Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación.
diagramas, tablas
- Autores:
-
Valencia Zapata, Alexandra
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80522
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::003 - Sistemas
Renewable energy sources
Recursos energéticos renovables
Electric power
Energía eléctrica
Energías renovables no convencionales
Suministro de electricidad
Predespacho ideal
Non-conventional renewable energies
Electricity supply
Ideal pre-dispatch
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_1b35fd81e802f29b7b387102e2ec1f82 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80522 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
dc.title.translated.eng.fl_str_mv |
Analysis of the penetration of non-conventional renewable energies in the electricity supply in Colombia through simulation. |
title |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
spellingShingle |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. 000 - Ciencias de la computación, información y obras generales::003 - Sistemas Renewable energy sources Recursos energéticos renovables Electric power Energía eléctrica Energías renovables no convencionales Suministro de electricidad Predespacho ideal Non-conventional renewable energies Electricity supply Ideal pre-dispatch |
title_short |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
title_full |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
title_fullStr |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
title_full_unstemmed |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
title_sort |
Análisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación. |
dc.creator.fl_str_mv |
Valencia Zapata, Alexandra |
dc.contributor.advisor.none.fl_str_mv |
Olaya Morales, Yris Arango Aramburo, Santiago |
dc.contributor.author.none.fl_str_mv |
Valencia Zapata, Alexandra |
dc.contributor.researchgroup.spa.fl_str_mv |
Ciencias de la Decision |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas |
topic |
000 - Ciencias de la computación, información y obras generales::003 - Sistemas Renewable energy sources Recursos energéticos renovables Electric power Energía eléctrica Energías renovables no convencionales Suministro de electricidad Predespacho ideal Non-conventional renewable energies Electricity supply Ideal pre-dispatch |
dc.subject.lemb.none.fl_str_mv |
Renewable energy sources Recursos energéticos renovables Electric power Energía eléctrica |
dc.subject.proposal.spa.fl_str_mv |
Energías renovables no convencionales Suministro de electricidad Predespacho ideal Non-conventional renewable energies |
dc.subject.proposal.eng.fl_str_mv |
Electricity supply Ideal pre-dispatch |
description |
diagramas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-12T20:13:19Z |
dc.date.available.none.fl_str_mv |
2021-10-12T20:13:19Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80522 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80522 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
AL-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2019). Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia. Renewable and Sustainable Energy Reviews, 113(July 2019), 109293. https://doi.org/10.1016/j.rser.2019.109293 AL-Musaylh, M. S., Deo, R. C., Li, Y., & Adamowski, J. F. (2018). Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Applied Energy, 217(February), 422–439. https://doi.org/10.1016/j.apenergy.2018.02.140 Allen, T. T. (2015). Introduction to discrete event simulation and agent- based modeling. Springe. https://doi.org/10.1007/978-0-85729-139-4 Springer Almonacid, F., Pérez-Higueras, P. J., Fernández, E. F., & Hontoria, L. (2014). A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Conversion and Management, 85, 389–398. https://doi.org/10.1016/j.enconman.2014.05.090 Ambec, S., & Crampes, C. (2012). Electricity provision with intermittent sources of energy. Resource and Energy Economics, 34(3), 319–336. https://doi.org/10.1016/j.reseneeco.2012.01.001 Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/10.1016/j.solener.2016.06.069 Arango-Aramburo, S., Turner, S. W. D., Daenzer, K., Ríos-Ocampo, J. P., Hejazi, M. I., Kober, T., Álvarez-Espinosa, A. C., Romero-Otalora, G. D., & van der Zwaan, B. (2019). Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy, 128(July 2018), 179–188. https://doi.org/10.1016/j.enpol.2018.12.057 Arias-Gaviria, J., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy, 1111–1119. https://doi.org/10.1016/j.renene.2019.02.138 Awad, H., Salim, K. M. E., & Gül, M. (2020). Multi-objective design of grid-tied solar photovoltaics for commercial flat rooftops using particle swarm optimization algorithm. Journal of Building Engineering, 28(July 2019), 101080. https://doi.org/10.1016/j.jobe.2019.101080 Baldick, R. (1995). The Generalized Unit Commitment Problem. IEEE Transactions on Power Systems, 10(1), 465–475. https://doi.org/10.1109/59.373972 Bale, C. S. E., Varga, L., & Foxon, T. J. (2015). Energy and complexity: New ways forward. Applied Energy, 138, 150–159. https://doi.org/10.1016/j.apenergy.2014.10.057 Banks, J., Carson II, J., Nelson, B., & Nicol, D. (2014). Discrete-evetn system simulation (Quinta, Issue 9). Pearson.http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle.net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12 Beck, F., & Martinot, E. (2004). Renewable Energy Policies and Barriers. Encyclopedia of Energy, 5, 365–383. https://doi.org/10.1016/b0-12-176480-x/00488-5 Benevit, M. G., Silva, J. S., Gewehr, A. G., & Beluco, A. (2016). Subtle Influence of the Weibull Shape Parameter on Homer Optimization Space of a Wind Diesel Hybrid Gen Set for Use in Southern Brazil. Journal of Power and Energy Engineering, 04(08), 38–48. https://doi.org/10.4236/jpee.2016.48004 Botero, S. B., & Cano Cano, J. A. (2008). Análisis de series de tiempo para la predicción de los precios de la energía en la bolsa de Colombia. Cuadernos de Economia, 27(48), 173–208. Breceda Lapeyre, M. (1990). Precios de la Electricidad: Un Debate Te6rico Para los Paises en Vias de Desarrollo. 77–113. Brekken, T. K. A., Yokochi, A., Von Jouanne, A., Yen, Z. Z., Hapke, H. M., & Halamay, D. A. (2011). Optimal energy storage sizing and control for wind power applications. IEEE Transactions on Sustainable Energy, 2(1), 69–77. https://doi.org/10.1109/TSTE.2010.2066294 Brouwer, A. S., Van Den Broek, M., Seebregts, A., & Faaij, A. (2014). Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled. Renewable and Sustainable Energy Reviews, 33, 443–466. https://doi.org/10.1016/j.rser.2014.01.076 Bublitz, A., Keles, D., Zimmermann, F., Fraunholz, C., & Fichtner, W. (2019). A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms. Energy Economics, #pagerange#. https://doi.org/10.1016/j.eneco.2019.01.030 Cárdenas Ardila, L. M. (2015). Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico. Universidad Nacional de Colombia, 245. Carrión, M., & Arroyo, J. M. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371–1378. https://doi.org/10.1109/TPWRS.2006.876672 Castaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179 Cebeci, M. E., Tor, O. B., Oprea, S., & Bara, A. (2018). Consecutive market and network simulations to optimize investment and operational decisions under different RES penetration scenarios. IEEE Transactions on Sustainable Energy, PP(c), 1. https://doi.org/10.1109/TSTE.2018.2881036 Chabouni, N., Belarbi, Y., & Benhassine, W. (2020). Electricity load dynamics, temperature and seasonality Nexus in Algeria. Energy, 200, 117513. https://doi.org/10.1016/j.energy.2020.117513 Chapagain, K., Kittipiyakul, S., & Kulthanavit, P. (2020). Short-term electricity demand forecasting: Impact analysis of temperature for Thailand. Energies, 13(10), 1–29. https://doi.org/10.3390/en13102498 Chattopadhyay, D. (2014). Modelling renewable energy impact on the electricity market in India. Renewable and Sustainable Energy Reviews, 31, 9–22. https://doi.org/10.1016/j.rser.2013.11.035 Cherif, H., & Belhadj, J. (2014). Energy output estimation of hybrid Wind-Photovoltaic power system using statistical distributions. 2, 117–132. Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V. (2014). The merit order effect of wind and photovoltaic electricity generation in Germany 2008-2016 estimation and distributional implications. Energy Economics, 44(2014), 302–313. https://doi.org/10.1016/j.eneco.2014.04.020 Congreso de Colombia. (2014). Ley 1715 de 2014. In Ministerio de Minas y Energía (No. 1715; p. 25). http://www.fedebiocombustibles.com/files/1715.pdf Correa Posada, C. M. (2009). Modelo de optimización para las plantas térmicas de generación de ciclo combinado en el despacho económico (Issue September). Universidad Nacional de Colombia Sede Medellín. CREG. (1994). Resolución N° 055 Por la cual se regula la actividad de generación de energía eléctrica en el Sistema Interconectado Nacional. (pp. 1–8). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolución-1994-CRG94055 CREG. (1995). Resolución No. 025. Por la cual se establece el Código de Redes, como parte del Reglamento de Operación del Sistema Interconectado Nacional. In Comisión de Regulación de Energía y Gas (p. 141). http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/3a940408d14bf2e80525785a007a653b/$FILE/Cr025-95.pdf CREG. (1996). Resolución No. 086. Por la cual se reglamenta la actividad de generación con plantas menores de 20MW que se encuentra conectado al Sistema Interconectado Nacional (SIN) (p. 4). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resoluci%25C3%25B3n-1996-CRG86-96 CREG. (2001). Resolución No. 026. Por la cual se dictan normas sobre funcionamiento del Mercado mayorista de Energía. (No. 026). http://apolo.creg.gov.co/PUBLICAC.NSF/Indice01/Resolución-2001-CREG026-2001?OpenDocument CREG. (2009a). Resolución No.141. Por la cual se modifica el artículo 1 de la Resolución CREG-034 de 2001. (No. 141). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2009-Creg141-2009 CREG. (2009b). Resolución N° 051. Por la cual se modifica el esquema de ofertas de precios, el Despacho ideal y las reglas para determinar el precio de la Bolsa en el Mercado Energía Mayorista (pp. 1–32). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/e93298f462402ffd0525785a007a714f/$FILE/Creg051-2009.pdf CREG. (2010). Resolución N° 126. Por la cual se establecen los criterios generales para la remuneración del servicio de transprote de gas natural y esquema general de cargos del Sitema Nacional de Transporte, y se dictan otras disposiciones en materia de tranbsporte de (No. 126; pp. 1–69). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2010-Creg126-2010 CREG. (2015). Resolución No.173. Por la cual se ordena hacer público un proyecto de resolución "Por la cual se modifica el despacho económico, el predespacho económico, el predespacho ideal y el despacho programado en el Mercado de Energía Mayorista. (No. 173). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/37a1244f437cdec905257ee3007cbe8c/$FILE/Creg173-2015.pdf CREG. (2018a). Resolución No. 003. Por la cual se resuleve una actuación administrativa iniciada en virtud de los establecido en el artículo 126 de la Ley 142 de 1994 y se ajustan los cargos regulados del sistema de transporte de TGI S:A: E.S.P. (No. 003; pp. 1–32). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/e097ea9241a3c13305258258004f0ea0/$FILE/Creg003-2018.pdf CREG. (2018b). Resolución No. 106.Por la cual se resuelve el recurso de reposición interpuesto por la Transportadora de Gas Internacional TGI S.A. E.S.P. contra la Resolución CREG 003 DE 2018. (No. 106; pp. 1–27). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/7f7970d5a83cfb900525832400779ec5/$FILE/Creg106-2018.pdf CREG. (2019a). Declaración de parámetros para el cálculo de la ENFICC. In Circular 027-2019. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/f2eb1897273b0596052583c4007c71fe CREG. (2019b). Circular N° 024. Publicación de los parámetros reportados por los agentes para la determinación de la energía firme para el cargo por confiabilidad - ENFICC. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/2b8f1f53bc87d067052583b7007745d7?OpenDocument Cutler, N. J., Boerema, N. D., MacGill, I. F., & Outhred, H. R. (2011). High penetration wind generation impacts on spot prices in the Australian national electricity market. Energy Policy, 39(10), 5939–5949. https://doi.org/10.1016/j.enpol.2011.06.053 Das, D. C., Roy, A. K., & Sinha, N. (2012). GA based frequency controller for solar thermal-diesel-wind hybrid energy generation/energy storage system. International Journal of Electrical Power and Energy Systems, 43(1), 262–279. https://doi.org/10.1016/j.ijepes.2012.05.025 Dasgupta, D., & McGregor, D. R. (1994). Thermal unit commitment using genetic algorithms. IEE Proceedings: Generation, Transmission and Distribution, 141(5), 459–465. https://doi.org/10.1049/ip-gtd:19941221 De Felice, M., Alessandri, A., & Ruti, P. M. (2013). Electricity demand forecasting over Italy: Potential benefits using numerical weather prediction models. Electric Power Systems Research, 104, 71–79. https://doi.org/10.1016/j.epsr.2013.06.004 Deng, J., & Jirutitijaroen, P. (2010). Short-term load forecasting using time series analysis: A case study for Singapore. 2010 IEEE Conference on Cybernetics and Intelligent Systems, CIS 2010, 231–236. https://doi.org/10.1109/ICCIS.2010.5518553 Departamento Nacional de Planeación. (2019). La Agenda 2030 en Colombia - Objetivos de Desarrollo Sostenible. https://www.ods.gov.co/es Díaz López, E., Prieto, A. M., & Lio, D. G. (2016). An implementation for the meta-heuristic “Variable Mesh Optimization” on CUDA architecture. Revista Cubana de Ciencias Informáticas, 10(3), 42–57. http://rcci.uci.xn--cupg-7na.42-56 Díez, P. F. (1993). Energía eólica. In Energía eólica (pp. 1–25). Dilhani, M. H. M. R. S., & Jeenanunta, C. (2017). Effect of Neural Network structure for daily electricity load forecasting. 3rd International Moratuwa Engineering Research Conference, MERCon 2017, 419–424. https://doi.org/10.1109/MERCon.2017.7980521 ECMWF. (2021). ERA5 | ECMWF. https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 EIA. (2021). Electric Power Monthly - U.S. Energy Information Administration (EIA). https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b Eltawil, M. A., & Zhao, Z. (2010). Grid-connected photovoltaic power systems: Technical and potential problems-A review. Renewable and Sustainable Energy Reviews, 14(1), 112–129. https://doi.org/10.1016/j.rser.2009.07.015 Energética2030. (2021). Energética 2030. https://www.energetica2030.co/ Fattaheian-Dehkkordi, S., Fereidunian, A., Gholami-Dehkordi, H., & Lesani, H. (2013). Hour- ahead demand forecasting in smart grid using support vector regression (SVR). International Transactions on Electrical Energy Systems, 20, 1–6. https://doi.org/10.1002/etep Gan, L. K., Shek, J. K. H., & Mueller, M. A. (2015). Hybrid wind-photovoltaic-diesel-battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland. Energy Conversion and Management, 106, 479–494. https://doi.org/10.1016/j.enconman.2015.09.029 Gaur, A. S., Das, P., Jain, A., Bhakar, R., & Mathur, J. (2019). Long-term energy system planning considering short-term operational constraints. Energy Strategy Reviews, 26(October 2018), 100383. https://doi.org/10.1016/j.esr.2019.100383 Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(June 2018), 38–50. https://doi.org/10.1016/j.esr.2019.01.006 Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assesing the obstacles to the participaction of renewable energy sources in the electricity market of colombia.pdf. Renewable and Sustainable Energy Reviews, 90(September 2016), 131–141. https://doi.org/https://doi.org/10.1016/j.rser.2018.03.015 Göransson, L., & Johnsson, F. (2009). Dispatch modeling of a regional power generation system - Integrating wind power. Renewable Energy, 34(4), 1040–1049. https://doi.org/10.1016/j.renene.2008.08.002 Gordon, S. I., & Guilfoos, B. (2017). Introduction to modeling and simulation with Matlab and Python. In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis (Vol. 53, Issue 9). CRC Press is an imprint of Taylor & Francis Group.http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle.net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12 Hartel, R., Fichtner, W., & Keles, D. (2015). Electricity market design options for promoting low carbon technologies. Insight_E, 3(April). http://www.insightenergy.org/ckeditor_assets/attachments/71/rreb3.pdf Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. https://doi.org/10.1029/WR018i001p00014 Helm, C., & Mier, M. (2019). On the efficient market diffusion of intermittent renewable energies. Energy Economics, 80, 812–830. https://doi.org/10.1016/j.eneco.2019.01.017 Henao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158(2020), 612–627. https://doi.org/10.1016/j.renene.2020.05.055 Henao, F., Rodriguez, Y., Viteri, J. P., & Dyner, I. (2019). Optimising the insertion of renewables in the Colombian power sector. Renewable Energy, 132, 81–92. https://doi.org/10.1016/j.renene.2018.07.099 Henao, F., Viteri, J. P., Rodríguez, Y., Gómez, J., & Dyner, I. (2020). Annual and interannual complementarities of renewable energy sources in Colombia. Renewable and Sustainable Energy Reviews, 134(September). https://doi.org/10.1016/j.rser.2020.110318 Hernandez, J. A., Velasco, D., & Trujillo, C. L. (2011). Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia. Renewable and Sustainable Energy Reviews, 15(5), 2290–2298. https://doi.org/10.1016/j.rser.2011.02.003 Herrera Flórez, H. H. (2016). FACTORES DE EMISION DEL S.I.N. SISTEMA INTERCONECTADO NACIONAL COLOMBIA 2015. https://www1.upme.gov.co/siame/Documents/Calculo-FE-del-SIN/Documento_calculo_del_FE_SIN_2015_dic_2016.pdf Holttinen, H., Meibom, P., Orths, A., Lange, B., O´Malley, M., Tande, J. O., Estanqueiro, A., Gomez, E., Söder, L., Strbac, G., Smith, J. C., & Van Hulle, F. (2011). Impacts of large amounts of wind power on design and operation of power system, results of IEA collaboration. Wind Energy, 14, 179–192. https://doi.org/10.1002/we.410 Ibargüengoytia González, P. H., Reyes Ballesteros, A., Borunda Pacheco, M., & García López, U. A. (2018). Predicción de potencia eólica utilizando técnicas modernas de Inteligencia Artificial. Ingeniería Investigación y Tecnología, 19(4), 1–11. https://doi.org/10.22201/fi.25940732e.2018.19n4.033 IDEAM. (2014). Valores medios multianuales de temperatura media en C° - periodo 1981 - 2010. IEA. (2019). Energy security - Areas of work - IEA. https://www.iea.org/areas-of-work/ensuring-energy-security Ilseven, E., & Gol, M. (2019). A comparative study on feature selection based improvement of medium-term demand forecast accuracy. 2019 IEEE Milan PowerTech, PowerTech 2019, 1–6. https://doi.org/10.1109/PTC.2019.8810598 International Renewable Energy Agency. (2020). Renewable Power Generation Costs in 2019. In Irena. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf Jalilov, S. M., Keskinen, M., Varis, O., Amer, S., & Ward, F. A. (2016). Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. Journal of Hydrology, 539, 648–661. https://doi.org/10.1016/j.jhydrol.2016.05.071 Jaramillo, O. A., Borja, M. A., & Huacuz, J. M. (2004). Using hydropower to complement wind energy: A hybrid system to provide firm power. Renewable Energy, 29(11), 1887–1909. https://doi.org/10.1016/j.renene.2004.02.010 Jensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., Stafford, A., & Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044 Jimenez, M., Franco, C. J., & Dyner, I. (2016). Diffusion of renewable energy technologies: The need for policy in Colombia. Energy, 111, 818–829. https://doi.org/10.1016/j.energy.2016.06.051 Jordán, C., Medina, D., & Zúñiga, A. (2010). Aplicación de un Algoritmo Evolutivo Flexible a la Optimización de la Operación de Sistemas Hidrotérmicos. Revista Tecnológica ESPOL-RTE, 23, 35–45. Kaldellis, J. K., Vlachou, D. S., & Korbakis, G. (2005). Techno-economic evaluation of small hydro power plants in Greece: A complete sensitivity analysis. Energy Policy, 33(15), 1969–1985. https://doi.org/10.1016/j.enpol.2004.03.018 Kirschen, D. S., & Strbac, G. (2019). Fundamentals of power system economics (Segunda). John Wiley & Sons. Kleijnen, J. P. C. (1995). Statistical validation of simulation models. European Journal of Operational Research, 87, 21–34. https://ac.els-cdn.com/037722179500132A/1-s2.0-037722179500132A-main.pdf?_tid=469323b8-771b-4f7f-b087-0178fdc02807&acdnat=1550338576_811b5b25697cef2f608e95c78288c11f Kondili, E. (2010). Design and performance optimisation of stand-alone and hybrid wind energy systems. In Stand-Alone and Hybrid Wind Energy Systems. Woodhead Publishing Limited. https://doi.org/10.1533/9781845699628.1.81 Kong, J., Skjelbred, H. I., & Fosso, O. B. (2020). An overview on formulations and optimization methods for the unit-based short-term hydro scheduling problem. Electric Power Systems Research, 178(April 2019), 106027. https://doi.org/10.1016/j.epsr.2019.106027 Kougias, I., Szabó, S., Monforti-Ferrario, F., Huld, T., & Bódis, K. (2016). A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems. Renewable Energy, 87, 1023–1030. https://doi.org/10.1016/j.renene.2015.09.073 Kruyt, B., van Vuuren, D. P., de Vries, H. J. M., & Groenenberg, H. (2009). Indicators for energy security. Energy Policy, 37(6), 2166–2181. https://doi.org/10.1016/j.enpol.2009.02.006 Lannoye, E., Flynn, D., & O’Malley, M. (2015). Transmission, variable generation, and power system flexibility. IEEE Transactions on Power Systems, 30(1), 57–66. https://doi.org/10.1109/TPWRS.2014.2321793 Lebotsa, M. E., Sigauke, C., Bere, A., Fildes, R., & Boylan, J. E. (2018). Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem. Applied Energy, 222(December 2017), 104–118. https://doi.org/10.1016/j.apenergy.2018.03.155 Lee, C. W., & Lin, B. Y. (2017). Applications of the chaotic quantum genetic algorithm with support vector regression in load forecasting. Energies, 10(11). https://doi.org/10.3390/en10111832 Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53(2), 855–866. https://doi.org/10.1109/TIA.2016.2626253 Liu, H., Chen, C., Lv, X., Wu, X., & Liu, M. (2019). Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods. Energy Conversion and Management, 195(May), 328–345. https://doi.org/10.1016/j.enconman.2019.05.020 López, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066 Lund, H., & Mathiesen, B. V. (2009). Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050. Energy, 34(5), 524–531. https://doi.org/10.1016/j.energy.2008.04.003 Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785–807. https://doi.org/10.1016/j.rser.2015.01.057 Maldonado, S., González, A., & Crone, S. (2019). Automatic time series analysis for electric load forecasting via support vector regression. Applied Soft Computing Journal, 83, 105616. https://doi.org/10.1016/j.asoc.2019.105616 Martín Guareño, J. J. (2016). Support Vector Regression: Propiedades y aplicaciones. In Universidad de Sevilla. Departamento de Estadística e Investigación Operativa. Universidad de Sevilla. Martínez-Márquez, C. I., Twizere-Bakunda, J. D., Lundback-Mompó, D., Orts-Grau, S., Gimeno-Sales, F. J., & Seguí-Chilet, S. (2019). Small wind turbine emulator based on lambda-Cp curves obtained under real operating conditions. Energies, 12(13). https://doi.org/10.3390/en12132456 Martínez Moreno, W. A., & Rodríguez Hernández, R. (2019). Proyección de la demanda de energía eléctrica y potencia máxima en Colombia. http://www.siel.gov.co/siel/documentos/documentacion/Demanda/Proyeccion_Demanda_Energia_Jul_2019.pdf Marzband, M., Ghazimirsaeid, S. S., Uppal, H., & Fernando, T. (2017). A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electric Power Systems Research, 143, 624–633. https://doi.org/10.1016/j.epsr.2016.10.054 Mastropietro, P., Rodilla, P., Rangel, L. E., & Batlle, C. (2020). Reforming the colombian electricity market for an efficient integration of renewables: A proposal. Energy Policy, 139(November 2019), 111346. https://doi.org/10.1016/j.enpol.2020.111346 Mejía Giraldo, D. A., Franco A, F. F., & Gallego, R. A. (2005). Solución Al Problema Del Despacho De Energía En Sistemas Hidrotérmicos Usando Simulated Annealing. Scientia Et Technica, XI(29), 7–12. https://doi.org/10.22517/23447214.6605 Mohanty, S., Patra, P. K., & Sahoo, S. S. (2016). Prediction and application of solar radiation with soft computing over traditional and conventional approach - A comprehensive review. Renewable and Sustainable Energy Reviews, 56, 778–796. https://doi.org/10.1016/j.rser.2015.11.078 Mokilane, P., Debba, P., Yadavalli, V. S. S., & Sigauke, C. (2019). Bayesian structural time-series approach to a long-term electricity demand forecasting. Applied Mathematics and Information Sciences, 13(2), 189–199. https://doi.org/10.18576/AMIS/130206 Morales-España, G., Latorre, J. M., & Ramos, A. (2013). Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 28(4), 4897–4908. https://doi.org/10.1109/TPWRS.2013.2251373 Mosquera-López, S., & Nursimulu, A. (2019). Drivers of electricity price dynamics: Comparative analysis of spot and futures markets. Energy Policy, 126(May 2018), 76–87. https://doi.org/10.1016/j.enpol.2018.11.020 Nakata, T., Silva, D., & Rodionov, M. (2011). Application of energy system models for designing a low-carbon society. Progress in Energy and Combustion Science, 37(4), 462–502. https://doi.org/10.1016/j.pecs.2010.08.001 NERC. (2013). Reliability Metrics Specifications Sheet ALR 1-3 Reserve Margin. https://www.nerc.com/comm/PC/Performance Analysis Subcommittee PAS 2013/1-3 July 9.pdf Newbery, D., Pollitt, M. G., Ritz, R. A., & Strielkowski, W. (2018). Market design for a high-renewables European electricity system. Renewable and Sustainable Energy Reviews, 91(April), 695–707. https://doi.org/10.1016/j.rser.2018.04.025 OECD, & IEA. (2007). Tackling Investment Challenges in Power Generation. www.iea.org/w/bookshop/pricing.html Okumus, I., & Dinler, A. (2016). Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Conversion and Management, 123, 362–371. https://doi.org/10.1016/j.enconman.2016.06.053 Ortega Arango, S., Ángel Sanint, E., & Jaramillo Vélez, A. (2020). ESCENARIOS ENERGÉTICOS PARA COLOMBIA EN EL MARCO DEL COVID-19. https://repository.eia.edu.co/bitstream/handle/11190/2530/EscenariosEnerg%E9ticosCovid19-WP.pdf?sequence=1 Osorio, A. F., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in Colombia. Renewable and Sustainable Energy Reviews, 53, 966–977. https://doi.org/10.1016/j.rser.2015.09.057 Paz, D. F. (2018). Metodología para la determinación de características del viento y evaluación del potencial de energía eólica en Túquerres - Nariño Methodology for the determination of wind characteristics and assessment of wind energy potential in Túquerres - Nariño Meto. 31(31), 19–31. Peláez Villada, D. C. (2014). Determinación del costo de le nergía hidraúlica en Colombia a partir del análisis del mercado de derivados energéticos [Universidad Nacional de Colombia]. https://doi.org/10.4324/9781315853178 Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146–161. https://doi.org/10.1016/j.renene.2020.11.067 Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33(1), 74–86. https://doi.org/10.1016/j.rser.2014.02.003 Pidd, M. (2004). Computer Simulation in Management Science (5ta ed.). John Wiley & Sons. Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management. Statistical Science, 28(4), 564–585. https://doi.org/10.1214/13-STS445 Pupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy, 186, 115805. https://doi.org/10.1016/j.energy.2019.07.135 Rau, R. (2010). Despacho Economico Optimo De Plantas De Generacion Hidrotermico En Sistemas De Energia Electrica [Universidad Nacional del Centro del Perú]. http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/3604/Rau Vargas.pdf?sequence=1&isAllowed=y Resendiz Trejo, J. (2006). Las maquinas de vectores de soporte para identificación en línea. Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional. Rhoades, S. A. (1993). The Herfindahl-Hisrchman Index. Federal Reserva Bank of St. Louis, 188–189.https://fraser.stlouisfed.org/files/docs/publications/FRB/pages/1990-1994/33101_1990-1994.pdf Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529–543. https://doi.org/10.1016/j.jclepro.2019.02.174 Sargent, R. G. (2008). Verification and validation of simulation models. Procedings of the 2008 Winter Simulation Conference, 157–169. https://doi.org/10.1109/WSC.2008.4736065 Schlesinger, S., Crosble, R. E., Gagné, R. E., Innis, G. S., Lalwani, C. S., Loch, J., Sylvester, R. J., Wright, R. D., Kheir, N., & Bartos, D. (1979). Terminology for model credibility. Simulation, 32(3), 103–104. https://doi.org/10.1177/003754977903200304 Schwartz, P. (2012). The Art of the Long View: Planning for the Future in an Uncertain World. Crown. https://books.google.com.co/books?id=T-r36bIZA44C Sen, S., & Kothari, D. . (1998). Optimal thermal generating unit commitment. Electrical Power & Energy Systems, 20, 443–451. https://doi.org/10.1109/TPAS.1971.293167 Sensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–3094. https://doi.org/10.1016/j.enpol.2008.03.035 Sheble, G. B., & Fahd, G. N. (1994). Unit commitment literature synopsis. IEEE Transactions on Power Systems, 9(1), 128–135. https://doi.org/10.1109/59.317549 Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156(May 2017), 459–497. https://doi.org/10.1016/j.enconman.2017.11.019 Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376–384. https://doi.org/10.1016/j.rser.2013.08.039 Ssekulima, E. B., Anwar, M. B., Al Hinai, A., & El Moursi, M. S. (2016). Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review. IET Renewable Power Generation, 10(7), 885–898. https://doi.org/10.1049/iet-rpg.2015.0477 Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System Dynamics Review, 18(4), 501–531. https://doi.org/10.1002/sdr.261 Stoft, S. (2002). Power System Economics designing markets for electricity (John Wiley & Sone Ltd (ed.); History). Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030 Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014 Tan, Q. F., Wen, X., Fang, G. H., Wang, Y. Q., Qin, G. H., & Li, H. M. (2020). Long-term optimal operation of cascade hydropower stations based on the utility function of the carryover potential energy. Journal of Hydrology, 580(November 2019), 124359. https://doi.org/10.1016/j.jhydrol.2019.124359 Tascikaraoglu, A., & Uzunoglu, M. (2014). A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews, 34, 243–254. https://doi.org/10.1016/j.rser.2014.03.033 UPME. (2016). Calculadora Fecoc 2016 . http://www.upme.gov.co/calculadora_emisiones/aplicacion/acercade.html UPME. (2019). Proyección de precios de los energéticos para generación eléctrica enero 2019- diciembre 2039. www.upme.gov.co UPME. (2020). Informe estados de avance: Generación y Transmisión (Issue F-DI-01 – V4). UPME. (2021). Resoluciones para Liquidación de regalías. https://www1.upme.gov.co/simco/PromocionSector/Normatividad/Paginas/Resoluciones-de-Liquidacion-de-regalias.aspx UPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. https://doi.org/10.1017/CBO9781107415324.004 UPME, U. de P. M. E. (2017). Factores de emision del Sistema Interconectado Nacional Colombia - SIN. https://www1.upme.gov.co/ServicioCiudadano/Documents/Proyectos_normativos/Doc_calculo_del_FE_del_SIN_2016.docx van der Meer, D. W., Widén, J., & Munkhammar, J. (2018). Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renewable and Sustainable Energy Reviews, 81(May 2017), 1484–1512. https://doi.org/10.1016/j.rser.2017.05.212 Vargas, J. (2019). Esquemas de fijación de precios para el mercado mayorista de electricidad colombiano bajo penetración de renovables. Universidad Nacional de Colombia Sede Medellín. Velásquez, J. D., Franco, C. J., & García, H. A. (2009). Un modelo no lineal para la predicción de la demanda mensual de electricidad en Colombia. Estudios Gerenciales, 25, 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8 XM S.A. E.S.P. (2020a). Indicadores. https://www.xm.com.co/Paginas/Indicadores/Oferta/Indicador-generacion-sin.aspx XM S.A. E.S.P. (2020b, April 25). Histórico de demanda. https://www.xm.com.co/Paginas/Consumo/historico-de-demanda.aspx XM S.A. E.S.P. (2020b, April 25). Histórico de demanda. https://www.xm.com.co/Paginas/Consumo/historico-de-demanda.aspx XM S.A. E.S.P. (2021a). Asignación subastas. https://www.xm.com.co/Paginas/Mercado-de-energia/asignacion-subastas.aspx XM S.A. E.S.P. (2021b). Capacidad efectiva por tipo de generación. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad XM S.A. E.S.P. (2021c). Portal BI Información inteligente XM. http://portalbissrs.xm.com.co/Paginas/Home.aspx XM S.A.S. (2020, February 6). En Colombia Factor de emisión de CO2 por generación eléctrica del Sistema Interconectado: 164.38 gramos de CO2 por kilovatio hora. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383 Yoo, J. H. (2009). Maximization of hydropower generation through the application of a linear programming model. Journal of Hydrology, 376(1–2), 182–187. https://doi.org/10.1016/j.jhydrol.2009.07.026 Yuce, B., Mourshed, M., & Rezgui, Y. (2017). A smart forecasting approach to district energy management. Energies, 10(8), 1–22. https://doi.org/10.3390/en10081073 Zapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(July), 183–191. https://doi.org/10.1016/j.seta.2018.10.008 Zhang, G., & Guo, J. (2020). A Novel Method for Hourly Electricity Demand Forecasting. IEEE Transactions on Power Systems, 35(2), 1351–1363. https://doi.org/10.1109/TPWRS.2019.2941277 Zhang, Y., Wang, J., & Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32, 255–270. https://doi.org/10.1016/j.rser.2014.01.033 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 113 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas |
dc.publisher.department.spa.fl_str_mv |
Departamento de la Computación y la Decisión |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80522/2/1035433833.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80522/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80522/4/1035433833.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
113533339f0e17499500a8ef0fe40eb6 cccfe52f796b7c63423298c2d3365fc6 50ec1d39df892b6338c531e069a6b2ae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090242404122624 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Olaya Morales, Yrisd0327c70a5d5053a81a3451418a03b72Arango Aramburo, Santiago214c2102e45a3ac8004821f24543d086Valencia Zapata, Alexandra5776cf8a9db3d149f6b754b4f9afb8fcCiencias de la Decision2021-10-12T20:13:19Z2021-10-12T20:13:19Z2021https://repositorio.unal.edu.co/handle/unal/80522Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/diagramas, tablasLa transición a economías bajas en carbono plantea la necesidad de comprender los efectos que tiene la incorporación de tecnologías renovables no convencionales sobre la seguridad del suministro, es decir sobre un suministro de energía con disponibilidad ininterrumpida de fuentes de energía. En particular, interesa evaluar el impacto de tecnologías de generación con fuentes renovables no convencionales en un sistema con un gran componente de generación hidráulica, como el caso colombiano. Para tal fin, se desarrolló un modelo de simulación del predespacho ideal de electricidad para Colombia. El modelo usa métodos estocásticos para representar las ofertas de generación de acuerdo con su fuente de energía. Las simulaciones del modelo muestran cómo las tecnologías renovables son siempre despachadas, al beneficiarse de la regla de orden de mérito, las tecnologías térmicas convencionales disminuyen su participación en el despacho y con ello se reducen las emisiones de CO2 emitidos por el sector, y de mayor importancia, el precio de bolsa es más bajo. (Texto tomado de la fuente)The transition to low-carbon economies sets out the need to understand the effects of the incorporation of non-conventional renewable technologies in the electricity supply, that is, on an energy supply with uninterrupted availability of energy sources. It is interesting to evaluate the impact of non-conventional renewable source generation technologies in systems with a sizeable hydraulic generation component, such as the Colombian case is. For this purpose, we developed a simulation model of the ideal pre-dispatch of electricity in Colombia. The model uses stochastic methods to represent generation offers according to their energy sources. Model's simulations show that the system operation always dispatches renewable technologies, which benefit from the merit order, conventional thermal technologies reduce their contribution on the dispatch, and thereby reducing the CO2 emissions emitted by the sector, and more importantly, the wholesale electricity price is lower.MaestríaMagíster en Ingeniería - Ingeniería de SistemasInvestigación de operacionesxx, 113 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de SistemasDepartamento de la Computación y la DecisiónFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales::003 - SistemasRenewable energy sourcesRecursos energéticos renovablesElectric powerEnergía eléctricaEnergías renovables no convencionalesSuministro de electricidadPredespacho idealNon-conventional renewable energiesElectricity supplyIdeal pre-dispatchAnálisis de la penetración de energías renovables no convencionales en el suministro de electricidad en Colombia por medio de simulación.Analysis of the penetration of non-conventional renewable energies in the electricity supply in Colombia through simulation.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAL-Musaylh, M. S., Deo, R. C., Adamowski, J. F., & Li, Y. (2019). Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia. Renewable and Sustainable Energy Reviews, 113(July 2019), 109293. https://doi.org/10.1016/j.rser.2019.109293AL-Musaylh, M. S., Deo, R. C., Li, Y., & Adamowski, J. F. (2018). Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Applied Energy, 217(February), 422–439. https://doi.org/10.1016/j.apenergy.2018.02.140Allen, T. T. (2015). Introduction to discrete event simulation and agent- based modeling. Springe. https://doi.org/10.1007/978-0-85729-139-4 SpringerAlmonacid, F., Pérez-Higueras, P. J., Fernández, E. F., & Hontoria, L. (2014). A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Conversion and Management, 85, 389–398. https://doi.org/10.1016/j.enconman.2014.05.090Ambec, S., & Crampes, C. (2012). Electricity provision with intermittent sources of energy. Resource and Energy Economics, 34(3), 319–336. https://doi.org/10.1016/j.reseneeco.2012.01.001Antonanzas, J., Osorio, N., Escobar, R., Urraca, R., Martinez-de-Pison, F. J., & Antonanzas-Torres, F. (2016). Review of photovoltaic power forecasting. Solar Energy, 136, 78–111. https://doi.org/10.1016/j.solener.2016.06.069Arango-Aramburo, S., Turner, S. W. D., Daenzer, K., Ríos-Ocampo, J. P., Hejazi, M. I., Kober, T., Álvarez-Espinosa, A. C., Romero-Otalora, G. D., & van der Zwaan, B. (2019). Climate impacts on hydropower in Colombia: A multi-model assessment of power sector adaptation pathways. Energy Policy, 128(July 2018), 179–188. https://doi.org/10.1016/j.enpol.2018.12.057Arias-Gaviria, J., Carvajal-Quintero, S. X., & Arango-Aramburo, S. (2019). Understanding dynamics and policy for renewable energy diffusion in Colombia. Renewable Energy, 1111–1119. https://doi.org/10.1016/j.renene.2019.02.138Awad, H., Salim, K. M. E., & Gül, M. (2020). Multi-objective design of grid-tied solar photovoltaics for commercial flat rooftops using particle swarm optimization algorithm. Journal of Building Engineering, 28(July 2019), 101080. https://doi.org/10.1016/j.jobe.2019.101080Baldick, R. (1995). The Generalized Unit Commitment Problem. IEEE Transactions on Power Systems, 10(1), 465–475. https://doi.org/10.1109/59.373972Bale, C. S. E., Varga, L., & Foxon, T. J. (2015). Energy and complexity: New ways forward. Applied Energy, 138, 150–159. https://doi.org/10.1016/j.apenergy.2014.10.057Banks, J., Carson II, J., Nelson, B., & Nicol, D. (2014). Discrete-evetn system simulation (Quinta, Issue 9). Pearson.http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle.net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12Beck, F., & Martinot, E. (2004). Renewable Energy Policies and Barriers. Encyclopedia of Energy, 5, 365–383. https://doi.org/10.1016/b0-12-176480-x/00488-5Benevit, M. G., Silva, J. S., Gewehr, A. G., & Beluco, A. (2016). Subtle Influence of the Weibull Shape Parameter on Homer Optimization Space of a Wind Diesel Hybrid Gen Set for Use in Southern Brazil. Journal of Power and Energy Engineering, 04(08), 38–48. https://doi.org/10.4236/jpee.2016.48004Botero, S. B., & Cano Cano, J. A. (2008). Análisis de series de tiempo para la predicción de los precios de la energía en la bolsa de Colombia. Cuadernos de Economia, 27(48), 173–208.Breceda Lapeyre, M. (1990). Precios de la Electricidad: Un Debate Te6rico Para los Paises en Vias de Desarrollo. 77–113.Brekken, T. K. A., Yokochi, A., Von Jouanne, A., Yen, Z. Z., Hapke, H. M., & Halamay, D. A. (2011). Optimal energy storage sizing and control for wind power applications. IEEE Transactions on Sustainable Energy, 2(1), 69–77. https://doi.org/10.1109/TSTE.2010.2066294Brouwer, A. S., Van Den Broek, M., Seebregts, A., & Faaij, A. (2014). Impacts of large-scale Intermittent Renewable Energy Sources on electricity systems, and how these can be modeled. Renewable and Sustainable Energy Reviews, 33, 443–466. https://doi.org/10.1016/j.rser.2014.01.076Bublitz, A., Keles, D., Zimmermann, F., Fraunholz, C., & Fichtner, W. (2019). A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms. Energy Economics, #pagerange#. https://doi.org/10.1016/j.eneco.2019.01.030Cárdenas Ardila, L. M. (2015). Plataforma para la evaluación de políticas de mitigación de gases efecto invernadero en el sector eléctrico. Universidad Nacional de Colombia, 245.Carrión, M., & Arroyo, J. M. (2006). A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3), 1371–1378. https://doi.org/10.1109/TPWRS.2006.876672Castaneda, M., Franco, C. J., & Dyner, I. (2017). Evaluating the effect of technology transformation on the electricity utility industry. Renewable and Sustainable Energy Reviews, 80(65), 341–351. https://doi.org/10.1016/j.rser.2017.05.179Cebeci, M. E., Tor, O. B., Oprea, S., & Bara, A. (2018). Consecutive market and network simulations to optimize investment and operational decisions under different RES penetration scenarios. IEEE Transactions on Sustainable Energy, PP(c), 1. https://doi.org/10.1109/TSTE.2018.2881036Chabouni, N., Belarbi, Y., & Benhassine, W. (2020). Electricity load dynamics, temperature and seasonality Nexus in Algeria. Energy, 200, 117513. https://doi.org/10.1016/j.energy.2020.117513Chapagain, K., Kittipiyakul, S., & Kulthanavit, P. (2020). Short-term electricity demand forecasting: Impact analysis of temperature for Thailand. Energies, 13(10), 1–29. https://doi.org/10.3390/en13102498Chattopadhyay, D. (2014). Modelling renewable energy impact on the electricity market in India. Renewable and Sustainable Energy Reviews, 31, 9–22. https://doi.org/10.1016/j.rser.2013.11.035Cherif, H., & Belhadj, J. (2014). Energy output estimation of hybrid Wind-Photovoltaic power system using statistical distributions. 2, 117–132.Cludius, J., Hermann, H., Matthes, F. C., & Graichen, V. (2014). The merit order effect of wind and photovoltaic electricity generation in Germany 2008-2016 estimation and distributional implications. Energy Economics, 44(2014), 302–313. https://doi.org/10.1016/j.eneco.2014.04.020Congreso de Colombia. (2014). Ley 1715 de 2014. In Ministerio de Minas y Energía (No. 1715; p. 25). http://www.fedebiocombustibles.com/files/1715.pdfCorrea Posada, C. M. (2009). Modelo de optimización para las plantas térmicas de generación de ciclo combinado en el despacho económico (Issue September). Universidad Nacional de Colombia Sede Medellín.CREG. (1994). Resolución N° 055 Por la cual se regula la actividad de generación de energía eléctrica en el Sistema Interconectado Nacional. (pp. 1–8). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolución-1994-CRG94055CREG. (1995). Resolución No. 025. Por la cual se establece el Código de Redes, como parte del Reglamento de Operación del Sistema Interconectado Nacional. In Comisión de Regulación de Energía y Gas (p. 141). http://apolo.creg.gov.co/Publicac.nsf/2b8fb06f012cc9c245256b7b00789b0c/3a940408d14bf2e80525785a007a653b/$FILE/Cr025-95.pdfCREG. (1996). Resolución No. 086. Por la cual se reglamenta la actividad de generación con plantas menores de 20MW que se encuentra conectado al Sistema Interconectado Nacional (SIN) (p. 4). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resoluci%25C3%25B3n-1996-CRG86-96CREG. (2001). Resolución No. 026. Por la cual se dictan normas sobre funcionamiento del Mercado mayorista de Energía. (No. 026). http://apolo.creg.gov.co/PUBLICAC.NSF/Indice01/Resolución-2001-CREG026-2001?OpenDocumentCREG. (2009a). Resolución No.141. Por la cual se modifica el artículo 1 de la Resolución CREG-034 de 2001. (No. 141). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2009-Creg141-2009CREG. (2009b). Resolución N° 051. Por la cual se modifica el esquema de ofertas de precios, el Despacho ideal y las reglas para determinar el precio de la Bolsa en el Mercado Energía Mayorista (pp. 1–32). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/e93298f462402ffd0525785a007a714f/$FILE/Creg051-2009.pdfCREG. (2010). Resolución N° 126. Por la cual se establecen los criterios generales para la remuneración del servicio de transprote de gas natural y esquema general de cargos del Sitema Nacional de Transporte, y se dictan otras disposiciones en materia de tranbsporte de (No. 126; pp. 1–69). http://apolo.creg.gov.co/Publicac.nsf/Indice01/Resolucion-2010-Creg126-2010CREG. (2015). Resolución No.173. Por la cual se ordena hacer público un proyecto de resolución "Por la cual se modifica el despacho económico, el predespacho económico, el predespacho ideal y el despacho programado en el Mercado de Energía Mayorista. (No. 173). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/37a1244f437cdec905257ee3007cbe8c/$FILE/Creg173-2015.pdfCREG. (2018a). Resolución No. 003. Por la cual se resuleve una actuación administrativa iniciada en virtud de los establecido en el artículo 126 de la Ley 142 de 1994 y se ajustan los cargos regulados del sistema de transporte de TGI S:A: E.S.P. (No. 003; pp. 1–32). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/e097ea9241a3c13305258258004f0ea0/$FILE/Creg003-2018.pdfCREG. (2018b). Resolución No. 106.Por la cual se resuelve el recurso de reposición interpuesto por la Transportadora de Gas Internacional TGI S.A. E.S.P. contra la Resolución CREG 003 DE 2018. (No. 106; pp. 1–27). http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/7f7970d5a83cfb900525832400779ec5/$FILE/Creg106-2018.pdfCREG. (2019a). Declaración de parámetros para el cálculo de la ENFICC. In Circular 027-2019. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/f2eb1897273b0596052583c4007c71feCREG. (2019b). Circular N° 024. Publicación de los parámetros reportados por los agentes para la determinación de la energía firme para el cargo por confiabilidad - ENFICC. http://apolo.creg.gov.co/Publicac.nsf/52188526a7290f8505256eee0072eba7/2b8f1f53bc87d067052583b7007745d7?OpenDocumentCutler, N. J., Boerema, N. D., MacGill, I. F., & Outhred, H. R. (2011). High penetration wind generation impacts on spot prices in the Australian national electricity market. Energy Policy, 39(10), 5939–5949. https://doi.org/10.1016/j.enpol.2011.06.053Das, D. C., Roy, A. K., & Sinha, N. (2012). GA based frequency controller for solar thermal-diesel-wind hybrid energy generation/energy storage system. International Journal of Electrical Power and Energy Systems, 43(1), 262–279. https://doi.org/10.1016/j.ijepes.2012.05.025Dasgupta, D., & McGregor, D. R. (1994). Thermal unit commitment using genetic algorithms. IEE Proceedings: Generation, Transmission and Distribution, 141(5), 459–465. https://doi.org/10.1049/ip-gtd:19941221De Felice, M., Alessandri, A., & Ruti, P. M. (2013). Electricity demand forecasting over Italy: Potential benefits using numerical weather prediction models. Electric Power Systems Research, 104, 71–79. https://doi.org/10.1016/j.epsr.2013.06.004Deng, J., & Jirutitijaroen, P. (2010). Short-term load forecasting using time series analysis: A case study for Singapore. 2010 IEEE Conference on Cybernetics and Intelligent Systems, CIS 2010, 231–236. https://doi.org/10.1109/ICCIS.2010.5518553Departamento Nacional de Planeación. (2019). La Agenda 2030 en Colombia - Objetivos de Desarrollo Sostenible. https://www.ods.gov.co/esDíaz López, E., Prieto, A. M., & Lio, D. G. (2016). An implementation for the meta-heuristic “Variable Mesh Optimization” on CUDA architecture. Revista Cubana de Ciencias Informáticas, 10(3), 42–57. http://rcci.uci.xn--cupg-7na.42-56Díez, P. F. (1993). Energía eólica. In Energía eólica (pp. 1–25).Dilhani, M. H. M. R. S., & Jeenanunta, C. (2017). Effect of Neural Network structure for daily electricity load forecasting. 3rd International Moratuwa Engineering Research Conference, MERCon 2017, 419–424. https://doi.org/10.1109/MERCon.2017.7980521ECMWF. (2021). ERA5 | ECMWF. https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5EIA. (2021). Electric Power Monthly - U.S. Energy Information Administration (EIA). https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_6_07_b Eltawil, M. A., & Zhao, Z. (2010). Grid-connected photovoltaic power systems: Technical and potential problems-A review. Renewable and Sustainable Energy Reviews, 14(1), 112–129. https://doi.org/10.1016/j.rser.2009.07.015Energética2030. (2021). Energética 2030. https://www.energetica2030.co/Fattaheian-Dehkkordi, S., Fereidunian, A., Gholami-Dehkordi, H., & Lesani, H. (2013). Hour- ahead demand forecasting in smart grid using support vector regression (SVR). International Transactions on Electrical Energy Systems, 20, 1–6. https://doi.org/10.1002/etepGan, L. K., Shek, J. K. H., & Mueller, M. A. (2015). Hybrid wind-photovoltaic-diesel-battery system sizing tool development using empirical approach, life-cycle cost and performance analysis: A case study in Scotland. Energy Conversion and Management, 106, 479–494. https://doi.org/10.1016/j.enconman.2015.09.029Gaur, A. S., Das, P., Jain, A., Bhakar, R., & Mathur, J. (2019). Long-term energy system planning considering short-term operational constraints. Energy Strategy Reviews, 26(October 2018), 100383. https://doi.org/10.1016/j.esr.2019.100383Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Reviews, 24(June 2018), 38–50. https://doi.org/10.1016/j.esr.2019.01.006Gómez-Navarro, T., & Ribó-Pérez, D. (2018). Assesing the obstacles to the participaction of renewable energy sources in the electricity market of colombia.pdf. Renewable and Sustainable Energy Reviews, 90(September 2016), 131–141. https://doi.org/https://doi.org/10.1016/j.rser.2018.03.015Göransson, L., & Johnsson, F. (2009). Dispatch modeling of a regional power generation system - Integrating wind power. Renewable Energy, 34(4), 1040–1049. https://doi.org/10.1016/j.renene.2008.08.002Gordon, S. I., & Guilfoos, B. (2017). Introduction to modeling and simulation with Matlab and Python. In Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis (Vol. 53, Issue 9). CRC Press is an imprint of Taylor & Francis Group.http://publications.lib.chalmers.se/records/fulltext/245180/245180.pdf%0Ahttps://hdl.handle.net/20.500.12380/245180%0Ahttp://dx.doi.org/10.1016/j.jsames.2011.03.003%0Ahttps://doi.org/10.1016/j.gr.2017.08.001%0Ahttp://dx.doi.org/10.1016/j.precamres.2014.12Hartel, R., Fichtner, W., & Keles, D. (2015). Electricity market design options for promoting low carbon technologies. Insight_E, 3(April). http://www.insightenergy.org/ckeditor_assets/attachments/71/rreb3.pdfHashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1), 14–20. https://doi.org/10.1029/WR018i001p00014Helm, C., & Mier, M. (2019). On the efficient market diffusion of intermittent renewable energies. Energy Economics, 80, 812–830. https://doi.org/10.1016/j.eneco.2019.01.017Henao, F., & Dyner, I. (2020). Renewables in the optimal expansion of colombian power considering the Hidroituango crisis. Renewable Energy, 158(2020), 612–627. https://doi.org/10.1016/j.renene.2020.05.055Henao, F., Rodriguez, Y., Viteri, J. P., & Dyner, I. (2019). Optimising the insertion of renewables in the Colombian power sector. Renewable Energy, 132, 81–92. https://doi.org/10.1016/j.renene.2018.07.099Henao, F., Viteri, J. P., Rodríguez, Y., Gómez, J., & Dyner, I. (2020). Annual and interannual complementarities of renewable energy sources in Colombia. Renewable and Sustainable Energy Reviews, 134(September). https://doi.org/10.1016/j.rser.2020.110318Hernandez, J. A., Velasco, D., & Trujillo, C. L. (2011). Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia. Renewable and Sustainable Energy Reviews, 15(5), 2290–2298. https://doi.org/10.1016/j.rser.2011.02.003Herrera Flórez, H. H. (2016). FACTORES DE EMISION DEL S.I.N. SISTEMA INTERCONECTADO NACIONAL COLOMBIA 2015. https://www1.upme.gov.co/siame/Documents/Calculo-FE-del-SIN/Documento_calculo_del_FE_SIN_2015_dic_2016.pdfHolttinen, H., Meibom, P., Orths, A., Lange, B., O´Malley, M., Tande, J. O., Estanqueiro, A., Gomez, E., Söder, L., Strbac, G., Smith, J. C., & Van Hulle, F. (2011). Impacts of large amounts of wind power on design and operation of power system, results of IEA collaboration. Wind Energy, 14, 179–192. https://doi.org/10.1002/we.410Ibargüengoytia González, P. H., Reyes Ballesteros, A., Borunda Pacheco, M., & García López, U. A. (2018). Predicción de potencia eólica utilizando técnicas modernas de Inteligencia Artificial. Ingeniería Investigación y Tecnología, 19(4), 1–11. https://doi.org/10.22201/fi.25940732e.2018.19n4.033IDEAM. (2014). Valores medios multianuales de temperatura media en C° - periodo 1981 - 2010.IEA. (2019). Energy security - Areas of work - IEA. https://www.iea.org/areas-of-work/ensuring-energy-securityIlseven, E., & Gol, M. (2019). A comparative study on feature selection based improvement of medium-term demand forecast accuracy. 2019 IEEE Milan PowerTech, PowerTech 2019, 1–6. https://doi.org/10.1109/PTC.2019.8810598International Renewable Energy Agency. (2020). Renewable Power Generation Costs in 2019. In Irena. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdfJalilov, S. M., Keskinen, M., Varis, O., Amer, S., & Ward, F. A. (2016). Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. Journal of Hydrology, 539, 648–661. https://doi.org/10.1016/j.jhydrol.2016.05.071Jaramillo, O. A., Borja, M. A., & Huacuz, J. M. (2004). Using hydropower to complement wind energy: A hybrid system to provide firm power. Renewable Energy, 29(11), 1887–1909. https://doi.org/10.1016/j.renene.2004.02.010Jensen, S. Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., Stafford, A., & Reynders, G. (2017). IEA EBC Annex 67 Energy Flexible Buildings. Energy and Buildings, 155, 25–34. https://doi.org/10.1016/j.enbuild.2017.08.044Jimenez, M., Franco, C. J., & Dyner, I. (2016). Diffusion of renewable energy technologies: The need for policy in Colombia. Energy, 111, 818–829. https://doi.org/10.1016/j.energy.2016.06.051Jordán, C., Medina, D., & Zúñiga, A. (2010). Aplicación de un Algoritmo Evolutivo Flexible a la Optimización de la Operación de Sistemas Hidrotérmicos. Revista Tecnológica ESPOL-RTE, 23, 35–45.Kaldellis, J. K., Vlachou, D. S., & Korbakis, G. (2005). Techno-economic evaluation of small hydro power plants in Greece: A complete sensitivity analysis. Energy Policy, 33(15), 1969–1985. https://doi.org/10.1016/j.enpol.2004.03.018Kirschen, D. S., & Strbac, G. (2019). Fundamentals of power system economics (Segunda). John Wiley & Sons.Kleijnen, J. P. C. (1995). Statistical validation of simulation models. European Journal of Operational Research, 87, 21–34. https://ac.els-cdn.com/037722179500132A/1-s2.0-037722179500132A-main.pdf?_tid=469323b8-771b-4f7f-b087-0178fdc02807&acdnat=1550338576_811b5b25697cef2f608e95c78288c11fKondili, E. (2010). Design and performance optimisation of stand-alone and hybrid wind energy systems. In Stand-Alone and Hybrid Wind Energy Systems. Woodhead Publishing Limited. https://doi.org/10.1533/9781845699628.1.81Kong, J., Skjelbred, H. I., & Fosso, O. B. (2020). An overview on formulations and optimization methods for the unit-based short-term hydro scheduling problem. Electric Power Systems Research, 178(April 2019), 106027. https://doi.org/10.1016/j.epsr.2019.106027Kougias, I., Szabó, S., Monforti-Ferrario, F., Huld, T., & Bódis, K. (2016). A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems. Renewable Energy, 87, 1023–1030. https://doi.org/10.1016/j.renene.2015.09.073Kruyt, B., van Vuuren, D. P., de Vries, H. J. M., & Groenenberg, H. (2009). Indicators for energy security. Energy Policy, 37(6), 2166–2181. https://doi.org/10.1016/j.enpol.2009.02.006Lannoye, E., Flynn, D., & O’Malley, M. (2015). Transmission, variable generation, and power system flexibility. IEEE Transactions on Power Systems, 30(1), 57–66. https://doi.org/10.1109/TPWRS.2014.2321793Lebotsa, M. E., Sigauke, C., Bere, A., Fildes, R., & Boylan, J. E. (2018). Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem. Applied Energy, 222(December 2017), 104–118. https://doi.org/10.1016/j.apenergy.2018.03.155Lee, C. W., & Lin, B. Y. (2017). Applications of the chaotic quantum genetic algorithm with support vector regression in load forecasting. Energies, 10(11). https://doi.org/10.3390/en10111832Liang, X. (2017). Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources. IEEE Transactions on Industry Applications, 53(2), 855–866. https://doi.org/10.1109/TIA.2016.2626253Liu, H., Chen, C., Lv, X., Wu, X., & Liu, M. (2019). Deterministic wind energy forecasting: A review of intelligent predictors and auxiliary methods. Energy Conversion and Management, 195(May), 328–345. https://doi.org/10.1016/j.enconman.2019.05.020López, A. R., Krumm, A., Schattenhofer, L., Burandt, T., Montoya, F. C., Oberländer, N., & Oei, P. Y. (2020). Solar PV generation in Colombia - A qualitative and quantitative approach to analyze the potential of solar energy market. Renewable Energy, 148, 1266–1279. https://doi.org/10.1016/j.renene.2019.10.066Lund, H., & Mathiesen, B. V. (2009). Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050. Energy, 34(5), 524–531. https://doi.org/10.1016/j.energy.2008.04.003Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785–807. https://doi.org/10.1016/j.rser.2015.01.057Maldonado, S., González, A., & Crone, S. (2019). Automatic time series analysis for electric load forecasting via support vector regression. Applied Soft Computing Journal, 83, 105616. https://doi.org/10.1016/j.asoc.2019.105616Martín Guareño, J. J. (2016). Support Vector Regression: Propiedades y aplicaciones. In Universidad de Sevilla. Departamento de Estadística e Investigación Operativa. Universidad de Sevilla.Martínez-Márquez, C. I., Twizere-Bakunda, J. D., Lundback-Mompó, D., Orts-Grau, S., Gimeno-Sales, F. J., & Seguí-Chilet, S. (2019). Small wind turbine emulator based on lambda-Cp curves obtained under real operating conditions. Energies, 12(13). https://doi.org/10.3390/en12132456Martínez Moreno, W. A., & Rodríguez Hernández, R. (2019). Proyección de la demanda de energía eléctrica y potencia máxima en Colombia. http://www.siel.gov.co/siel/documentos/documentacion/Demanda/Proyeccion_Demanda_Energia_Jul_2019.pdfMarzband, M., Ghazimirsaeid, S. S., Uppal, H., & Fernando, T. (2017). A real-time evaluation of energy management systems for smart hybrid home Microgrids. Electric Power Systems Research, 143, 624–633. https://doi.org/10.1016/j.epsr.2016.10.054Mastropietro, P., Rodilla, P., Rangel, L. E., & Batlle, C. (2020). Reforming the colombian electricity market for an efficient integration of renewables: A proposal. Energy Policy, 139(November 2019), 111346. https://doi.org/10.1016/j.enpol.2020.111346Mejía Giraldo, D. A., Franco A, F. F., & Gallego, R. A. (2005). Solución Al Problema Del Despacho De Energía En Sistemas Hidrotérmicos Usando Simulated Annealing. Scientia Et Technica, XI(29), 7–12. https://doi.org/10.22517/23447214.6605Mohanty, S., Patra, P. K., & Sahoo, S. S. (2016). Prediction and application of solar radiation with soft computing over traditional and conventional approach - A comprehensive review. Renewable and Sustainable Energy Reviews, 56, 778–796. https://doi.org/10.1016/j.rser.2015.11.078Mokilane, P., Debba, P., Yadavalli, V. S. S., & Sigauke, C. (2019). Bayesian structural time-series approach to a long-term electricity demand forecasting. Applied Mathematics and Information Sciences, 13(2), 189–199. https://doi.org/10.18576/AMIS/130206Morales-España, G., Latorre, J. M., & Ramos, A. (2013). Tight and compact MILP formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems, 28(4), 4897–4908. https://doi.org/10.1109/TPWRS.2013.2251373Mosquera-López, S., & Nursimulu, A. (2019). Drivers of electricity price dynamics: Comparative analysis of spot and futures markets. Energy Policy, 126(May 2018), 76–87. https://doi.org/10.1016/j.enpol.2018.11.020Nakata, T., Silva, D., & Rodionov, M. (2011). Application of energy system models for designing a low-carbon society. Progress in Energy and Combustion Science, 37(4), 462–502. https://doi.org/10.1016/j.pecs.2010.08.001NERC. (2013). Reliability Metrics Specifications Sheet ALR 1-3 Reserve Margin. https://www.nerc.com/comm/PC/Performance Analysis Subcommittee PAS 2013/1-3 July 9.pdfNewbery, D., Pollitt, M. G., Ritz, R. A., & Strielkowski, W. (2018). Market design for a high-renewables European electricity system. Renewable and Sustainable Energy Reviews, 91(April), 695–707. https://doi.org/10.1016/j.rser.2018.04.025OECD, & IEA. (2007). Tackling Investment Challenges in Power Generation. www.iea.org/w/bookshop/pricing.htmlOkumus, I., & Dinler, A. (2016). Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Conversion and Management, 123, 362–371. https://doi.org/10.1016/j.enconman.2016.06.053Ortega Arango, S., Ángel Sanint, E., & Jaramillo Vélez, A. (2020). ESCENARIOS ENERGÉTICOS PARA COLOMBIA EN EL MARCO DEL COVID-19. https://repository.eia.edu.co/bitstream/handle/11190/2530/EscenariosEnerg%E9ticosCovid19-WP.pdf?sequence=1Osorio, A. F., Ortega, S., & Arango-Aramburo, S. (2016). Assessment of the marine power potential in Colombia. Renewable and Sustainable Energy Reviews, 53, 966–977. https://doi.org/10.1016/j.rser.2015.09.057Paz, D. F. (2018). Metodología para la determinación de características del viento y evaluación del potencial de energía eólica en Túquerres - Nariño Methodology for the determination of wind characteristics and assessment of wind energy potential in Túquerres - Nariño Meto. 31(31), 19–31.Peláez Villada, D. C. (2014). Determinación del costo de le nergía hidraúlica en Colombia a partir del análisis del mercado de derivados energéticos [Universidad Nacional de Colombia]. https://doi.org/10.4324/9781315853178Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146–161. https://doi.org/10.1016/j.renene.2020.11.067Pfenninger, S., Hawkes, A., & Keirstead, J. (2014). Energy systems modeling for twenty-first century energy challenges. Renewable and Sustainable Energy Reviews, 33(1), 74–86. https://doi.org/10.1016/j.rser.2014.02.003Pidd, M. (2004). Computer Simulation in Management Science (5ta ed.). John Wiley & Sons.Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management. Statistical Science, 28(4), 564–585. https://doi.org/10.1214/13-STS445Pupo-Roncallo, O., Campillo, J., Ingham, D., Hughes, K., & Pourkashanian, M. (2019). Large scale integration of renewable energy sources (RES) in the future Colombian energy system. Energy, 186, 115805. https://doi.org/10.1016/j.energy.2019.07.135Rau, R. (2010). Despacho Economico Optimo De Plantas De Generacion Hidrotermico En Sistemas De Energia Electrica [Universidad Nacional del Centro del Perú]. http://repositorio.uncp.edu.pe/bitstream/handle/UNCP/3604/Rau Vargas.pdf?sequence=1&isAllowed=yResendiz Trejo, J. (2006). Las maquinas de vectores de soporte para identificación en línea. Centro de investigación y de estudios avanzados del Instituto Politécnico Nacional.Rhoades, S. A. (1993). The Herfindahl-Hisrchman Index. Federal Reserva Bank of St. Louis, 188–189.https://fraser.stlouisfed.org/files/docs/publications/FRB/pages/1990-1994/33101_1990-1994.pdfRueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529–543. https://doi.org/10.1016/j.jclepro.2019.02.174Sargent, R. G. (2008). Verification and validation of simulation models. Procedings of the 2008 Winter Simulation Conference, 157–169. https://doi.org/10.1109/WSC.2008.4736065Schlesinger, S., Crosble, R. E., Gagné, R. E., Innis, G. S., Lalwani, C. S., Loch, J., Sylvester, R. J., Wright, R. D., Kheir, N., & Bartos, D. (1979). Terminology for model credibility. Simulation, 32(3), 103–104. https://doi.org/10.1177/003754977903200304Schwartz, P. (2012). The Art of the Long View: Planning for the Future in an Uncertain World. Crown. https://books.google.com.co/books?id=T-r36bIZA44CSen, S., & Kothari, D. . (1998). Optimal thermal generating unit commitment. Electrical Power & Energy Systems, 20, 443–451. https://doi.org/10.1109/TPAS.1971.293167Sensfuß, F., Ragwitz, M., & Genoese, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy, 36(8), 3086–3094. https://doi.org/10.1016/j.enpol.2008.03.035Sheble, G. B., & Fahd, G. N. (1994). Unit commitment literature synopsis. IEEE Transactions on Power Systems, 9(1), 128–135. https://doi.org/10.1109/59.317549Sobri, S., Koohi-Kamali, S., & Rahim, N. A. (2018). Solar photovoltaic generation forecasting methods: A review. Energy Conversion and Management, 156(May 2017), 459–497. https://doi.org/10.1016/j.enconman.2017.11.019Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376–384. https://doi.org/10.1016/j.rser.2013.08.039Ssekulima, E. B., Anwar, M. B., Al Hinai, A., & El Moursi, M. S. (2016). Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: A review. IET Renewable Power Generation, 10(7), 885–898. https://doi.org/10.1049/iet-rpg.2015.0477Sterman, J. D. (2002). All models are wrong: Reflections on becoming a systems scientist. System Dynamics Review, 18(4), 501–531. https://doi.org/10.1002/sdr.261Stoft, S. (2002). Power System Economics designing markets for electricity (John Wiley & Sone Ltd (ed.); History).Strbac, G. (2008). Demand side management: Benefits and challenges. Energy Policy, 36(12), 4419–4426. https://doi.org/10.1016/j.enpol.2008.09.030Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting - A review. Renewable and Sustainable Energy Reviews, 16(2), 1223–1240. https://doi.org/10.1016/j.rser.2011.08.014Tan, Q. F., Wen, X., Fang, G. H., Wang, Y. Q., Qin, G. H., & Li, H. M. (2020). Long-term optimal operation of cascade hydropower stations based on the utility function of the carryover potential energy. Journal of Hydrology, 580(November 2019), 124359. https://doi.org/10.1016/j.jhydrol.2019.124359Tascikaraoglu, A., & Uzunoglu, M. (2014). A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews, 34, 243–254. https://doi.org/10.1016/j.rser.2014.03.033UPME. (2016). Calculadora Fecoc 2016 . http://www.upme.gov.co/calculadora_emisiones/aplicacion/acercade.htmlUPME. (2019). Proyección de precios de los energéticos para generación eléctrica enero 2019- diciembre 2039. www.upme.gov.coUPME. (2020). Informe estados de avance: Generación y Transmisión (Issue F-DI-01 – V4).UPME. (2021). Resoluciones para Liquidación de regalías. https://www1.upme.gov.co/simco/PromocionSector/Normatividad/Paginas/Resoluciones-de-Liquidacion-de-regalias.aspxUPME, & BID. (2015). Integración de las energías renovables no convencionales en Colombia. https://doi.org/10.1017/CBO9781107415324.004UPME, U. de P. M. E. (2017). Factores de emision del Sistema Interconectado Nacional Colombia - SIN. https://www1.upme.gov.co/ServicioCiudadano/Documents/Proyectos_normativos/Doc_calculo_del_FE_del_SIN_2016.docxvan der Meer, D. W., Widén, J., & Munkhammar, J. (2018). Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renewable and Sustainable Energy Reviews, 81(May 2017), 1484–1512. https://doi.org/10.1016/j.rser.2017.05.212Vargas, J. (2019). Esquemas de fijación de precios para el mercado mayorista de electricidad colombiano bajo penetración de renovables. Universidad Nacional de Colombia Sede Medellín.Velásquez, J. D., Franco, C. J., & García, H. A. (2009). Un modelo no lineal para la predicción de la demanda mensual de electricidad en Colombia. Estudios Gerenciales, 25, 37–54. https://doi.org/10.1016/S0123-5923(09)70079-8XM S.A. E.S.P. (2020a). Indicadores. https://www.xm.com.co/Paginas/Indicadores/Oferta/Indicador-generacion-sin.aspxXM S.A. E.S.P. (2020b, April 25). Histórico de demanda. https://www.xm.com.co/Paginas/Consumo/historico-de-demanda.aspxXM S.A. E.S.P. (2020b, April 25). Histórico de demanda. https://www.xm.com.co/Paginas/Consumo/historico-de-demanda.aspxXM S.A. E.S.P. (2021a). Asignación subastas. https://www.xm.com.co/Paginas/Mercado-de-energia/asignacion-subastas.aspxXM S.A. E.S.P. (2021b). Capacidad efectiva por tipo de generación. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidadXM S.A. E.S.P. (2021c). Portal BI Información inteligente XM. http://portalbissrs.xm.com.co/Paginas/Home.aspxXM S.A.S. (2020, February 6). En Colombia Factor de emisión de CO2 por generación eléctrica del Sistema Interconectado: 164.38 gramos de CO2 por kilovatio hora. https://www.xm.com.co/Paginas/detalle-noticias.aspx?identificador=2383Yoo, J. H. (2009). Maximization of hydropower generation through the application of a linear programming model. Journal of Hydrology, 376(1–2), 182–187. https://doi.org/10.1016/j.jhydrol.2009.07.026Yuce, B., Mourshed, M., & Rezgui, Y. (2017). A smart forecasting approach to district energy management. Energies, 10(8), 1–22. https://doi.org/10.3390/en10081073Zapata, S., Castaneda, M., Jimenez, M., Julian Aristizabal, A., Franco, C. J., & Dyner, I. (2018). Long-term effects of 100% renewable generation on the Colombian power market. Sustainable Energy Technologies and Assessments, 30(July), 183–191. https://doi.org/10.1016/j.seta.2018.10.008Zhang, G., & Guo, J. (2020). A Novel Method for Hourly Electricity Demand Forecasting. IEEE Transactions on Power Systems, 35(2), 1351–1363. https://doi.org/10.1109/TPWRS.2019.2941277Zhang, Y., Wang, J., & Wang, X. (2014). Review on probabilistic forecasting of wind power generation. Renewable and Sustainable Energy Reviews, 32, 255–270. https://doi.org/10.1016/j.rser.2014.01.033Estrategia de Transformación del Sector Energético Colombiano en el horizonte 2030 (ENERGETICA 2030)MinCienciasENERGÉTICA 2030InvestigadoresORIGINAL1035433833.2021.pdf1035433833.2021.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemasapplication/pdf2188482https://repositorio.unal.edu.co/bitstream/unal/80522/2/1035433833.2021.pdf113533339f0e17499500a8ef0fe40eb6MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80522/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL1035433833.2021.pdf.jpg1035433833.2021.pdf.jpgGenerated Thumbnailimage/jpeg5229https://repositorio.unal.edu.co/bitstream/unal/80522/4/1035433833.2021.pdf.jpg50ec1d39df892b6338c531e069a6b2aeMD54unal/80522oai:repositorio.unal.edu.co:unal/805222023-10-25 08:57:14.782Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |