Síntesis de micropartículas multirramificadas de óxidos de metales de transición
El control de la morfología, durante la síntesis de estructuras sólidas, se ha convertido en uno de los objetivos de estudio más importantes en el campo del diseño de nuevos materiales. Al modificar la forma y tamaño de las partículas de un sólido en polvo, sus propiedades fisicoquímicas pueden vari...
- Autores:
-
Ramírez Gómez, Wandy Milena
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/75512
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/75512
- Palabra clave:
- Química y ciencias afines
Óxido de metal de transición ; Partícula multirramificada ; Síntesis inorgánica ; Crecimiento de partícula ; Óxido de hierro ; Hematita
Transition metal oxide ; Multibranched particle ; Inorganic synthesis ; Particle growth ; Iron oxide ; Hematite
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_1b1d261e7fb3f84d749b56331ea82316 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/75512 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
title |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
spellingShingle |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición Química y ciencias afines Óxido de metal de transición ; Partícula multirramificada ; Síntesis inorgánica ; Crecimiento de partícula ; Óxido de hierro ; Hematita Transition metal oxide ; Multibranched particle ; Inorganic synthesis ; Particle growth ; Iron oxide ; Hematite |
title_short |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
title_full |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
title_fullStr |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
title_full_unstemmed |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
title_sort |
Síntesis de micropartículas multirramificadas de óxidos de metales de transición |
dc.creator.fl_str_mv |
Ramírez Gómez, Wandy Milena |
dc.contributor.advisor.spa.fl_str_mv |
Carriazo Baños, Jose Gregorio |
dc.contributor.author.spa.fl_str_mv |
Ramírez Gómez, Wandy Milena |
dc.contributor.researchgroup.spa.fl_str_mv |
Laboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES, 125) |
dc.subject.ddc.spa.fl_str_mv |
Química y ciencias afines |
topic |
Química y ciencias afines Óxido de metal de transición ; Partícula multirramificada ; Síntesis inorgánica ; Crecimiento de partícula ; Óxido de hierro ; Hematita Transition metal oxide ; Multibranched particle ; Inorganic synthesis ; Particle growth ; Iron oxide ; Hematite |
dc.subject.proposal.spa.fl_str_mv |
Óxido de metal de transición ; Partícula multirramificada ; Síntesis inorgánica ; Crecimiento de partícula ; Óxido de hierro ; Hematita |
dc.subject.proposal.eng.fl_str_mv |
Transition metal oxide ; Multibranched particle ; Inorganic synthesis ; Particle growth ; Iron oxide ; Hematite |
description |
El control de la morfología, durante la síntesis de estructuras sólidas, se ha convertido en uno de los objetivos de estudio más importantes en el campo del diseño de nuevos materiales. Al modificar la forma y tamaño de las partículas de un sólido en polvo, sus propiedades fisicoquímicas pueden variar y obtenerse comportamientos excepcionales que conllevan a nuevas vías de aplicación tecnológica. Por tal motivo, en el presente trabajo se realizó una revisión documental sistemática y profunda acerca de los conceptos y principios que orientan la síntesis de óxidos de metales de transición con morfología multirramificada . Dichos principios permiten la comprensión del crecimiento controlado de dichas partículas. Inicialmente, a manera de estado del arte, se describen las generalidades de los óxidos de metales de transición, su importancia y aplicaciones, los tipos de morfologías y diferentes métodos de síntesis; luego se explican los mecanismos generales de formación de partículas cristalinas, según los parámetros termodinámicos y cinéticos que rigen la nucleación y su crecimiento. De igual manera, se discuten los factores químicos y físicos que influyen en la formación de partículas multirramificadas (multibranches), y finalmente se desarrolla la síntesis de micropartículas de óxido de hierro a diferentes condiciones de temperatura, tiempo y concentración, con el fin de estudiar la influencia de dichos parámetros en la síntesis hidrotérmica convencional de estas partículas. Las caracterizaciones básicas realizadas, SEM (microscopía electrónica de barrido), EDX (energía dispersiva de rayos X) y difracción de rayos X, demostraron la formación exitosa de partículas multirramificadas (con morfología de “hojas en forma de helecho”) de óxido de hierro con estructura hematítica (α-Fe2O3). A partir de estos resultados, se demuestra también el control en el tamaño de dichas partículas. |
publishDate |
2019 |
dc.date.issued.spa.fl_str_mv |
2019-07-15 2020-01-21 |
dc.date.accessioned.spa.fl_str_mv |
2020-01-23T17:18:18Z |
dc.date.available.spa.fl_str_mv |
2020-01-23T17:18:18Z |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/75512 |
url |
https://repositorio.unal.edu.co/handle/unal/75512 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Aboelazm, E.A.A., Ali, G.A.M., Algarni, H., Yin, H., Zhong, Y.L., Chong, K.F., 2018. Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode. J. Phys. Chem. C. 122, 12200–12206. https://doi.org/10.1021/acs.jpcc.8b03306 2. Abu-Much, R., Meridor, U., Frydman, A., Gedanken, A., 2006. Formation of a three-dimensional microstructure of Fe3O4-Poly(vinyl alcohol) composite by evaporating the hydrosol under a magnetic field. J. Phys. Chem. B. 110, 8194–8203. https://doi.org/10.1021/jp057123w 3. Ai, L., Zeng, Y., 2013. Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chem. Eng. J. 215–216, 269–278. https://doi.org/10.1016/j.cej.2012.10.059 4. Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N., Jabbari, E., 2018. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures and Nano-Objects 14, 19–48. https://doi.org/10.1016/j.nanoso.2018.01.006 5. Ashoka, S., Chithaiah, P., Tharamani, C.N., Chandrappa, G.T., 2010. Synthesis and characterisation of microstructural α-Mn2O3 materials. J. Exp. Nanosci. 