Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie
imágenes, ilustraciones, gráficas, tablas
- Autores:
-
Mora Castañeda, Deybi Libardo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80302
- Palabra clave:
- 620 - Ingeniería y operaciones afines
GEOBIA
Random Forest
Multiresolution Segmentation
Clasificación de coberturas urbanas
Imágenes de alta resolución
Optimización
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_1d6ad725b0aa5be2938689e3b4407cb2 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80302 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
dc.title.translated.eng.fl_str_mv |
Urban land-cover extraction method based geographic-object analysis from very-high resolution imagery and digital surface models |
title |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
spellingShingle |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie 620 - Ingeniería y operaciones afines GEOBIA Random Forest Multiresolution Segmentation Clasificación de coberturas urbanas Imágenes de alta resolución Optimización |
title_short |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
title_full |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
title_fullStr |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
title_full_unstemmed |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
title_sort |
Método para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficie |
dc.creator.fl_str_mv |
Mora Castañeda, Deybi Libardo |
dc.contributor.advisor.none.fl_str_mv |
Lizarazo Salcedo, Iván Alberto León Sánchez, Camilo Alexander |
dc.contributor.author.none.fl_str_mv |
Mora Castañeda, Deybi Libardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Espacial del Territorio y del Cambio Global (AET-CG) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines GEOBIA Random Forest Multiresolution Segmentation Clasificación de coberturas urbanas Imágenes de alta resolución Optimización |
dc.subject.proposal.eng.fl_str_mv |
GEOBIA Random Forest Multiresolution Segmentation |
dc.subject.proposal.spa.fl_str_mv |
Clasificación de coberturas urbanas Imágenes de alta resolución Optimización |
description |
imágenes, ilustraciones, gráficas, tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-09-24T21:53:17Z |
dc.date.available.none.fl_str_mv |
2021-09-24T21:53:17Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
DataPaper |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80302 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80302 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aguilar, M. A., Aguilar, F. J., García Lorca, A., Guirado, E., Betlej, M., Cichon, P., Nemmaoui, A., Vallario, A., and Parente, C. (2016). Assessment of multiresolution segmentation for extracting greenhouses from WorldView-2 imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,41(B7):145–152. Akcay, O., Avsar, E., Inalpulat, M., Genc, L., and Cam, A. (2018). Assessment of Seg-mentation Parameters for Object-Based Land Cover Classification Using Color-Infrared Imagery. ISPRS International Journal of Geo-Information, 7(11):424. Audebert, N., Le Saux, B., and Lefevre, S. (2016). Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. Awange, J. L. and Kyalo Kiema, J. B. (2013a). Digital Photogrammetry. In Environmental Geoinformatics. Environmental Science and Engineering, chapter 12, pages 175–187.Springer, Berlin, Heidelberg. Awange, J. L. and Kyalo Kiema, J. B. (2013b). Fundamentals of Photogrammetry. In Environmental Geoinformatics. Environmental Science and Engineering, chapter 11, pages157–174. Springer, Berlin, Heidelberg. Awrangjeb, M., Zhang, C., and Fraser, C. S. (2012). Building Detection in Complex Scenes Thorough Effective Separation of Buildings from Trees. Photogrammetric Engineering Remote Sensing, 78(7):729–745. Baatz, M. and Schape, A. (2000). Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation. In Strobl, J. and Blaschke, T., editors, Angewandte Geographische Informations-Verarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000, Karlsruhe, Herbert Wichmann Verlag, pages 12–23. Baker, F. and Smith, C. (2019). A GIS and object based image analysis approach to mapping the greenspace composition of domestic gardens in Leicester, UK. Landscape and Urban Planning, 183:133–146. Belgiu, M. and Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment,204:509–523. Belgiu, M. and Dragut, L. (2016). Random forest in remote sensing: A review of application sand future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31. Belgiu, M. and Dragut ̧, L. (2014). Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96:67–75. Bergado, J. R., Persello, C., and Stein, A. (2018). Recurrent Multiresolution Convolutional Networks for VHR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56(11):6361–6374. Beumier, C. and Idrissa, M. (2016). Digital terrain models derived from digital surface model uniform regions in urban areas. International Journal of Remote Sensing, 37(15):3477–3493. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65:2–16. Blaschke, T., Feizizadeh, B., and Holbling, D. (2014a). Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake basin, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12):4806–4817. Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R.,van der Meer, F., van der Werff, H., van Coillie, F., and Tiede, D. (2014b). Geographic Object-Based Image Analysis - Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87:180–191. Blaschke, T. and Strobl, J. (2001). What’s wrong with pixels? Some recent development sinterfacing remote sensing and GIS. Zeitschrift fur Geoinformationssysteme, 6:12–17. Blokhinov, Y. B., Gorbachev, V. A., Rakutin, Y. O., and Nikitin, A. D. (2018). A real-time semantic segmentation algorithm for aerial imagery. Computer Optics, 42(1):141–148. Boulch, A. (2015). DAG of convolutional networks for semantic labeling. Technical report. Breiman, L. (2001). Random Forests. Machine Learning, 45:1–32. Briottet, X., Chehata, N., Oltra-Carrio, R., Le Bris, A., and Weber, C. (2016). Optical Remote Sensing in Urban Environments. In Baghdadi, N. and Zribi, M., editors, Land Surface Remote Sensing in Urban and Coastal Areas, chapter 1, pages 1–62. Cai, J., Luo, J., Wang, S., and Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300:70–79. Chen, G., Weng, Q., Hay, G. J., and He, Y. (2018). Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience and Remote Sensing,55(2):159–182. Chen, R. C., Dewi, C., Huang, S. W., and Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1). Chuvieco, E. (2016). Fundamentals of Satellite Remote Sensing: An Environmental Approach. CRC Press, Boca Raton, FL, 2da edition. Colkesen, I. and Kavzoglu, T. (2018). Selection of Optimal Object Features in Object-Based Image Analysis Using Filter-Based Algorithms. Journal of the Indian Society of Remote Sensing, 46(8):1233–1242. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37:35–46. Cramer, M. (2010). The DGPF-Test on Digital Airborne Camera Evaluation – Overview and Test Design. Photogrammetrie - Fernerkundung - Geoinformation, 2010(2):73–82. Deng, H. and Runger, G. (2012). Feature selection via regularized trees. Proceedings of the International Joint Conference on Neural Networks, pages 1–8. Deng, H. and Runger, G. (2013). Gene selection with guided regularized random forest. Pattern Recognition, 46(12):3483–3489. Dhingra, S. and Kumar, D. (2019). A review of remotely sensed satellite image classification. International Journal of Electrical and Computer Engineering (IJECE), 9(3):1720–1731. Di Gregorio, A. and Jansen, L. (1998). Land Cover Classification System (LCCS): Classification Concepts and User Manual. Technical report, FAO, Roma. Ding, H., Liu, K., Chen, X., Xiong, L., Tang, G., Qiu, F., and Strobl, J. (2020). Optimized segmentation based on the weighted aggregation method for loess bank gully mapping. Remote Sensing, 12(5):1–21. Dragut, L., Csillik, O., Eisank, C., and Tiede, D. (2014). Automated parameterisation for multiscale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88:119–127. Dragut ̧, L., Eisank, C., Strasser, T., and Blaschke, T. (2009). A comparison of methods to incorporate scale in geomorphometry. In Proceedings of Geomorphometry, pages 133–139. Dragut ̧, L., Tiede, D., and Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6):859–871. Du, S., Guo, Z., Wang, W., Guo, L., and Nie, J. (2016). A comparative study of the segmentation of weighted aggregation and multiresolution segmentation. GIScience and Remote Sensing, 53(5):651–670. Du, S., Zhang, F., and Zhang, X. (2015). Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach. ISPRS Journal of Photogrammetry and Remote Sensing, 105:107–119. Duri ́c, N., Pehani, P., and Ostir, K. (2014). Application of in-segment multiple sampling in object-based classification. Remote Sensing, 6:12138–12165. Eidenbenz, C., Kaser, C., and Baltsavias, E. P. (2000). ATOMI - automated reconstruction oftopographic objects from aerial images using vectorized map information. In Eidgenossische Technische Hochschule Zurich Institut f ̈ur Geodasie und Photogrammetrie, editor, XIX ISPRS Congress, Commission III, pages 462–471, Amsterdam, The Netherlands. Institute of Geodesy and Photogrammetry, ETH-Honggerberg. El-naggar, A. M. (2018). Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alexandria Engineering Journal, 57:3089–3097. Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? Geomorphology, 137(1):94–106. Foody, G. M. (2004). Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering Remote Sensing,70(5):627–633. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., and Wolff,E. (2018a). Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience and Remote Sensing, 55(2):221–242. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., and Wolff, E. (2018b). Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geoscience and Remote Sensing Letters, 15(4):607–611. Gerke, M. (2015). Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen). Technical report. Gerke, M. and Xiao, J. (2014). Fusion of airborne laser scanning point clouds and images for supervised and unsupervised scene classification. ISPRS Journal of Photogrammetry and Remote Sensing, 87:78–92. Ghatak, A. (2017). Machine Learning with R. Springer Nature Singapore Pte Ltd., Singapore. Gibril, M. B. A., Shafri, H. Z., and Hamedianfar, A. (2017). New semi-automated mapping of asbestos cement roofs using rule-based object-based image analysis and Taguchi optimization technique from WorldView-2 images. International Journal of Remote Sensing,38(2):467–491. Griffith, D. C. and Hay, G. J. (2018). Integrating GEOBIA, machine learning, and volunteered geographic information to map vegetation over rooftops. ISPRS International Journal of Geo-Information, 7(12):462–847. Haala, N., Cramer, M., and Jacobsen, K. (2010). The german camera evaluation project -Results from the geometry group. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38. Hadavand, A., Saadatseresht, M., and Homayouni, S. (2015). A new framework for object-based image analysis based on segmentation scale space and random forest classifier. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 40, pages 263–268. Hadavand, A., Saadatseresht, M., and Homayouni, S. (2017). Segmentation parameter selection for object-based land-cover mapping from ultra high resolution spectral and elevation data. International Journal of Remote Sensing, 38(12):3586–3607. Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing, 38(5):1312–1338. Hamedianfar, A. and Barakat A. Gibril, M. (2019). Large-scale urban mapping using integrated geographic object-based image analysis and artificial bee colony optimization fromworldview-3 data. International Journal of Remote Sensing, 40(17):6796–6821. Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on systems, man and cybernetics, SMC(3):610–621. Hashim, H., Abd Latif, Z., and Adnan, N. A. (2019). URBAN VEGETATION CLASSIFICATION with NDVI THRESHOLD VALUE METHOD with VERY HIGH RESOLUTION (VHR) PLEIADES IMAGERY. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 42, pages 237–240. Hay, G. J. and Castilla, G. (2008). Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Blaschke, T., Lang, S., and Hay, G. J., editors, Object-Based Image Analysis, chapter Chapter 1., pages 75–90. Springer. Horkaew, P. and Puttinaovarat, S. (2017). Entropy-Based Fusion of Water Indices and DSM Derivatives for Automatic Water Surfaces Extraction and Flood Monitoring. ISPRS International Journal of Geo-Information, 6:22. Hossain, M. D. and Chen, D. (2019). Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150:115–134. IDEAM, IGAC, and CORMAGDALENA (2008). Mapa de Cobertura de la Tierra Cuenca Magdalena-Cauca: Metodología CORINE Land Cover adaptada para Colombia a escala 1:100.000. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi y Corporación Autónoma Regional del río Grande de La Magdalena, Bogotá, D.C. IGAC (2016). Especificaciones técnicas cartografía básica. ISPRS (2019). Web site of the ISPRS test project on urban classification and 3D building reconstruction. Izquierdo-Verdiguier, E. and Zurita-Milla, R. (2020). An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 88(January):102051. Jennifer, J. J., Vanmathy, S., Jobi Sahana, C. M., and Devi, G. (2016). Evaluation of Image Texture Parameters for Urban Land Cover Classification. International Journal of Research in Science and Technology, 6(III):183–190. Kaartinen, H., Hyyppa, J., Gulch, E., Hyyppa, H., Matikainen, L., Vosselman, G., Hofmann, A. D., Mader, U., and Persson, A. (2005a). Euro SDR BUILDING EXTRACTIONCOMPARISON. pages 1–6. Kaartinen, H., Hyyppa, J., G ̈ulch, E., Vosselman, G., Hyyppa, H., Matikainen, L., Hofmann,a. D., Mader, U., Persson, A., Soderman, U., Elmqvist, M., Ruiz, A., Dragoja, M., Flamanc, D., Maillet, G., Kersten, T., Carl, J., Hau, R., Wild, E., Frederiksen, L., Holmgaard,J., and Vester, K. (2005b). ACCURACY OF 3D CITY MODELS: Euro SDR comparison. In Proceedings of the ISPRS Workshop Laser scanning 2005, pages 227–232, Enschede, the Netherlands. Khorram, S., van der Wiele, C., Koch, F. H., Nelson, S. A., and Potts, M. D. (2016). Principles of Applied Remote Sensing. Springer, New York. Khoshboresh Masouleh, M. and Shah-Hosseini, R. (2020). A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery. Applied Geomatics, 12(2):107–119. Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing AG, Coral Gables, FL, 2da edition. Kucharczyk, M., Hay, J., Gha, S., and Hugenholtz, C. H. (2020). Geographic Object-Based Image Analysis: A Primer and Future Directions. Remote Sensing, 12(i):1–33. Lagrange, A. and Le Saux, B. (2015). Convolutional Neural Networks for Semantic Labeling. Technical report. Lang, S. and Blaschke, T. (2006). Bridging remote sensing and GIS - what are the main supportive pillars? In1st International Conference on Object-based Image Analysis (OBIA2006). Li, M., Ma, L., Blaschke, T., Cheng, L., and Tiede, D. (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observations and Geoinformation, 49:87–98. Li, M., Zang, S., Zhang, B., Li, S., and Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1):389–411. Liaw, A. and Wiener, M. (2002). Clasification and Regression by randomForest. R News,2(3):18–22. Lin, G., Shen, C., Hengel, A. V. D., and Reid, I. (2016). Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2016-Decem,pages 3194–3203. Linder, W. (2016). Digital photogrammetry: A practical course. Springer, 4 edition. Liu, B., Du, S., Du, S., and Zhang, X. (2020a). Incorporating deep features into GEOBIA paradigm for remote sensing imagery classification: A patch-based approach. Remote Sensing, 12(18):3007. Liu, B., Du, S., and Zhang, X. (2020b). Land cover classification using convolutional neural network with remote sensing data and digital surface model. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(3):39–43. Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., and Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145:78–95. Liu, Y., Piramanayagam, S., Monteiro, S. T., and Saber, E. (2017). Dense Semantic Labe-ling of Very-High-Resolution Aerial Imagery and LiDAR with Fully-Convolutional Neural Networks and Higher-Order CRFs. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, volume 2017-July, pages 1561–1570. Lizarazo, I. (2008). Clasificación de la cobertura y del uso del suelo urbano usando imágenes de satélite y algoritmos supervisados de Inteligencia Artificial. UD y La geomática, 1(2):4–18. Lizarazo, I. (2012). Clasificación De La Cobertura Del Suelo Urbano Usando Objetos De Imagen Difusos. UD y la GEOMÁTICA, 6:97–109. Lizarazo, I., Angulo, V., and Rodríguez, J. (2017). Automatic mapping of land surface elevation changes from UAV-based imagery. International Journal of Remote Sensing,38(8-10):2603–2622. Lizarazo, I. and Elsner, P. (2008). From pixels to grixels: a unified functional model for geographic object—based image analysis. In GEOBIA 2008 PIXELS OBJECTS INTE-LLIGENCE. Lizarazo, I. and Ramírez, S. (2016). A Deep Learning Approach for Urban Land Cover Classification from High-Spatial Resolution Imagery and Geomorphometric Variables. In GEOBIA 2016 Solutions Synergies, Enschede. Louarn, M. L., Clergeau, P., Briche, E., and Deschamps-Cottin, M. (2017). “Kill two birds with one stone”: Urban tree species classification using Bi-Temporal pleiades images to study nesting preferences of an invasive bird. Remote Sensing, 9:916–934. Louw, G. and van Niekerk, A. (2019). Object-based land surface segmentation scale optimisation: An ill-structured problem. Geomorphology, 327:377–384. Luethje, F., Tiede, D., and Eisank, C. (2017). Terrain Extraction in Built-Up Areas from Satellite Stereo-Imagery-Derived Surface Models: A Stratified Object-Based Approach. ISPRS International Journal of Geo-Information, 6:13. Ma, L., Cheng, L., Li, M., Liu, Y., and Ma, X. (2015). Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 102:14–27. Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Ma, X., and Chen, D. (2017a). Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS International Journal of Geo-Information, 6(2):51. Ma, L., Li, M., Ma, X., Cheng, L., Du, P., and Liu, Y. (2017b). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130:277–293. Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). High-Resolution Semantic Labeling with Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 55(12):7092–7103. Marcu, A. and Leordeanu, M. (2016). Dual Local-Global Contextual Pathways for Recognition in Aerial Imagery. Marmanis, D., Schindler, K., Wegner, J. D., Galliani, S., Datcu, M., and Stilla, U. (2018). Classification with an edge: Improving semantic image segmentation with boundary detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135:158–172. Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., and Stilla, U. (2016). Semantic segmentation of aerial images with an ensemble of CNNs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3:473–480. Max Kuhn (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, Articles, 28(5):1–26. Maxwell, A. E., Warner, T. A., and Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sen-sing, 39(9):2784–2817. Mayer, H. (2008). Object extraction in photogrammetric computer vision. ISPRS Journal of Photogrammetry and Remote Sensing, 63:213–222. Mitchell, T. M. (1997). Machine learning. McGraw Hill Higher Education. Moussa, A. and El-Sheimy, N. (2012). A New Object Based Method for Automated Extraction of Urban Objects From Airborne Sensors Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B3):309–314. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5):1145–1161. Nguyen, U., Glenn, E. P., Dang, T. D., and Pham, L. T. (2019). Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecological Informatics, 50:43–50. Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W. R., and dos Santos, J. A. (2019). Dynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networks. IEEE Transactions on Geoscience and Remote Sensing, 57(10):7503–7520. Norman, M., Mohd Shafri, H. Z., Idrees, M. O., Mansor, S., and Yusuf, B. (2019). Spatio-statistical optimization of image segmentation process for building footprint extraction using very high-resolution World View 3 satellite data. Geocarto International, pages 1–24. Paisitkriangkrai, S., Sherrah, J., Janney, P., and van den Hengel, A. (2015). Effective Se-mantic Pixel labelling with Convolutional Networks and Conditional Random Fields. In CVPR Workshops, Computer Vision and Pattern Recognition, pages 36–43. Pan, X., Gao, L., Marinoni, A., Zhang, B., Yang, F., and Gamba, P. (2018). Semantic labeling of high resolution aerial imagery and LiDAR data with fine segmentation network. Remote Sensing, 10(5):743. Piramanayagam, S., Saber, E., Schwartzkopf, W., and Koehler, F. W. (2018). Supervised classification of multisensor remotely sensed images using a deep learning framework. Remote Sensing, 10(9):1429. Piramanayagam, S., Schwartzkopf, W., Koehler, F. W., and Saber, E. (2016). Classification of remote sensed images using random forests and deep learning framework. InImage and Signal Processing for Remote Sensing XXII, volume 10004, pages 1–8. Probst, P., Wright, M. N., and Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3):1–19. Quang, N. T., Thuy, N. T., Sang, D. V., Thi, H., and Binh, T. (2015). Semantic Segmentation for Aerial Images using RF and a. Technical report. Radoux, J. and Bogaert, P. (2017). Good practices for object-based accuracy assessment. Remote Sensing, 9:23. Ramírez-Fernández, S. E. and Lizarazo-Salcedo, I. A. (2014). Clasificación digital de masas nubosas a partir de imágenes meteorológicas usando algoritmos de aprendizaje de máquina. Revista Facultad de Ingeniería, 1(73):43–57. Ramiya, A. M., Nidamanuri, R. R., and Ramakrishnan, K. (2016). A supervoxel-based spectro-spatial approach for 3D urban point cloud labelling. International Journal of Remote Sensing, 37(17):4172–4200. Richards, J. A. (2013). Remote Sensing Digital Image Analysis An Introduction. Springer,5ta edition. Rottensteiner, F., Sohn, G., Gerke, M., and Wegner, J. D. (2013). ISPRS Test Project on Urban Classification and 3D Building Reconstruction. Technical report. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf, U., and Jung, J. (2014). Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93:256–271. Rouse, W., Haas, R. H., Schell, J., and Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS.NASA Special Publication, page 309. Ruiz Hernandez, I. E. and Shi, W. (2018). A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. International Journal of Remote Sensing, 39(4):1175–1198. Rutzinger, M., Rottensteiner, F., and Pfeifer, N. (2009). A Comparison of Evaluation Techniques for Building Extraction From Airborne Laser Scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(1):11–20. Salehi, B., Zhang, Y., Zhong, M., and Dey, V. (2012). A review of the effectiveness of spatial information used in urban land cover classification of VHR imagery. International Journal of Geoinformatics, 8(2):35–51. Schillaci, C., Braun, A., and Kropacek, J. (2015). Terrain analysis and landform recognition. In Cook, S., Clarke, L., and Nield, J., editors, Geomorphological Techniques, volume 2, chapter 2.4.2., pages 1–18. British Society for Geomorphology, London, online edition. Schilling, H., Bulatov, D., and Middelmann, W. (2018). Object-based detection of vehicles using combined optical and elevation data. ISPRS Journal of Photogrammetry and Remote Sensing, 136:85–105. Sherrah, J. (2016). Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery. In Computer Vision and Pattern Recognition, pages 1–22. Sivagami, R., Krishankumar, R., and Ravichandran, K. S. (2018). A Comparative Analysis of Supervised Learning Techniques for Pixel Classification in Remote Sensing Images. In2018 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2018, pages 1–4. IEEE. Smith, A. (2010). Image segmentation scale parameter optimization and land cover classification using the random forest algorithm. Journal of Spatial Science, 55(1):69–79. Speiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134:93–101. Speldekamp, T., Fries, C., Gevaert, C., and Gerke, M. (2015). Automatic Semantic Labelling of Urban Areas using a rule-based approach and realized with MeVisLab. Technical report. Sun, Y., Tian, Y., and Xu, Y. (2019). Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning. Neurocomputing, 330:297–304. Tabib Mahmoudi, F., Samadzadegan, F., and Reinartz, P. (2015). Object recognition based on the context aware decision-level fusion in multiviews imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1):12–22. Tamimi, E., Ebadi, H., and Kiani, A. (2017). Hybrid optimization of object-based classification in high-resolution images using continuous ant colony algorithm with emphasis on building detection. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 42, pages 271–279. Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. Trimble (2014). Reference Book eCognition Developer. Tschannen, M., Cavigelli, L., Mentzer, F., Wiatowski, T., and Benini, L. (2017). Deep structured features for semantic segmentation. In25th European Signal Processing Conference, EUSIPCO 2017, volume 2017-Jun, pages 61–65. Vali, A., Comai, S., and Matteucci, M. (2020). Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sensing, 12:31. Wang, H., Wang, Y., Zhang, Q., Xiang, S., and Pan, C. (2017). Gated convolutional neural network for semantic segmentation in high-resolution images. Remote Sensing, 9(5):446. Wang, L., Jia, M., Yin, D., and Tian, J. (2019). A review of remote sensing for mangrove forests: 1956-2018.Remote Sensing of Environment, 231:1–15. Wieland, M. and Pittore, M. (2014). Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images. Remote Sensing,6(4):2912–2939. Wright, M. N., Wager, S., and Probst, P. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software,77(4):1—-17. Xu, Q., Yuan, X., Ouyang, C., and Zeng, Y. (2020). Attention-based pyramid network for segmentation and classification of high-resolution and hyperspectral remote sensing images. Remote Sensing, 12(21):1–34. Yan, J., Zhou, W., Han, L., and Qian, Y. (2018). Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban Forestry and Urban Greening, 31(1):230–240. Yang, J., He, Y., Caspersen, J., and Jones, T. (2015). A discrepancy measure for segmentation evaluation from the perspective of object recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 101:186–192. Yang, Y., Stein, A., Tolpekin, V. A., and Zhang, Y. (2018). High-Resolution Remote Sen-sing Image Classification Using Associative Hierarchical CRF Considering Segmentation Quality. IEEE Geoscience and Remote Sensing Letters, 15(5):754–758. You, Y., Wang, S., Ma, Y., Chen, G., Wang, B., Shen, M., and Liu, W. (2018). Building Detection from VHR Remote Sensing Imagery Based on the Morphological Building Index. Remote Sensing, 10(1287):1–22. Younis, M. C., Keedwell, E., and Savic, D. (2018). An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing. In ICOASE 2018 – International Conference on Advanced Science and Engineering, pages 449–454. IEEE. Zevenbergen, L. and Thorne, C. (1987). Quantitative analysis of land surface topography. Earth surface processes and landforms, 12:47–56. Zhang, C., Smith, M., and Fang, C. (2018). Evaluation of goddard’s LiDAR, hyperspectral, and thermal data products for mapping urban land-cover types, GIScience and Remote Sensing, 55(1):90–109. Zhang, G., Lei, T., Cui, Y., and Jiang, P. (2 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxi, 1328 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80302/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80302/2/80896386.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/80302/3/80896386.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 1256b6d20e560a554faa3e0edf99eec1 3ecce5a821ad88a739f1ffa6e652d392 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090219993956352 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lizarazo Salcedo, Iván Albertob7a911d83f30c19f50a8d2f7b4e94e02600León Sánchez, Camilo Alexander5babbcf04c4bb0d0a22aeca66ef8b56cMora Castañeda, Deybi Libardo2fef4a848906549e8e15583460b33c62600Análisis Espacial del Territorio y del Cambio Global (AET-CG)2021-09-24T21:53:17Z2021-09-24T21:53:17Z2020https://repositorio.unal.edu.co/handle/unal/80302Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/imágenes, ilustraciones, gráficas, tablasLa clasificación de coberturas urbanas a partir de datos de sensores remotos aerotransportados de alta resolución espacial ha sido un tema de gran interés para investigadores; instituciones y gobiernos. Sin embargo, debido a la heterogeneidad espacial y a la similitud espectral de las clases de coberturas a clasificar, es una tarea que no ha sido completamente resuelta. Por tal razón, esta investigación propuso el desarrollo de un método de clasificación orientado a objetos geográficos, que evaluó y escogió las variables e hiperparámetros que mejor resultado de exactitud generaron. Para llevar a cabo este propósito, se establecieron cuatro fases descritas de la siguiente manera: (1) Selección de variables de entrada para la segmentación, (2) Segmentación y optimización de hiperparámetros del algoritmo de Segmentación por Multirresolución, (3) Selección de atributos de objetos geográficos y (4) Clasificación y optimización de hiperparámetros del algoritmo de aprendizaje automático Bosques Aleatorios. Este método se implementó en una zona de estudio de arquitectura urbana residencial y antigua, ubicada en la ciudad alemana de Vaihingen an der Enz, al noroccidente de Stuttgart. Se utilizaron imágenes ortorrectificadas de alta resolución y modelos digitales de superficie del Semantic Challenge de la Sociedad Internacional de Percepción Remota y Fotogrametría (ISPRS). La investigación permitió comprobar la eficiencia de variables derivadas de los datos primarios, como el índice de vegetación de diferencia normalizada o el modelo digital de superficie normalizado, en las fases de segmentación y clasificación. También demostró que la optimización de hiperparámetros en la segmentación y clasificación permitió obtener mejoras tanto en exactitud como en rendimiento. En conclusión, el método desarrollado evidenció que, optimizar las fases de selección de variables; segmentación; selección de atributos y clasificación de un método de análisis de imágenes orientado a objetos geográficos ayuda a mejorar la clasificación de coberturas urbanas respecto a un método no optimizado. (Texto tomado de la fuente)The urban land-cover classification based on airborne remote sensing data with the high spatial resolution has been a topic of great interest to researchers, institutions, and governments. However, due to the spatial heterogeneity and the spectral similarity of the coverage classes to be classified, the issue has not been completely solved. Accordingly, this research proposed the development of a geographic object-based classification method, which evaluated and selected the variables and hyperparameters that better fit accuracy results. For this purpose, the following four stages were established: (1) Selection of segmentation input variables, (2) Segmentation and optimization of Multiresolution Segmentation algorithm hyperparameters, (3) Selection of geographical objects features, and (4) Classification and optimization of hyperparameters for the machine learning Random Forests algorithm. The study area where the method was implemented has urban residential and antique architecture, it is located in the German city of Vaihingen an der Enz, northwest of Stuttgart. High-resolution orthorectified images and digital surface models from the International Society for Photogrammetry and Remote Sensing (ISPRS) Semantic Challenge were used. This research checked the efficiency of variables derived from primary data, such as the normalized difference vegetation index or the normalized digital surface model, in the segmentation and classification phases. Moreover, the research project showed that optimizing hyperparameters in segmentation and classification allowed for improvements in both accuracy and performance. In conclusion, the developed method showed that optimizing the variable selection; segmentation; feature selection, and classification phases of geographic object-based image analysis method helps improve the classification of urban land-cover with respect to a non-optimized method.MaestríaMagíster en GeomáticaTecnologías Geoespacialesxxi, 1328 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesGEOBIARandom ForestMultiresolution SegmentationClasificación de coberturas urbanasImágenes de alta resoluciónOptimizaciónMétodo para extracción de coberturas urbanas basado en análisis orientado a objetos geográficos a partir de imágenes de alta resolución y modelos digitales de superficieUrban land-cover extraction method based geographic-object analysis from very-high resolution imagery and digital surface modelsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperhttp://purl.org/redcol/resource_type/TMAguilar, M. A., Aguilar, F. J., García Lorca, A., Guirado, E., Betlej, M., Cichon, P., Nemmaoui, A., Vallario, A., and Parente, C. (2016). Assessment of multiresolution segmentation for extracting greenhouses from WorldView-2 imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,41(B7):145–152. Akcay, O., Avsar, E., Inalpulat, M., Genc, L., and Cam, A. (2018). Assessment of Seg-mentation Parameters for Object-Based Land Cover Classification Using Color-Infrared Imagery. ISPRS International Journal of Geo-Information, 7(11):424. Audebert, N., Le Saux, B., and Lefevre, S. (2016). Semantic Segmentation of Earth Observation Data Using Multimodal and Multi-scale Deep Networks. Awange, J. L. and Kyalo Kiema, J. B. (2013a). Digital Photogrammetry. In Environmental Geoinformatics. Environmental Science and Engineering, chapter 12, pages 175–187.Springer, Berlin, Heidelberg. Awange, J. L. and Kyalo Kiema, J. B. (2013b). Fundamentals of Photogrammetry. In Environmental Geoinformatics. Environmental Science and Engineering, chapter 11, pages157–174. Springer, Berlin, Heidelberg. Awrangjeb, M., Zhang, C., and Fraser, C. S. (2012). Building Detection in Complex Scenes Thorough Effective Separation of Buildings from Trees. Photogrammetric Engineering Remote Sensing, 78(7):729–745. Baatz, M. and Schape, A. (2000). Multiresolution Segmentation: an optimization approach for high quality multi-scale image segmentation. In Strobl, J. and Blaschke, T., editors, Angewandte Geographische Informations-Verarbeitung XII. Beiträge zum AGIT-Symposium Salzburg 2000, Karlsruhe, Herbert Wichmann Verlag, pages 12–23. Baker, F. and Smith, C. (2019). A GIS and object based image analysis approach to mapping the greenspace composition of domestic gardens in Leicester, UK. Landscape and Urban Planning, 183:133–146. Belgiu, M. and Csillik, O. (2018). Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sensing of Environment,204:509–523. Belgiu, M. and Dragut, L. (2016). Random forest in remote sensing: A review of application sand future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114:24–31. Belgiu, M. and Dragut ̧, L. (2014). Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96:67–75. Bergado, J. R., Persello, C., and Stein, A. (2018). Recurrent Multiresolution Convolutional Networks for VHR Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 56(11):6361–6374. Beumier, C. and Idrissa, M. (2016). Digital terrain models derived from digital surface model uniform regions in urban areas. International Journal of Remote Sensing, 37(15):3477–3493. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65:2–16. Blaschke, T., Feizizadeh, B., and Holbling, D. (2014a). Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake basin, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(12):4806–4817. Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz Feitosa, R.,van der Meer, F., van der Werff, H., van Coillie, F., and Tiede, D. (2014b). Geographic Object-Based Image Analysis - Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87:180–191. Blaschke, T. and Strobl, J. (2001). What’s wrong with pixels? Some recent development sinterfacing remote sensing and GIS. Zeitschrift fur Geoinformationssysteme, 6:12–17. Blokhinov, Y. B., Gorbachev, V. A., Rakutin, Y. O., and Nikitin, A. D. (2018). A real-time semantic segmentation algorithm for aerial imagery. Computer Optics, 42(1):141–148. Boulch, A. (2015). DAG of convolutional networks for semantic labeling. Technical report. Breiman, L. (2001). Random Forests. Machine Learning, 45:1–32. Briottet, X., Chehata, N., Oltra-Carrio, R., Le Bris, A., and Weber, C. (2016). Optical Remote Sensing in Urban Environments. In Baghdadi, N. and Zribi, M., editors, Land Surface Remote Sensing in Urban and Coastal Areas, chapter 1, pages 1–62. Cai, J., Luo, J., Wang, S., and Yang, S. (2018). Feature selection in machine learning: A new perspective. Neurocomputing, 300:70–79. Chen, G., Weng, Q., Hay, G. J., and He, Y. (2018). Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience and Remote Sensing,55(2):159–182. Chen, R. C., Dewi, C., Huang, S. W., and Caraka, R. E. (2020). Selecting critical features for data classification based on machine learning methods. Journal of Big Data, 7(1). Chuvieco, E. (2016). Fundamentals of Satellite Remote Sensing: An Environmental Approach. CRC Press, Boca Raton, FL, 2da edition. Colkesen, I. and Kavzoglu, T. (2018). Selection of Optimal Object Features in Object-Based Image Analysis Using Filter-Based Algorithms. Journal of the Indian Society of Remote Sensing, 46(8):1233–1242. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37:35–46. Cramer, M. (2010). The DGPF-Test on Digital Airborne Camera Evaluation – Overview and Test Design. Photogrammetrie - Fernerkundung - Geoinformation, 2010(2):73–82. Deng, H. and Runger, G. (2012). Feature selection via regularized trees. Proceedings of the International Joint Conference on Neural Networks, pages 1–8. Deng, H. and Runger, G. (2013). Gene selection with guided regularized random forest. Pattern Recognition, 46(12):3483–3489. Dhingra, S. and Kumar, D. (2019). A review of remotely sensed satellite image classification. International Journal of Electrical and Computer Engineering (IJECE), 9(3):1720–1731. Di Gregorio, A. and Jansen, L. (1998). Land Cover Classification System (LCCS): Classification Concepts and User Manual. Technical report, FAO, Roma. Ding, H., Liu, K., Chen, X., Xiong, L., Tang, G., Qiu, F., and Strobl, J. (2020). Optimized segmentation based on the weighted aggregation method for loess bank gully mapping. Remote Sensing, 12(5):1–21. Dragut, L., Csillik, O., Eisank, C., and Tiede, D. (2014). Automated parameterisation for multiscale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, 88:119–127. Dragut ̧, L., Eisank, C., Strasser, T., and Blaschke, T. (2009). A comparison of methods to incorporate scale in geomorphometry. In Proceedings of Geomorphometry, pages 133–139. Dragut ̧, L., Tiede, D., and Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6):859–871. Du, S., Guo, Z., Wang, W., Guo, L., and Nie, J. (2016). A comparative study of the segmentation of weighted aggregation and multiresolution segmentation. GIScience and Remote Sensing, 53(5):651–670. Du, S., Zhang, F., and Zhang, X. (2015). Semantic classification of urban buildings combining VHR image and GIS data: An improved random forest approach. ISPRS Journal of Photogrammetry and Remote Sensing, 105:107–119. Duri ́c, N., Pehani, P., and Ostir, K. (2014). Application of in-segment multiple sampling in object-based classification. Remote Sensing, 6:12138–12165. Eidenbenz, C., Kaser, C., and Baltsavias, E. P. (2000). ATOMI - automated reconstruction oftopographic objects from aerial images using vectorized map information. In Eidgenossische Technische Hochschule Zurich Institut f ̈ur Geodasie und Photogrammetrie, editor, XIX ISPRS Congress, Commission III, pages 462–471, Amsterdam, The Netherlands. Institute of Geodesy and Photogrammetry, ETH-Honggerberg. El-naggar, A. M. (2018). Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alexandria Engineering Journal, 57:3089–3097. Evans, I. S. (2012). Geomorphometry and landform mapping: What is a landform? Geomorphology, 137(1):94–106. Foody, G. M. (2004). Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering Remote Sensing,70(5):627–633. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., Kalogirou, S., and Wolff,E. (2018a). Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience and Remote Sensing, 55(2):221–242. Georganos, S., Grippa, T., Vanhuysse, S., Lennert, M., Shimoni, M., and Wolff, E. (2018b). Very High Resolution Object-Based Land Use-Land Cover Urban Classification Using Extreme Gradient Boosting. IEEE Geoscience and Remote Sensing Letters, 15(4):607–611. Gerke, M. (2015). Use of the stair vision library within the ISPRS 2D semantic labeling benchmark (Vaihingen). Technical report. Gerke, M. and Xiao, J. (2014). Fusion of airborne laser scanning point clouds and images for supervised and unsupervised scene classification. ISPRS Journal of Photogrammetry and Remote Sensing, 87:78–92. Ghatak, A. (2017). Machine Learning with R. Springer Nature Singapore Pte Ltd., Singapore. Gibril, M. B. A., Shafri, H. Z., and Hamedianfar, A. (2017). New semi-automated mapping of asbestos cement roofs using rule-based object-based image analysis and Taguchi optimization technique from WorldView-2 images. International Journal of Remote Sensing,38(2):467–491. Griffith, D. C. and Hay, G. J. (2018). Integrating GEOBIA, machine learning, and volunteered geographic information to map vegetation over rooftops. ISPRS International Journal of Geo-Information, 7(12):462–847. Haala, N., Cramer, M., and Jacobsen, K. (2010). The german camera evaluation project -Results from the geometry group. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 38. Hadavand, A., Saadatseresht, M., and Homayouni, S. (2015). A new framework for object-based image analysis based on segmentation scale space and random forest classifier. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 40, pages 263–268. Hadavand, A., Saadatseresht, M., and Homayouni, S. (2017). Segmentation parameter selection for object-based land-cover mapping from ultra high resolution spectral and elevation data. International Journal of Remote Sensing, 38(12):3586–3607. Hall-Beyer, M. (2017). Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing, 38(5):1312–1338. Hamedianfar, A. and Barakat A. Gibril, M. (2019). Large-scale urban mapping using integrated geographic object-based image analysis and artificial bee colony optimization fromworldview-3 data. International Journal of Remote Sensing, 40(17):6796–6821. Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on systems, man and cybernetics, SMC(3):610–621. Hashim, H., Abd Latif, Z., and Adnan, N. A. (2019). URBAN VEGETATION CLASSIFICATION with NDVI THRESHOLD VALUE METHOD with VERY HIGH RESOLUTION (VHR) PLEIADES IMAGERY. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 42, pages 237–240. Hay, G. J. and Castilla, G. (2008). Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Blaschke, T., Lang, S., and Hay, G. J., editors, Object-Based Image Analysis, chapter Chapter 1., pages 75–90. Springer. Horkaew, P. and Puttinaovarat, S. (2017). Entropy-Based Fusion of Water Indices and DSM Derivatives for Automatic Water Surfaces Extraction and Flood Monitoring. ISPRS International Journal of Geo-Information, 6:22. Hossain, M. D. and Chen, D. (2019). Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective. ISPRS Journal of Photogrammetry and Remote Sensing, 150:115–134. IDEAM, IGAC, and CORMAGDALENA (2008). Mapa de Cobertura de la Tierra Cuenca Magdalena-Cauca: Metodología CORINE Land Cover adaptada para Colombia a escala 1:100.000. Technical report, Instituto de Hidrología, Meteorología y Estudios Ambientales, Instituto Geográfico Agustín Codazzi y Corporación Autónoma Regional del río Grande de La Magdalena, Bogotá, D.C. IGAC (2016). Especificaciones técnicas cartografía básica. ISPRS (2019). Web site of the ISPRS test project on urban classification and 3D building reconstruction. Izquierdo-Verdiguier, E. and Zurita-Milla, R. (2020). An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing. International Journal of Applied Earth Observation and Geoinformation, 88(January):102051. Jennifer, J. J., Vanmathy, S., Jobi Sahana, C. M., and Devi, G. (2016). Evaluation of Image Texture Parameters for Urban Land Cover Classification. International Journal of Research in Science and Technology, 6(III):183–190. Kaartinen, H., Hyyppa, J., Gulch, E., Hyyppa, H., Matikainen, L., Vosselman, G., Hofmann, A. D., Mader, U., and Persson, A. (2005a). Euro SDR BUILDING EXTRACTIONCOMPARISON. pages 1–6. Kaartinen, H., Hyyppa, J., G ̈ulch, E., Vosselman, G., Hyyppa, H., Matikainen, L., Hofmann,a. D., Mader, U., Persson, A., Soderman, U., Elmqvist, M., Ruiz, A., Dragoja, M., Flamanc, D., Maillet, G., Kersten, T., Carl, J., Hau, R., Wild, E., Frederiksen, L., Holmgaard,J., and Vester, K. (2005b). ACCURACY OF 3D CITY MODELS: Euro SDR comparison. In Proceedings of the ISPRS Workshop Laser scanning 2005, pages 227–232, Enschede, the Netherlands. Khorram, S., van der Wiele, C., Koch, F. H., Nelson, S. A., and Potts, M. D. (2016). Principles of Applied Remote Sensing. Springer, New York. Khoshboresh Masouleh, M. and Shah-Hosseini, R. (2020). A hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery. Applied Geomatics, 12(2):107–119. Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing AG, Coral Gables, FL, 2da edition. Kucharczyk, M., Hay, J., Gha, S., and Hugenholtz, C. H. (2020). Geographic Object-Based Image Analysis: A Primer and Future Directions. Remote Sensing, 12(i):1–33. Lagrange, A. and Le Saux, B. (2015). Convolutional Neural Networks for Semantic Labeling. Technical report. Lang, S. and Blaschke, T. (2006). Bridging remote sensing and GIS - what are the main supportive pillars? In1st International Conference on Object-based Image Analysis (OBIA2006). Li, M., Ma, L., Blaschke, T., Cheng, L., and Tiede, D. (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observations and Geoinformation, 49:87–98. Li, M., Zang, S., Zhang, B., Li, S., and Wu, C. (2014). A review of remote sensing image classification techniques: The role of Spatio-contextual information. European Journal of Remote Sensing, 47(1):389–411. Liaw, A. and Wiener, M. (2002). Clasification and Regression by randomForest. R News,2(3):18–22. Lin, G., Shen, C., Hengel, A. V. D., and Reid, I. (2016). Efficient Piecewise Training of Deep Structured Models for Semantic Segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2016-Decem,pages 3194–3203. Linder, W. (2016). Digital photogrammetry: A practical course. Springer, 4 edition. Liu, B., Du, S., Du, S., and Zhang, X. (2020a). Incorporating deep features into GEOBIA paradigm for remote sensing imagery classification: A patch-based approach. Remote Sensing, 12(18):3007. Liu, B., Du, S., and Zhang, X. (2020b). Land cover classification using convolutional neural network with remote sensing data and digital surface model. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(3):39–43. Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., and Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 145:78–95. Liu, Y., Piramanayagam, S., Monteiro, S. T., and Saber, E. (2017). Dense Semantic Labe-ling of Very-High-Resolution Aerial Imagery and LiDAR with Fully-Convolutional Neural Networks and Higher-Order CRFs. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, volume 2017-July, pages 1561–1570. Lizarazo, I. (2008). Clasificación de la cobertura y del uso del suelo urbano usando imágenes de satélite y algoritmos supervisados de Inteligencia Artificial. UD y La geomática, 1(2):4–18. Lizarazo, I. (2012). Clasificación De La Cobertura Del Suelo Urbano Usando Objetos De Imagen Difusos. UD y la GEOMÁTICA, 6:97–109. Lizarazo, I., Angulo, V., and Rodríguez, J. (2017). Automatic mapping of land surface elevation changes from UAV-based imagery. International Journal of Remote Sensing,38(8-10):2603–2622. Lizarazo, I. and Elsner, P. (2008). From pixels to grixels: a unified functional model for geographic object—based image analysis. In GEOBIA 2008 PIXELS OBJECTS INTE-LLIGENCE. Lizarazo, I. and Ramírez, S. (2016). A Deep Learning Approach for Urban Land Cover Classification from High-Spatial Resolution Imagery and Geomorphometric Variables. In GEOBIA 2016 Solutions Synergies, Enschede. Louarn, M. L., Clergeau, P., Briche, E., and Deschamps-Cottin, M. (2017). “Kill two birds with one stone”: Urban tree species classification using Bi-Temporal pleiades images to study nesting preferences of an invasive bird. Remote Sensing, 9:916–934. Louw, G. and van Niekerk, A. (2019). Object-based land surface segmentation scale optimisation: An ill-structured problem. Geomorphology, 327:377–384. Luethje, F., Tiede, D., and Eisank, C. (2017). Terrain Extraction in Built-Up Areas from Satellite Stereo-Imagery-Derived Surface Models: A Stratified Object-Based Approach. ISPRS International Journal of Geo-Information, 6:13. Ma, L., Cheng, L., Li, M., Liu, Y., and Ma, X. (2015). Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 102:14–27. Ma, L., Fu, T., Blaschke, T., Li, M., Tiede, D., Zhou, Z., Ma, X., and Chen, D. (2017a). Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS International Journal of Geo-Information, 6(2):51. Ma, L., Li, M., Ma, X., Cheng, L., Du, P., and Liu, Y. (2017b). A review of supervised object-based land-cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 130:277–293. Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). High-Resolution Semantic Labeling with Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 55(12):7092–7103. Marcu, A. and Leordeanu, M. (2016). Dual Local-Global Contextual Pathways for Recognition in Aerial Imagery. Marmanis, D., Schindler, K., Wegner, J. D., Galliani, S., Datcu, M., and Stilla, U. (2018). Classification with an edge: Improving semantic image segmentation with boundary detection. ISPRS Journal of Photogrammetry and Remote Sensing, 135:158–172. Marmanis, D., Wegner, J. D., Galliani, S., Schindler, K., Datcu, M., and Stilla, U. (2016). Semantic segmentation of aerial images with an ensemble of CNNs. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3:473–480. Max Kuhn (2008). Building Predictive Models in R Using the caret Package. Journal of Statistical Software, Articles, 28(5):1–26. Maxwell, A. E., Warner, T. A., and Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sen-sing, 39(9):2784–2817. Mayer, H. (2008). Object extraction in photogrammetric computer vision. ISPRS Journal of Photogrammetry and Remote Sensing, 63:213–222. Mitchell, T. M. (1997). Machine learning. McGraw Hill Higher Education. Moussa, A. and El-Sheimy, N. (2012). A New Object Based Method for Automated Extraction of Urban Objects From Airborne Sensors Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIX(B3):309–314. Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5):1145–1161. Nguyen, U., Glenn, E. P., Dang, T. D., and Pham, L. T. (2019). Mapping vegetation types in semi-arid riparian regions using random forest and object-based image approach: A case study of the Colorado River Ecosystem, Grand Canyon, Arizona. Ecological Informatics, 50:43–50. Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W. R., and dos Santos, J. A. (2019). Dynamic Multicontext Segmentation of Remote Sensing Images Based on Convolutional Networks. IEEE Transactions on Geoscience and Remote Sensing, 57(10):7503–7520. Norman, M., Mohd Shafri, H. Z., Idrees, M. O., Mansor, S., and Yusuf, B. (2019). Spatio-statistical optimization of image segmentation process for building footprint extraction using very high-resolution World View 3 satellite data. Geocarto International, pages 1–24. Paisitkriangkrai, S., Sherrah, J., Janney, P., and van den Hengel, A. (2015). Effective Se-mantic Pixel labelling with Convolutional Networks and Conditional Random Fields. In CVPR Workshops, Computer Vision and Pattern Recognition, pages 36–43. Pan, X., Gao, L., Marinoni, A., Zhang, B., Yang, F., and Gamba, P. (2018). Semantic labeling of high resolution aerial imagery and LiDAR data with fine segmentation network. Remote Sensing, 10(5):743. Piramanayagam, S., Saber, E., Schwartzkopf, W., and Koehler, F. W. (2018). Supervised classification of multisensor remotely sensed images using a deep learning framework. Remote Sensing, 10(9):1429. Piramanayagam, S., Schwartzkopf, W., Koehler, F. W., and Saber, E. (2016). Classification of remote sensed images using random forests and deep learning framework. InImage and Signal Processing for Remote Sensing XXII, volume 10004, pages 1–8. Probst, P., Wright, M. N., and Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3):1–19. Quang, N. T., Thuy, N. T., Sang, D. V., Thi, H., and Binh, T. (2015). Semantic Segmentation for Aerial Images using RF and a. Technical report. Radoux, J. and Bogaert, P. (2017). Good practices for object-based accuracy assessment. Remote Sensing, 9:23. Ramírez-Fernández, S. E. and Lizarazo-Salcedo, I. A. (2014). Clasificación digital de masas nubosas a partir de imágenes meteorológicas usando algoritmos de aprendizaje de máquina. Revista Facultad de Ingeniería, 1(73):43–57. Ramiya, A. M., Nidamanuri, R. R., and Ramakrishnan, K. (2016). A supervoxel-based spectro-spatial approach for 3D urban point cloud labelling. International Journal of Remote Sensing, 37(17):4172–4200. Richards, J. A. (2013). Remote Sensing Digital Image Analysis An Introduction. Springer,5ta edition. Rottensteiner, F., Sohn, G., Gerke, M., and Wegner, J. D. (2013). ISPRS Test Project on Urban Classification and 3D Building Reconstruction. Technical report. Rottensteiner, F., Sohn, G., Gerke, M., Wegner, J. D., Breitkopf, U., and Jung, J. (2014). Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing, 93:256–271. Rouse, W., Haas, R. H., Schell, J., and Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS.NASA Special Publication, page 309. Ruiz Hernandez, I. E. and Shi, W. (2018). A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. International Journal of Remote Sensing, 39(4):1175–1198. Rutzinger, M., Rottensteiner, F., and Pfeifer, N. (2009). A Comparison of Evaluation Techniques for Building Extraction From Airborne Laser Scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(1):11–20. Salehi, B., Zhang, Y., Zhong, M., and Dey, V. (2012). A review of the effectiveness of spatial information used in urban land cover classification of VHR imagery. International Journal of Geoinformatics, 8(2):35–51. Schillaci, C., Braun, A., and Kropacek, J. (2015). Terrain analysis and landform recognition. In Cook, S., Clarke, L., and Nield, J., editors, Geomorphological Techniques, volume 2, chapter 2.4.2., pages 1–18. British Society for Geomorphology, London, online edition. Schilling, H., Bulatov, D., and Middelmann, W. (2018). Object-based detection of vehicles using combined optical and elevation data. ISPRS Journal of Photogrammetry and Remote Sensing, 136:85–105. Sherrah, J. (2016). Fully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery. In Computer Vision and Pattern Recognition, pages 1–22. Sivagami, R., Krishankumar, R., and Ravichandran, K. S. (2018). A Comparative Analysis of Supervised Learning Techniques for Pixel Classification in Remote Sensing Images. In2018 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2018, pages 1–4. IEEE. Smith, A. (2010). Image segmentation scale parameter optimization and land cover classification using the random forest algorithm. Journal of Spatial Science, 55(1):69–79. Speiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134:93–101. Speldekamp, T., Fries, C., Gevaert, C., and Gerke, M. (2015). Automatic Semantic Labelling of Urban Areas using a rule-based approach and realized with MeVisLab. Technical report. Sun, Y., Tian, Y., and Xu, Y. (2019). Problems of encoder-decoder frameworks for high-resolution remote sensing image segmentation: Structural stereotype and insufficient learning. Neurocomputing, 330:297–304. Tabib Mahmoudi, F., Samadzadegan, F., and Reinartz, P. (2015). Object recognition based on the context aware decision-level fusion in multiviews imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1):12–22. Tamimi, E., Ebadi, H., and Kiani, A. (2017). Hybrid optimization of object-based classification in high-resolution images using continuous ant colony algorithm with emphasis on building detection. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 42, pages 271–279. Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. Trimble (2014). Reference Book eCognition Developer. Tschannen, M., Cavigelli, L., Mentzer, F., Wiatowski, T., and Benini, L. (2017). Deep structured features for semantic segmentation. In25th European Signal Processing Conference, EUSIPCO 2017, volume 2017-Jun, pages 61–65. Vali, A., Comai, S., and Matteucci, M. (2020). Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sensing, 12:31. Wang, H., Wang, Y., Zhang, Q., Xiang, S., and Pan, C. (2017). Gated convolutional neural network for semantic segmentation in high-resolution images. Remote Sensing, 9(5):446. Wang, L., Jia, M., Yin, D., and Tian, J. (2019). A review of remote sensing for mangrove forests: 1956-2018.Remote Sensing of Environment, 231:1–15. Wieland, M. and Pittore, M. (2014). Performance evaluation of machine learning algorithms for urban pattern recognition from multi-spectral satellite images. Remote Sensing,6(4):2912–2939. Wright, M. N., Wager, S., and Probst, P. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software,77(4):1—-17. Xu, Q., Yuan, X., Ouyang, C., and Zeng, Y. (2020). Attention-based pyramid network for segmentation and classification of high-resolution and hyperspectral remote sensing images. Remote Sensing, 12(21):1–34. Yan, J., Zhou, W., Han, L., and Qian, Y. (2018). Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology. Urban Forestry and Urban Greening, 31(1):230–240. Yang, J., He, Y., Caspersen, J., and Jones, T. (2015). A discrepancy measure for segmentation evaluation from the perspective of object recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 101:186–192. Yang, Y., Stein, A., Tolpekin, V. A., and Zhang, Y. (2018). High-Resolution Remote Sen-sing Image Classification Using Associative Hierarchical CRF Considering Segmentation Quality. IEEE Geoscience and Remote Sensing Letters, 15(5):754–758. You, Y., Wang, S., Ma, Y., Chen, G., Wang, B., Shen, M., and Liu, W. (2018). Building Detection from VHR Remote Sensing Imagery Based on the Morphological Building Index. Remote Sensing, 10(1287):1–22. Younis, M. C., Keedwell, E., and Savic, D. (2018). An Investigation of Pixel-Based and Object-Based Image Classification in Remote Sensing. In ICOASE 2018 – International Conference on Advanced Science and Engineering, pages 449–454. IEEE. Zevenbergen, L. and Thorne, C. (1987). Quantitative analysis of land surface topography. Earth surface processes and landforms, 12:47–56. Zhang, C., Smith, M., and Fang, C. (2018). Evaluation of goddard’s LiDAR, hyperspectral, and thermal data products for mapping urban land-cover types, GIScience and Remote Sensing, 55(1):90–109. Zhang, G., Lei, T., Cui, Y., and Jiang, P. (2019). A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation. ISPRS International Journal of Geo-Information, 8(12). Zhao, W., Du, S., Wang, Q., and Emery, W. J. (2017). Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS Journal of Photogrammetry and Remote Sensing, 132:48–60. Zou, X., Zhao, G., Li, J., Yang, Y., and Fang, Y. (2016). Object based image analysis combining high spatial resolution imagery and laser point clouds for urban land cover. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, volume 41, pages 733–739.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80302/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL80896386.2020.pdf80896386.2020.pdfTesis de Maestría en Geomáticaapplication/pdf20471440https://repositorio.unal.edu.co/bitstream/unal/80302/2/80896386.2020.pdf1256b6d20e560a554faa3e0edf99eec1MD52THUMBNAIL80896386.2020.pdf.jpg80896386.2020.pdf.jpgGenerated Thumbnailimage/jpeg4773https://repositorio.unal.edu.co/bitstream/unal/80302/3/80896386.2020.pdf.jpg3ecce5a821ad88a739f1ffa6e652d392MD53unal/80302oai:repositorio.unal.edu.co:unal/803022024-07-29 23:13:04.089Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |