Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes
Ilustraciones, mapas
- Autores:
-
Ruiz Bastidas, Rosa Cecilia
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85490
- Palabra clave:
- 600 - Tecnología (Ciencias aplicadas)
660 - Ingeniería química::666 - Cerámica y tecnologías afines
Industria de la zeolita
Residuos porcícolas
Amoníaco
Inhibición
Zeolita
Adsorción
Metano
Pig waste
Ammonia
Inhibition
Zeolite
Adsorption
Methane
Digestión anaeróbica
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_1ba7868b9b8787f9a6dbc47eed4af41f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85490 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
dc.title.translated.eng.fl_str_mv |
Anaerobic digestion of swine waste using natural zeolite as a biotechnological alternative for the generation of renewable energy and nutrients recovery |
title |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
spellingShingle |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes 600 - Tecnología (Ciencias aplicadas) 660 - Ingeniería química::666 - Cerámica y tecnologías afines Industria de la zeolita Residuos porcícolas Amoníaco Inhibición Zeolita Adsorción Metano Pig waste Ammonia Inhibition Zeolite Adsorption Methane Digestión anaeróbica |
title_short |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
title_full |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
title_fullStr |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
title_full_unstemmed |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
title_sort |
Digestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientes |
dc.creator.fl_str_mv |
Ruiz Bastidas, Rosa Cecilia |
dc.contributor.advisor.none.fl_str_mv |
Cadavid Rodríguez, Luz Stella Cadena Chamorro, Edith Marleny |
dc.contributor.author.none.fl_str_mv |
Ruiz Bastidas, Rosa Cecilia |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Prospectiva Ambiental |
dc.contributor.orcid.spa.fl_str_mv |
Ruiz-Bastidas, Rosa Cecilia [0000-0002-1152-4040] |
dc.contributor.cvlac.spa.fl_str_mv |
Ruiz-Bastidas, Rosa Cecilia |
dc.subject.ddc.spa.fl_str_mv |
600 - Tecnología (Ciencias aplicadas) 660 - Ingeniería química::666 - Cerámica y tecnologías afines |
topic |
600 - Tecnología (Ciencias aplicadas) 660 - Ingeniería química::666 - Cerámica y tecnologías afines Industria de la zeolita Residuos porcícolas Amoníaco Inhibición Zeolita Adsorción Metano Pig waste Ammonia Inhibition Zeolite Adsorption Methane Digestión anaeróbica |
dc.subject.lemb.none.fl_str_mv |
Industria de la zeolita |
dc.subject.proposal.spa.fl_str_mv |
Residuos porcícolas Amoníaco Inhibición Zeolita Adsorción Metano |
dc.subject.proposal.eng.fl_str_mv |
Pig waste Ammonia Inhibition Zeolite Adsorption Methane |
dc.subject.wikidata.none.fl_str_mv |
Digestión anaeróbica |
description |
Ilustraciones, mapas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-29T19:18:14Z |
dc.date.available.none.fl_str_mv |
2024-01-29T19:18:14Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85490 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85490 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101(16), 6368–6373. https://doi.org/10.1016/j.biortech.2010.03.071 Abouelenien, F., Nakashimada, Y., & Nishio, N. (2009). Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. Journal of Bioscience and Bioengineering, 107(3), 293–295. https://doi.org/10.1016/j.jbiosc.2008.10.009 Adam, M. R., Othman, M. H. D., Abu Samah, R., Puteh, M. H., Ismail, A. F., Mustafa, A., A. Rahman, M., & Jaafar, J. (2019). Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Separation and Purification Technology, 213, 114–132. https://doi.org/10.1016/j.seppur.2018.12.030 André, L., Pauss, A., & Ribeiro, T. (2018). Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource Technology, 247(August 2017), 1027–1037. https://doi.org/10.1016/j.biortech.2017.09.003 Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, a. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040 Angelidaki, Irini, Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011 APHA. (2017). Standard methods for the examination of Water and Wastewater, 23rd ed. American Public Health Assossiation, American Water Works Assossiation, Water Environment Federation. Washington, D.C. Arif, S., Liaquat, R., & Adil, M. (2018). Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(January 2017), 354–366. https://doi.org/10.1016/j.rser.2018.08.039 Asociación Colombiana de Porcicultores. (2016). Informe de los proyectos de inversión desarrollados durante el año 2016. Recuperado Julio 20, 2023, de https://porkcolombia.co/wp-content/uploads/2020/08/Informe-de-Gesti%C3%B3n-I-semestre-2016-Porkcolombia.pdf Astals, S., Peces, M., Batstone, D. J., Jensen, P. D., & Tait, S. (2018). Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems. Water Research, 143, 127–135. https://doi.org/10.1016/j.watres.2018.06.021 Barampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2020). Exploring technological alternatives of nutrient recovery from digestate as a secondary resource. Renewable and Sustainable Energy Reviews, 134(September), 110379. https://doi.org/10.1016/j.rser.2020.110379 Baykara, H., Martinez, M. C., Rey, D. V., Urbina, D. S., Paredes, C., Rigail-Cedeño, A., & Aviles, M. O. (2018). Preparation and determination of antimicrobial property of cation-exchanged ecuadorian natural zeolite to be used as filler for polyethylene and polypropylene matrices. Journal of Polymers and the Environment, 26(6), 2566–2578. https://doi.org/10.1007/s10924-017-1153-8 Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2017). Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresource Technology, 244(June), 816–823. https://doi.org/10.1016/j.biortech.2017.08.047 Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible , interactive , scalable and extensible microbiome data science using QIIME 2. Nature BiotechNology, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 Buswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550–552. https://doi.org/10.1021/ie50507a033 Butti, M. (2018). Introducción a la Digestión anaeróbica. Curso Introductorio de Pequeña Escala, Foz de Iguazú, 18 y 18 de Septiembre de 2018. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/1-Introducci%C3%B3n-a-la-digesti%C3%B3n-anaer%C3%B3bica.pdf Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2 : High-resolution sample inference from Illumina amplicon data. Nature Methods, May, 1–7. https://doi.org/10.1038/nmeth.3869 Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40(3–4), 1285–1292. https://doi.org/10.1016/j.procbio.2004.05.008 Calvo, B., Canoira, L., Morante, F., Martínez-Bedia, J. M., Vinagre, C., García-González, J.-E., Elsen, J., & Alcantara, R. (2009). Continuous elimination of Pb2+,Cu2+,Zn2+,H+ and NH4+ from acidic waters by ionic exchange on natural zeolites. Journal of Hazardous Materials Journal, 166, 619–627. https://doi.org/10.1016/j.jhazmat.2008.11.087 Cardona, L., Mazéas, L., & Chapleur, O. (2021). Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. Chemosphere, 262(Article 127932). https://doi.org/10.1016/j.chemosphere.2020.127932 Castro, L., Escalante, H., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions : Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035 Chen, S., He, J., Wang, H., Dong, B., Li, N., & Dai, X. (2018). Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia. Chemical Engineering Journal, 350(May), 312–323. https://doi.org/10.1016/j.cej.2018.05.168 Chen, Y., & Cheng, J. J. (2007). Effect of Potassium Inhibition on the Thermophilic Anaerobic Digestion of Swine Waste. Water Environ. Res., 79, 667–674. https://doi.org/10.2175/106143007X156853 Cooney, E. L., Booker, N. A., Shallcross, D. C., & Stevens, G. W. (1999). Ammonia Removal from Wastewaters Using Natural Australian Zeolite. I. Characterization of the Zeolite. Separation Science and Technology, 34(12), 2307–2327. https://doi.org/10.1081/SS-100100774 Corporación Autónoma Regional del Valle del Cauca, C. (2019). Informe de gestión. Vigencia 2018. Recuperado Julio 28, 2023, de https://www1.upme.gov.co/InformesGestion/Informe_gestion_2018.pdf De Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., Bral, A., Varga, S., Prat, D., Peng, L., Spiller, M., Buysse, J., Colsen, J., Benito, O., Carballa, M., & Vlaeminck, S. E. (2019). Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 272(October 2018), 582–593. https://doi.org/10.1016/j.biortech.2018.10.024 Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., & Liu, Z. (2019). Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Journal of Environmental Management, 231(July 2018), 646–652. https://doi.org/10.1016/j.jenvman.2018.10.062 Escalante, H., Castro, L., Amaya, M. P., Jaimes, L., & Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718. https://doi.org/10.1016/j.wasman.2017.09.026 Esteves, E. M. M., Herrera, A. M. N., Esteves, V. P. P., & Morgado, C. do R. V. (2019). Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, 219, 411–423. https://doi.org/10.1016/j.jclepro.2019.02.091 Fernandes, T. V., Keesman, K. J., Zeeman, G., & van Lier, J. B. (2012). Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass and Bioenergy, 47, 316–323. https://doi.org/10.1016/j.biombioe.2012.09.029 Ganidi, N., Tyrrel, S., & Cartmell, E. (2009). Anaerobic digestion foaming causes - A review. Bioresource Technology, 100(23), 5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024 García Arbeláez, C. ., Barrera, X., Gómez Castaño, R. ., & Castaño, R. . S. (2015). El ABC de los compromisos de Colombia para la COP21. Recuperado Julio 28, 2019, de http://mvccolombia.co/images/ABC_S3_B24_C8_web.pdf Garcia, M. L., & Angenent, L. T. (2009). Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Research, 43(9), 2373–2382. https://doi.org/10.1016/j.watres.2009.02.036 Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/j.rser.2016.01.071 Gelves Diaz, J. F. (2017). Zeolitas naturales colombianas de la formación Combia, municipio de La Pintada: mineralogía, caracterización y aplicaciones. Universidad Nacional de Colombia. Recuperado Julio 29, 2023, de https://repositorio.unal.edu.co/handle/unal/59065?show=full Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3437e/i3437e.pdf Gonzales Rubio, C. H. (2016). Estudio de prefactibilidad para la generación de energía a partir de biomasa residual en granjas de cerdo de una industria porcícola. Recuperado Julio 29, 2023, de https://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/85596/1/T01828.pdf Gonzáles, X. (2019). El sector porcícola colombiano mueve al año $2,6 billones en términos de producción. Recuperado Julio 29, 2023, de https://www.agronegocios.co/ganaderia/el-sector-porcicola-colombiano-mueve-al-ano-26-billones-en-terminos-de-produccion-2832964 Gould, C. M. (2015). Bioenergy and anaerobic digestion. Chapter 18. Bioenergy, 297–317. https://doi.org/10.1016/B978-0-12-407909-0.00018-3 Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic Digestion of Swine Manure: Inhibition by ammonia. Water Research, 32(1), 5–12. https://doi.org/10.1016/S0043-1354(97)00201-7 Hedström, A. (2001). Ion exchange in zeolites: a literature review. Journal of Environmental Engineering, 127(8), 673–682. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336 Hosseini, S. S., Azadi Tabar, M., Vankelecom, I. F. J., & Denayer, J. F. M. (2023). Progress in high performance membrane materials and processes for biogas production, upgrading and conversion. Separation and Purification Technology, 310(September 2022), 123139. https://doi.org/10.1016/j.seppur.2023.123139 Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera – Una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al CO2. FAO, Roma, Italia. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3288s/i3288s.pdf Hu, Y., Wu, J., Li, H., Poncin, S., Wang, K. jun, & Zuo, J. (2019). Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresource Technology, 282(January), 353–360. https://doi.org/10.1016/j.biortech.2019.03.014 Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1–3), 247–252. https://doi.org/10.1016/j.jhazmat.2009.09.156 Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., & Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents : A review. Journal of Environmental Sciences, 63, 174–197. https://doi.org/10.1016/j.jes.2017.09.009 Huang, X., Miao, X., Chu, X., Luo, L., Zhang, H., & Sun, Y. (2023). Enhancement effect of biochar addition on anaerobic co-digestion of pig manure and corn straw under biogas slurry circulation. Bioresource Technology, 372(November 2022), 128654. https://doi.org/10.1016/j.biortech.2023.128654 ICA. (2022). Censos Pecuarios Nacional. Censo Pecuario Año 2022. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018/mapa-no-porcinos-2022.aspx ICA. (2023). Número de porcinos por departamento en Colombia año 2023. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/mapa-y-grafico-censo-porcinos-2023-1.aspx IEA Bioenergy. (2015). IEA Bioenergy Task 37 - Country Reports Summary 2014. Recuperado Julio 29, 2023, de https://www.ieabioenergy.com/wp-content/uploads/2015/01/IEA-Bioenergy-Task-37-Country-Report-Summary-2014_Final.pdf Iocoli, G. A., Zabaloy, M. C., Pasdevicelli, G., & Gómez, M. A. (2019). Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the Total Environment, 647, 11–19. https://doi.org/10.1016/j.scitotenv.2018.07.444 Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169(1–3), 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052 Jiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Journal of Water Process Engineering, 32(July), 100899. https://doi.org/10.1016/j.jwpe.2019.100899 Kantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G., & Filippidis, A. (2011). Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92(6), 1569–1576. https://doi.org/10.1016/j.jenvman.2011.01.013 Koszel, M., & Lorencowicz, E. (2015). Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004 Kotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos, G. G. (2008). The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105–111. https://doi.org/10.1016/j.biosystemseng.2007.09.018 Kougias, P. G., Boe, K., Tsapekos, P., & Angelidaki, I. (2014). Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 153, 198–205. https://doi.org/10.1016/j.biortech.2013.11.083 Kozłowski, K., Pietrzykowski, M., Czeka, W., Dach, J., Kowalczyk-ju, A., & Krzysztof, J. (2019). Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy, 183, 1023–1031. https://doi.org/10.1016/j.energy.2019.06.179 Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041 Lambert, M. (2017). Biogas: A significant contribution to decarbonising gas markets? The Oxford Institute for Energy Studies, June, 1–15. Recuperado Julio 28, 2023, de https://www.oxfordenergy.org/wpcms/wp-content/uploads/2017/06/Biogas-A-significant-contribution-to-decarbonising-gas-markets.pdf Lehtomäki, A., Huttunen, S., Lehtinen, T. M., & Rintala, J. A. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278. https://doi.org/10.1016/j.biortech.2007.04.072 Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology, 58, 359–366. https://doi.org/10.1016/j.seppur.2007.05.008 Lendormi, T., Jaziri, K., Béline, F., Le Roux, S., Bureau, C., Midoux, C., Barrington, S., & Dabert, P. (2022). Methane production and microbial community acclimation of five manure inocula during psychrophilic anaerobic digestion of swine manure. Journal of Cleaner Production, 340(January), 130772. https://doi.org/10.1016/j.jclepro.2022.130772 Li, R., Liu, D., Zhang, Y., Duan, N., Zhou, J., Liu, Z., & Zhang, Y. (2019). Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Science of the Total Environment, 651, 61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175 Li, Y., Zhang, Y., Sun, Y., Wu, S., Kong, X., Yuan, Z., & Dong, R. (2017). The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition. Bioresource Technology, 231, 94–100. https://doi.org/10.1016/j.biortech.2017.01.068 Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D., & Tay, J. H. (2013). Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology, 103, 15–20. https://doi.org/10.1016/j.seppur.2012.10.005 Lin, L., Wan, C., Liu, X., Lei, Z., Lee, D. J., Zhang, Y., Tay, J. H., & Zhang, Z. (2013). Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Applied Microbiology and Biotechnology, 97(24), 10575–10583. https://doi.org/10.1007/s00253-013-5313-z Liu, L., Pang, C., Wu, S., & Dong, R. (2015). Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure. Process Safety and Environmental Protection, 94(C), 350–357. https://doi.org/10.1016/j.psep.2014.08.006 Lourinho, G., Rodrigues, L. F. T. G., & Brito, P. S. D. (2020). Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17(12), 4917–4938. https://doi.org/10.1007/s13762-020-02793-y Lu, X., Wang, H., Ma, F., Zhao, G., & Wang, S. (2018). Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. Bioresource Technology, 262, 169–176. https://doi.org/10.1016/j.biortech.2018.04.052 Makara, A., & Kowalski, Z. (2018). Selection of pig manure management strategies: Case study of Polish farms. Journal of Cleaner Production, 172, 187–195. https://doi.org/10.1016/j.jclepro.2017.10.095 Margeta, K., Zabukovec, N., Šiljeg, M., & Farkaš, A. (2013). Natural zeolites in water treatment - How effective is their use. In Water Treatment (pp. 81–112). https://doi.org/10.5772/2883 Martí-Herrero, J., Castro, L., Jaimes-Estévez, J., Grijalva, M., Gualatoña, M., Aldás, M. B., & Escalante, H. (2022). Biomethane potential test applied to psychrophilic conditions: Three issues about inoculum temperature adaptation. Bioresource Technology Reports, 20(November). https://doi.org/10.1016/j.biteb.2022.101279 Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039 McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217 Midden, C. Van, Harris, J., Shaw, L., Sizmur, T., & Pawlett, M. (2023). The impact of anaerobic digestate on soil life : A review. Applied Soil Ecology, 191(July), 105066. https://doi.org/10.1016/j.apsoil.2023.105066 Milán, Z., Sánchez, E., Weiland, P., Borja, R., Martín, A., & Ilangovan, K. (2001). Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, 80(1), 37–43. https://doi.org/10.1016/S0960-8524(01)00064-5 Ministerio del Medio Ambiente, & Sociedad de Agricultores de Colombia. (2002). Guía Ambiental para el subsector porcícola. Recuperado Julio 20, 2023, de https://www.porkcolombia.co/wp-content/uploads/2018/07/GUIA-AMBIENTAL-PORCICOLA-opt.pdf Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. https://doi.org/10.1002/elsc.201100085 Montalvo, S., Guerrero, L., Borja, R., Travieso, L., Sánchez, E., & Díaz, F. (2006). Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes. Resources, Conservation and Recycling, 47(1), 26–41. https://doi.org/10.1016/j.resconrec.2005.10.001 Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann, C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters – A review. Bioresource Technology, 301(October 2019), 122808. https://doi.org/10.1016/j.biortech.2020.122808 Montalvo, Silvio, Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., & De, M. A. (2012). Application of natural zeolites in anaerobic digestion processes : A review. Applied Clay Science, 58, 125–133. https://doi.org/10.1016/j.clay.2012.01.013 Muthudineshkumar, R., & Anand, R. (2019). Anaerobic digestion of various feedstocks for second-generation biofuel production. In Advances in Eco-Fuels for a Sustainable Environment (pp. 157–185). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00006-1 Nagarajan, A., Goyette, B., Raghavan, V., Bhaskar, A., & Rajagopal, R. (2023). Nutrient recovery via struvite production from livestock manure-digestate streams : Towards closed loop bio-economy. Process Safety and Environmental Protection, 171(December 2022), 273–288. https://doi.org/10.1016/j.psep.2023.01.006 Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79(May), 308–322. https://doi.org/10.1016/j.rser.2017.05.137 Nielsen, H. B., & Angelidaki, I. (2008). Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology, 99(17), 7995–8001. https://doi.org/10.1016/j.biortech.2008.03.049 Nordgård, A. S. R., Bergland, W. H., Bakke, R., Østgaard, K., & Bakke, I. (2018). Mapping anaerobic sludge bed community adaptations to manure supernatant in biogas reactors. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-34088-1 OCDE-FAO. (2022). Perspectivas Agrícolas 2022-2031. OECD Publishing, Paris. Recuperado Julio 20, 2023, de https://doi.org/10.1787/820ef1bb-es Paolini, V., Petracchini, F., Carnevale, M., Gallucci, F., Perilli, M., Esposito, G., Segreto, M., Occulti, L. G., Scaglione, D., Ianniello, A., & Frattoni, M. (2018). Characterisation and cleaning of biogas from sewage sludge for biomethane production. Journal of Environmental Management, 217, 288–296. https://doi.org/10.1016/j.jenvman.2018.03.113 Pérez-Pérez, T., Pereda-Reyes, I., Correia, G. T., Pozzi, E., Kwong, W. H., Oliva-Merencio, D., Zaiat, M., Montalvo, S., & Huiliñir, C. (2021). Performance of EGSB reactor using natural zeolite as support for treatment of synthetic swine wastewater. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104922 Poirier, S., Madigou, C., Bouchez, T., & Chapleur, O. (2017). Improving anaerobic digestion with support media : Mitigation of ammonia inhibition and effect on microbial communities. Bioresource Technology, 235, 229–239. https://doi.org/10.1016/j.biortech.2017.03.099 Portejoie, S., Martinez, J., Guiziou, F., & Coste, C. M. (2003). Effect of covering pig slurry stores on the ammonia emission processes. Bioresource Technology, 87(3), 199–207. https://doi.org/10.1016/S0960-8524(02)00260-2 Qiao, F., Zhang, G., Fan, J., Zhang, H., Shi, B., Yang, J., Zhang, J., & Han, Z. (2023). Hydrothermal pretreatment of protein-rich substrate: Modified phsiochemical properties and consequent responses in its anaerobic digestion. Carbon Resources Conversion, 6(1), 1–10. https://doi.org/10.1016/j.crcon.2022.10.001 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, O. (2013). The SILVA ribosomal RNA gene database project : improved data processing and web-based tools. Nucleic Acids Research, 41(November 2012), 590–596. https://doi.org/10.1093/nar/gks1219 Rajagopal, R., Massé, D. I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://doi.org/10.1016/j.biortech.2013.06.030 Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261(Article 116497). https://doi.org/10.1016/j.fuel.2019.116497 Rizzioli, F., Bertasini, D., Bolzonella, D., Frison, N., & Battista, F. (2023). A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Separation and Purification Technology, 306(Article 122690). https://doi.org/10.1016/j.seppur.2022.122690 Rodrigues, R. P., Rodrigues, D. P., Klepacz-Smolka, A., Martins, R. C., & Quina, M. J. (2019). Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Science of the Total Environment, 649, 1599–1608. https://doi.org/10.1016/j.scitotenv.2018.08.270 Rodríguez Galindo, M. O. (2019). Informe de sostenibilidad. In Porkcolombia - Fondo Nacional de la Porcicultura (Issue 9). Recuperado Julio 29, 2023, de https://doi.org/10.1017/CBO9781107415324.004 Safavi, S. M., & Unnthorsson, R. (2018). Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environmental Technology, 39(4), 479–489. https://doi.org/10.1080/09593330.2017.1304455 Seadi, T. Al, Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas handbook (T. Al Seadi (ed.)). University of Southern Denmark Esbjerg, Niels Bohrs Vej 9-10, DK-6700 Esbjerg, Denmark. Shi, L., Xie, S., Hu, Z., Wu, G., Morrison, L., Croot, P., Hu, H., & Zhan, X. (2019). Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. Journal of Membrane Science, 573(August 2018), 560–569. https://doi.org/10.1016/j.memsci.2018.12.037 Sidartha Roa, Z., Mendoza Cordoba, J. C., González Muñoz, S. S., Kaiser Caldera, F. L., & Gebauer, A. (2020). Guía de biogás para el sector porcícola en Colombia. Recuperado Julio 29, 2023, de https://economiacircular.minambiente.gov.co/wp-content/uploads/2021/09/guia-biogas-sector-porcicola-ministerio-de-ambiente-desarrollo-sostenible.pdf Souza, I. M. S., Gurgel, G. C. S., Medeiros, A. M., Zonta, E., Ruiz, J. A. C., Paskocimas, C. A., Motta, F. V., & Bomio, M. R. D. (2018). The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 6(4), 4171–4177. https://doi.org/10.1016/j.jece.2018.06.017 Steinmetz, R. (2018). Curso Introductorio de Gran Escala. Bases Bioquímicas de Digestión Anaerobia. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/CIBGE-1-Bases-bioqui%CC%81micas-da-digesta%CC%83o-anaero%CC%81bia.pdf Tada, C., Yang, Y., Hanaoka, T., Sonoda, A., Ooi, K., & Sawayama, S. (2005). Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology, 96(4), 459–464. https://doi.org/10.1016/j.biortech.2004.05.025 Tao, Z., Chen, C., Yang, Q., Zhong, Z., Wan, Y., Chen, S., Yao, F., Pi, Z., Li, X., & Wang, D. (2021). Understanding the impact of allicin for organic matter release and microorganism community in anaerobic co-digestion of food waste and waste activated sludge. Science of the Total Environment, 776(Article 145598). https://doi.org/10.1016/j.scitotenv.2021.145598 Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173(May 2022). https://doi.org/10.1016/j.rser.2022.113097 Timonen, K., Sinkko, T., Luostarinen, S., Tampio, E., & Joensuu, K. (2019). LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production, 235, 1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.085 UNAL, & TECSOL. (2018). Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento. Recuperado Julio 28, 2019, de https://bdigital.upme.gov.co/jspui/bitstream/001/1317/1/Informe final.pdf United States Department of Agriculture. (2018). Livestock and Poultry: World Markets and Trade. Recuperado Julio 28, 2023, de https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf UPME, IREES, & TEP. (2019). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética, Resumen Ejecutivo BEU Sector Residencial y Terciario. In Unidad de Planeación Minero-Energética (Vol. 1). Recuperado Julio 29, 2023, de https://www1.upme.gov.co/DemandayEficiencia/Documents/Balance_energia_util/BEU-Residencial.pdf Varnero Moreno, M. T. (2011). Manual del Biogás. Roma. doi: ISBN 978-95-306892-0. Recuperado Julio 28, 2023, de http://www.fao.org/docrep/019/as400s/as400s.pdf Wandera, S. M., Qiao, W., Algapani, D. E., Bi, S., Yin, D., Qi, X., Liu, Y., Dach, J., & Dong, R. (2018). Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renewable Energy, 116, 720–727. https://doi.org/10.1016/j.renene.2017.09.087 Wang, Q., Yang, Y., Yu, C., Huang, H., Kim, M., Feng, C., & Zhang, Z. (2011). Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Bioresource Technology, 102(14), 7064–7068. https://doi.org/10.1016/j.biortech.2011.04.085 Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029 Wickham, H. (2016). Programming with ggplot2. In ggplot2. Usa R! (pp. 241–253). Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_12 Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P., & Chen, D. (2018). Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure–A feasibility study. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53(11), 751–760. https://doi.org/10.1080/03601234.2018.1480164 Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J., Sommer, S. G., & Chen, D. (2018a). Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 6(1), 1233–1241. https://doi.org/10.1016/j.jece.2018.01.028 Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P., Sommer, S. G., & Chen, D. (2018b). Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(4), 362–372. https://doi.org/10.1080/10934529.2017.1401398 Wijesinghe, D. T. N., Dassanayake, K. B., Sommer, S. G., Jayasinghe, G. Y., J. Scales, P., & Chen, D. (2016). Ammonium removal from high-strength aqueous solutions by Australian zeolite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(8), 614–625. https://doi.org/10.1080/10934529.2016.1159861 Wu, X., Dong, C., Yao, W., & Zhu, J. (2011). Anaerobic digestion of dairy manure influenced by the waste milk from milking operations. Journal of Dairy Science, 94(8), 3778–3786. https://doi.org/10.3168/jds.2010-4129 Xiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., & Li, Y. Y. (2018). Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: Performance, energy balance and reaction process. Energy Conversion and Management, 156(November 2017), 215–223. https://doi.org/10.1016/j.enconman.2017.10.092 Xiaodong, P., Liangwei, D., Yong, Y., Li, S., & Zhiyong, W. (2010). Economic benefit analysis on large and middle-scale biogas plants with different heating methods. Journal of Agricultural Engineering, 26(7), 281–284. Yang, Z., Wang, W., Liu, C., Zhang, R., & Liu, G. (2019). Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: Selection of strains and reactor performance evaluation. Water Research, 155, 214–224. https://doi.org/10.1016/j.watres.2019.02.048 Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion : A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012 Zha, X., Tsapekos, P., Alvarado-morales, M., Lu, X., & Angelidaki, I. (2020). Potassium inhibition during sludge and biopulp co-digestion ; experimental and model-based approaches. Waste Management, 113, 304–311. https://doi.org/10.1016/j.wasman.2020.06.007 Zhang, N., Stanislaus, M. S., Hu, X., Zhao, C., Zhu, Q., Li, D., & Yang, Y. (2016). Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process. Bioresource Technology, 222, 59–65. https://doi.org/10.1016/j.biortech.2016.09.053 Zhang, Q., Hu, J., & Lee, D. J. (2016). Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 98, 108–119. https://doi.org/10.1016/j.renene.2016.02.029 Zhao, J., Liu, Y., Wang, D., Chen, F., Li, X., & Zeng, G. (2017). Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 67, 308–314. https://doi.org/10.1016/j.wasman.2017.05.016 Zheng, H., Li, D., Stanislaus, M. S., Zhang, N., Zhu, Q., Hu, X., & Yang, Y. (2015). Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chemical Engineering Journal, 280, 106–114. https://doi.org/10.1016/j.cej.2015.06.024 Zilio, M., Pigoli, A., Rizzi, B., Geromel, G., Meers, E., Schoumans, O., Giordano, A., & Adani, F. (2021). Measuring ammonia and odours emissions during full field digestate use in agriculture. Science of the Total Environment, 782(Article 146882). https://doi.org/10.1016/j.scitotenv.2021.146882 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
118 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Ciencias - Doctorado en Biotecnología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85490/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85490/2/1030534938.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85490/3/1030534938.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 28cc15b838d3d961e2a61fac164499dd ce40f83a0b2400b56c4e38a69c63cb07 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090022455869440 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cadavid Rodríguez, Luz Stellabb870227688c97b16637cbebafef151fCadena Chamorro, Edith Marleny3b754ee7ed16a28246dcc1bb8bb386abRuiz Bastidas, Rosa Ceciliadb8b8d6c34e1adc7faf5c8e3a2101cbfGrupo de Investigación Prospectiva AmbientalRuiz-Bastidas, Rosa Cecilia [0000-0002-1152-4040]Ruiz-Bastidas, Rosa Cecilia2024-01-29T19:18:14Z2024-01-29T19:18:14Z2023https://repositorio.unal.edu.co/handle/unal/85490Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, mapasEl objetivo de este proyecto de investigación fue contribuir al mejoramiento de la digestión anaerobia (DA) de residuos porcícolas mediante el uso de zeolita natural, buscando potenciar la generación de biogás, la recuperación de nutrientes y la calidad del digestato. Para lo cual, se determinó la capacidad de adsorción de nitrógeno amoniacal total (TAN) por parte de zeolita natural comercializada en Colombia (zeolita ecuatoriana); se evaluó el efecto de zeolita sobre la DA de residuos porcícolas en régimen discontinuo (batch) y semicontinuo; y se realizó un análisis de la DA de residuos porcícolas con uso de zeolita incluyendo análisis energético, de recuperación de nutrientes y costo-beneficio. Como principales resultados se obtuvieron que, la zeolita natural ecuatoriana tiene una capacidad de adsorción entre 37 y 65 mg NH3-N/g-Z cuando se usa residuos porcícolas. La adición de zeolita tuvo un efecto significativo en la producción de metano en régimen discontinuo (p < 0.01), con incremento en la producción de metano de 28% con una dosis de 4 g/L. En el régimen semicontinuo, la adición de zeolita con dosis entre 1 y 4 g/L provocó un aumento en la producción de metano hasta en un 68% durante el arranque y en promedio un 8% en condiciones estables, una disminución en la concentración de H2S presente en el biogás de hasta en un 63%, un digestato con una concentración de TAN hasta un 51% menor y evitó la formación de espumas. La obtención de zeolita enriquecida con nitrógeno, fósforo y potasio constituye una oportunidad para promover el reciclaje de nutrientes. Los resultados evidenciaron que el uso de zeolita natural mejoró la DA de residuos porcícolas, pero se requieren estudios adicionales de valoración del uso agronómico de la zeolita para establecer la viabilidad económica del uso de zeolita. (texto tomado de la fuente)The objective of this research project was to contribute to the improvement of anaerobic digestion (DA) of pig waste using natural zeolite, seeking to enhance biogas generation, nutrient recovery and digestate quality. For which, the total ammonia nitrogen (TAN) adsorption capacity by natural zeolite marketed in Colombia (Ecuadorian zeolite) was determined; the effect of zeolite on the DA of pig waste in batch and semicontinuous regime was evaluated; and an analysis of the DA of swine residues with the use of zeolite was carried out, including energy, nutrients recovery, and cost-benefit analysis. The main results obtained were that the Ecuadorian natural zeolite has an adsorption capacity between 37 and 65 mg NH3-N/g-Z when pig manure was used. The addition of zeolite had a significant effect on the production of methane in the discontinuous regime (p < 0.01), with an increase in methane production of 28% with a dose of 4.0 g/L. In the semi-continuous regime, the addition of zeolite with doses between 1 and 4 g/L caused an increase in methane production of up to 68%, a decrease in the concentration of H2S present in the biogas of up to 63%, a digestate with up to 51% lower TAN concentration and prevented the formation of foams. Obtaining zeolite enriched with nitrogen, phosphorus and potassium constitutes an opportunity for the recycling of nutrients. The results showed that the use of natural zeolite improved the DA of swine wasteThe objective of this research project was to contribute to the improvement of anaerobic digestion (DA) of pig waste using natural zeolite, seeking to enhance biogas generation, nutrient recovery and digestate quality. For which, the total ammonia nitrogen (TAN) adsorption capacity by natural zeolite marketed in Colombia (Ecuadorian zeolite) was determined; the effect of zeolite on the DA of pig waste in batch and semicontinuous regime was evaluated; and an analysis of the DA of swine residues with the use of zeolite was carried out, including energy, nutrients recovery, and cost-benefit analysis. The main results obtained were that the Ecuadorian natural zeolite has an adsorption capacity between 37 and 65 mg NH3-N/g-Z when pig manure was used. The addition of zeolite had a significant effect on the production of methane in the discontinuous regime (p < 0.01), with an increase in methane production of 28% with a dose of 4.0 g/L. In the semi-continuous regime, the addition of zeolite with doses between 1 and 4 g/L caused an increase in methane production of up to 68%, a decrease in the concentration of H2S present in the biogas of up to 63%, a digestate with up to 51% lower TAN concentration and prevented the formation of foams. Obtaining zeolite enriched with nitrogen, phosphorus and potassium constitutes an opportunity for the recycling of nutrients. The results showed that the use of natural zeolite improved the DA of swine waste.DoctoradoDoctor en BiotecnologíaEnergías renovablesÁrea curricular Biotecnología118 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en BiotecnologíaFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín600 - Tecnología (Ciencias aplicadas)660 - Ingeniería química::666 - Cerámica y tecnologías afinesIndustria de la zeolitaResiduos porcícolasAmoníacoInhibiciónZeolitaAdsorciónMetanoPig wasteAmmoniaInhibitionZeoliteAdsorptionMethaneDigestión anaeróbicaDigestión anaerobia de residuos porcícolas con uso de zeolita natural como alternativa biotecnológica para la generación de energía renovable y recuperación de nutrientesAnaerobic digestion of swine waste using natural zeolite as a biotechnological alternative for the generation of renewable energy and nutrients recoveryTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbouelenien, F., Fujiwara, W., Namba, Y., Kosseva, M., Nishio, N., & Nakashimada, Y. (2010). Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresource Technology, 101(16), 6368–6373. https://doi.org/10.1016/j.biortech.2010.03.071Abouelenien, F., Nakashimada, Y., & Nishio, N. (2009). Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture. Journal of Bioscience and Bioengineering, 107(3), 293–295. https://doi.org/10.1016/j.jbiosc.2008.10.009Adam, M. R., Othman, M. H. D., Abu Samah, R., Puteh, M. H., Ismail, A. F., Mustafa, A., A. Rahman, M., & Jaafar, J. (2019). Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development. Separation and Purification Technology, 213, 114–132. https://doi.org/10.1016/j.seppur.2018.12.030André, L., Pauss, A., & Ribeiro, T. (2018). Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource Technology, 247(August 2017), 1027–1037. https://doi.org/10.1016/j.biortech.2017.09.003Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, a. J., Kalyuzhnyi, S., Jenicek, P., & Van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040Angelidaki, Irini, Treu, L., Tsapekos, P., Luo, G., Campanaro, S., Wenzel, H., & Kougias, P. G. (2018). Biogas upgrading and utilization: Current status and perspectives. Biotechnology Advances, 36(2), 452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011APHA. (2017). Standard methods for the examination of Water and Wastewater, 23rd ed. American Public Health Assossiation, American Water Works Assossiation, Water Environment Federation. Washington, D.C.Arif, S., Liaquat, R., & Adil, M. (2018). Applications of materials as additives in anaerobic digestion technology. Renewable and Sustainable Energy Reviews, 97(January 2017), 354–366. https://doi.org/10.1016/j.rser.2018.08.039Asociación Colombiana de Porcicultores. (2016). Informe de los proyectos de inversión desarrollados durante el año 2016. Recuperado Julio 20, 2023, de https://porkcolombia.co/wp-content/uploads/2020/08/Informe-de-Gesti%C3%B3n-I-semestre-2016-Porkcolombia.pdfAstals, S., Peces, M., Batstone, D. J., Jensen, P. D., & Tait, S. (2018). Characterising and modelling free ammonia and ammonium inhibition in anaerobic systems. Water Research, 143, 127–135. https://doi.org/10.1016/j.watres.2018.06.021Barampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2020). Exploring technological alternatives of nutrient recovery from digestate as a secondary resource. Renewable and Sustainable Energy Reviews, 134(September), 110379. https://doi.org/10.1016/j.rser.2020.110379Baykara, H., Martinez, M. C., Rey, D. V., Urbina, D. S., Paredes, C., Rigail-Cedeño, A., & Aviles, M. O. (2018). Preparation and determination of antimicrobial property of cation-exchanged ecuadorian natural zeolite to be used as filler for polyethylene and polypropylene matrices. Journal of Polymers and the Environment, 26(6), 2566–2578. https://doi.org/10.1007/s10924-017-1153-8Bayrakdar, A., Sürmeli, R. Ö., & Çalli, B. (2017). Dry anaerobic digestion of chicken manure coupled with membrane separation of ammonia. Bioresource Technology, 244(June), 816–823. https://doi.org/10.1016/j.biortech.2017.08.047Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., … Caporaso, J. G. (2019). Reproducible , interactive , scalable and extensible microbiome data science using QIIME 2. Nature BiotechNology, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9Buswell, A. M., & Mueller, H. F. (1952). Mechanism of Methane Fermentation. Industrial & Engineering Chemistry, 44(3), 550–552. https://doi.org/10.1021/ie50507a033Butti, M. (2018). Introducción a la Digestión anaeróbica. Curso Introductorio de Pequeña Escala, Foz de Iguazú, 18 y 18 de Septiembre de 2018. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/1-Introducci%C3%B3n-a-la-digesti%C3%B3n-anaer%C3%B3bica.pdfCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2 : High-resolution sample inference from Illumina amplicon data. Nature Methods, May, 1–7. https://doi.org/10.1038/nmeth.3869Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40(3–4), 1285–1292. https://doi.org/10.1016/j.procbio.2004.05.008Calvo, B., Canoira, L., Morante, F., Martínez-Bedia, J. M., Vinagre, C., García-González, J.-E., Elsen, J., & Alcantara, R. (2009). Continuous elimination of Pb2+,Cu2+,Zn2+,H+ and NH4+ from acidic waters by ionic exchange on natural zeolites. Journal of Hazardous Materials Journal, 166, 619–627. https://doi.org/10.1016/j.jhazmat.2008.11.087Cardona, L., Mazéas, L., & Chapleur, O. (2021). Zeolite favours propionate syntrophic degradation during anaerobic digestion of food waste under low ammonia stress. Chemosphere, 262(Article 127932). https://doi.org/10.1016/j.chemosphere.2020.127932Castro, L., Escalante, H., Díaz, L. J., Vecino, K., Rojas, G., & Mantilla, L. (2017). Low cost digester monitoring under realistic conditions : Rural use of biogas and digestate quality. Bioresource Technology, 239, 311–317. https://doi.org/10.1016/j.biortech.2017.05.035Chen, S., He, J., Wang, H., Dong, B., Li, N., & Dai, X. (2018). Microbial responses and metabolic pathways reveal the recovery mechanism of an anaerobic digestion system subjected to progressive inhibition by ammonia. Chemical Engineering Journal, 350(May), 312–323. https://doi.org/10.1016/j.cej.2018.05.168Chen, Y., & Cheng, J. J. (2007). Effect of Potassium Inhibition on the Thermophilic Anaerobic Digestion of Swine Waste. Water Environ. Res., 79, 667–674. https://doi.org/10.2175/106143007X156853Cooney, E. L., Booker, N. A., Shallcross, D. C., & Stevens, G. W. (1999). Ammonia Removal from Wastewaters Using Natural Australian Zeolite. I. Characterization of the Zeolite. Separation Science and Technology, 34(12), 2307–2327. https://doi.org/10.1081/SS-100100774Corporación Autónoma Regional del Valle del Cauca, C. (2019). Informe de gestión. Vigencia 2018. Recuperado Julio 28, 2023, de https://www1.upme.gov.co/InformesGestion/Informe_gestion_2018.pdfDe Vrieze, J., Colica, G., Pintucci, C., Sarli, J., Pedizzi, C., Willeghems, G., Bral, A., Varga, S., Prat, D., Peng, L., Spiller, M., Buysse, J., Colsen, J., Benito, O., Carballa, M., & Vlaeminck, S. E. (2019). Resource recovery from pig manure via an integrated approach: A technical and economic assessment for full-scale applications. Bioresource Technology, 272(October 2018), 582–593. https://doi.org/10.1016/j.biortech.2018.10.024Duan, N., Zhang, D., Lin, C., Zhang, Y., Zhao, L., Liu, H., & Liu, Z. (2019). Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios. Journal of Environmental Management, 231(July 2018), 646–652. https://doi.org/10.1016/j.jenvman.2018.10.062Escalante, H., Castro, L., Amaya, M. P., Jaimes, L., & Jaimes-Estévez, J. (2018). Anaerobic digestion of cheese whey: Energetic and nutritional potential for the dairy sector in developing countries. Waste Management, 71, 711–718. https://doi.org/10.1016/j.wasman.2017.09.026Esteves, E. M. M., Herrera, A. M. N., Esteves, V. P. P., & Morgado, C. do R. V. (2019). Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production, 219, 411–423. https://doi.org/10.1016/j.jclepro.2019.02.091Fernandes, T. V., Keesman, K. J., Zeeman, G., & van Lier, J. B. (2012). Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass and Bioenergy, 47, 316–323. https://doi.org/10.1016/j.biombioe.2012.09.029Ganidi, N., Tyrrel, S., & Cartmell, E. (2009). Anaerobic digestion foaming causes - A review. Bioresource Technology, 100(23), 5546–5554. https://doi.org/10.1016/j.biortech.2009.06.024García Arbeláez, C. ., Barrera, X., Gómez Castaño, R. ., & Castaño, R. . S. (2015). El ABC de los compromisos de Colombia para la COP21. Recuperado Julio 28, 2019, de http://mvccolombia.co/images/ABC_S3_B24_C8_web.pdfGarcia, M. L., & Angenent, L. T. (2009). Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Research, 43(9), 2373–2382. https://doi.org/10.1016/j.watres.2009.02.036Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599–614. https://doi.org/10.1016/j.rser.2016.01.071Gelves Diaz, J. F. (2017). Zeolitas naturales colombianas de la formación Combia, municipio de La Pintada: mineralogía, caracterización y aplicaciones. Universidad Nacional de Colombia. Recuperado Julio 29, 2023, de https://repositorio.unal.edu.co/handle/unal/59065?show=fullGerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3437e/i3437e.pdfGonzales Rubio, C. H. (2016). Estudio de prefactibilidad para la generación de energía a partir de biomasa residual en granjas de cerdo de una industria porcícola. Recuperado Julio 29, 2023, de https://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/85596/1/T01828.pdfGonzáles, X. (2019). El sector porcícola colombiano mueve al año $2,6 billones en términos de producción. Recuperado Julio 29, 2023, de https://www.agronegocios.co/ganaderia/el-sector-porcicola-colombiano-mueve-al-ano-26-billones-en-terminos-de-produccion-2832964Gould, C. M. (2015). Bioenergy and anaerobic digestion. Chapter 18. Bioenergy, 297–317. https://doi.org/10.1016/B978-0-12-407909-0.00018-3Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic Digestion of Swine Manure: Inhibition by ammonia. Water Research, 32(1), 5–12. https://doi.org/10.1016/S0043-1354(97)00201-7Hedström, A. (2001). Ion exchange in zeolites: a literature review. Journal of Environmental Engineering, 127(8), 673–682.Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., De Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J. C., De Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336Hosseini, S. S., Azadi Tabar, M., Vankelecom, I. F. J., & Denayer, J. F. M. (2023). Progress in high performance membrane materials and processes for biogas production, upgrading and conversion. Separation and Purification Technology, 310(September 2022), 123139. https://doi.org/10.1016/j.seppur.2023.123139Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera – Una revisión de las opciones técnicas para la reducción de las emisiones de gases diferentes al CO2. FAO, Roma, Italia. Recuperado Julio 29, 2023, de https://www.fao.org/3/i3288s/i3288s.pdfHu, Y., Wu, J., Li, H., Poncin, S., Wang, K. jun, & Zuo, J. (2019). Study of an enhanced dry anaerobic digestion of swine manure: Performance and microbial community property. Bioresource Technology, 282(January), 353–360. https://doi.org/10.1016/j.biortech.2019.03.014Huang, H., Xiao, X., Yan, B., & Yang, L. (2010). Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175(1–3), 247–252. https://doi.org/10.1016/j.jhazmat.2009.09.156Huang, J., Kankanamge, N. R., Chow, C., Welsh, D. T., Li, T., & Teasdale, P. R. (2018). Removing ammonium from water and wastewater using cost-effective adsorbents : A review. Journal of Environmental Sciences, 63, 174–197. https://doi.org/10.1016/j.jes.2017.09.009Huang, X., Miao, X., Chu, X., Luo, L., Zhang, H., & Sun, Y. (2023). Enhancement effect of biochar addition on anaerobic co-digestion of pig manure and corn straw under biogas slurry circulation. Bioresource Technology, 372(November 2022), 128654. https://doi.org/10.1016/j.biortech.2023.128654ICA. (2022). Censos Pecuarios Nacional. Censo Pecuario Año 2022. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018/mapa-no-porcinos-2022.aspxICA. (2023). Número de porcinos por departamento en Colombia año 2023. Recuperado Julio 29, 2023, de https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/mapa-y-grafico-censo-porcinos-2023-1.aspxIEA Bioenergy. (2015). IEA Bioenergy Task 37 - Country Reports Summary 2014. Recuperado Julio 29, 2023, de https://www.ieabioenergy.com/wp-content/uploads/2015/01/IEA-Bioenergy-Task-37-Country-Report-Summary-2014_Final.pdfIocoli, G. A., Zabaloy, M. C., Pasdevicelli, G., & Gómez, M. A. (2019). Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Science of the Total Environment, 647, 11–19. https://doi.org/10.1016/j.scitotenv.2018.07.444Jha, V. K., & Hayashi, S. (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169(1–3), 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052Jiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., & Longhurst, P. (2019). Ammonia inhibition and toxicity in anaerobic digestion: A critical review. Journal of Water Process Engineering, 32(July), 100899. https://doi.org/10.1016/j.jwpe.2019.100899Kantiranis, N., Sikalidis, K., Godelitsas, A., Squires, C., Papastergios, G., & Filippidis, A. (2011). Extra-framework cation release from heulandite-type rich tuffs on exchange with NH4+. Journal of Environmental Management, 92(6), 1569–1576. https://doi.org/10.1016/j.jenvman.2011.01.013Koszel, M., & Lorencowicz, E. (2015). Agricultural Use of Biogas Digestate as a Replacement Fertilizers. Agriculture and Agricultural Science Procedia, 7, 119–124. https://doi.org/10.1016/j.aaspro.2015.12.004Kotsopoulos, T. A., Karamanlis, X., Dotas, D., & Martzopoulos, G. G. (2008). The impact of different natural zeolite concentrations on the methane production in thermophilic anaerobic digestion of pig waste. Biosystems Engineering, 99(1), 105–111. https://doi.org/10.1016/j.biosystemseng.2007.09.018Kougias, P. G., Boe, K., Tsapekos, P., & Angelidaki, I. (2014). Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresource Technology, 153, 198–205. https://doi.org/10.1016/j.biortech.2013.11.083Kozłowski, K., Pietrzykowski, M., Czeka, W., Dach, J., Kowalczyk-ju, A., & Krzysztof, J. (2019). Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy, 183, 1023–1031. https://doi.org/10.1016/j.energy.2019.06.179Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041Lambert, M. (2017). Biogas: A significant contribution to decarbonising gas markets? The Oxford Institute for Energy Studies, June, 1–15. Recuperado Julio 28, 2023, de https://www.oxfordenergy.org/wpcms/wp-content/uploads/2017/06/Biogas-A-significant-contribution-to-decarbonising-gas-markets.pdfLehtomäki, A., Huttunen, S., Lehtinen, T. M., & Rintala, J. A. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278. https://doi.org/10.1016/j.biortech.2007.04.072Lei, L., Li, X., & Zhang, X. (2008). Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Separation and Purification Technology, 58, 359–366. https://doi.org/10.1016/j.seppur.2007.05.008Lendormi, T., Jaziri, K., Béline, F., Le Roux, S., Bureau, C., Midoux, C., Barrington, S., & Dabert, P. (2022). Methane production and microbial community acclimation of five manure inocula during psychrophilic anaerobic digestion of swine manure. Journal of Cleaner Production, 340(January), 130772. https://doi.org/10.1016/j.jclepro.2022.130772Li, R., Liu, D., Zhang, Y., Duan, N., Zhou, J., Liu, Z., & Zhang, Y. (2019). Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Science of the Total Environment, 651, 61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175Li, Y., Zhang, Y., Sun, Y., Wu, S., Kong, X., Yuan, Z., & Dong, R. (2017). The performance efficiency of bioaugmentation to prevent anaerobic digestion failure from ammonia and propionate inhibition. Bioresource Technology, 231, 94–100. https://doi.org/10.1016/j.biortech.2017.01.068Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D., & Tay, J. H. (2013). Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites. Separation and Purification Technology, 103, 15–20. https://doi.org/10.1016/j.seppur.2012.10.005Lin, L., Wan, C., Liu, X., Lei, Z., Lee, D. J., Zhang, Y., Tay, J. H., & Zhang, Z. (2013). Anaerobic digestion of swine manure under natural zeolite addition: VFA evolution, cation variation, and related microbial diversity. Applied Microbiology and Biotechnology, 97(24), 10575–10583. https://doi.org/10.1007/s00253-013-5313-zLiu, L., Pang, C., Wu, S., & Dong, R. (2015). Optimization and evaluation of an air-recirculated stripping for ammonia removal from the anaerobic digestate of pig manure. Process Safety and Environmental Protection, 94(C), 350–357. https://doi.org/10.1016/j.psep.2014.08.006Lourinho, G., Rodrigues, L. F. T. G., & Brito, P. S. D. (2020). Recent advances on anaerobic digestion of swine wastewater. International Journal of Environmental Science and Technology, 17(12), 4917–4938. https://doi.org/10.1007/s13762-020-02793-yLu, X., Wang, H., Ma, F., Zhao, G., & Wang, S. (2018). Improved process performance of the acidification phase in a two-stage anaerobic digestion of complex organic waste: Effects of an iron oxide-zeolite additive. Bioresource Technology, 262, 169–176. https://doi.org/10.1016/j.biortech.2018.04.052Makara, A., & Kowalski, Z. (2018). Selection of pig manure management strategies: Case study of Polish farms. Journal of Cleaner Production, 172, 187–195. https://doi.org/10.1016/j.jclepro.2017.10.095Margeta, K., Zabukovec, N., Šiljeg, M., & Farkaš, A. (2013). Natural zeolites in water treatment - How effective is their use. In Water Treatment (pp. 81–112). https://doi.org/10.5772/2883Martí-Herrero, J., Castro, L., Jaimes-Estévez, J., Grijalva, M., Gualatoña, M., Aldás, M. B., & Escalante, H. (2022). Biomethane potential test applied to psychrophilic conditions: Three issues about inoculum temperature adaptation. Bioresource Technology Reports, 20(November). https://doi.org/10.1016/j.biteb.2022.101279Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039McMurdie, P. J., & Holmes, S. (2013). Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE, 8(4). https://doi.org/10.1371/journal.pone.0061217Midden, C. Van, Harris, J., Shaw, L., Sizmur, T., & Pawlett, M. (2023). The impact of anaerobic digestate on soil life : A review. Applied Soil Ecology, 191(July), 105066. https://doi.org/10.1016/j.apsoil.2023.105066Milán, Z., Sánchez, E., Weiland, P., Borja, R., Martín, A., & Ilangovan, K. (2001). Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology, 80(1), 37–43. https://doi.org/10.1016/S0960-8524(01)00064-5Ministerio del Medio Ambiente, & Sociedad de Agricultores de Colombia. (2002). Guía Ambiental para el subsector porcícola. Recuperado Julio 20, 2023, de https://www.porkcolombia.co/wp-content/uploads/2018/07/GUIA-AMBIENTAL-PORCICOLA-opt.pdfMöller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. https://doi.org/10.1002/elsc.201100085Montalvo, S., Guerrero, L., Borja, R., Travieso, L., Sánchez, E., & Díaz, F. (2006). Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes. Resources, Conservation and Recycling, 47(1), 26–41. https://doi.org/10.1016/j.resconrec.2005.10.001Montalvo, S., Huiliñir, C., Borja, R., Sánchez, E., & Herrmann, C. (2020). Application of zeolites for biological treatment processes of solid wastes and wastewaters – A review. Bioresource Technology, 301(October 2019), 122808. https://doi.org/10.1016/j.biortech.2020.122808Montalvo, Silvio, Guerrero, L., Borja, R., Sánchez, E., Milán, Z., Cortés, I., & De, M. A. (2012). Application of natural zeolites in anaerobic digestion processes : A review. Applied Clay Science, 58, 125–133. https://doi.org/10.1016/j.clay.2012.01.013Muthudineshkumar, R., & Anand, R. (2019). Anaerobic digestion of various feedstocks for second-generation biofuel production. In Advances in Eco-Fuels for a Sustainable Environment (pp. 157–185). Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102728-8.00006-1Nagarajan, A., Goyette, B., Raghavan, V., Bhaskar, A., & Rajagopal, R. (2023). Nutrient recovery via struvite production from livestock manure-digestate streams : Towards closed loop bio-economy. Process Safety and Environmental Protection, 171(December 2022), 273–288. https://doi.org/10.1016/j.psep.2023.01.006Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79(May), 308–322. https://doi.org/10.1016/j.rser.2017.05.137Nielsen, H. B., & Angelidaki, I. (2008). Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresource Technology, 99(17), 7995–8001. https://doi.org/10.1016/j.biortech.2008.03.049Nordgård, A. S. R., Bergland, W. H., Bakke, R., Østgaard, K., & Bakke, I. (2018). Mapping anaerobic sludge bed community adaptations to manure supernatant in biogas reactors. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-34088-1OCDE-FAO. (2022). Perspectivas Agrícolas 2022-2031. OECD Publishing, Paris. Recuperado Julio 20, 2023, de https://doi.org/10.1787/820ef1bb-esPaolini, V., Petracchini, F., Carnevale, M., Gallucci, F., Perilli, M., Esposito, G., Segreto, M., Occulti, L. G., Scaglione, D., Ianniello, A., & Frattoni, M. (2018). Characterisation and cleaning of biogas from sewage sludge for biomethane production. Journal of Environmental Management, 217, 288–296. https://doi.org/10.1016/j.jenvman.2018.03.113Pérez-Pérez, T., Pereda-Reyes, I., Correia, G. T., Pozzi, E., Kwong, W. H., Oliva-Merencio, D., Zaiat, M., Montalvo, S., & Huiliñir, C. (2021). Performance of EGSB reactor using natural zeolite as support for treatment of synthetic swine wastewater. Journal of Environmental Chemical Engineering, 9(1). https://doi.org/10.1016/j.jece.2020.104922Poirier, S., Madigou, C., Bouchez, T., & Chapleur, O. (2017). Improving anaerobic digestion with support media : Mitigation of ammonia inhibition and effect on microbial communities. Bioresource Technology, 235, 229–239. https://doi.org/10.1016/j.biortech.2017.03.099Portejoie, S., Martinez, J., Guiziou, F., & Coste, C. M. (2003). Effect of covering pig slurry stores on the ammonia emission processes. Bioresource Technology, 87(3), 199–207. https://doi.org/10.1016/S0960-8524(02)00260-2Qiao, F., Zhang, G., Fan, J., Zhang, H., Shi, B., Yang, J., Zhang, J., & Han, Z. (2023). Hydrothermal pretreatment of protein-rich substrate: Modified phsiochemical properties and consequent responses in its anaerobic digestion. Carbon Resources Conversion, 6(1), 1–10. https://doi.org/10.1016/j.crcon.2022.10.001Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, O. (2013). The SILVA ribosomal RNA gene database project : improved data processing and web-based tools. Nucleic Acids Research, 41(November 2012), 590–596. https://doi.org/10.1093/nar/gks1219Rajagopal, R., Massé, D. I., & Singh, G. (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143, 632–641. https://doi.org/10.1016/j.biortech.2013.06.030Rasapoor, M., Young, B., Brar, R., Sarmah, A., Zhuang, W. Q., & Baroutian, S. (2020). Recognizing the challenges of anaerobic digestion: Critical steps toward improving biogas generation. Fuel, 261(Article 116497). https://doi.org/10.1016/j.fuel.2019.116497Rizzioli, F., Bertasini, D., Bolzonella, D., Frison, N., & Battista, F. (2023). A critical review on the techno-economic feasibility of nutrients recovery from anaerobic digestate in the agricultural sector. Separation and Purification Technology, 306(Article 122690). https://doi.org/10.1016/j.seppur.2022.122690Rodrigues, R. P., Rodrigues, D. P., Klepacz-Smolka, A., Martins, R. C., & Quina, M. J. (2019). Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Science of the Total Environment, 649, 1599–1608. https://doi.org/10.1016/j.scitotenv.2018.08.270Rodríguez Galindo, M. O. (2019). Informe de sostenibilidad. In Porkcolombia - Fondo Nacional de la Porcicultura (Issue 9). Recuperado Julio 29, 2023, de https://doi.org/10.1017/CBO9781107415324.004Safavi, S. M., & Unnthorsson, R. (2018). Enhanced methane production from pig slurry with pulsed electric field pre-treatment. Environmental Technology, 39(4), 479–489. https://doi.org/10.1080/09593330.2017.1304455Seadi, T. Al, Rutz, D., Prassl, H., Kottner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas handbook (T. Al Seadi (ed.)). University of Southern Denmark Esbjerg, Niels Bohrs Vej 9-10, DK-6700 Esbjerg, Denmark.Shi, L., Xie, S., Hu, Z., Wu, G., Morrison, L., Croot, P., Hu, H., & Zhan, X. (2019). Nutrient recovery from pig manure digestate using electrodialysis reversal: Membrane fouling and feasibility of long-term operation. Journal of Membrane Science, 573(August 2018), 560–569. https://doi.org/10.1016/j.memsci.2018.12.037Sidartha Roa, Z., Mendoza Cordoba, J. C., González Muñoz, S. S., Kaiser Caldera, F. L., & Gebauer, A. (2020). Guía de biogás para el sector porcícola en Colombia. Recuperado Julio 29, 2023, de https://economiacircular.minambiente.gov.co/wp-content/uploads/2021/09/guia-biogas-sector-porcicola-ministerio-de-ambiente-desarrollo-sostenible.pdfSouza, I. M. S., Gurgel, G. C. S., Medeiros, A. M., Zonta, E., Ruiz, J. A. C., Paskocimas, C. A., Motta, F. V., & Bomio, M. R. D. (2018). The use of clinoptilolite as carrier of nitrogened fertilizer with controlled release. Journal of Environmental Chemical Engineering, 6(4), 4171–4177. https://doi.org/10.1016/j.jece.2018.06.017Steinmetz, R. (2018). Curso Introductorio de Gran Escala. Bases Bioquímicas de Digestión Anaerobia. Recuperado Julio 28, 2019, de http://redbiolac.org/wp-content/uploads/CIBGE-1-Bases-bioqui%CC%81micas-da-digesta%CC%83o-anaero%CC%81bia.pdfTada, C., Yang, Y., Hanaoka, T., Sonoda, A., Ooi, K., & Sawayama, S. (2005). Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge. Bioresource Technology, 96(4), 459–464. https://doi.org/10.1016/j.biortech.2004.05.025Tao, Z., Chen, C., Yang, Q., Zhong, Z., Wan, Y., Chen, S., Yao, F., Pi, Z., Li, X., & Wang, D. (2021). Understanding the impact of allicin for organic matter release and microorganism community in anaerobic co-digestion of food waste and waste activated sludge. Science of the Total Environment, 776(Article 145598). https://doi.org/10.1016/j.scitotenv.2021.145598Tavera-Ruiz, C., Martí-Herrero, J., Mendieta, O., Jaimes-Estévez, J., Gauthier-Maradei, P., Azimov, U., Escalante, H., & Castro, L. (2023). Current understanding and perspectives on anaerobic digestion in developing countries: Colombia case study. Renewable and Sustainable Energy Reviews, 173(May 2022). https://doi.org/10.1016/j.rser.2022.113097Timonen, K., Sinkko, T., Luostarinen, S., Tampio, E., & Joensuu, K. (2019). LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production, 235, 1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.085UNAL, & TECSOL. (2018). Estimación del potencial de conversión a biogás de la biomasa en colombia y su aprovechamiento. Recuperado Julio 28, 2019, de https://bdigital.upme.gov.co/jspui/bitstream/001/1317/1/Informe final.pdfUnited States Department of Agriculture. (2018). Livestock and Poultry: World Markets and Trade. Recuperado Julio 28, 2023, de https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdfUPME, IREES, & TEP. (2019). Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética, Resumen Ejecutivo BEU Sector Residencial y Terciario. In Unidad de Planeación Minero-Energética (Vol. 1). Recuperado Julio 29, 2023, de https://www1.upme.gov.co/DemandayEficiencia/Documents/Balance_energia_util/BEU-Residencial.pdfVarnero Moreno, M. T. (2011). Manual del Biogás. Roma. doi: ISBN 978-95-306892-0. Recuperado Julio 28, 2023, de http://www.fao.org/docrep/019/as400s/as400s.pdfWandera, S. M., Qiao, W., Algapani, D. E., Bi, S., Yin, D., Qi, X., Liu, Y., Dach, J., & Dong, R. (2018). Searching for possibilities to improve the performance of full scale agricultural biogas plants. Renewable Energy, 116, 720–727. https://doi.org/10.1016/j.renene.2017.09.087Wang, Q., Yang, Y., Yu, C., Huang, H., Kim, M., Feng, C., & Zhang, Z. (2011). Study on a fixed zeolite bioreactor for anaerobic digestion of ammonium-rich swine wastes. Bioresource Technology, 102(14), 7064–7068. https://doi.org/10.1016/j.biortech.2011.04.085Wang, S., & Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029Wickham, H. (2016). Programming with ggplot2. In ggplot2. Usa R! (pp. 241–253). Springer, Cham. https://doi.org/10.1007/978-3-319-24277-4_12Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P., & Chen, D. (2018). Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure–A feasibility study. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 53(11), 751–760. https://doi.org/10.1080/03601234.2018.1480164Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P. J., Sommer, S. G., & Chen, D. (2018a). Effect of Australian zeolite on methane production and ammonium removal during anaerobic digestion of swine manure. Journal of Environmental Chemical Engineering, 6(1), 1233–1241. https://doi.org/10.1016/j.jece.2018.01.028Wijesinghe, D. T. N., Dassanayake, K. B., Scales, P., Sommer, S. G., & Chen, D. (2018b). Removal of excess nutrients by Australian zeolite during anaerobic digestion of swine manure. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 53(4), 362–372. https://doi.org/10.1080/10934529.2017.1401398Wijesinghe, D. T. N., Dassanayake, K. B., Sommer, S. G., Jayasinghe, G. Y., J. Scales, P., & Chen, D. (2016). Ammonium removal from high-strength aqueous solutions by Australian zeolite. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 51(8), 614–625. https://doi.org/10.1080/10934529.2016.1159861Wu, X., Dong, C., Yao, W., & Zhu, J. (2011). Anaerobic digestion of dairy manure influenced by the waste milk from milking operations. Journal of Dairy Science, 94(8), 3778–3786. https://doi.org/10.3168/jds.2010-4129Xiao, B., Qin, Y., Wu, J., Chen, H., Yu, P., Liu, J., & Li, Y. Y. (2018). Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: Performance, energy balance and reaction process. Energy Conversion and Management, 156(November 2017), 215–223. https://doi.org/10.1016/j.enconman.2017.10.092Xiaodong, P., Liangwei, D., Yong, Y., Li, S., & Zhiyong, W. (2010). Economic benefit analysis on large and middle-scale biogas plants with different heating methods. Journal of Agricultural Engineering, 26(7), 281–284.Yang, Z., Wang, W., Liu, C., Zhang, R., & Liu, G. (2019). Mitigation of ammonia inhibition through bioaugmentation with different microorganisms during anaerobic digestion: Selection of strains and reactor performance evaluation. Water Research, 155, 214–224. https://doi.org/10.1016/j.watres.2019.02.048Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion : A review. Process Biochemistry, 48(5–6), 901–911. https://doi.org/10.1016/j.procbio.2013.04.012Zha, X., Tsapekos, P., Alvarado-morales, M., Lu, X., & Angelidaki, I. (2020). Potassium inhibition during sludge and biopulp co-digestion ; experimental and model-based approaches. Waste Management, 113, 304–311. https://doi.org/10.1016/j.wasman.2020.06.007Zhang, N., Stanislaus, M. S., Hu, X., Zhao, C., Zhu, Q., Li, D., & Yang, Y. (2016). Strategy of mitigating ammonium-rich waste inhibition on anaerobic digestion by using illuminated bio-zeolite fixed-bed process. Bioresource Technology, 222, 59–65. https://doi.org/10.1016/j.biortech.2016.09.053Zhang, Q., Hu, J., & Lee, D. J. (2016). Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 98, 108–119. https://doi.org/10.1016/j.renene.2016.02.029Zhao, J., Liu, Y., Wang, D., Chen, F., Li, X., & Zeng, G. (2017). Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management, 67, 308–314. https://doi.org/10.1016/j.wasman.2017.05.016Zheng, H., Li, D., Stanislaus, M. S., Zhang, N., Zhu, Q., Hu, X., & Yang, Y. (2015). Development of a bio-zeolite fixed-bed bioreactor for mitigating ammonia inhibition of anaerobic digestion with extremely high ammonium concentration livestock waste. Chemical Engineering Journal, 280, 106–114. https://doi.org/10.1016/j.cej.2015.06.024Zilio, M., Pigoli, A., Rizzi, B., Geromel, G., Meers, E., Schoumans, O., Giordano, A., & Adani, F. (2021). Measuring ammonia and odours emissions during full field digestate use in agriculture. Science of the Total Environment, 782(Article 146882). https://doi.org/10.1016/j.scitotenv.2021.146882EstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85490/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1030534938.2024.pdf1030534938.2024.pdfTesis de Doctorado en Biotecnologíaapplication/pdf1703557https://repositorio.unal.edu.co/bitstream/unal/85490/2/1030534938.2024.pdf28cc15b838d3d961e2a61fac164499ddMD52THUMBNAIL1030534938.2024.pdf.jpg1030534938.2024.pdf.jpgGenerated Thumbnailimage/jpeg5280https://repositorio.unal.edu.co/bitstream/unal/85490/3/1030534938.2024.pdf.jpgce40f83a0b2400b56c4e38a69c63cb07MD53unal/85490oai:repositorio.unal.edu.co:unal/854902024-08-22 23:10:04.935Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |