Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad

ilustraciones, gráficos

Autores:
Cardona Suarez, Gustavo Alberto
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86024
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86024
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
530 - Física::537 - Electricidad y electrónica
Combustibles sintéticos - Producción - Llanos Orientales - Colombia
Producción de energía eléctrica - Llanos Orientales - Colombia
Combustibles sintéticos - Costos de producción
Combustibles sintéticos,
e-fuels
Hidrógeno
Captura de CO2
Power to X
Power to Liquids
Synthetic fuel
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_1d247cf6588fed0f4c729a3f33df8ac1
oai_identifier_str oai:repositorio.unal.edu.co:unal/86024
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
dc.title.translated.eng.fl_str_mv Technical-economic evaluation of a fuel production system based on electricity
title Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
spellingShingle Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
530 - Física::537 - Electricidad y electrónica
Combustibles sintéticos - Producción - Llanos Orientales - Colombia
Producción de energía eléctrica - Llanos Orientales - Colombia
Combustibles sintéticos - Costos de producción
Combustibles sintéticos,
e-fuels
Hidrógeno
Captura de CO2
Power to X
Power to Liquids
Synthetic fuel
title_short Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
title_full Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
title_fullStr Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
title_full_unstemmed Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
title_sort Evaluación técnico-económica de un sistema de producción de combustibles basados en electricidad
dc.creator.fl_str_mv Cardona Suarez, Gustavo Alberto
dc.contributor.advisor.none.fl_str_mv Franco Cardona, Carlos Jaime
dc.contributor.author.none.fl_str_mv Cardona Suarez, Gustavo Alberto
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
530 - Física::537 - Electricidad y electrónica
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
530 - Física::537 - Electricidad y electrónica
Combustibles sintéticos - Producción - Llanos Orientales - Colombia
Producción de energía eléctrica - Llanos Orientales - Colombia
Combustibles sintéticos - Costos de producción
Combustibles sintéticos,
e-fuels
Hidrógeno
Captura de CO2
Power to X
Power to Liquids
Synthetic fuel
dc.subject.lemb.none.fl_str_mv Combustibles sintéticos - Producción - Llanos Orientales - Colombia
Producción de energía eléctrica - Llanos Orientales - Colombia
Combustibles sintéticos - Costos de producción
dc.subject.proposal.spa.fl_str_mv Combustibles sintéticos,
e-fuels
Hidrógeno
Captura de CO2
Power to X
Power to Liquids
dc.subject.proposal.eng.fl_str_mv Synthetic fuel
description ilustraciones, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-06T15:37:02Z
dc.date.available.none.fl_str_mv 2024-05-06T15:37:02Z
dc.date.issued.none.fl_str_mv 2024-05
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86024
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86024
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Alsunousi, M., & Kayabasi, E. (2023). The role of hydrogen in synthetic fuel production strategies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.11.359
Andreoni, P., Aleluia Reis, L., Drouet, L., Dessens, O., Fragkos, P., Pietzcker, R., Pye, S., Rodrigues, R., & Tavoni, M. (2023). Fossil extraction bans and carbon taxes: Assessing their interplay through multiple models. iScience, 26(4), 106377. https://doi.org/10.1016/j.isci.2023.106377
Arcos, J. M. M., & Santos, D. M. F. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25–46. https://doi.org/10.3390/gases3010002
Arraga, D., Cruz, L., Montt, R., & Pantoja, G. (2019). Proyecto de producción de combustible sintético a partir de CO2 en el campo Cerro Gordo. Tesis de Maestría Universidad de los Andes.
Bellotti, D., Rivarolo, M., & Magistri, L. (2022). A comparative techno-economic and sensitivity analysis of Power-to-X processes from different energy sources. Energy Conversion and Management, 260, 115565. https://doi.org/10.1016/j.enconman.2022.115565
Brynolf, S., Taljegard, M., Grahn, M., & Hansson, J. (2018). Electrofuels for the transport sector: A review of production costs. En Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1887-1905). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.288
Burdack, A., Duarte-Herrera, L., López-Jiménez, G., Polklas, T., & Vasco-Echeverri, O. (2023). Techno-economic calculation of green hydrogen production and export from Colombia. International Journal of Hydrogen Energy, 48(5), 1685-1700. https://doi.org/10.1016/j.ijhydene.2022.10.064
Chakraborty, J. P., Singh, S., & Maity, S. K. (2021). Advances in the conversion of methanol to gasoline. En Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels. https://doi.org/10.1016/B978-0-12-823306-1.00008-X
Clausen, L. R., Elmegaard, B., & Houbak, N. (2010). Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 35(12). https://doi.org/10.1016/j.energy.2010.09.004
Daiyan, R., Macgill, I., & Amal, R. (2020). Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters, 5(12), 3843-3847. https://doi.org/10.1021/acsenergylett.0c02249
Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. En Energy and Environmental Science (Vol. 13, Número 10, pp. 3207-3252). Royal Society of Chemistry. https://doi.org/10.1039/d0ee01187h
Dimartino, B. B., Cameron, B. G., & Rubin, J. S. (2023). Direct Air Capture as a Carbon Removal Solution: Analyzing Scale-Up, Cost Reduction, and Pathways for Acceleration.
Do, T. N., & Kim, J. (2020a). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/j.enconman.2020.112866
Do, T. N., & Kim, J. (2020b). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/J.ENCONMAN.2020.112866
Dziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342, 127776. https://doi.org/10.1016/j.fuel.2023.127776
García, C. A., Moncada, J., Aristizábal, V., & Cardona, C. A. (2017). Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case. International Journal of Hydrogen Energy, 42(9), 5849-5864. https://doi.org/10.1016/j.ijhydene.2017.01.073
Ghiat, I., & Al-Ansari, T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432. https://doi.org/10.1016/j.jcou.2020.101432
González Velandia, L. C., John Ramiro Agudelo Santamaria, A., & Coasesora María Luisa Botero Vega, D. (2023). Comparative analysis of greenhouse emissions based on life cycle assessment of alternative fuels for transportation sector-A systematic literature review. www.udea.edu.co
Gonzalez-Garay, A., Heuberger-Austin, C., Fu, X., Klokkenburg, M., Zhang, D., van der Made, A., & Shah, N. (2022). Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector. Energy and Environmental Science, 15(8). https://doi.org/10.1039/d1ee03437e
Grubert, E. (2023). Water consumption from electrolytic hydrogen in a carbon-neutral US energy system. Cleaner Production Letters, 4, 100037. https://doi.org/10.1016/j.clpl.2023.100037
Guilera, J., Ramon Morante, J., & Andreu, T. (2018). Economic viability of SNG production from power and CO2. Energy Conversion and Management, 162, 218-224. https://doi.org/10.1016/j.enconman.2018.02.037
Hombach, L. E., Doré, L., Heidgen, K., Maas, H., Wallington, T. J., & Walther, G. (2023). Economic and environmental assessment of current (2015) and future (2030) use of E-fuels in light-duty vehicles in Germany. Journal of Cleaner Production, 207. https://doi.org/10.1016/j.jclepro.2018.09.261
Huber, D., Birkelbach, F., & Hofmann, R. (2024). Unlocking the potential of synthetic fuel production: Coupled optimization of heat exchanger network and operating parameters of a 1 MW power-to-liquid plant. Chemical Engineering Science, 284, 119506. https://doi.org/10.1016/j.ces.2023.119506
Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. In Energy Conversion and Management (Vol. 291). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2023.117294
Iguarán, R. (2021). Proyecto de viabilidad de Power-to-Gas: Producción de gas natural sintético en Manaure, La Guajira – Colombia. Universitat de Barcelona .
International Energy Agency (IEA). (2019). The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogen
International Energy Agency (IEA). (2021). World Energy Outlook 2021 Resumen ejecutivo. www.iea.org/weo
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.743114
Khan, U., Ogbaga, C. C., Abiodun, O.-A. O., Adeleke, A. A., Ikubanni, P. P., Okoye, P. U., & Okolie, J. A. (2023). Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science & Technology, 8, 100125. https://doi.org/10.1016/j.ccst.2023.100125
Kim, C. Y., Kim, C. R., Kim, D. K., & Cho, S. H. (2020). Analysis of challenges due to changes in net load curve in South Korea by integrating ders. Electronics (Switzerland), 9(8), 1-18. https://doi.org/10.3390/electronics9081310
Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57-67. https://doi.org/10.1016/j.apenergy.2018.06.001
Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional., Congreso de la República de Colombia (2014).
Ley 2099 de 2021.Por medio de la cual se dictan disposiciones para la transicion energetica, la dinamizacion del mercado energetico, la reactivacion economica del pais y se dictan otras disposiciones., Congreso de la República de Colombia (2021).
Nadaleti, W. C., de Souza, E. G., & Lourenço, V. A. (2022). Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions–Part B. International Journal of Hydrogen Energy, 47(1), 1-15. https://doi.org/10.1016/j.ijhydene.2021.05.113
Nemmour, A., Inayat, A., Janajreh, I., & Ghenai, C. (2023). Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. En International Journal of Hydrogen Energy. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2023.03.240
Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153-188. https://doi.org/10.1007/s10311-021-01322-8
Ram, V., & Salkuti, S. R. (2023). An Overview of Major Synthetic Fuels. Energies, 16(6), 2834. https://doi.org/10.3390/en16062834
Ren, J., & Dong, L. (2018). Evaluation of electricity supply sustainability and security: Multi-criteria decision analysis approach. Journal of Cleaner Production, 172, 438-453. https://doi.org/10.1016/j.jclepro.2017.10.167
Riera, J. A., Lima, R. M., & Knio, O. M. (2023). A review of hydrogen production and supply chain modeling and optimization. In International Journal of Hydrogen Energy (Vol. 48, Issue 37, pp. 13731–13755). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2022.12.242
Robinson, M. L. (2014). Marketing Big Oil. Palgrave Macmillan US. https://doi.org/10.1057/9781137388070
Rodríguez, F. (2022). Evaluación de la sostenibilidad de las diferentes biomasas para la producción de energía eléctrica en la Central Bioeléctrica Ciro Redondo. Universidad D Cienfuegos.
Royal Society. (2021). Sustainable synthetic carbon based fuels for transport.
Royal Society (Great Britain). (2019). Sustainable synthetic carbon based fuels for transport.
Schemme, S., Breuer, J. L., Köller, M., Meschede, S., Walman, F., Samsun, R. C., Peters, R., & Stolten, D. (2020). H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International Journal of Hydrogen Energy, 45(8), 5395-5414. https://doi.org/10.1016/j.ijhydene.2019.05.028
Skov, I. R., & Schneider, N. (2022). Incentive structures for power-to-X and e-fuel pathways for transport in EU and member states. Energy Policy, 168. https://doi.org/10.1016/j.enpol.2022.113121
Stewart A. Isaacs, Mark D. Staples, Florian Allroggen, Dharik S. Mallapragada, Christoph P. Falter, and Steven R. H. Barrett (2021) Environmental and Economic Performance of Hybrid Power-to-Liquid and Biomass-to-Liquid Fuel Production in the United States. Environmental Science & Technology 2021 55 (12), 8247-8257 https://pubs.acs.org/doi/abs/10.1021/acs.est.0c07674
Sorrenti, I., Harild Rasmussen, T. B., You, S., & Wu, Q. (2022). The role of power-to-X in hybrid renewable energy systems: A comprehensive review. En Renewable and Sustainable Energy Reviews (Vol. 165). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112380
Su-ungkavatin, P., Tiruta-Barna, L., & Hamelin, L. (2023). Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. En Progress in Energy and Combustion Science (Vol. 96). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2023.101073
The World Bank Group. (2024). Inflation, consumer prices (annual %) - United States.
Uribe, I., Zacarías, X., Lozano, M., & Álvarez, K. (2023). Percepción del rol docente y clases en línea en el contexto de la pandemia por covid-19 en estudiantes universitarios. Tempus Psicológico, 6(2). https://doi.org/10.30554/tempuspsi.6.2.4691.2023
UPME (2023) Proyección de precios de los energéticos para generación eléctrica julio de 2023 diciembre 2050. Unidad de Planeación Minero Energética, Subdirección de hidrocarburos.https://www1.upme.gov.co/sipg/Publicaciones_SIPG/Proyeccion_precios_energeticos_I_semestre_2023_vf.pdf
Vanegas, D. (2022). Modelo De Análisis Para Evaluación De Tecnologías Que Viabilizan El Transporte De Crudo Pesado Por Oleoductos. Tesis Maestria Pontificia Universidad Javeriana.
Vázquez, F. V., Koponen, J., Ruuskanen, V., Bajamundi, C., Kosonen, A., Simell, P., Ahola, J., Frilund, C., Elfving, J., Reinikainen, M., Heikkinen, N., Kauppinen, J., & Piermartini, P. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235-246. https://doi.org/10.1016/j.jcou.2018.09.026
Wang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. En Carbon Neutrality (Vol. 1, Número 1). Springer. https://doi.org/10.1007/s43979-022-00022-8
Wulf, C., Zapp, P., & Schreiber, A. (2020). Review of Power-to-X Demonstration Projects in Europe. En Frontiers in Energy Research (Vol. 8). https://doi.org/10.3389/fenrg.2020.00191
Zhou, G., Kong, Y., Qian, X., Zhang, Q., Ma, Y., & Wu, D. (2023). Explosion dynamics and sensitivity analysis of blended LPG/DME clean fuel promoted by H2 in a confined elongated space. Fuel, 331. https://doi.org/10.1016/j.fuel.2022.125816
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Llanos orientales - Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Sistemas Energéticos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86024/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86024/2/98671119.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a7a1aab6a1b59315c488351ff75a06d1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885996444254208
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Cardona, Carlos Jaimee77c35ea37c7b92041b06767ea4b4d60Cardona Suarez, Gustavo Albertocff56aed27baefbfe857a116b1ec06f42024-05-06T15:37:02Z2024-05-06T15:37:02Z2024-05https://repositorio.unal.edu.co/handle/unal/86024Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosEste Trabajo Final evalúa la viabilidad técnica y económica de implementar un sistema de producción de combustibles sintéticos basados en electricidad, en los Llanos Orientales de Colombia. El caso de estudio parte de un yacimiento de crudo extrapesado que, debido a su baja viscosidad, requiere ser diluido con nafta para su transporte, aumentando los costos y huella de carbono. Adicionalmente, también se produce gas no comercial con un 50% de CO2. Considerando la disponibilidad de CO2 y la posibilidad de producir hidrógeno verde, se evaluó una solución técnico-económica para producir un combustible sintético con baja huella de carbono. La evaluación comprende tres tipos de combustible sintético: DME (Dimetil éter), gasolina y Diesel, con el fin de determinar cuál tendría el menor costo de producción. El cálculo del Costo Nivelado de Energía (LCOE) reveló que en todos los casos su valor es superior al de los combustibles fósiles. Adicionalmente, más del 70% del costo de producción está representado por el costo de la energía. Se concluyó que la viabilidad económica de los combustibles sintéticos estará condicionada a un costo de energía inferior a 175 COP/KWh para DME, 55 COP/KWh para gasolina y 25 COP/KWh para diésel. En caso de reducir el costo asociado al CO2 esta viabilidad se alcanzaría con costos menores a 300 COP/KWh, 160 COP/KWh y 140 COP/KWh, respectivamente. No obstante, debido a que la proyección del costo de energía es de 515 COP/KWh para el caso de estudio, la producción de estos combustibles sintéticos no es viable económicamente. (Tomado de la fuente)This Final Work evaluates the technical and economic feasibility of implementing an electricity-based synthetic fuel production system in the Llanos Orientales Basin of Colombia. The case study includes an extra-heavy crude oil field that, due to its low viscosity, requires dilution with naphtha for transportation, increasing costs and carbon footprint. In addition, non-commercial gas with 50% CO2 is also produced. Considering the availability of CO2 and the possibility of producing green hydrogen, a technical-economic solution was evaluated to produce a synthetic fuel with a low carbon footprint. The evaluation includes three types of synthetic fuel: DME (Dimethyl Ether), gasoline and Diesel, in order to determine which would have the lowest production cost. The calculation of the Levelized Cost of Energy (LCOE) revealed that in all cases, its value is higher than that fossil fuels. Furthermore, more than 70% of the production cost is represented by the cost of energy. It was concluded that the economic viability of synthetic fuels will be conditional on an energy cost less than 175 COP/KWh for DME, 55 COP/KWh for gasoline and 25 COP/KWh for diesel. If the associated cost of CO2 is reduced, this viability would be achieved with costs less than 300 COP/KWh, 160 COP/KWh and 140 COP/KWh, respectively. However, due to the energy cost projection is 515 COP/KWh for the case study, the production of these synthetic fuels is not economically viable.MaestríaMagister en ingeniería – Sistemas EnergéticosIngeniería De Sistemas E Informática.Sede Medellín87 páginasapplication/pdfUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Sistemas EnergéticosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados530 - Física::537 - Electricidad y electrónicaCombustibles sintéticos - Producción - Llanos Orientales - ColombiaProducción de energía eléctrica - Llanos Orientales - ColombiaCombustibles sintéticos - Costos de producciónCombustibles sintéticos,e-fuelsHidrógenoCaptura de CO2Power to XPower to LiquidsSynthetic fuelEvaluación técnico-económica de un sistema de producción de combustibles basados en electricidadTechnical-economic evaluation of a fuel production system based on electricityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLlanos orientales - ColombiaLaReferenciaAlsunousi, M., & Kayabasi, E. (2023). The role of hydrogen in synthetic fuel production strategies. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.11.359Andreoni, P., Aleluia Reis, L., Drouet, L., Dessens, O., Fragkos, P., Pietzcker, R., Pye, S., Rodrigues, R., & Tavoni, M. (2023). Fossil extraction bans and carbon taxes: Assessing their interplay through multiple models. iScience, 26(4), 106377. https://doi.org/10.1016/j.isci.2023.106377Arcos, J. M. M., & Santos, D. M. F. (2023). The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases, 3(1), 25–46. https://doi.org/10.3390/gases3010002Arraga, D., Cruz, L., Montt, R., & Pantoja, G. (2019). Proyecto de producción de combustible sintético a partir de CO2 en el campo Cerro Gordo. Tesis de Maestría Universidad de los Andes.Bellotti, D., Rivarolo, M., & Magistri, L. (2022). A comparative techno-economic and sensitivity analysis of Power-to-X processes from different energy sources. Energy Conversion and Management, 260, 115565. https://doi.org/10.1016/j.enconman.2022.115565Brynolf, S., Taljegard, M., Grahn, M., & Hansson, J. (2018). Electrofuels for the transport sector: A review of production costs. En Renewable and Sustainable Energy Reviews (Vol. 81, pp. 1887-1905). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.288Burdack, A., Duarte-Herrera, L., López-Jiménez, G., Polklas, T., & Vasco-Echeverri, O. (2023). Techno-economic calculation of green hydrogen production and export from Colombia. International Journal of Hydrogen Energy, 48(5), 1685-1700. https://doi.org/10.1016/j.ijhydene.2022.10.064Chakraborty, J. P., Singh, S., & Maity, S. K. (2021). Advances in the conversion of methanol to gasoline. En Hydrocarbon Biorefinery: Sustainable Processing of Biomass for Hydrocarbon Biofuels. https://doi.org/10.1016/B978-0-12-823306-1.00008-XClausen, L. R., Elmegaard, B., & Houbak, N. (2010). Technoeconomic analysis of a low CO2 emission dimethyl ether (DME) plant based on gasification of torrefied biomass. Energy, 35(12). https://doi.org/10.1016/j.energy.2010.09.004Daiyan, R., Macgill, I., & Amal, R. (2020). Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters, 5(12), 3843-3847. https://doi.org/10.1021/acsenergylett.0c02249Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H., & Fendt, S. (2020). Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: a review. En Energy and Environmental Science (Vol. 13, Número 10, pp. 3207-3252). Royal Society of Chemistry. https://doi.org/10.1039/d0ee01187hDimartino, B. B., Cameron, B. G., & Rubin, J. S. (2023). Direct Air Capture as a Carbon Removal Solution: Analyzing Scale-Up, Cost Reduction, and Pathways for Acceleration.Do, T. N., & Kim, J. (2020a). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/j.enconman.2020.112866Do, T. N., & Kim, J. (2020b). Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy Conversion and Management, 214, 112866. https://doi.org/10.1016/J.ENCONMAN.2020.112866Dziejarski, B., Krzyżyńska, R., & Andersson, K. (2023). Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 342, 127776. https://doi.org/10.1016/j.fuel.2023.127776García, C. A., Moncada, J., Aristizábal, V., & Cardona, C. A. (2017). Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case. International Journal of Hydrogen Energy, 42(9), 5849-5864. https://doi.org/10.1016/j.ijhydene.2017.01.073Ghiat, I., & Al-Ansari, T. (2021). A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. Journal of CO2 Utilization, 45, 101432. https://doi.org/10.1016/j.jcou.2020.101432González Velandia, L. C., John Ramiro Agudelo Santamaria, A., & Coasesora María Luisa Botero Vega, D. (2023). Comparative analysis of greenhouse emissions based on life cycle assessment of alternative fuels for transportation sector-A systematic literature review. www.udea.edu.coGonzalez-Garay, A., Heuberger-Austin, C., Fu, X., Klokkenburg, M., Zhang, D., van der Made, A., & Shah, N. (2022). Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector. Energy and Environmental Science, 15(8). https://doi.org/10.1039/d1ee03437eGrubert, E. (2023). Water consumption from electrolytic hydrogen in a carbon-neutral US energy system. Cleaner Production Letters, 4, 100037. https://doi.org/10.1016/j.clpl.2023.100037Guilera, J., Ramon Morante, J., & Andreu, T. (2018). Economic viability of SNG production from power and CO2. Energy Conversion and Management, 162, 218-224. https://doi.org/10.1016/j.enconman.2018.02.037Hombach, L. E., Doré, L., Heidgen, K., Maas, H., Wallington, T. J., & Walther, G. (2023). Economic and environmental assessment of current (2015) and future (2030) use of E-fuels in light-duty vehicles in Germany. Journal of Cleaner Production, 207. https://doi.org/10.1016/j.jclepro.2018.09.261Huber, D., Birkelbach, F., & Hofmann, R. (2024). Unlocking the potential of synthetic fuel production: Coupled optimization of heat exchanger network and operating parameters of a 1 MW power-to-liquid plant. Chemical Engineering Science, 284, 119506. https://doi.org/10.1016/j.ces.2023.119506Incer-Valverde, J., Korayem, A., Tsatsaronis, G., & Morosuk, T. (2023). “Colors” of hydrogen: Definitions and carbon intensity. In Energy Conversion and Management (Vol. 291). Elsevier Ltd. https://doi.org/10.1016/j.enconman.2023.117294Iguarán, R. (2021). Proyecto de viabilidad de Power-to-Gas: Producción de gas natural sintético en Manaure, La Guajira – Colombia. Universitat de Barcelona .International Energy Agency (IEA). (2019). The Future of Hydrogen. https://www.iea.org/reports/the-future-of-hydrogenInternational Energy Agency (IEA). (2021). World Energy Outlook 2021 Resumen ejecutivo. www.iea.org/weoKabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Frontiers in Energy Research, 9. https://doi.org/10.3389/fenrg.2021.743114Khan, U., Ogbaga, C. C., Abiodun, O.-A. O., Adeleke, A. A., Ikubanni, P. P., Okoye, P. U., & Okolie, J. A. (2023). Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science & Technology, 8, 100125. https://doi.org/10.1016/j.ccst.2023.100125Kim, C. Y., Kim, C. R., Kim, D. K., & Cho, S. H. (2020). Analysis of challenges due to changes in net load curve in South Korea by integrating ders. Electronics (Switzerland), 9(8), 1-18. https://doi.org/10.3390/electronics9081310Lewandowska-Bernat, A., & Desideri, U. (2018). Opportunities of power-to-gas technology in different energy systems architectures. Applied Energy, 228, 57-67. https://doi.org/10.1016/j.apenergy.2018.06.001Ley 1715 de 2014. Por medio de la cual se regula la integración de las energías renovables no convencionales al Sistema Energético Nacional., Congreso de la República de Colombia (2014).Ley 2099 de 2021.Por medio de la cual se dictan disposiciones para la transicion energetica, la dinamizacion del mercado energetico, la reactivacion economica del pais y se dictan otras disposiciones., Congreso de la República de Colombia (2021).Nadaleti, W. C., de Souza, E. G., & Lourenço, V. A. (2022). Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America’s regions–Part B. International Journal of Hydrogen Energy, 47(1), 1-15. https://doi.org/10.1016/j.ijhydene.2021.05.113Nemmour, A., Inayat, A., Janajreh, I., & Ghenai, C. (2023). Green hydrogen-based E-fuels (E-methane, E-methanol, E-ammonia) to support clean energy transition: A literature review. En International Journal of Hydrogen Energy. Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2023.03.240Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153-188. https://doi.org/10.1007/s10311-021-01322-8Ram, V., & Salkuti, S. R. (2023). An Overview of Major Synthetic Fuels. Energies, 16(6), 2834. https://doi.org/10.3390/en16062834Ren, J., & Dong, L. (2018). Evaluation of electricity supply sustainability and security: Multi-criteria decision analysis approach. Journal of Cleaner Production, 172, 438-453. https://doi.org/10.1016/j.jclepro.2017.10.167Riera, J. A., Lima, R. M., & Knio, O. M. (2023). A review of hydrogen production and supply chain modeling and optimization. In International Journal of Hydrogen Energy (Vol. 48, Issue 37, pp. 13731–13755). Elsevier Ltd. https://doi.org/10.1016/j.ijhydene.2022.12.242Robinson, M. L. (2014). Marketing Big Oil. Palgrave Macmillan US. https://doi.org/10.1057/9781137388070Rodríguez, F. (2022). Evaluación de la sostenibilidad de las diferentes biomasas para la producción de energía eléctrica en la Central Bioeléctrica Ciro Redondo. Universidad D Cienfuegos.Royal Society. (2021). Sustainable synthetic carbon based fuels for transport.Royal Society (Great Britain). (2019). Sustainable synthetic carbon based fuels for transport.Schemme, S., Breuer, J. L., Köller, M., Meschede, S., Walman, F., Samsun, R. C., Peters, R., & Stolten, D. (2020). H2-based synthetic fuels: A techno-economic comparison of alcohol, ether and hydrocarbon production. International Journal of Hydrogen Energy, 45(8), 5395-5414. https://doi.org/10.1016/j.ijhydene.2019.05.028Skov, I. R., & Schneider, N. (2022). Incentive structures for power-to-X and e-fuel pathways for transport in EU and member states. Energy Policy, 168. https://doi.org/10.1016/j.enpol.2022.113121Stewart A. Isaacs, Mark D. Staples, Florian Allroggen, Dharik S. Mallapragada, Christoph P. Falter, and Steven R. H. Barrett (2021) Environmental and Economic Performance of Hybrid Power-to-Liquid and Biomass-to-Liquid Fuel Production in the United States. Environmental Science & Technology 2021 55 (12), 8247-8257 https://pubs.acs.org/doi/abs/10.1021/acs.est.0c07674Sorrenti, I., Harild Rasmussen, T. B., You, S., & Wu, Q. (2022). The role of power-to-X in hybrid renewable energy systems: A comprehensive review. En Renewable and Sustainable Energy Reviews (Vol. 165). Elsevier Ltd. https://doi.org/10.1016/j.rser.2022.112380Su-ungkavatin, P., Tiruta-Barna, L., & Hamelin, L. (2023). Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. En Progress in Energy and Combustion Science (Vol. 96). Elsevier Ltd. https://doi.org/10.1016/j.pecs.2023.101073The World Bank Group. (2024). Inflation, consumer prices (annual %) - United States.Uribe, I., Zacarías, X., Lozano, M., & Álvarez, K. (2023). Percepción del rol docente y clases en línea en el contexto de la pandemia por covid-19 en estudiantes universitarios. Tempus Psicológico, 6(2). https://doi.org/10.30554/tempuspsi.6.2.4691.2023UPME (2023) Proyección de precios de los energéticos para generación eléctrica julio de 2023 diciembre 2050. Unidad de Planeación Minero Energética, Subdirección de hidrocarburos.https://www1.upme.gov.co/sipg/Publicaciones_SIPG/Proyeccion_precios_energeticos_I_semestre_2023_vf.pdfVanegas, D. (2022). Modelo De Análisis Para Evaluación De Tecnologías Que Viabilizan El Transporte De Crudo Pesado Por Oleoductos. Tesis Maestria Pontificia Universidad Javeriana.Vázquez, F. V., Koponen, J., Ruuskanen, V., Bajamundi, C., Kosonen, A., Simell, P., Ahola, J., Frilund, C., Elfving, J., Reinikainen, M., Heikkinen, N., Kauppinen, J., & Piermartini, P. (2018). Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. Journal of CO2 Utilization, 28, 235-246. https://doi.org/10.1016/j.jcou.2018.09.026Wang, T., Cao, X., & Jiao, L. (2022). PEM water electrolysis for hydrogen production: fundamentals, advances, and prospects. En Carbon Neutrality (Vol. 1, Número 1). Springer. https://doi.org/10.1007/s43979-022-00022-8Wulf, C., Zapp, P., & Schreiber, A. (2020). Review of Power-to-X Demonstration Projects in Europe. En Frontiers in Energy Research (Vol. 8). https://doi.org/10.3389/fenrg.2020.00191Zhou, G., Kong, Y., Qian, X., Zhang, Q., Ma, Y., & Wu, D. (2023). Explosion dynamics and sensitivity analysis of blended LPG/DME clean fuel promoted by H2 in a confined elongated space. Fuel, 331. https://doi.org/10.1016/j.fuel.2022.125816EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86024/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL98671119.2024.pdf98671119.2024.pdfTesis de Maestría en Ingeniería - Sistemas Energéticosapplication/pdf1640803https://repositorio.unal.edu.co/bitstream/unal/86024/2/98671119.2024.pdfa7a1aab6a1b59315c488351ff75a06d1MD52unal/86024oai:repositorio.unal.edu.co:unal/860242024-05-06 10:38:54.856Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=