and polyurethane elastomers. European Journal of Lipid Science and Technology, 112(1), 97–102. https://doi.org/10.1002/ejlt.200900087 Petrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2008). Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2), 275–281. https://doi.org/10.1002/pi.2340 Pfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem, 4(6), 703–717. https://doi.org/10.1002/cssc.201000378 Prescient & Strategic Intelligence. (2021). Global Natural Oil Polyols Market Size, Share, Development, Growth and Demand Forecast to 2030. https://www.psmarketresearch.com/market-analysis/natural-oil-polyols-market Prociak, A., Malewska, E., Kurańska, M., Bąk, S., & Budny, P. (2018). Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Industrial Crops and Products, 115, 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008 Research and Markets. (2019). Polyols Market by Type (Polyether Polyols and Polyester Polyols), Application (Flexible Polyurethane Foam, Rigid Polyurethane Foam, CASE), and Region (APAC, Europe, North America, South America and Middle East & Africa) - Global Forecast to 2024. https://www.researchandmarkets.com/reports/4774730/polyols-market-by-type-polyether-polyols-and Romero, H. M., Daza, E., Ayala-Díaz, I., & Ruiz-Romero, R. (2021). High-Oleic Palm Oil (HOPO) Production from Parthenocarpic Fruits in Oil Palm Interspecific Hybrids Using Naphthalene Acetic Acid. Agronomy, 11(2), 290. https://doi.org/10.3390/agronomy11020290 Rüsch gen. Klaas, M., & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Industrial Crops and Products, 9(2), 125–132. https://doi.org/10.1016/S0926-6690(98)00023-5 Ryberg, M. W., Laurent, A., & Hauschild, M. (2018). Mapping of global plastics value chain and plastics losses to the environment. Shahido, F. (2005). Bailey’s Industrial Oil and Fat Products Edible Oil and Fat products (6th ed., Vol. 5). Wiley. Sicex. (2019). Imports by tariff subheadings. Skoczinski, P., Carus, M., de Guzman, D., Käb, H., Chinthapalli, R., Ravenstijn, J., Baltus, W., & Raschka, A. (2021). Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. Http://Bio-Based.Eu/Downloads/Bio-Based-Building-Blocks-and-Polymers-Global-Capacities-Production-and-Trends-2020-2025/ . Spendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation. Technometrics, 4(4), 441–461. https://doi.org/10.1080/00401706.1962.10490033 Stadler, B. M., Wulf, C., Werner, T., Tin, S., & de Vries, J. G. (2019). Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 9(9), 8012–8067. https://doi.org/10.1021/acscatal.9b01665 Tan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581–1590. https://doi.org/10.1080/03602559.2010.512338 Transparency Market Research. (2017). Polyehter Polyols Market. https://www.transparencymarketresearch.com/polyether-polyols-market.html Vanbésien, T., Monflier, E., & Hapiot, F. (2016). Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development. European Journal of Lipid Science and Technology, 118(1), 26–35. https://doi.org/10.1002/ejlt.201500196 Vianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., & Maschio, G. (2018). Study of Soybean Oil Epoxidation: Effects of Sulfuric Acid and the Mixing Program. Industrial and Engineering Chemistry Research, 57(34), 11517–11525. https://doi.org/10.1021/acs.iecr.8b01109 Yarbro, L. A., & Deming, S. N. (1974). Selection and preprocessing of factors for simplex optimization. Analytica Chimica Acta, 73(2), 391–398. https://doi.org/10.1016/S0003-2670(01)85476-3 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 99 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82996/5/license.txt https://repositorio.unal.edu.co/bitstream/unal/82996/7/Tesis%20Maestria%20Wilson%20Felipe%20Bohorquez%20Malaver.pdf https://repositorio.unal.edu.co/bitstream/unal/82996/8/Tesis%20Maestria%20Wilson%20Felipe%20Bohorquez%20Malaver.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a a9e6d3859b87f617da97b679aab643dd 04d62c9dc70e8431f2f1889865b603a3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089858710241280 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orjuela Londoño, Álvaroa583c5015d0fe88a7d62aa2891228b13García Núñez, Jesús Alberto0e7a451647f74b6efbf5095a965f6ebf600Bohorquez Malaver, Wilson Felipe490a8a18dff5a2d9034b29418ee96aaa600Diseño de procesos químicos y bioquímicos0000-0001-6735-24122023-01-17T21:24:10Z2023-01-17T21:24:10Z2021https://repositorio.unal.edu.co/handle/unal/82996Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasThe growing concerns regarding the impact of plastics on the environment and the trends towards the consumption of bioplastics and biopolymers have driven the use of vegetable polyols as biobased monomers, particularly those produced from vegetable oils with a high degree of unsaturations. In this direction, and from a preliminary study of the national and international market for biopolymers and natural polyols, the necessary stages for the production of oleochemical polyols from high oleic palm oil (HOPO) were explored. First, the oil was characterized and its epoxidation was studied, determining the best reaction conditions using a simplex optimization algorithm. This made it possible to obtain an epoxide with an oxirane index of 3.49 gOxirane Oxygen/gOil and a high selectivity (>80%). Subsequently, the hydroxylation reaction of epoxidized HOPO with ethylene glycol was studied, determining a suitable kinetic model for subsequent feasibility studies and industrial scale up. To track reaction progress, the hydroxyl and oxirane values were measured, for which a near-infrared (NIR) measurement technique was developed. This technique is safer and more environmentally friendly than traditional titration methods, in addition to demonstrating good precision and reliability. Based on the reaction experiments it was observed that the kinetic model is first order with respect to the oxirane oxygen content in the epoxidized HOPO, and second order with respect to ethylene glycol. In general terms, as a result of the hydroxylation, polyols with a hydroxyl index of up to 245 mg KOH/g and a functionality of ~5 mol OH/mol polyol could be obtained. Finally, to demonstrate its potential use, flexible polyurethane foams were successfully manufactured with the HOPO-based polyol.Las crecientes preocupaciones y tendencias en el consumo de bioplásticos y polímeros impulsaron el desarrollo de polioles a partir de aceite de palma alto en oleico. En esta tesis de maestría se estudiaron los pasos necesarios para producir polioles, así como el mercado nacional e internacional de biopolímeros y polioles naturales. En primer lugar, se caracterizó el aceite y se estudió la epoxidación, donde se determinaron los mejores parámetros de reacción con un algoritmo de optimización simplex, obteniendo un producto con 3,49 g de oxígeno oxirano/g de aceite y una alta selectividad (<80%). Posteriormente se estudió la reacción de hidroxilación determinando su modelo cinético. se demostró que el modelo cinético es de primer orden con respecto al contenido de oxígeno del oxirano en el HOPO Epoxidado, y de segundo orden con respecto al etilenglicol. Se produjo un poliol con un índice de hidroxilo de 230 mg KOH/g. Finalmente, con el poliol producido, se fabricaron con éxito espumas de poliuretano flexibles. Para llevar a cabo la medición del índice de hidroxilo y oxirano se desarrolló una técnica de medición mediante NIR utilizando una regresión PLS, la técnica es amigable con el medio ambiente, precisa y confiable. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ingeniería - Ingeniería QuímicaBiorrefinerías-Biocombustiblesxvii, 99 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesAceites de palmasTecnología químicapalm oilsChemical technologyEpoxidationHydroxylationhigh oleic palm oilpolyurethane foamsNIREpoxidaciónHidroxilaciónAceite de palma alto oleicoAceite vegetalVegetable oilsProducción de polioles a partir de aceite de palma alto oleicoProduction of polyols from high oleic palm oilTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAarkstore Market Research. (2019). Globla Aliphatic Polyester Polyol Market. https://www.24chemicalresearch.com/download-sample/79382/global-aliphatic-polyester-polyol-2021-107Al-Mulla, E. A. J., Yunus, W. Md. Z. W., Ibrahim, N. A. B., & Rahman, M. Z. Ab. (2010). Properties of epoxidized palm oil plasticized polytlactic acid. Journal of Materials Science, 45(7), 1942–1946. https://doi.org/10.1007/s10853-009-4185-1Al-Suod, H., Ligor, M., Rațiu, I.-A., Rafińska, K., Górecki, R., & Buszewski, B. (2017). A window on cyclitols: Characterization and analytics of inositols. Phytochemistry Letters, 20, 507–519. https://doi.org/10.1016/j.phytol.2016.12.009Ang, K. P., Lee, C. S., Cheng, S. F., & Chuah, C. H. (2014). Synthesis of palm oil-based polyester polyol for polyurethane adhesive production. Journal of Applied Polymer Science, 131(6), n/a-n/a. https://doi.org/10.1002/app.39967ASTM. (2016). Standard Test Methods for Polyurethane Raw Materials: Determination of Viscosity of Polyols. ASTM D4878-15 https://doi.org/10.1520/D4878-15ASTM. (2017). Polyurethane Raw Materials: Determining Hydroxyl Numer of Polyols by Near Infrared (NIR) Spectroscopy. http://doi.org/10.1520/D6342-22ASTM. (2018). Standard Test Methods for Polyurethane Raw Materials: Determination of Gardner and APHA Color of Polyols. ASTM D4890-18. https://doi.org/10.1520/D4890-18ASTM. (2019). Standard Test Method for Epoxy Content of Epoxy Resins. American Society for Testing and Materials. ASTM D1652-11(2019) https://doi.org/10.1520/D1652-11R19ASTM. (2021). Standard Test Methods for Testing Polyurethane Raw Materials: Determination of Hydroxyl Numbers of Polyols. ASTM D4274-21 https://doi.org/10.1520/D4274-21Bayer Material Science AG. (2012). Ullmann’s Encyclopedia of Industrial Chemistry (pp. 546–600). Wiley VCH Verlag GmbH &Co. https://doi.org/10.1002/14356007Beroe. (2020). Polyester and Polyether Polyols Category Intelligence. https://www.beroeinc.com/category-intelligence/polyester-and-polyether-polyols-market/Bloomerg. (2019). Polyol Market Size Worth USD 45.17 Billion by 2025. : https://www.bloomberg.com/press-releases/2019-05-07/polyol-market-size-worth-usd-45-17-billion-by-2025-cagr-8-5-grand-view-research-inc.Burton, K. W. C., & Nickless, G. (1987). Optimisation via simplex. Chemometrics and Intelligent Laboratory Systems, 1(2), 135–149. https://doi.org/10.1016/0169-7439(87)80117-Xde Lucas Freile, A. (2018). Síntesis y formulación de nuevas espumas de poliuretano flexibles con propiedades mejoraadas [Tesis doctoral]. Universitat d’Alacant.Derawi, D., & Salimon, J. (2010). Optimization on Epoxidation of Palm Olein by Using Performic Acid. E-Journal of Chemistry, 7(4), 1440–1448. https://doi.org/10.1155/2010/384948Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., & Boutevin, B. (2012). From Vegetable Oils to Polyurethanes: Synthetic Routes to Polyols and Main Industrial Products. Polymer Reviews, 52(1), 38–79. https://doi.org/10.1080/15583724.2011.640443Dinda, S., Patwardhan, A. v., Goud, V. v., & Pradhan, N. C. (2008a). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015Dinda, S., Patwardhan, A. v., Goud, V. v., & Pradhan, N. C. (2008b). Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology, 99(9), 3737–3744. https://doi.org/10.1016/j.biortech.2007.07.015Dumont, M.-J., Kharraz, E., & Qi, H. (2013). Production of polyols and mono-ols from 10 North-American vegetable oils by ozonolysis and hydrogenation: A characterization study. Industrial Crops and Products, 49, 830–836. https://doi.org/10.1016/j.indcrop.2013.07.016FedePalma. (2021). Evolucion historica anual del fruto procesado, el aceite de palma y el palmiste extraídos. http://sispaweb.fedepalma.org/sispaweb/default.aspx?Control=Pages/produccionGhosh, S., & Sudha, M. L. (2012). A review on polyols: new frontiers for health-based bakery products. International Journal of Food Sciences and Nutrition, 63(3), 372–379. https://doi.org/10.3109/09637486.2011.627846Gil, J., Herrera, M., Duitama, J., Sarria, G., Restrepo, S., & Romero, H. M. (2020). Genomic Variability of Phytophthora palmivora Isolates from Different Oil Palm Cultivation Regions in Colombia. Phytopathology®, 110(9), 1553–1564. https://doi.org/10.1094/PHYTO-06-19-0209-RGrand view research. (2018). Polyols Market Size, Share & Trends Analysis Report by product, by application and segment forecasts, 2018 – 2025. Chapter 4. https://www.grandviewresearch.com/industry-analysis/polyols-marketGrand View Research. (2021). Natural Oil Polyols Market Size, Share & Trends Analysis. https://www.grandviewresearch.com/industry-analysis/natural-oil-polyols-nop-marketGuo, A., Demydov, D., Zhang, W., & Petrovic, Z. S. (2002). Polyols and Polyurethanes from Hydroformylation of Soybean Oil. Journal of Polymers and the Environment, 10(1/2), 49–52. https://doi.org/10.1023/A:1021022123733Guo, A., & Petrovic, Z. (2005). Vegetable Oils-Based Polyols. In S. Z. Erhan (Ed.), Industrial uses of vegetable oils (1st ed., pp. 110–130). AOCS Press.IAL Consultants. (2019). Global Market for Aromatic Polyester Polyols 2019.IHS Markit. (2018a). Chemical Econimic Handbook: Polyether Polyols for Urethanes. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook.html.IHS Markit. (2018b). Chemical Economics Handbook: Polyether Polyols for Urethanes. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbookIHS Markit. (2018c, December). Polyether Polyols for Urethanes. Https://Ihsmarkit.Com/Products/Polyether-Polyols-Urethanes-Chemical-Economics-Handbook.Html. https://ihsmarkit.com/products/polyether-polyols-urethanes-chemical-economics-handbook.htmlIonescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes. Rapra Technology Limited.IHS Markit. (2019). Chemical Economic Handbook: Polyester Polyols. https://ihsmarkit.com/products/polyester-plyols-chemical-economics-handbook.htmlIonescu, M., Radojčić, D., Wan, X., Petrović, Z. S., & Upshaw, T. A. (2015). Functionalized vegetable oils as precursors for polymers by thiol-ene reaction. European Polymer Journal, 67, 439–448. https://doi.org/10.1016/j.eurpolymj.2014.12.037Jaengmee, T., Pongmuksuwan, P., & Kitisatorn, W. (2021). Development of bio-based epoxy resin from palm oil. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.10.059Jalil, M. J. (2019). Optimization of Palm Oleic Acid Epoxidation via in Situ Generated Performic Acid Using Taguchi Orthogonal Array Design and the Study of Reaction Kinetics. Smart Science, 7(4), 252–259. https://doi.org/10.1080/23080477.2019.1663392Janković, M. R., Govedarica, O. M., & Sinadinović-Fišer, S. v. (2020). The epoxidation of linseed oil with in situ formed peracetic acid: A model with included influence of the oil fatty acid composition. Industrial Crops and Products, 143. https://doi.org/10.1016/j.indcrop.2019.111881Kurańska, M., Beneš, H., Prociak, A., Trhlíková, O., Walterová, Z., & Stochlińska, W. (2019). Investigation of epoxidation of used cooking oils with homogeneous and heterogeneous catalysts. Journal of Cleaner Production, 236. https://doi.org/10.1016/j.jclepro.2019.117615Leveneur, S., Zheng, J., Taouk, B., Burel, F., Wärnå, J., & Salmi, T. (2014). Interaction of thermal and kinetic parameters for a liquid-liquid reaction system: Application to vegetable oils epoxidation by peroxycarboxylic acid. Journal of the Taiwan Institute of Chemical Engineers, 45(4), 1449–1458. https://doi.org/10.1016/j.jtice.2014.01.015Li, Y., Luo, X., & Hu, S. (2015a). Bio-based Polyols and Polyurethanes. Springer International Publishing. https://doi.org/10.1007/978-3-319-21539-6Li, Y., Luo, X., & Hu, S. (2015b). Polyols and Polyurethanes from Vegetable Oils and Their Derivatives (pp. 15–43). https://doi.org/10.1007/978-3-319-21539-6_2Lim, S. (2018a). Drivers for high Oleics. Oils and Fats International, September, 18–20.Lim, S. (2018b). Drivers for high oleics. Oils and Fats International, 18–20.Lumcharoen, D., & Saravari, O. (2014). Preparation and Characterization of Flexible Polyurethane Foams from Palm Oil-Based Polyol. Advanced Materials Research, 911, 352–356. https://doi.org/10.4028/www.scientific.net/AMR.911.352Maisonneuve, L., Chollet, G., Grau, E., & Cramail, H. (2016). Vegetable oils: a source of polyols for polyurethane materials. OCL, 23(5), D508. https://doi.org/10.1051/ocl/2016031Mohd Nor, N., Derawi, D., & Salimon, J. (2018a). The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design. Sains Malaysiana, 47(07), 1359–1367. https://doi.org/10.17576/jsm-2018-4707-02Mohd Nor, N., Derawi, D., & Salimon, J. (2018b). The Optimization of RBD Palm Oil Epoxidation Process using D-Optimal Design. Sains Malaysiana, 47(07), 1359–1367. https://doi.org/10.17576/jsm-2018-4707-02Mondragon, A., & Pinilla, C. (2015). Aceite de palma alto oleico: propiedades físico-químicas y beneficios para la salud humana. Palmas, 36, 57–66.Mondragón, A., & Pinilla, C. (2015). High oleic palm oil: Physicochemical properties and benefits for human health (Spanish). Palmas, 36(4), 57–66.Moore, Z. (2019, June 19). US polyether polyol prices move higher on stronger propylene. 1independent Commodity Intellignece Services (ICIS). https://www.icis.com/explore/resources/news/2019/06/12/10377708/us-polyether-polyol-prices-move-higher-on-stronger-propyleneNohra, B., Candy, L., Blanco, J.-F., Guerin, C., Raoul, Y., & Mouloungui, Z. (2013). From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. Macromolecules, 46(10), 3771–3792. https://doi.org/10.1021/ma400197cOECD-FAO. (2018). Agricultural Outlook 2018-2027. http://www.fao.org/3/i9166en/I9166EN.pdfOertel, G., & Abele, L. (1994). Polyurethane handbook: chemistry, raw materials, processing, application, properties. Hanser Publishers.Olivero, J. A. (2019). The high oleic option. Olis Nad Fats International, January, 27–29.Omonov, T. S., & Curtis, J. M. (2016). Plant-oil based epoxy intermediates for polymers. In S. A. Madbouly, C. Zhang, & M. R. Kessler (Eds.), Bio-Based Plant Oil Polymers and Composites (pp. 99–125). Elsevier.PasticsEurope. (2018). An analysis of European plastics production, demand and waste data. Https://Plasticseurope.Org/Wp-Content/Uploads/2021/10/2018-Plastics-the-Facts.Pdf.Petrović, Z. S., Cvetković, I., Hong, D., Wan, X., Zhang, W., Abraham, T. W., & Malsam, J. (2010). Vegetable oil‐based triols from hydroformylated fatty acids and polyurethane elastomers. European Journal of Lipid Science and Technology, 112(1), 97–102. https://doi.org/10.1002/ejlt.200900087Petrović, Z. S., Guo, A., Javni, I., Cvetković, I., & Hong, D. P. (2008). Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2), 275–281. https://doi.org/10.1002/pi.2340Pfister, D. P., Xia, Y., & Larock, R. C. (2011). Recent Advances in Vegetable Oil-Based Polyurethanes. ChemSusChem, 4(6), 703–717. https://doi.org/10.1002/cssc.201000378Prescient & Strategic Intelligence. (2021). Global Natural Oil Polyols Market Size, Share, Development, Growth and Demand Forecast to 2030. https://www.psmarketresearch.com/market-analysis/natural-oil-polyols-marketProciak, A., Malewska, E., Kurańska, M., Bąk, S., & Budny, P. (2018). Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Industrial Crops and Products, 115, 69–77. https://doi.org/10.1016/j.indcrop.2018.02.008Research and Markets. (2019). Polyols Market by Type (Polyether Polyols and Polyester Polyols), Application (Flexible Polyurethane Foam, Rigid Polyurethane Foam, CASE), and Region (APAC, Europe, North America, South America and Middle East & Africa) - Global Forecast to 2024. https://www.researchandmarkets.com/reports/4774730/polyols-market-by-type-polyether-polyols-andRomero, H. M., Daza, E., Ayala-Díaz, I., & Ruiz-Romero, R. (2021). High-Oleic Palm Oil (HOPO) Production from Parthenocarpic Fruits in Oil Palm Interspecific Hybrids Using Naphthalene Acetic Acid. Agronomy, 11(2), 290. https://doi.org/10.3390/agronomy11020290Rüsch gen. Klaas, M., & Warwel, S. (1999). Complete and partial epoxidation of plant oils by lipase-catalyzed perhydrolysis. Industrial Crops and Products, 9(2), 125–132. https://doi.org/10.1016/S0926-6690(98)00023-5Ryberg, M. W., Laurent, A., & Hauschild, M. (2018). Mapping of global plastics value chain and plastics losses to the environment.Shahido, F. (2005). Bailey’s Industrial Oil and Fat Products Edible Oil and Fat products (6th ed., Vol. 5). Wiley.Sicex. (2019). Imports by tariff subheadings.Skoczinski, P., Carus, M., de Guzman, D., Käb, H., Chinthapalli, R., Ravenstijn, J., Baltus, W., & Raschka, A. (2021). Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2020 – 2025. Http://Bio-Based.Eu/Downloads/Bio-Based-Building-Blocks-and-Polymers-Global-Capacities-Production-and-Trends-2020-2025/ .Spendley, W., Hext, G. R., & Himsworth, F. R. (1962). Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation. Technometrics, 4(4), 441–461. https://doi.org/10.1080/00401706.1962.10490033Stadler, B. M., Wulf, C., Werner, T., Tin, S., & de Vries, J. G. (2019). Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 9(9), 8012–8067. https://doi.org/10.1021/acscatal.9b01665Tan, S. G., & Chow, W. S. (2010). Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends: A Review. Polymer-Plastics Technology and Engineering, 49(15), 1581–1590. https://doi.org/10.1080/03602559.2010.512338Transparency Market Research. (2017). Polyehter Polyols Market. https://www.transparencymarketresearch.com/polyether-polyols-market.htmlVanbésien, T., Monflier, E., & Hapiot, F. (2016). Hydroformylation of vegetable oils: More than 50 years of technical innovation, successful research, and development. European Journal of Lipid Science and Technology, 118(1), 26–35. https://doi.org/10.1002/ejlt.201500196Vianello, C., Piccolo, D., Lorenzetti, A., Salzano, E., & Maschio, G. (2018). Study of Soybean Oil Epoxidation: Effects of Sulfuric Acid and the Mixing Program. Industrial and Engineering Chemistry Research, 57(34), 11517–11525. https://doi.org/10.1021/acs.iecr.8b01109Yarbro, L. A., & Deming, S. N. (1974). Selection and preprocessing of factors for simplex optimization. Analytica Chimica Acta, 73(2), 391–398. https://doi.org/10.1016/S0003-2670(01)85476-3CeniPalmaEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82996/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINALTesis Maestria Wilson Felipe Bohorquez Malaver.pdfTesis Maestria Wilson Felipe Bohorquez Malaver.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf3289054https://repositorio.unal.edu.co/bitstream/unal/82996/7/Tesis%20Maestria%20Wilson%20Felipe%20Bohorquez%20Malaver.pdfa9e6d3859b87f617da97b679aab643ddMD57THUMBNAILTesis Maestria Wilson Felipe Bohorquez Malaver.pdf.jpgTesis Maestria Wilson Felipe Bohorquez Malaver.pdf.jpgGenerated Thumbnailimage/jpeg4312https://repositorio.unal.edu.co/bitstream/unal/82996/8/Tesis%20Maestria%20Wilson%20Felipe%20Bohorquez%20Malaver.pdf.jpg04d62c9dc70e8431f2f1889865b603a3MD58unal/82996oai:repositorio.unal.edu.co:unal/829962023-08-13 23:04:24.983Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |