Analysis of the directional distribution of the wave energy during different climate conditions

Ilustraciones, gráficas

Autores:
Ayala Cruz, Franklin Farid
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86472
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86472
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Oleaje de tempestad - América
Huracanes - Investigaciones
Meteorología - Investigaciones
spectral wave modelling
wind input
whitecapping dissipation
directional spreading
directional spectrum
hurricane waves
módelacion espectral del oleaje
entrada energía por viento
disipación por whitecapping
espectro direccional
oleaje extremo
distribución direccional
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_1bb66f69f6ddfefc02e3fc207b7014bd
oai_identifier_str oai:repositorio.unal.edu.co:unal/86472
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Analysis of the directional distribution of the wave energy during different climate conditions
dc.title.translated.spa.fl_str_mv Análisis de la distribución direccional de la energía del oleaje durante diferentes condiciones climáticas
title Analysis of the directional distribution of the wave energy during different climate conditions
spellingShingle Analysis of the directional distribution of the wave energy during different climate conditions
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Oleaje de tempestad - América
Huracanes - Investigaciones
Meteorología - Investigaciones
spectral wave modelling
wind input
whitecapping dissipation
directional spreading
directional spectrum
hurricane waves
módelacion espectral del oleaje
entrada energía por viento
disipación por whitecapping
espectro direccional
oleaje extremo
distribución direccional
title_short Analysis of the directional distribution of the wave energy during different climate conditions
title_full Analysis of the directional distribution of the wave energy during different climate conditions
title_fullStr Analysis of the directional distribution of the wave energy during different climate conditions
title_full_unstemmed Analysis of the directional distribution of the wave energy during different climate conditions
title_sort Analysis of the directional distribution of the wave energy during different climate conditions
dc.creator.fl_str_mv Ayala Cruz, Franklin Farid
dc.contributor.advisor.none.fl_str_mv Osorio Arias, Andrés Fernando
Montoya Ramírez, Rubén Darío
dc.contributor.author.none.fl_str_mv Ayala Cruz, Franklin Farid
dc.contributor.researchgroup.spa.fl_str_mv Oceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad Nacional
dc.contributor.supervisor.none.fl_str_mv Babanin, Alexander
dc.contributor.orcid.spa.fl_str_mv Ayala Cruz, Franklin Farid [0000-0002-2590-6285]
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Oleaje de tempestad - América
Huracanes - Investigaciones
Meteorología - Investigaciones
spectral wave modelling
wind input
whitecapping dissipation
directional spreading
directional spectrum
hurricane waves
módelacion espectral del oleaje
entrada energía por viento
disipación por whitecapping
espectro direccional
oleaje extremo
distribución direccional
dc.subject.lemb.none.fl_str_mv Oleaje de tempestad - América
Huracanes - Investigaciones
Meteorología - Investigaciones
dc.subject.proposal.eng.fl_str_mv spectral wave modelling
wind input
whitecapping dissipation
directional spreading
directional spectrum
hurricane waves
dc.subject.proposal.spa.fl_str_mv módelacion espectral del oleaje
entrada energía por viento
disipación por whitecapping
espectro direccional
oleaje extremo
distribución direccional
description Ilustraciones, gráficas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T19:25:39Z
dc.date.available.none.fl_str_mv 2024-07-16T19:25:39Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86472
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86472
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Amante, C. and Eakins, B. W. (2009). ETOPO1 Global Relief Model converted to PanMap layer format. NOAA-National Geophysical Data Center, PANGAEA
Ardhuin, F., Chapron, B., and Collard, F. (2009). Observation of swell dissipation across oceans. Geophysical Research Letters, 36(6):1–5
Ardhuin, F. and Boyer, A. L. (2006). Modélisation numérique de l'état de la mer: validation des formes spectrales. Annual of Navigation, 54:55-71
Ardhuin, F. and Jenkins, A. D. (2006). On the interaction of surface waves and upper ocean turbulence. Journal of Physical Oceanography, 36(3):551–557.
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J. M., Aouf, L., and Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9):1917–1941.
Babanin, A. (2011). Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press. 480 pp.
Babanin, A. and Young, I. R. (2005). Two-phase behaviour of the spectral dissipation of wind waves. In Proc. Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, Madrid, Spain. ASCE. Paper number 51.
Babanin, A. V. and Soloviev, Y. P. (1998). Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays. Marine and Freshwater Research, 49(2):89-101.
Babanin, A. V., Tsagareli, K. N., Young, I. R., and Walker, D. J. (2010). Numerical investigation of spectral evolution of wind waves. Part II: Dissipation term and evolution tests. Journal of Physical Oceanography, 40(4):667-683.
Battjes, J. A. and Janssen, J. (1978). Energy loss and wave set-up due to breaking of random waves. In Proc. 16th Congerence on Coastal Engineering, pages 569-587, Hamburg, Germany. ASCE.
Belcher, S. E. and Hunt, J. C. R. (1993). Turbulent shear flow over slowly moving waves. Journal of Fluid Mechanics, 251:109-148.
Beyramzadeh, M., Siadatmousavi, S. M., and Derkani, M. H. (2021). Calibration and skill assessment of two input and dissipation parameterizations in WAVEWATCH-III model forced with ERA5 winds with application to Persian Gulf and Gulf of Oman. Ocean Engineering, 219:108445.
Bi, F., Song, J., Wu, K., and Xu, Y. (2015). Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanologica Sinica, 34(9):43-57.
Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4):7649-7666.
Campos, R. M., Alves, J. H., Soares, C. G., Guimaraes, L. G., and Parente, C. E. (2018). Extreme wind-wave modeling and analysis in the south atlantic ocean. Ocean Modelling,124:75-93.
Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T., Hwang, P., Janssen, P., Janssen, T., Lavrenov, I., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W., Sheremet, A., McKee Smith, J., Tolman, H., van Vledder, G., Wolf, J., and Young, I. (2007). Wave modelling - the state of the art. Progress in Oceanography, 75:603-674.
Chalikov, D. (1995). The parameterization of the wave boundary layer. Journal of Physical Oceanography, 25(6):1333-1349.
Charnock, H. (1955). Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350):639-640.
Chawla, A. and Tolman, H. (2007). Automated grid generation for WAVEWATCH III. Technical note 254, NOAA/NWS/NCEP/OMB. 71 pp.
de Farias, E. G. G., Lorenzzetti, J. A., and Chapron, B. (2012). Swell and wind-sea distributions over the mid-latitude and tropical north atlantic for the period 2002-2008. International Journal of Oceanography, 2012:306723.
Donelan, M. and Pierson Jr, W. (1987). Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. Journal of Geophysical Research: Oceans, 92(C5):4971-5029.
Donelan, M. A. (1999). Wind-induced growth and attenuation of laboratory waves. In Sajjadi, S. G., Thomas, N. H., and Hunt, J. C. R., editors, Wind-over-Wave Couplings: Perspectives and Prospects, pages 183-194. Oxford University Press.
Donelan, M. A., Babanin, A. V., Young, I. R., and Banner, M. L. (2006). Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. Journal of Physical Oceanography, 36(8):1672-1689.
ECMWF (2023). IFS Documentation CY48R1 - Part VII: ECMWF Wave Model. ECMWF
Fan, Y., Ginis, I., Hara, T., Wright, C. W., and Walsh, E. J. (2009). Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. Journal of Physical Oceanography, 39(9):2097-2116.
Fan, Y. and Rogers, W. E. (2016). Drag cofficient comparisons between observed and model simulated directional wave spectra under hurricane conditions. Ocean Modelling, 102:1-13.
Franklin, J. L. and Brown, D. P. (2006). Tropical Cyclone Report Hurricane Emily. Technical report, National Hurricane Center.
Grant, W. D. and Madsen, O. S. (1979). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84(C4):1797-1808.
Hanson, J. L., Tracy, B. A., Tolman, H. L., and Scott, R. D. (2009). Pacific hindcast performance of three numerical wave models. Journal of Atmospheric and Oceanic Technology, 26(8):1614-1633.
Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1):107-127.
Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P. (1985). Computations and parametrizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parametrizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15:1378-1391.
Hersbach, H., Bell, B., Berrisford, P., Hor anyi, A., Sabater, J. M., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D. (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159:17-24.
Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. Cambridge University Press. 387 pp.
Holthuijsen, L. H., Powell, M. D., and Pietrzak, J. D. (2012). Wind and waves in extreme hurricanes. Journal of Geophysical Research: Oceans, 117.
Hwang, P. A. (2011). A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology, 28(3):436-443.
Janssen, P. A. E. M. (1982). Quasilinear approximation for the spectrum of wind-generated water waves. Journal of Fluid Mechanics, 117:493-506.
Janssen, P. A. E. M. (1989). Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography, 19(6):745-754.
Janssen, P. A. E. M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(1):1631-1642.
Janssen, P. A. E. M. (2004). The Interaction of Ocean Waves and Wind. Cambridge University Press. 300 pp.
Jeffreys, H. (1924). On the formation of water waves by wind. Proc. of the Royal Society of London. Ser. A, 107(742):189-206.
Jeffreys, H. (1925). On the formation of water waves by wind (second paper). Proc. of the Royal Society of London. Ser. A, 110(754):241-247.
Jury, M. (2017). Characteristics and meteorology of atlantic swells reaching the caribbean. Journal of Coastal Research, 34
Kahma, K. K. and Calkoen, C. (1992). Reconciling discrepancies in the observed growth of wind-generated waves. Journal of Physical Oceanography, 22(12):1389-1405.
Kahma, K. K. and Calkoen, C. J. (1994). Chapter II.8 Growth curve observations. In Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M., editors, Dynamics and Modelling of Ocean Waves, pages 174-182. Cambridge University Press.
Kalantzi, G. D., Gommenginger, C., and Srokosz, M. (2009). Assessing the performance of the dissipation parameterizations in WAVEWATCH III using collocated altimetry data. Journal of Physical Oceanography, 39(11):2800-2819.
Kalourazi, M. Y., Siadatmousavi, S. M., Yeganeh-Bakhtiary, A., and Jose, F. (2021). WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan. Oceanologia, 63(2):194-213
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A. E. M. (1994). Dynamics and Modelling of Ocean Waves. Cambridge University Press. 532 pp.
Komen, G. J., Hasselmann, S., and Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8):1271-1285.
Kudryavtsev, V. N., Makin, V. K., and Meirink, J. F. (2001). Simplified model of the air flow above waves. Boundary-Layer Meteorology, 100(1):63{90.
Kumar, R., Lemos, G., Semedo, A., and Alsaaq, F. (2022). Parameterization-driven uncertainties in single-forcing, single-model wave climate projections from a CMIP6-derived dynamic ensemble. Climate, 10(4):51.
Landsea, C. W. and Franklin, J. L. (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review, 141(10):3576-3592.
Langodan, S., Cavaleri, L., Benetazzo, A., Bertotti, L., Dasari, H. P., and Hoteit, I. (2023). The peculiar wind and wave climatology of the arabian gulf. Ocean Engineering, 290:116158.
Lee, B.-C., Fan, Y.-M., Chuang, L., and Kao, C. (2009). Parametric sensitivity analysis of the wavewatch iii model. Terrestrial Atmospheric and Oceanic Sciences - TERR ATMOS OCEAN SCI, 20.
Leonard, B. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88(1):17-74.
Li, J. G. and Saulter, A. (2014). Unified global and regional wave model on a multi-resolution grid. Ocean Dynamics, 64(11):1657-1670.
Lin, S., Sheng, J., and Xing, J. (2020). Performance evaluation of parameterizations for wind input and wave dissipation in the spectral wave model for the Northwest Atlantic Ocean. Atmosphere - Ocean, 58(4):258-286.
Liu, Q., Babanin, A., Fan, Y., and Zieger, S. (2017). Numerical simulations of ocean surface waves under hurricane conditions: assessment of existing model permormance. Ocean Modelling, 118:73-93.
Liu, Q., Babanin, A. V., Rogers, W. E., Zieger, S., Young, I. R., Bidlot, J. R., Durrant, T., Ewans, K., Guan, C., Kirezci, C., Lemos, G., MacHutchon, K., Moon, I. J., Rapizo, H., Ribal, A., Semedo, A., and Wang, J. (2021). Global wave hindcasts using the observation-based source terms: Description and validation. Journal of Advances in Modeling Earth Systems, 13(8):e2021MS002493.
Liu, Q., Rogers, W. E., Babanin, A. V., Young, I. R., Romero, L., Zieger, S., Qiao, F., and Guan, C. (2019). Observation-based source terms in the third-generation wave model wavewatch iii: Updates and verification. Journal of Physical Oceanography, 49:489-517.
Longuet-Higgins, M. S., Cartwrigth, D. E., and Smith, N. D. (1963). Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra: Proceedings of a conference, pages 111-136, New Jersey, USA. Prentice Hall.
Miles, J. W. (1957). On the generation of surface waves by shear flows. Journal of Fluid Mechanics, 3(2):185-204.
Miles, J. W. (1959). On the generation of surface waves by shear flows. Part 2. Journal of Fluid Mechanics, 6(4):568-582.
Miles, J. W. (1960). On the generation of surface waves by turbulent shear flows. Journal of Fluid Mechanics, 7(3):469-478.
Montoya, R. D., Arias, A. O., Royero, J. C., and Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67:100-118.
Montoya, R. D., Menendez, M., and Osorio, A. F. (2018). Exploring changes in caribbean hurricane-induced wave heights. Ocean Engineering, 163:126-135.
Moon, I.-J., Ginis, I., Hara, T., Tolman, H. L., Wright, C. W., and Walsh, E. J. (2003). Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of Physical Oceanography, 33(8):1680-1706.
Mycoo, M., Wairiu, M., Campbell, D., Duvat, V., Golbuu, Y., Maharaj, S., Nalau, J., Nunn, P., Pinnegar, J., and Warrick, O. (2022). Small islands. In P ortner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., L oschke, S., M oller, V., Okem, A., and Rama, B., editors, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pages 2043-2121. Cambridge University Press.
Peirson, W. L., Garcia, A. W., and Pells, S. E. (2003). Water wave attenuation due to opposing wind. Journal of Fluid Mechanics, 487:345-365.
Phillips, O. M. (1957). On the generation of waves by turbulent wind. Journal of Fluid Mechanics, 2(5):417-445
Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics, 156:505-531.
Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 79:214-232
Plant, W. J. (1982). A relationship between wind stress and wave slope. Journal of Geophysical Research, 87(C3):1961-1967.
Portilla-Yandún, J., Cavaleri, L., and Van Vledder, G. P. (2015). Wave spectra partitioning and long-term statistical distribution. Ocean Modelling, 96:148-160. Waves and coastal, regional and global processes.
Qian, C., Jiang, H., Wang, X., and Ge, C. (2019). Climatology of wind-seas and swells in the china seas from wave hindcast. Journal of Ocean University of China, 19.
Qiao, W., Song, J., He, H., and Li, F. (2019). Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in wavewatch iii model. Tellus, Series A: Dynamic Meteorology and Oceanography, 71:1-20.
Rascle, N. and Ardhuin, F. (2013). A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modelling, 70:174-188.
Rogers, W. E., Babanin, A. V., and Wang, D. W. (2012). Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9):1329-1346.
Shabani, B., Babanin, A. V., and Baldock, T. E. (2016). Observations of the directional distribution of the wind energy input function over swell waves. Journal of Geophysical Research: Oceans, 121(2):1174-1193
Snyder, R. L., Dobson, F. W., Elliott, J. A., and Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics, 102:1-59.
Snyder, R. L., Thacker, W. C., Hasselmann, K., Hasselmann, S., and Barzel, G. (1993). Implementation of an efficient scheme for calculating nonlinear transfer from wave-wave interactions. Journal of Geophysical Research: Oceans, 98(C8):14507-14525.
Soran, M. B., Amarouche, K., and Akpinar, A. (2022). Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Engineering, 257:111627.
Stopa, J. E., Ardhuin, F., Babanin, A., and Zieger, S. (2016). Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Modelling, 103:2-17.
Stopa, J. E., Cheung, K. F., Tolman, H. L., and Chawla, A. (2013). Patterns and cycles in the climate forecast system reanalysis wind and wave data. Ocean Modelling, 70:207-220.
Teixeira, M. A. C. and Belcher, S. E. (2002). On the distortion of turbulence by a progressive surface wave. Journal of Fluid Mechanics, 458:229-267.
Terwey, W. D. and Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full-physics modeled hurricanes. Journal of Geophysical Research: Atmospheres, 113(D12112).
The WAVEWATCH III Development Group (WW3DG) (2019). User manual and system documentation of WAVEWATCH III version 6.07. Technical note 333, NOAA/NWS/NCEP/MMAB. 465 pp. + Appendices.
Thomas, T. J. and Dwarakish, G. (2015). Numerical wave modelling - A review. Aquatic Procedia, 4:443-448.
Tolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6):782-797.
Tolman, H. L. (2002). Validation of WAVEWATCH III version 1.15 for a global domain. Technical note 213, NOAA / NWS / NCEP / OMB. 33 pp.
Tolman, H. L. and Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11):2497-2518
Tsagareli, K. (2009). Numerical investigation of wind input and spectral dissipation in evolution of wind waves. Ph.d. thesis, University of Adelaide, Adelaide, Australia.
Tsagareli, K. N., Babanin, A. V., Walker, D. J., and Young, I. R. (2010). Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4):656-666.
Umesh, P. A. and Behera, M. R. (2020). Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCHIII-SWAN in the Indian Seas. Ocean Engineering, 202:106959.
van der Westhuyseen, A. (2007). Advances in the spectral modelling of wind waves in the nearshore. Ph.d. thesis, Delft University of Technology, Delft, Netherlands
Walsh, E. J., Vandemark, D., Wright, C. W., Swift, R. N., Scott, J. F., and Hines, D. E. (1999). Measuring directional wave spectra and wind speed with a scanning radar altimeter. In IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS), volume 3, pages 1860{1862, Hamburg, Germany. IEEE.
WAMDIG (1988). The WAM Model - A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12):1775-1810.
Wright, C. W., Walsh, E. J., Vandemark, D., Krabill, W. B., Garcia, A. W., Houston, S. H., Powell, M. D., Black, P. G., and Marks, F. D. (2001). Hurricane directional wave spectrum spatial variation in the open ocean. Journal of Physical Oceanography, 31(8 PART 2):2472-2488.
Wu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research: Oceans, 87(C12):9704-9706
Wu, J., Popinet, S., and Deike, L. (2022). Revisiting wind wave growth with fully coupled direct numerical simulations. Journal of Fluid Mechanics, 951:A18.
Xu, F., Perrie, W., Toulany, B., and Smith, P. C. (2007). Wind-generated waves in Hurricane Juan. Ocean Modelling, 16(3-4):188-205.
Yang, H., Liang, B., and Shao, Z. (2022). Study on the influence range of tropical cyclones on ocean waves. Ocean Engineering, 266:112864.
Young, I. R. (1994). On the measurement of directional wave spectra. Applied Ocean Research, 16(5):283-294.
Young, I. R. (2006). Directional spectra of hurricane wind waves. Journal of Geophysical Research: Oceans, 111(8):1-14.
Young, I. R. and Babanin, A. V. (2006). Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. Journal of Physical Oceanography, 36(3):376-394.
Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96:2-25
Zieger, S., Greenslade, D., and Kepert, J. D. (2018). Wave ensemble forecast system for tropical cyclones in the Australian region. Ocean Dynamics, 68(4-5):603-625.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 130 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86472/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86472/2/1214743394.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86472/3/1214743394.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
6f644ec6b3526b64fa7b2cb82bc195d3
e5a53e91ef0dd43e8b8dd4811079602c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089431465852928
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Arias, Andrés Fernando7f3dd14c4e66765c34f0d73a9c0b17faMontoya Ramírez, Rubén Daríoa9f556f02d11121115ac38115bf17bbeAyala Cruz, Franklin Farid475c2ab2e78348048734ff5c22e8b7f2Oceanicos Grupo de Oceanografía E Ingeniería Costera de la Universidad NacionalBabanin, AlexanderAyala Cruz, Franklin Farid [0000-0002-2590-6285]2024-07-16T19:25:39Z2024-07-16T19:25:39Z2024https://repositorio.unal.edu.co/handle/unal/86472Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, gráficasThe directional wave spectra during hurricane conditions are not well represented by numerical wave models, limiting their capability for extreme waves hindcasting and forecasting purposes. This research intends to conduct, using WAVEWATCH III, a sensitivity analysis of the wind input term packages ST3/4/6 to identify the response of the hurricane-generated wave spectra to the most critical parameters of each parameterization. In addition, modifications in the directional spreading functions of the current observation-based source terms are evaluated during a regular storm case in the Caribbean Sea and Gulf of Mexico. BETAMAX, ZALP, and ZWND are the most sensitive parameters from ST3/ST4, and SINWS for ST6; however, their impact is not relevant in the directional space and do not unambiguously point out the physical mechanisms that solve the underestimation/overestimation of swell/wind sea waves. Narrower $\cos^2$ and $\cos^4$ distributions in the atmospheric input, and a bimodal spreading function for the dissipation rate, show an enhancement of the energy around the main wave propagation direction. These inclusions exhibit a good agreement with wave integral and 2D spectra buoy measurements during wind sea-dominated conditions, and their performance is better than the default directional functions during the most energetic periods of the simulation. (Tomado de la fuente)Los espectros direccionales de oleaje durante condiciones de huracán no están bien repre- sentados por modelos numéricos de oleaje como WAVEWATCH III, limitando su capacidad para el hindcast y pronóstico de oleaje extremo. Esta investigacíon tiene la intencion de llevar a cabo un análisis de sensibilidad de los términos de entrada del viento usando el modelo numérico WAVEWACTH III en los paquetes de física del oleaje ST3/4/6 para identificar la respuesta de los espectros de oleaje generados por huracanes a cambios en el valor de los parámetros más críticos de cada parametrización. Además, se evalúan modificaciones en las funciones de dispersión direccional de los actuales términos fuente basados en observaciones durante un caso de tormenta regular en el Mar Caribe y el Golfo de México. BETAMAX, ZALP y ZWND son los parámetros más sensibles de ST3/ST4, y SINWS para ST6; sin embargo, su impacto no es relevante en el espacio direccional y no señala de manera inequívoca los mecanismos físicos que resuelven la subestimación/sobrestimación del oleaje local/de fondo. Distribuciones más estrechas de cos2 y cos4 en la entrada atmosférica, y una función de dispersión bimodal para la tasa de disipación, muestran un aumento de la energía alrededor de la dirección principal de propagación de las olas. Estas incorporaciones exhiben una buena concordancia con las mediciones de boyas de parámetros integrales y espectros de oleaje 2D durante condiciones dominadas por el mar de viento, y su rendimiento es mejor que las funciones direccionales predeterminadas durante los periodos más energéticos de la simulación.MaestríaMagíster en Ingeniería - Recursos HidráulicosModelación de oleajeMedio Ambiente.Sede Medellín130 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaOleaje de tempestad - AméricaHuracanes - InvestigacionesMeteorología - Investigacionesspectral wave modellingwind inputwhitecapping dissipationdirectional spreadingdirectional spectrumhurricane wavesmódelacion espectral del oleajeentrada energía por vientodisipación por whitecappingespectro direccionaloleaje extremodistribución direccionalAnalysis of the directional distribution of the wave energy during different climate conditionsAnálisis de la distribución direccional de la energía del oleaje durante diferentes condiciones climáticasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAmante, C. and Eakins, B. W. (2009). ETOPO1 Global Relief Model converted to PanMap layer format. NOAA-National Geophysical Data Center, PANGAEAArdhuin, F., Chapron, B., and Collard, F. (2009). Observation of swell dissipation across oceans. Geophysical Research Letters, 36(6):1–5Ardhuin, F. and Boyer, A. L. (2006). Modélisation numérique de l'état de la mer: validation des formes spectrales. Annual of Navigation, 54:55-71Ardhuin, F. and Jenkins, A. D. (2006). On the interaction of surface waves and upper ocean turbulence. Journal of Physical Oceanography, 36(3):551–557.Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J. F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J. M., Aouf, L., and Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. Journal of Physical Oceanography, 40(9):1917–1941.Babanin, A. (2011). Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press. 480 pp.Babanin, A. and Young, I. R. (2005). Two-phase behaviour of the spectral dissipation of wind waves. In Proc. Ocean Waves Measurement and Analysis, Fifth International Symposium WAVES 2005, Madrid, Spain. ASCE. Paper number 51.Babanin, A. V. and Soloviev, Y. P. (1998). Variability of directional spectra of wind-generated waves, studied by means of wave staff arrays. Marine and Freshwater Research, 49(2):89-101.Babanin, A. V., Tsagareli, K. N., Young, I. R., and Walker, D. J. (2010). Numerical investigation of spectral evolution of wind waves. Part II: Dissipation term and evolution tests. Journal of Physical Oceanography, 40(4):667-683.Battjes, J. A. and Janssen, J. (1978). Energy loss and wave set-up due to breaking of random waves. In Proc. 16th Congerence on Coastal Engineering, pages 569-587, Hamburg, Germany. ASCE.Belcher, S. E. and Hunt, J. C. R. (1993). Turbulent shear flow over slowly moving waves. Journal of Fluid Mechanics, 251:109-148.Beyramzadeh, M., Siadatmousavi, S. M., and Derkani, M. H. (2021). Calibration and skill assessment of two input and dissipation parameterizations in WAVEWATCH-III model forced with ERA5 winds with application to Persian Gulf and Gulf of Oman. Ocean Engineering, 219:108445.Bi, F., Song, J., Wu, K., and Xu, Y. (2015). Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanologica Sinica, 34(9):43-57.Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4):7649-7666.Campos, R. M., Alves, J. H., Soares, C. G., Guimaraes, L. G., and Parente, C. E. (2018). Extreme wind-wave modeling and analysis in the south atlantic ocean. Ocean Modelling,124:75-93.Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T., Hwang, P., Janssen, P., Janssen, T., Lavrenov, I., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W., Sheremet, A., McKee Smith, J., Tolman, H., van Vledder, G., Wolf, J., and Young, I. (2007). Wave modelling - the state of the art. Progress in Oceanography, 75:603-674.Chalikov, D. (1995). The parameterization of the wave boundary layer. Journal of Physical Oceanography, 25(6):1333-1349.Charnock, H. (1955). Wind stress on a water surface. Quarterly Journal of the Royal Meteorological Society, 81(350):639-640.Chawla, A. and Tolman, H. (2007). Automated grid generation for WAVEWATCH III. Technical note 254, NOAA/NWS/NCEP/OMB. 71 pp.de Farias, E. G. G., Lorenzzetti, J. A., and Chapron, B. (2012). Swell and wind-sea distributions over the mid-latitude and tropical north atlantic for the period 2002-2008. International Journal of Oceanography, 2012:306723.Donelan, M. and Pierson Jr, W. (1987). Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. Journal of Geophysical Research: Oceans, 92(C5):4971-5029.Donelan, M. A. (1999). Wind-induced growth and attenuation of laboratory waves. In Sajjadi, S. G., Thomas, N. H., and Hunt, J. C. R., editors, Wind-over-Wave Couplings: Perspectives and Prospects, pages 183-194. Oxford University Press.Donelan, M. A., Babanin, A. V., Young, I. R., and Banner, M. L. (2006). Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. Journal of Physical Oceanography, 36(8):1672-1689.ECMWF (2023). IFS Documentation CY48R1 - Part VII: ECMWF Wave Model. ECMWFFan, Y., Ginis, I., Hara, T., Wright, C. W., and Walsh, E. J. (2009). Numerical simulations and observations of surface wave fields under an extreme tropical cyclone. Journal of Physical Oceanography, 39(9):2097-2116.Fan, Y. and Rogers, W. E. (2016). Drag cofficient comparisons between observed and model simulated directional wave spectra under hurricane conditions. Ocean Modelling, 102:1-13.Franklin, J. L. and Brown, D. P. (2006). Tropical Cyclone Report Hurricane Emily. Technical report, National Hurricane Center.Grant, W. D. and Madsen, O. S. (1979). Combined wave and current interaction with a rough bottom. Journal of Geophysical Research: Oceans, 84(C4):1797-1808.Hanson, J. L., Tracy, B. A., Tolman, H. L., and Scott, R. D. (2009). Pacific hindcast performance of three numerical wave models. Journal of Atmospheric and Oceanic Technology, 26(8):1614-1633.Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1):107-127.Hasselmann, S., Hasselmann, K., Allender, J. H., and Barnett, T. P. (1985). Computations and parametrizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parametrizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15:1378-1391.Hersbach, H., Bell, B., Berrisford, P., Hor anyi, A., Sabater, J. M., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Dee, D. (2019). Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, 159:17-24.Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. Cambridge University Press. 387 pp.Holthuijsen, L. H., Powell, M. D., and Pietrzak, J. D. (2012). Wind and waves in extreme hurricanes. Journal of Geophysical Research: Oceans, 117.Hwang, P. A. (2011). A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology, 28(3):436-443.Janssen, P. A. E. M. (1982). Quasilinear approximation for the spectrum of wind-generated water waves. Journal of Fluid Mechanics, 117:493-506.Janssen, P. A. E. M. (1989). Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography, 19(6):745-754.Janssen, P. A. E. M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography, 21(1):1631-1642.Janssen, P. A. E. M. (2004). The Interaction of Ocean Waves and Wind. Cambridge University Press. 300 pp.Jeffreys, H. (1924). On the formation of water waves by wind. Proc. of the Royal Society of London. Ser. A, 107(742):189-206.Jeffreys, H. (1925). On the formation of water waves by wind (second paper). Proc. of the Royal Society of London. Ser. A, 110(754):241-247.Jury, M. (2017). Characteristics and meteorology of atlantic swells reaching the caribbean. Journal of Coastal Research, 34Kahma, K. K. and Calkoen, C. (1992). Reconciling discrepancies in the observed growth of wind-generated waves. Journal of Physical Oceanography, 22(12):1389-1405.Kahma, K. K. and Calkoen, C. J. (1994). Chapter II.8 Growth curve observations. In Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M., editors, Dynamics and Modelling of Ocean Waves, pages 174-182. Cambridge University Press.Kalantzi, G. D., Gommenginger, C., and Srokosz, M. (2009). Assessing the performance of the dissipation parameterizations in WAVEWATCH III using collocated altimetry data. Journal of Physical Oceanography, 39(11):2800-2819.Kalourazi, M. Y., Siadatmousavi, S. M., Yeganeh-Bakhtiary, A., and Jose, F. (2021). WAVEWATCH-III source terms evaluation for optimizing hurricane wave modeling: A case study of Hurricane Ivan. Oceanologia, 63(2):194-213Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P.A. E. M. (1994). Dynamics and Modelling of Ocean Waves. Cambridge University Press. 532 pp.Komen, G. J., Hasselmann, S., and Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8):1271-1285.Kudryavtsev, V. N., Makin, V. K., and Meirink, J. F. (2001). Simplified model of the air flow above waves. Boundary-Layer Meteorology, 100(1):63{90.Kumar, R., Lemos, G., Semedo, A., and Alsaaq, F. (2022). Parameterization-driven uncertainties in single-forcing, single-model wave climate projections from a CMIP6-derived dynamic ensemble. Climate, 10(4):51.Landsea, C. W. and Franklin, J. L. (2013). Atlantic hurricane database uncertainty and presentation of a new database format. Monthly Weather Review, 141(10):3576-3592.Langodan, S., Cavaleri, L., Benetazzo, A., Bertotti, L., Dasari, H. P., and Hoteit, I. (2023). The peculiar wind and wave climatology of the arabian gulf. Ocean Engineering, 290:116158.Lee, B.-C., Fan, Y.-M., Chuang, L., and Kao, C. (2009). Parametric sensitivity analysis of the wavewatch iii model. Terrestrial Atmospheric and Oceanic Sciences - TERR ATMOS OCEAN SCI, 20.Leonard, B. (1991). The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88(1):17-74.Li, J. G. and Saulter, A. (2014). Unified global and regional wave model on a multi-resolution grid. Ocean Dynamics, 64(11):1657-1670.Lin, S., Sheng, J., and Xing, J. (2020). Performance evaluation of parameterizations for wind input and wave dissipation in the spectral wave model for the Northwest Atlantic Ocean. Atmosphere - Ocean, 58(4):258-286.Liu, Q., Babanin, A., Fan, Y., and Zieger, S. (2017). Numerical simulations of ocean surface waves under hurricane conditions: assessment of existing model permormance. Ocean Modelling, 118:73-93.Liu, Q., Babanin, A. V., Rogers, W. E., Zieger, S., Young, I. R., Bidlot, J. R., Durrant, T., Ewans, K., Guan, C., Kirezci, C., Lemos, G., MacHutchon, K., Moon, I. J., Rapizo, H., Ribal, A., Semedo, A., and Wang, J. (2021). Global wave hindcasts using the observation-based source terms: Description and validation. Journal of Advances in Modeling Earth Systems, 13(8):e2021MS002493.Liu, Q., Rogers, W. E., Babanin, A. V., Young, I. R., Romero, L., Zieger, S., Qiao, F., and Guan, C. (2019). Observation-based source terms in the third-generation wave model wavewatch iii: Updates and verification. Journal of Physical Oceanography, 49:489-517.Longuet-Higgins, M. S., Cartwrigth, D. E., and Smith, N. D. (1963). Observations of the directional spectrum of sea waves using the motions of a floating buoy. In Ocean Wave Spectra: Proceedings of a conference, pages 111-136, New Jersey, USA. Prentice Hall.Miles, J. W. (1957). On the generation of surface waves by shear flows. Journal of Fluid Mechanics, 3(2):185-204.Miles, J. W. (1959). On the generation of surface waves by shear flows. Part 2. Journal of Fluid Mechanics, 6(4):568-582.Miles, J. W. (1960). On the generation of surface waves by turbulent shear flows. Journal of Fluid Mechanics, 7(3):469-478.Montoya, R. D., Arias, A. O., Royero, J. C., and Ocampo-Torres, F. J. (2013). A wave parameters and directional spectrum analysis for extreme winds. Ocean Engineering, 67:100-118.Montoya, R. D., Menendez, M., and Osorio, A. F. (2018). Exploring changes in caribbean hurricane-induced wave heights. Ocean Engineering, 163:126-135.Moon, I.-J., Ginis, I., Hara, T., Tolman, H. L., Wright, C. W., and Walsh, E. J. (2003). Numerical simulation of sea surface directional wave spectra under hurricane wind forcing. Journal of Physical Oceanography, 33(8):1680-1706.Mycoo, M., Wairiu, M., Campbell, D., Duvat, V., Golbuu, Y., Maharaj, S., Nalau, J., Nunn, P., Pinnegar, J., and Warrick, O. (2022). Small islands. In P ortner, H. O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., L oschke, S., M oller, V., Okem, A., and Rama, B., editors, Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, pages 2043-2121. Cambridge University Press.Peirson, W. L., Garcia, A. W., and Pells, S. E. (2003). Water wave attenuation due to opposing wind. Journal of Fluid Mechanics, 487:345-365.Phillips, O. M. (1957). On the generation of waves by turbulent wind. Journal of Fluid Mechanics, 2(5):417-445Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics, 156:505-531.Pianosi, F., Beven, K., Freer, J., Hall, J. W., Rougier, J., Stephenson, D. B., and Wagener, T. (2016). Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 79:214-232Plant, W. J. (1982). A relationship between wind stress and wave slope. Journal of Geophysical Research, 87(C3):1961-1967.Portilla-Yandún, J., Cavaleri, L., and Van Vledder, G. P. (2015). Wave spectra partitioning and long-term statistical distribution. Ocean Modelling, 96:148-160. Waves and coastal, regional and global processes.Qian, C., Jiang, H., Wang, X., and Ge, C. (2019). Climatology of wind-seas and swells in the china seas from wave hindcast. Journal of Ocean University of China, 19.Qiao, W., Song, J., He, H., and Li, F. (2019). Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in wavewatch iii model. Tellus, Series A: Dynamic Meteorology and Oceanography, 71:1-20.Rascle, N. and Ardhuin, F. (2013). A global wave parameter database for geophysical applications. Part 2: Model validation with improved source term parameterization. Ocean Modelling, 70:174-188.Rogers, W. E., Babanin, A. V., and Wang, D. W. (2012). Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. Journal of Atmospheric and Oceanic Technology, 29(9):1329-1346.Shabani, B., Babanin, A. V., and Baldock, T. E. (2016). Observations of the directional distribution of the wind energy input function over swell waves. Journal of Geophysical Research: Oceans, 121(2):1174-1193Snyder, R. L., Dobson, F. W., Elliott, J. A., and Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics, 102:1-59.Snyder, R. L., Thacker, W. C., Hasselmann, K., Hasselmann, S., and Barzel, G. (1993). Implementation of an efficient scheme for calculating nonlinear transfer from wave-wave interactions. Journal of Geophysical Research: Oceans, 98(C8):14507-14525.Soran, M. B., Amarouche, K., and Akpinar, A. (2022). Spatial calibration of WAVEWATCH III model against satellite observations using different input and dissipation parameterizations in the Black Sea. Ocean Engineering, 257:111627.Stopa, J. E., Ardhuin, F., Babanin, A., and Zieger, S. (2016). Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Modelling, 103:2-17.Stopa, J. E., Cheung, K. F., Tolman, H. L., and Chawla, A. (2013). Patterns and cycles in the climate forecast system reanalysis wind and wave data. Ocean Modelling, 70:207-220.Teixeira, M. A. C. and Belcher, S. E. (2002). On the distortion of turbulence by a progressive surface wave. Journal of Fluid Mechanics, 458:229-267.Terwey, W. D. and Montgomery, M. T. (2008). Secondary eyewall formation in two idealized, full-physics modeled hurricanes. Journal of Geophysical Research: Atmospheres, 113(D12112).The WAVEWATCH III Development Group (WW3DG) (2019). User manual and system documentation of WAVEWATCH III version 6.07. Technical note 333, NOAA/NWS/NCEP/MMAB. 465 pp. + Appendices.Thomas, T. J. and Dwarakish, G. (2015). Numerical wave modelling - A review. Aquatic Procedia, 4:443-448.Tolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6):782-797.Tolman, H. L. (2002). Validation of WAVEWATCH III version 1.15 for a global domain. Technical note 213, NOAA / NWS / NCEP / OMB. 33 pp.Tolman, H. L. and Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11):2497-2518Tsagareli, K. (2009). Numerical investigation of wind input and spectral dissipation in evolution of wind waves. Ph.d. thesis, University of Adelaide, Adelaide, Australia.Tsagareli, K. N., Babanin, A. V., Walker, D. J., and Young, I. R. (2010). Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4):656-666.Umesh, P. A. and Behera, M. R. (2020). Performance evaluation of input-dissipation parameterizations in WAVEWATCH III and comparison of wave hindcast with nested WAVEWATCHIII-SWAN in the Indian Seas. Ocean Engineering, 202:106959.van der Westhuyseen, A. (2007). Advances in the spectral modelling of wind waves in the nearshore. Ph.d. thesis, Delft University of Technology, Delft, NetherlandsWalsh, E. J., Vandemark, D., Wright, C. W., Swift, R. N., Scott, J. F., and Hines, D. E. (1999). Measuring directional wave spectra and wind speed with a scanning radar altimeter. In IEEE 1999 International Geoscience and Remote Sensing Symposium (IGARSS), volume 3, pages 1860{1862, Hamburg, Germany. IEEE.WAMDIG (1988). The WAM Model - A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12):1775-1810.Wright, C. W., Walsh, E. J., Vandemark, D., Krabill, W. B., Garcia, A. W., Houston, S. H., Powell, M. D., Black, P. G., and Marks, F. D. (2001). Hurricane directional wave spectrum spatial variation in the open ocean. Journal of Physical Oceanography, 31(8 PART 2):2472-2488.Wu, J. (1982). Wind-stress coefficients over sea surface from breeze to hurricane. Journal of Geophysical Research: Oceans, 87(C12):9704-9706Wu, J., Popinet, S., and Deike, L. (2022). Revisiting wind wave growth with fully coupled direct numerical simulations. Journal of Fluid Mechanics, 951:A18.Xu, F., Perrie, W., Toulany, B., and Smith, P. C. (2007). Wind-generated waves in Hurricane Juan. Ocean Modelling, 16(3-4):188-205.Yang, H., Liang, B., and Shao, Z. (2022). Study on the influence range of tropical cyclones on ocean waves. Ocean Engineering, 266:112864.Young, I. R. (1994). On the measurement of directional wave spectra. Applied Ocean Research, 16(5):283-294.Young, I. R. (2006). Directional spectra of hurricane wind waves. Journal of Geophysical Research: Oceans, 111(8):1-14.Young, I. R. and Babanin, A. V. (2006). Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. Journal of Physical Oceanography, 36(3):376-394.Zieger, S., Babanin, A. V., Rogers, W. E., and Young, I. R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96:2-25Zieger, S., Greenslade, D., and Kepert, J. D. (2018). Wave ensemble forecast system for tropical cyclones in the Australian region. Ocean Dynamics, 68(4-5):603-625.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86472/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1214743394.2024.pdf1214743394.2024.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf118029635https://repositorio.unal.edu.co/bitstream/unal/86472/2/1214743394.2024.pdf6f644ec6b3526b64fa7b2cb82bc195d3MD52THUMBNAIL1214743394.2024.pdf.jpg1214743394.2024.pdf.jpgGenerated Thumbnailimage/jpeg4455https://repositorio.unal.edu.co/bitstream/unal/86472/3/1214743394.2024.pdf.jpge5a53e91ef0dd43e8b8dd4811079602cMD53unal/86472oai:repositorio.unal.edu.co:unal/864722024-07-16 23:05:22.72Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=