5, 285–293. https://doi.org/10.1080/17458080903495003 6. Askeland, D.R., Fulay, P.P., Wright, W.J., 2012. Ciencia e ingeniería de materiales. 7. Awol, A., Awol, A., 2017. Transition metal oxides nanoparticles catalysis for sustainable organic synthesis under solvent free conditions. Saudi J. Biomed. Res. 2,10–18. https://doi.org/10.21276/sjbr.2017.2.1.3 8. Baby, R., Subbiah, D.K., Shankar, P., Mani, G.K., Babu, K.J., Rayappan, J.B.B., Kulandaisamy, A.J., 2018. Role of Thermal Energy Sources in Chemical Solution Process to Synthesize V2O5 Nanostructures . J. Nanosci. Nanotechnol. 18, 7923–7926. https://doi.org/10.1166/jnn.2018.15560 9. Bai, J., Han, S.H., Peng, R.L., Zeng, J.H., Jiang, J.X., Chen, Y., 2017. Ultrathin Rhodium Oxide Nanosheet Nanoassemblies: Synthesis, Morphological Stability, and Electrocatalytic Application. ACS Appl. Mater. Interfaces. 9, 17195–17200. https://doi.org/10.1021/acsami.7b04874 10. Bao, Z., Yuan, Y., Leng, C., Li, L., Zhao, K., Sun, Z., 2017. One-Pot Synthesis of Noble Metal/Zinc Oxide Composites with Controllable Morphology and High Catalytic Performance. ACS Appl. Mater. Interfaces. 9, 16417–16425. https://doi.org/10.1021/acsami.7b02667 11. Bauzá, A.C., Freixedas, F.G., Söhnel, O., 2000. cristalización en disolución- conceptos básicos, Reverte. ed. 12. Benbow, E.M., Kelly, S.P., Zhao, L., Reutenauer, J.W., Suib, S.L., 2011. Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J. Phys. Chem. C. 115, 22009–22017. https://doi.org/10.1021/jp2055443 13. Bergerud, A., Buonsanti, R., Jordan-Sweet, J.L., Milliron, D.J., 2013. Synthesis and Phase Stability of Metastable Bixbyite V2O3 Colloidal Nanocrystals. Chem. Mater. 25, 3172–3179. https://doi.org/10.1021/cm401530t 14. Bhanjana, G., Dilbaghi, N., Kim, K.H., Kumar, S., 2017. Low temperature synthesis of copper oxide nanoflowers for lead removal using sonochemical route. J. Mol. Liq. 244, 506–511. https://doi.org/10.1016/j.molliq.2017.09.034 15. Bhowmik, B., Manjuladevi, V., Gupta, R.K., Bhattacharyya, P., 2016. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 16, 3488–3495. https://doi.org/10.1109/JSEN.2016.2530827 16. Bhuvaneshwari, S., Gopalakrishnan, N., 2016. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 480, 76–84. https://doi.org/10.1016/j.jcis.2016.07.004 17. Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., Constable, E.C., 2011. Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23, 2051–2061. https://doi.org/10.1021/cm102826n 18. Burke, M.S., Kast, M.G., Trotochaud, L., Smith, A.M., Boettcher, S.W., 2015. Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 137, 3638–3648. https://doi.org/10.1021/jacs.5b00281 19. Cai, Q., Gao, Y., Gao, T., Lan, S., Simalou, O., Zhou, X., Zhang, Y., Harnoode, C., Gao, G., Dong, A., 2016. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS Appl. Mater. Interfaces 8, 10109–10120. https://doi.org/10.1021/acsami.5b11573 20. Cao, C., Gao, Y., Luo, H., 2008. Pure Single-Crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation Property. J. Phys. Chem.C. 112, 18810–18814. https://doi.org/ 10.1021/jp8073688 21. Cao, F., Liu, Y., Hu, W., Chen, Q., 2008. Morphogenesis of branched coaxial nanorods formed in supercritical carbon dioxide. J. Phys. Chem. C. 112, 2337–2342. https://doi.org/10.1021/jp0755342 22. Cao, M.-S., Hou, Z.-L., Song, W.-L., Yuan, J., Wen, B., 2009. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon N. Y. 48, 788–796. https://doi.org/10.1016/j.carbon.2009.10.028 23. Chang, L. Te, Wang, C.Y., Tang, J., Nie, T., Jiang, W., Chu, C.P., Arafin, S., He, L., Afsal, M., Chen, L.J., Wang, K.L., 2014. Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 14, 1823–1829. https://doi.org/10.1021/nl404464q 24. Chang, Y., Zeng, H.C., 2004. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals. Cryst. Growth Des. 4, 273–278. https://doi.org/10.1021/cg034146w 25. Chen, C., Lan, Y.T., Chou, M.M.C., Hang, D.R., Yan, T., Feng, H., Lee, C.Y., Chang, S.Y., Li, C.A., 2012. Growth and characterization of vertically aligned nonpolar [11̄00] orientation ZnO nanostructures on (100) γ-LiAlO2 substrate. Cryst. Growth Des. 12, 6208–6214. https://doi.org/10.1021/cg301394x 26. Chen, D., Xiong, S., Ran, S., Liu, B., Wang, L., Shen, G., 2011. One-dimensional iron oxides nanostructures. Sci. China Physics, Mech. Astron. 54, 1190–1199. https://doi.org/10.1007/s11433-011-4372-3 27. Cheng, F., Zhao, J., Song, W., Li, C., Ma, H., Chen, J., Shen, P., 2006. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038–2044. https://doi.org/10.1021/ic051715b 28. Chen, J.S., Zhu, T., Hu, Q.H., Gao, J., Su, F., Qiao, S.Z., Lou, X.W., 2010. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces. 2, 3628–3635. https://doi.org/10.1021/am100787w 29. Chen, Y., Ye, D., Wu, M., Chen, H., Zhang, L., Shi, J., Wang, L., 2014. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 26, 7019–7026. https://doi.org/10.1002/adma.201402572 30. Cho, S., Kim, S., Kim, H.J., Lee, B.R., Lee, K.H., 2009. Facile and fast synthesis of single-crystalline fractal zinc structures through a solution phase reaction and their conversion to zinc oxide. Langmuir. 25, 10223–10229. https://doi.org/10.1021/la901006z 31. Cornell, R.M., Schwertmann, U., 2003. Also of interest Iron Oxides in the Laboratory. 32. Das, A., Malakar, P., Nair, R.G., 2018. Engineering of ZnO nanostructures for efficient solar photocatalysis. Mater. Lett. 219, 76–80. https://doi.org/10.1016/j.matlet.2018.02.057 33. Datta, K.J., Rathi, A.K., Kumar, P., Kaslik, J., Medrik, I., Ranc, V., Varma, R.S., Zboril, R., Gawande, M.B., 2017. Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-09477-7 34. Deng, S., Tjoa, V., Fan, H.M., Tan, H.R., Sayle, D.C., Olivo, M., Mhaisalkar, S., Wei, J., Sow, C.H., 2012. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917. https://doi.org/10.1021/ja211683m 35. Desai, M.A., Sartale, S.D., 2015. Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst. Growth Des. 15, 4813–4820. https://doi.org/10.1021/acs.cgd.5b00561 36. Dhayal Raj, A., Pazhanivel, T., Suresh Kumar, P., Mangalaraj, D., Nataraj, D., Ponpandian, N., 2010. Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537. https://doi.org/10.1016/j.cap.2009.07.015 37. Ding, K., Miao, Z., Hu, B., An, G., Sun, Z., Han, B., Liu, Z., 2010. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid. Langmuir. 26, 10294–10302. https://doi.org/10.1021/la100468e 38. Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., Chen, P., 2012. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 6, 3206–3213. https://doi.org/10.1021/nn300097q 39. Duan, X., Yang, J., Gao, H., Ma, J., Jiao, L., Zheng, W., 2012. Controllable hydrothermal synthesis of manganese dioxide nanostructures: Shape evolution, growth mechanism and electrochemical properties. CrystEngComm. 14, 4196–4204. https://doi.org/10.1039/c2ce06587h 40. El-Nagar, G.A., Mohammad, A.M., El-Deab, M.S., El-Anadouli, B.E., 2017. Propitious Dendritic Cu2O-Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells. ACS Appl. Mater. Interfaces. 9, 19766–19772. https://doi.org/10.1021/acsami.7b01565 41. Fageria, P., Gangopadhyay, S., Pande, S., 2014. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4, 24962–24972. https://doi.org/10.1039/c4ra03158j 42. Flint, E.E., 1960. Principios de cristalografia, Editorial. ed. 43. Fominykh, K., Chernev, P., Zaharieva, I., Sicklinger, J., Stefanic, G., Döblinger, M., Müller, A., Pokharel, A., Böcklein, S., Scheu, C., Bein, T., Fattakhova-Rohlfing, D., 2015. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano. 9, 5180–5188. https://doi.org/10.1021/acsnano.5b00520 44. Fu, Q., Xue, Y., Cui, Z., 2018. Size- and shape-dependent surface thermodynamic properties of nanocrystals. J. Phys. Chem. Solids. 116, 79–85. https://doi.org/10.1016/j.jpcs.2018.01.018 45. Gao, T., Huang, Y., Wang, T., 2004. The synthesis and photoluminescence of multipod-like zinc oxide whiskers. J. Phys. Condens. Matter. 16, 1115–1121. https://doi.org/10.1088/0953-8984/16/7/011 46. Garcia, G., Ventosa, E., Schuhmann, W., 2017. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols. ACS Appl. Mater. Interfaces. 9, 18691–18698. https://doi.org/10.1021/acsami.7b01705 47. Gavilán, H., Sánchez, E.H., Brollo, M.E.F., Asín, L., Moerner, K.K., Frandsen, C., Lázaro, F.J., Serna, C.J., Veintemillas-Verdaguer, S., Morales, M.P., Gutiérrez, L., 2017. Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process. ACS Omega. 2, 7172–7184. https://doi.org/10.1021/acsomega.7b00975 48. Green, A.E., Chiang, C.Y., Greer, H.F., Waller, A., Ruszin, A., Webster, J., Niu, Z., Self, K., Zhou, W., 2017. Growth mechanism of dendritic hematite via hydrolysis of ferricyanide. Cryst. Growth Des. 17, 800–808. https://doi.org/10.1021/acs.cgd.6b01655 49. Gross, E., 2017. Tuning Product Selectivity by Changing the Size of Catalytically Active Metallic Nanoparticles. Stud. Surf. Sci. Catal. 177, 57–84. https://doi.org/10.1016/B978-0-12-805090-3.00002- 50. Han, J., Kim, B., Shin, J.Y., Ryu, S., Noh, M., Woo, J., Park, J.S., Lee, Y., Lee, N., Hyeon, T., Choi, D., Kim, B.S., 2015. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano. 9, 2805–2819. https://doi.org/10.1021/nn506732n 51. Hu, J., Zou, C., Su, Y., Li, M., Han, Y., Kong, E.S.W., Yang, Z., Zhang, Y., 2018. An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J. Mater. Chem. A. 6, 17120–17131. https://doi.org/10.1039/c8ta04404j 52. Hu, M., Jiang, J.-S., Li, X., 2008. Surfactant-Assisted Hydrothermal Synthesis of Dendritic Magnetite Microcrystals. Cryst. Growth Des. 9, 820–824. https://doi.org/10.1021/cg8003933 53. Hu, X., Yu, J.C., Gong, J., 2007. Fast production of self-assembled hierarchical α-Fe2O3 nanoarchitectures. J. Phys. Chem. C. 111, 11180–11185. https://doi.org/10.1021/jp073073e 54. Huan, T.N., Rousse, G., Zanna, S., Lucas, I.T., Xu, X., Menguy, N., Mougel, V., Fontecave, M., 2017. A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angew. Chemie - Int. Ed. 56, 4792–4796. https://doi.org/10.1002/anie.201700388 55. Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Roux, S., Wilhelm, C., Gazeau, F., Bazzi, R., 2012. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J. Phys. Chem. C 116, 15702–15712. https://doi.org/10.1021/jp3025478 56. Jain, S., Mishra, S., Sarma, T.K., 2018. Zn2+ Induced Self-Assembled Growth of Octapodal CuxO-ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose. ACS Sustain. Chem. Eng. 6, 9771–9783. https://doi.org/10.1021/acssuschemeng.8b00838 57. Jiang, Y., Liu, X., Cai, F., Liu, H., 2017. Direct Growth of Feather-Like ZnO Structures by a Facile Solution Technique for Photo-Detecting Application. Nanoscale Res. Lett. 12, 1-6. https://doi.org/10.1186/s11671-017-2252-0 58. Jiao, F., Frei, H., 2010. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3, 1018. https://doi.org/10.1039/c002074e 59. Jiao, S., Xu, L., Hu, K., Li, J., Gao, S., Xu, D., 2010. Morphological control of α-FeOOH nanostructures by electrodeposition. J. Phys. Chem. C. 114, 269–273. https://doi.org/10.1021/jp909072m 60. Jordan, V., Dasireddy, V.D.B.C., Likozar, B., Podgornik, A., Rečnik, A., 2018. Material’s Design beyond Lateral Attachment: Twin-Controlled Spatial Branching of Rutile TiO2. Cryst. Growth Des. 18, 4484–4494. https://doi.org/10.1021/acs.cgd.8b00479 61. Jung, S.H., Oh, E., Lee, K.H., Yang, Y., Park, C.G., Park, W., Jeong, S.H., 2008. Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8, 265–269. https://doi.org/10.1021/cg070296l 62. Kavosh, M., Moallemian, H., Salmi, S., Dehdashti, M.E., Mehraniya, H., 2013. Synthesis and characterization of cluster flower-like ZnO nanostructure by hydrothermal method. Synth. React. Inorganic, Met. Nano-Metal Chem. 43, 519–523. https://doi.org/10.1080/15533174.2012.740734 63. Kay, A., Cesar, I., Grätzel, M., 2006. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721. https://doi.org/10.1021/ja064380l 64. Khedir, K.R., Saifaldeen, Z.S., Demirkan, T., Abdulrahman, R.B., Karabacak, T., 2017. Growth of Zinc Oxide Nanorod and Nanoflower Structures by Facile Treatment of Zinc Thin Films in Boiling De-Ionized Water. J. Nanosci. Nanotechnol. 17, 4842–4850. https://doi.org/10.1166/jnn.2017.13432 65. Khusaimi, Z., Ghani, N.A., Noor, F.W.M., Amizam, S., Rafaie, H.A., Mamat, M.H., Sahdan, M.Z., Abdullah, N., Abdullah, S., Rusop, M., 2009. Surface morphology study on effect of deposition temperature on nanostructured zinc oxide by chemical vapour deposition method. Mater. Res. Innov. 13, 196–198. https://doi.org/10.1179/143307509x437608 66. Kibis, L.S., Stadnichenko, A.I., Koscheev, S. V., Zaikovskii, V.I., Boronin, A.I., 2016. XPS Study of Nanostructured Rhodium Oxide Film Comprising Rh4+ Species. J. Phys. Chem. C 120, 19142–19150. https://doi.org/10.1021/acs.jpcc.6b05219 67. Kim, S.I., Lee, J.S., Ahn, H.J., Song, H.K., Jang, J.H., 2013. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces. 5, 1596–1603. https://doi.org/10.1021/am3021894 68. Kong, S., Yang, F., Cheng, K., Ouyang, T., Ye, K., Wang, G., Cao, D., 2017. In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity. J. Electroanal. Chem. 785, 103–108. https://doi.org/10.1016/j.jelechem.2016.12.002 69. Kowsari, E., Faraghi, G., 2010. Synthesis by an ionic liquid-assisted method and optical properties of nanoflower Y2O3. Mater. Res. Bull. 45, 939–945. https://doi.org/10.1016/j.materresbull.2010.04.015 70. Kozhummal, R., Yang, Y., Güder, F., Hartel, A., Lu, X., Küçükbayrak, U.M., Mateo-Alonso, A., Elwenspoek, M., Zacharias, M., 2012. Homoepitaxial branching: An unusual polymorph of zinc oxide derived from seeded solution growth. ACS Nano. 6, 7133–7141. https://doi.org/10.1021/nn302188q 71. Kumar, A., Madaria, A.R., Zhou, C., 2010. Growth of Aligned Single-Crystalline Rutile TiO2 nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells. J.Phys. Chem.C. 114, 7787–7792. https://doi.org/ 10.1021/jp100491h 72. Kumar, N., Mittal, H., Reddy, L., Nair, P., Ngila, J.C., Parashar, V., 2015. Morphogenesis of ZnO nanostructures: Role of acetate (COOH-) and nitrate (NO3-) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties. RSC Adv. 5, 38801–38809. https://doi.org/10.1039/c5ra04162g 73. Kusano, Y., Fujii, T., Takada, J., Fukuhara, M., Doi, A., Ikeda, Y., Takano, M., 2008. Epitaxial growth of ε-Fe2O3 on mullite found through studies on a traditional Japanese stoneware. Chem. Mater. 20, 151–156. https://doi.org/10.1021/cm7023247 74. Lan, S., Sheng, X., Lu, Y., Li, C., Zhao, S., Liu, N., 2018. Modification of Antibacterial ZnO Nanorods with CeO2 Nanoparticles: Role of CeO2 in Impacting Morphology and Antibacterial Activity. Colloids Interface Sci. Commun. 26, 32–38. https://doi.org/10.1016/j.colcom.2018.08.002 75. Lee, W.W., Yi, J., Kim, S.B., Kim, Y.H., Park, H.G., Park, W. Il, 2011. Morphology-controlled three-dimensional nanoarchitectures produced by exploiting vertical and in-plane crystallographic orientations in hydrothermal ZnO crystals. Cryst. Growth Des. 11, 4927–4932. https://doi.org/10.1021/cg200806a 76. Li, G., Jiang, L., Pang, S., Peng, H., Zhang, Z., 2006. Molybdenum trioxide nanostructures: The evolution from helical nanosheets to crosslike nanoflowers to nanobelts. J. Phys. Chem. B. 110, 24472–24475. https://doi.org/10.1021/jp064855v 77. Li, G.R., Lu, X.H., Qu, D.L., Yao, C.Z., Zheng, F.L., Bu, Q., Dawa, C.R., Tong, Y.X., 2007. Electrochemical growth and control of ZnO dendritic structures. J. Phys. Chem. C. 111, 6678–6683. https://doi.org/10.1021/jp068401+ 78. Li, S.S., Li, W.J., Jiang, T.J., Liu, Z.G., Chen, X., Cong, H.P., Liu, J.H., Huang, Y.Y., Li, L.N., Huang, X.J., 2015. Iron Oxide with Different Crystal Phases (α- and γ-Fe2O3) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS, Analytical Chemistry. 88, 906-914. https://doi.org/10.1021/acs.analchem.5b03570 79. Li, W., Bu, Y., Jin, H., Wang, Jian, Zhang, W., Wang, S., Wang, Jichang, 2013. The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy and Fuels. 27, 6304–6310. https://doi.org/10.1021/ef401190b 80. Li, Y., Tan, H., Lebedev, O., Verbeeck, J., Biermans, E., Van Tendeloo, G., Su, B.L., 2010. Insight into the growth of multiple branched MnOOH nanorods. Cryst. Growth Des. 10, 2969–2976. https://doi.org/10.1021/cg100009k 81. Li, Z., Xu, F., Sun, X., Zhang, W., 2008. Oriented attachment in vapor: Formation of ZnO three-dimensional structures by intergrowth of ZnO microcrystals. Cryst. Growth Des. 8, 805–807. https://doi.org/10.1021/cg060830+ 82. Lim, B., Xia, Y., 2011. Metal nanocrystals with highly branched morphologies. Angew. Chemie - Int. Ed. 50, 76–85. https://doi.org/10.1002/anie.201002024 83. Lin, C.K., Lin, P.C., Shih, S.J., Chang, C.J., Shi, J.B., Chen, C.Y., 2017. Pseudocapacitive performance of manganese oxide coated hierarchical cobalt oxide structure prepared by hydrothermal process. Ceram. Int. 43, S739–S746. https://doi.org/10.1016/j.ceramint.2017.05.288 84. Lin, M., Tan, H.R., Tan, J.P.Y., Bai, S., 2013. Understanding the Growth Mechanism of α‑Fe2O3 Nanoparticles through a Controlled Shape Transformation. J. Phys. Chem. C. 117, 11242–11250. https://doi.org/10.1142/s1793292011002846 85. Ling, Y., Lim, S., Chyuan, H., Tong, W., 2016. Research progress on iron oxide-based magnetic materials : Synthesis techniques and photocatalytic applications. Ceram. Int. 42, 9–34. https://doi.org/10.1016/j.ceramint.2015.08.144 86. Liu, H., Shi, L., Li, D., Yu, J., Zhang, H.M., Ullah, S., Yang, B., Li, C., Zhu, C., Xu, J., 2018. Rational design of hierarchical ZnO/Carbon nanoflower for high performance lithium ion battery anodes. J. Power Sources. 387, 64–71. https://doi.org/10.1016/j.jpowsour.2018.03.047 87. Liu, J., Wu, Z., Tian, Q., Wu, W., Xiao, X., 2016. Shape-controlled iron oxide nanocrystals: Synthesis, magnetic properties and energy conversion applications. CrystEngComm. 18, 6303–6326. https://doi.org/10.1039/c6ce01307d 88. Liu, N., Tao, P., Jing, C., Huang, W., Zhang, X., Wu, M., Lei, J., Tang, L., 2018. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation. J. Mater. Sci. 53, 15051–15063. https://doi.org/10.1007/s10853-018-2696-3 89. Liu, R., Zhao, Yuzhen, Huang, R., Zhao, Yongjie, Zhou, H., 2011. Phase transformation and shape evolution of iron oxide nanocrystals synthesized in the ethylene glycol-water system. Sci. China Physics, Mech. Astron. 54, 1271–1276. https://doi.org/10.1007/s11433-011-4369-y 90. Lu, G., Li, C., Shi, G., 2007, Synthesis and characterization of 3D dendritic Gold Nanostructures and their use as substrates for surface-enhances Raman scattering. Chem. Mater. 19, 3433-3440. https://doi.org/10.1021/cm0706393 91. Luo, Y., Li, S., Ren, Q., Liu, J., Xing, L., Wang, Y., Yu, Y., Jia, Z., Li, J., 2007. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route. Cryst. Growth Des. 7, 87–92. https://doi.org/10.1021/cg060491k 92. Ma, C.Y., Mu, Z., Li, J.J., Jin, Y.G., Cheng, J., Lu, G.Q., Hao, Z.P., Qiao, S.Z., 2010. Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene. J. Am. Chem. Soc. 132, 2608–2613. https://doi.org/10.1021/ja906274t 93. Ma, Q.L., Huang, J., 2015. Fractal growth of fern-like ZnO nanoleaves and their photocatalytic activities. Mater. Res. Innov. 19, s2–s6. https://doi.org/10.1179/1432891715z.0000000002042 94. Mahajan, H., Bae, J., Yun, K., 2018. Facile synthesis of ZnO-Au nanocomposites for high-performance supercapacitors. J. Alloys Compd. 758, 131–139. https://doi.org/10.1016/j.jallcom.2018.04.238 95. McShane, C.M., Choi, K.S., 2009. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 131, 2561–2569. https://doi.org/10.1021/ja806370s 96. Milošević, S., Stojković, I., Kurko, S., Novaković, J.G., Cvjetićanin, N., 2012. The simple one-step solvothermal synthesis of nanostructurated VO2 (B). Ceram. Int. 38, 2313–2317. https://doi.org/10.1016/j.ceramint.2011.11.001 97. Mishra, A.K., Nayak, A.K., Das, A.K., Pradhan, D., 2018. Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C. 122, 11249–11261. https://doi.org/10.1021/acs.jpcc.8b02210 98. Mo, M., Wang, D., Du, X., Qian, X., Chen, D., Qian, Y., 2009. Engineering of Nanotips in ZnO Submicrorods and Patterned arrays. Cryst. Growth Des. 9, 797–802. https://doi.org/10.1021/cg800362z 99. Moura Ramos, J.J., Diogo, H.P., 2009. Are Crystallization and Melting the Reverse Transformation of Each Other? J. Chem. Educ. 83, 1389. https://doi.org/10.1021/ed083p1389 100. Navaladian, S., Viswanathan, B., 2012. Synthesis of Different Architectures Like Stars, Multipods, Ellipsoids and Spikes of Zinc Oxide by Surfactantless Precipitation. J. Nanosci. Nanotechnology. 11, 10219–10226. https://doi.org/10.1166/jnn.2011.4997 101. Navrotsky, A., Mazeina, L., Majzlan, J., 2008. Size-driven structural and thermodynamic complexity in iron oxides. Science. 319, 1635–1638. https://doi.org/10.1126/science.1148614 102. Niu, M., Huang, F., Cui, L., Huang, P., Yu, Y., Wang, Y., 2010. Hydritermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanohererostructures. 4, 681–688. https://doi.org/ 10.1021/nn901119a 103. Niklasson, G.A., Granqvist, C.G., 2007. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156. https://doi.org/10.1039/B612174H 104. Nishinaga, T., 2016. Thermodynamics -for understanding crystal growth-. Prog. Cryst. Growth Charact. Mater. 62, 43–57. https://doi.org/10.1016/j.pcrysgrow.2016.04.001 105. Ould-ely, T., Prieto-centurion, D., Kumar, A., Guo, W., Knowles, W. V, Asokan, S., Wong, M.S., Rusakova, I., Lüttge, A., Whitmire, K.H., 2006. Manganese (II) oxide nanohexapods: Insight into controlling the form of nanocrystals. Chem. Mater. 18, 1821-1829. https://doi.org/ 10.1021/cm052492q 106. Paino, I.M.M., Gonçalves, F.J., Souza, F.L., Zucolotto, V., 2016. Zinc Oxide Flower-Like Nanostructures That Exhibit Enhanced Toxicology Effects in Cancer Cells. ACS Appl. Mater. Interfaces. 8, 32699–32705. https://doi.org/10.1021/acsami.6b11950 107. Pang, H., Gao, F., Lu, Q., 2009. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9, 1076-1078. https://doi.org/10.1039/b816670f 108. Parida, M.R., Vijayan, C., Rout, C.S., Suchand Sandeep, C.S., Philip, R., Deshmukh, P.C., 2011. Room Temperature Ferromagnetism and Optical Limiting in V2O5 Nanoflowers Synthesized by a Novel Method. J. Phys. Chem. C. 115, 112–117. https://doi.org/10.1143/jpsj.77.023706 109. Parkinson, G.S., 2016. Iron oxide surfaces. Surface Science Reports. 71, 272–365. https://doi.org/10.1016/j.surfrep.2016.02.001 110. Pauling, L., Hendricks, S.B., 1925. The crystal structures of hematite and corundum. J. Am. Chem. Soc. 47, 781–790. https://doi.org/10.1021/ja01680a027 111. Pokropivny, V. V., Skorokhod, V. V., 2007. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C. 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023 112. Polshettiwar, V., Baruwati, B., Varma, R.S., 2009. Self-Assembly of Metal Oxides into Synthesis and Application in Catalysis. ACS Nano. 3, 728–736. https://doi.org/10.1021/nn800903p 113. Qiao, L., Swihart, M.T., 2017. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Adv. Colloid Interface Sci. 244, 199–266. https://doi.org/10.1016/j.cis.2016.01.005 114. Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H., Suib, S.L., 2012. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. J. Phys. Chem. C. 116, 468–477. https://doi.org/10.1021/jp209911k 115. Qiu, J., Guo, M., Wang, X., 2011. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 3, 2358–2367. https://doi.org/10.1021/am2002789 116. Qiu, M., Sun, P., Shen, L., Wang, K., Song, S., Yu, X., Tan, S., Zhao, C., Mai, W., 2016. WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A. 4, 7266–7273. https://doi.org/10.1039/c6ta00237d 117. Qu, X.F., Zhou, G.T., Yao, Q.Z., Fu, S.Q., 2010. A spartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons. J. Phys. Chem. C 114, 284–289. https://doi.org/10.1021/jp909175s 118. Rubiano, G.N., 2000. Fractales para profanos, Universidad Nacional de Colombia.ed. 119. Saifullah, M.S.M., Chong, W.T., Ganesan, R., Yong, J.J., Thian, E.S., Dinachali, S.S., Lim, A.H.H., Lim, S.H., Low, H.Y., He, C., 2012. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor . Nanotechnology. 23, 315304. https://doi.org/10.1088/0957-4484/23/31/315304 120. Self, K., Zhou, W., 2016. Surface charge driven growth of eight-branched Cu2O crystals. Cryst. Growth Des. 16, 5377–5384. https://doi.org/10.1021/acs.cgd.6b00883 121. Selvakumar, K., Senthil Kumar, S.M., Thangamuthu, R., Ganesan, K., Murugan, P., Rajput, P., Jha, S.N., Bhattacharyya, D., 2015. Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C. 119, 6604–6618. https://doi.org/10.1021/jp5127915 122. Sheng, X., He, D., Yang, J., Zhu, K., Feng, X., 2014. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852. https://doi.org/10.1021/nl4046262 123. Shi, Z., Walker, A. V., 2015. Chemical bath deposition of ZnO on functionalized self-assembled monolayers: Selective deposition and control of deposit morphology. Langmuir. 31, 1421–1428. https://doi.org/10.1021/la5040239 124. Sinha, B., Goswami, T., Paul, S., Misra, A., 2014. The impact of surface structure and band gap on the optoelectronic properties of Cu2O nanoclusters of varying size and symmetry. RSC Adv. 4, 5092. https://doi.org/10.1039/c3ra45387a 125. Song, B., Wang, Y., Cui, X., Kou, Z., Si, L., Tian, W., Yi, C., Wei, T., Sun, Y., 2016. A Series of Unique Architecture Building of Layered Zinc Hydroxides: Self-Assembling Stepwise Growth of Layered Zinc Hydroxide Carbonate and Conversion into Three-Dimensional ZnO. Crys |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
91 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.sucursal.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/75512/1/1013600812.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/75512/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/75512/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/75512/4/1013600812.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
6342331b3465572bb70e5ac356b173b2 6f3f13b02594d02ad110b3ad534cd5df 42fd4ad1e89814f5e4a476b409eb708c 1454c8ec4564591f9423de3d0ac39975 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089764627808256 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Carriazo Baños, Jose Gregorioc31e46ce-771a-4231-9e9b-dab117dbb252-1Ramírez Gómez, Wandy Milena589a9e5a-6f3d-4e59-a848-d2ccf742e58cLaboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES, 125)2020-01-23T17:18:18Z2020-01-23T17:18:18Z2020-01-212019-07-15https://repositorio.unal.edu.co/handle/unal/75512El control de la morfología, durante la síntesis de estructuras sólidas, se ha convertido en uno de los objetivos de estudio más importantes en el campo del diseño de nuevos materiales. Al modificar la forma y tamaño de las partículas de un sólido en polvo, sus propiedades fisicoquímicas pueden variar y obtenerse comportamientos excepcionales que conllevan a nuevas vías de aplicación tecnológica. Por tal motivo, en el presente trabajo se realizó una revisión documental sistemática y profunda acerca de los conceptos y principios que orientan la síntesis de óxidos de metales de transición con morfología multirramificada . Dichos principios permiten la comprensión del crecimiento controlado de dichas partículas. Inicialmente, a manera de estado del arte, se describen las generalidades de los óxidos de metales de transición, su importancia y aplicaciones, los tipos de morfologías y diferentes métodos de síntesis; luego se explican los mecanismos generales de formación de partículas cristalinas, según los parámetros termodinámicos y cinéticos que rigen la nucleación y su crecimiento. De igual manera, se discuten los factores químicos y físicos que influyen en la formación de partículas multirramificadas (multibranches), y finalmente se desarrolla la síntesis de micropartículas de óxido de hierro a diferentes condiciones de temperatura, tiempo y concentración, con el fin de estudiar la influencia de dichos parámetros en la síntesis hidrotérmica convencional de estas partículas. Las caracterizaciones básicas realizadas, SEM (microscopía electrónica de barrido), EDX (energía dispersiva de rayos X) y difracción de rayos X, demostraron la formación exitosa de partículas multirramificadas (con morfología de “hojas en forma de helecho”) de óxido de hierro con estructura hematítica (α-Fe2O3). A partir de estos resultados, se demuestra también el control en el tamaño de dichas partículas.The control of morphology of solid structures, through the synthesis processes, has become one of the most important study objectives in the field of new material design. Modifying the shape and size of powder particles, their physical and chemical properties may be changed and exceptional performances with new technological applications can be obtained. Due to this perspective, in this work a deep and systematic review about the principles and concepts related to the synthesis of transition metal oxides with multibranched morphology was carried out. Said principles allow the understanding of controlled growth of the particles. First, as a state of the art, the basic concepts and generalities on the transition metal oxides, their applications and potential uses, the types of morphology and the different methods of synthesis are described. Afterward the general procedures for crystalline particle formation are explained, according to the thermodynamic and kinetic parameters which regulate both the nucleation and growth. In the same way, the chemical and physical factors influencing the formation of multibranched particles were discussed. Finally, the synthesis of iron oxide microparticles was carried out under different conditions of temperature, solution concentration and time. These variations were performed with the aim of studying the influence of such parameters on the conventional hydrothermal synthesis of the particles. The characterizations performed for the solids, SEM (scanning electron microscopy), EDX (energy dispersive X-ray analysis) and X-ray diffraction, confirmed the successful formation of multibranched particles (with morphology of “fern leaves”) of iron oxide having hematite structure (α-Fe2O3).Magíster en ciencias-Química.91application/pdfspaQuímica y ciencias afinesÓxido de metal de transición ; Partícula multirramificada ; Síntesis inorgánica ; Crecimiento de partícula ; Óxido de hierro ; HematitaTransition metal oxide ; Multibranched particle ; Inorganic synthesis ; Particle growth ; Iron oxide ; HematiteSíntesis de micropartículas multirramificadas de óxidos de metales de transiciónDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPUniversidad Nacional de Colombia - Sede BogotáDepartamento de QuímicaUniversidad Nacional de Colombia - Sede Bogotá1. Aboelazm, E.A.A., Ali, G.A.M., Algarni, H., Yin, H., Zhong, Y.L., Chong, K.F., 2018. Magnetic Electrodeposition of the Hierarchical Cobalt Oxide Nanostructure from Spent Lithium-Ion Batteries: Its Application as a Supercapacitor Electrode. J. Phys. Chem. C. 122, 12200–12206. https://doi.org/10.1021/acs.jpcc.8b03306 2. Abu-Much, R., Meridor, U., Frydman, A., Gedanken, A., 2006. Formation of a three-dimensional microstructure of Fe3O4-Poly(vinyl alcohol) composite by evaporating the hydrosol under a magnetic field. J. Phys. Chem. B. 110, 8194–8203. https://doi.org/10.1021/jp057123w 3. Ai, L., Zeng, Y., 2013. Hierarchical porous NiO architectures as highly recyclable adsorbents for effective removal of organic dye from aqueous solution. Chem. Eng. J. 215–216, 269–278. https://doi.org/10.1016/j.cej.2012.10.059 4. Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N., Jabbari, E., 2018. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures and Nano-Objects 14, 19–48. https://doi.org/10.1016/j.nanoso.2018.01.006 5. Ashoka, S., Chithaiah, P., Tharamani, C.N., Chandrappa, G.T., 2010. Synthesis and characterisation of microstructural α-Mn2O3 materials. J. Exp. Nanosci. 5, 285–293. https://doi.org/10.1080/17458080903495003 6. Askeland, D.R., Fulay, P.P., Wright, W.J., 2012. Ciencia e ingeniería de materiales. 7. Awol, A., Awol, A., 2017. Transition metal oxides nanoparticles catalysis for sustainable organic synthesis under solvent free conditions. Saudi J. Biomed. Res. 2,10–18. https://doi.org/10.21276/sjbr.2017.2.1.3 8. Baby, R., Subbiah, D.K., Shankar, P., Mani, G.K., Babu, K.J., Rayappan, J.B.B., Kulandaisamy, A.J., 2018. Role of Thermal Energy Sources in Chemical Solution Process to Synthesize V2O5 Nanostructures . J. Nanosci. Nanotechnol. 18, 7923–7926. https://doi.org/10.1166/jnn.2018.15560 9. Bai, J., Han, S.H., Peng, R.L., Zeng, J.H., Jiang, J.X., Chen, Y., 2017. Ultrathin Rhodium Oxide Nanosheet Nanoassemblies: Synthesis, Morphological Stability, and Electrocatalytic Application. ACS Appl. Mater. Interfaces. 9, 17195–17200. https://doi.org/10.1021/acsami.7b04874 10. Bao, Z., Yuan, Y., Leng, C., Li, L., Zhao, K., Sun, Z., 2017. One-Pot Synthesis of Noble Metal/Zinc Oxide Composites with Controllable Morphology and High Catalytic Performance. ACS Appl. Mater. Interfaces. 9, 16417–16425. https://doi.org/10.1021/acsami.7b02667 11. Bauzá, A.C., Freixedas, F.G., Söhnel, O., 2000. cristalización en disolución- conceptos básicos, Reverte. ed. 12. Benbow, E.M., Kelly, S.P., Zhao, L., Reutenauer, J.W., Suib, S.L., 2011. Oxygen reduction properties of bifunctional α-manganese oxide electrocatalysts in aqueous and organic electrolytes. J. Phys. Chem. C. 115, 22009–22017. https://doi.org/10.1021/jp2055443 13. Bergerud, A., Buonsanti, R., Jordan-Sweet, J.L., Milliron, D.J., 2013. Synthesis and Phase Stability of Metastable Bixbyite V2O3 Colloidal Nanocrystals. Chem. Mater. 25, 3172–3179. https://doi.org/10.1021/cm401530t 14. Bhanjana, G., Dilbaghi, N., Kim, K.H., Kumar, S., 2017. Low temperature synthesis of copper oxide nanoflowers for lead removal using sonochemical route. J. Mol. Liq. 244, 506–511. https://doi.org/10.1016/j.molliq.2017.09.034 15. Bhowmik, B., Manjuladevi, V., Gupta, R.K., Bhattacharyya, P., 2016. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 16, 3488–3495. https://doi.org/10.1109/JSEN.2016.2530827 16. Bhuvaneshwari, S., Gopalakrishnan, N., 2016. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 480, 76–84. https://doi.org/10.1016/j.jcis.2016.07.004 17. Bora, D.K., Braun, A., Erni, R., Fortunato, G., Graule, T., Constable, E.C., 2011. Hydrothermal treatment of a hematite film leads to highly oriented faceted nanostructures with enhanced photocurrents. Chem. Mater. 23, 2051–2061. https://doi.org/10.1021/cm102826n 18. Burke, M.S., Kast, M.G., Trotochaud, L., Smith, A.M., Boettcher, S.W., 2015. Cobalt-Iron (Oxy)hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 137, 3638–3648. https://doi.org/10.1021/jacs.5b00281 19. Cai, Q., Gao, Y., Gao, T., Lan, S., Simalou, O., Zhou, X., Zhang, Y., Harnoode, C., Gao, G., Dong, A., 2016. Insight into Biological Effects of Zinc Oxide Nanoflowers on Bacteria: Why Morphology Matters. ACS Appl. Mater. Interfaces 8, 10109–10120. https://doi.org/10.1021/acsami.5b11573 20. Cao, C., Gao, Y., Luo, H., 2008. Pure Single-Crystal rutile vanadium dioxide powders: synthesis, mechanism and phase-transformation Property. J. Phys. Chem.C. 112, 18810–18814. https://doi.org/ 10.1021/jp8073688 21. Cao, F., Liu, Y., Hu, W., Chen, Q., 2008. Morphogenesis of branched coaxial nanorods formed in supercritical carbon dioxide. J. Phys. Chem. C. 112, 2337–2342. https://doi.org/10.1021/jp0755342 22. Cao, M.-S., Hou, Z.-L., Song, W.-L., Yuan, J., Wen, B., 2009. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon N. Y. 48, 788–796. https://doi.org/10.1016/j.carbon.2009.10.028 23. Chang, L. Te, Wang, C.Y., Tang, J., Nie, T., Jiang, W., Chu, C.P., Arafin, S., He, L., Afsal, M., Chen, L.J., Wang, K.L., 2014. Electric-field control of ferromagnetism in Mn-doped ZnO nanowires. Nano Lett. 14, 1823–1829. https://doi.org/10.1021/nl404464q 24. Chang, Y., Zeng, H.C., 2004. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals. Cryst. Growth Des. 4, 273–278. https://doi.org/10.1021/cg034146w 25. Chen, C., Lan, Y.T., Chou, M.M.C., Hang, D.R., Yan, T., Feng, H., Lee, C.Y., Chang, S.Y., Li, C.A., 2012. Growth and characterization of vertically aligned nonpolar [11̄00] orientation ZnO nanostructures on (100) γ-LiAlO2 substrate. Cryst. Growth Des. 12, 6208–6214. https://doi.org/10.1021/cg301394x 26. Chen, D., Xiong, S., Ran, S., Liu, B., Wang, L., Shen, G., 2011. One-dimensional iron oxides nanostructures. Sci. China Physics, Mech. Astron. 54, 1190–1199. https://doi.org/10.1007/s11433-011-4372-3 27. Cheng, F., Zhao, J., Song, W., Li, C., Ma, H., Chen, J., Shen, P., 2006. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038–2044. https://doi.org/10.1021/ic051715b 28. Chen, J.S., Zhu, T., Hu, Q.H., Gao, J., Su, F., Qiao, S.Z., Lou, X.W., 2010. Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces. 2, 3628–3635. https://doi.org/10.1021/am100787w 29. Chen, Y., Ye, D., Wu, M., Chen, H., Zhang, L., Shi, J., Wang, L., 2014. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv. Mater. 26, 7019–7026. https://doi.org/10.1002/adma.201402572 30. Cho, S., Kim, S., Kim, H.J., Lee, B.R., Lee, K.H., 2009. Facile and fast synthesis of single-crystalline fractal zinc structures through a solution phase reaction and their conversion to zinc oxide. Langmuir. 25, 10223–10229. https://doi.org/10.1021/la901006z 31. Cornell, R.M., Schwertmann, U., 2003. Also of interest Iron Oxides in the Laboratory. 32. Das, A., Malakar, P., Nair, R.G., 2018. Engineering of ZnO nanostructures for efficient solar photocatalysis. Mater. Lett. 219, 76–80. https://doi.org/10.1016/j.matlet.2018.02.057 33. Datta, K.J., Rathi, A.K., Kumar, P., Kaslik, J., Medrik, I., Ranc, V., Varma, R.S., Zboril, R., Gawande, M.B., 2017. Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-09477-7 34. Deng, S., Tjoa, V., Fan, H.M., Tan, H.R., Sayle, D.C., Olivo, M., Mhaisalkar, S., Wei, J., Sow, C.H., 2012. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917. https://doi.org/10.1021/ja211683m 35. Desai, M.A., Sartale, S.D., 2015. Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst. Growth Des. 15, 4813–4820. https://doi.org/10.1021/acs.cgd.5b00561 36. Dhayal Raj, A., Pazhanivel, T., Suresh Kumar, P., Mangalaraj, D., Nataraj, D., Ponpandian, N., 2010. Self assembled V2O5 nanorods for gas sensors. Curr. Appl. Phys. 10, 531–537. https://doi.org/10.1016/j.cap.2009.07.015 37. Ding, K., Miao, Z., Hu, B., An, G., Sun, Z., Han, B., Liu, Z., 2010. Study on the anatase to rutile phase transformation and controlled synthesis of rutile nanocrystals with the assistance of ionic liquid. Langmuir. 26, 10294–10302. https://doi.org/10.1021/la100468e 38. Dong, X.C., Xu, H., Wang, X.W., Huang, Y.X., Chan-Park, M.B., Zhang, H., Wang, L.H., Huang, W., Chen, P., 2012. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano. 6, 3206–3213. https://doi.org/10.1021/nn300097q 39. Duan, X., Yang, J., Gao, H., Ma, J., Jiao, L., Zheng, W., 2012. Controllable hydrothermal synthesis of manganese dioxide nanostructures: Shape evolution, growth mechanism and electrochemical properties. CrystEngComm. 14, 4196–4204. https://doi.org/10.1039/c2ce06587h 40. El-Nagar, G.A., Mohammad, A.M., El-Deab, M.S., El-Anadouli, B.E., 2017. Propitious Dendritic Cu2O-Pt Nanostructured Anodes for Direct Formic Acid Fuel Cells. ACS Appl. Mater. Interfaces. 9, 19766–19772. https://doi.org/10.1021/acsami.7b01565 41. Fageria, P., Gangopadhyay, S., Pande, S., 2014. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4, 24962–24972. https://doi.org/10.1039/c4ra03158j 42. Flint, E.E., 1960. Principios de cristalografia, Editorial. ed. 43. Fominykh, K., Chernev, P., Zaharieva, I., Sicklinger, J., Stefanic, G., Döblinger, M., Müller, A., Pokharel, A., Böcklein, S., Scheu, C., Bein, T., Fattakhova-Rohlfing, D., 2015. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano. 9, 5180–5188. https://doi.org/10.1021/acsnano.5b00520 44. Fu, Q., Xue, Y., Cui, Z., 2018. Size- and shape-dependent surface thermodynamic properties of nanocrystals. J. Phys. Chem. Solids. 116, 79–85. https://doi.org/10.1016/j.jpcs.2018.01.018 45. Gao, T., Huang, Y., Wang, T., 2004. The synthesis and photoluminescence of multipod-like zinc oxide whiskers. J. Phys. Condens. Matter. 16, 1115–1121. https://doi.org/10.1088/0953-8984/16/7/011 46. Garcia, G., Ventosa, E., Schuhmann, W., 2017. Complete Prevention of Dendrite Formation in Zn Metal Anodes by Means of Pulsed Charging Protocols. ACS Appl. Mater. Interfaces. 9, 18691–18698. https://doi.org/10.1021/acsami.7b01705 47. Gavilán, H., Sánchez, E.H., Brollo, M.E.F., Asín, L., Moerner, K.K., Frandsen, C., Lázaro, F.J., Serna, C.J., Veintemillas-Verdaguer, S., Morales, M.P., Gutiérrez, L., 2017. Formation Mechanism of Maghemite Nanoflowers Synthesized by a Polyol-Mediated Process. ACS Omega. 2, 7172–7184. https://doi.org/10.1021/acsomega.7b00975 48. Green, A.E., Chiang, C.Y., Greer, H.F., Waller, A., Ruszin, A., Webster, J., Niu, Z., Self, K., Zhou, W., 2017. Growth mechanism of dendritic hematite via hydrolysis of ferricyanide. Cryst. Growth Des. 17, 800–808. https://doi.org/10.1021/acs.cgd.6b01655 49. Gross, E., 2017. Tuning Product Selectivity by Changing the Size of Catalytically Active Metallic Nanoparticles. Stud. Surf. Sci. Catal. 177, 57–84. https://doi.org/10.1016/B978-0-12-805090-3.00002- 50. Han, J., Kim, B., Shin, J.Y., Ryu, S., Noh, M., Woo, J., Park, J.S., Lee, Y., Lee, N., Hyeon, T., Choi, D., Kim, B.S., 2015. Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano. 9, 2805–2819. https://doi.org/10.1021/nn506732n 51. Hu, J., Zou, C., Su, Y., Li, M., Han, Y., Kong, E.S.W., Yang, Z., Zhang, Y., 2018. An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J. Mater. Chem. A. 6, 17120–17131. https://doi.org/10.1039/c8ta04404j 52. Hu, M., Jiang, J.-S., Li, X., 2008. Surfactant-Assisted Hydrothermal Synthesis of Dendritic Magnetite Microcrystals. Cryst. Growth Des. 9, 820–824. https://doi.org/10.1021/cg8003933 53. Hu, X., Yu, J.C., Gong, J., 2007. Fast production of self-assembled hierarchical α-Fe2O3 nanoarchitectures. J. Phys. Chem. C. 111, 11180–11185. https://doi.org/10.1021/jp073073e 54. Huan, T.N., Rousse, G., Zanna, S., Lucas, I.T., Xu, X., Menguy, N., Mougel, V., Fontecave, M., 2017. A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angew. Chemie - Int. Ed. 56, 4792–4796. https://doi.org/10.1002/anie.201700388 55. Hugounenq, P., Levy, M., Alloyeau, D., Lartigue, L., Dubois, E., Cabuil, V., Ricolleau, C., Roux, S., Wilhelm, C., Gazeau, F., Bazzi, R., 2012. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J. Phys. Chem. C 116, 15702–15712. https://doi.org/10.1021/jp3025478 56. Jain, S., Mishra, S., Sarma, T.K., 2018. Zn2+ Induced Self-Assembled Growth of Octapodal CuxO-ZnO Microcrystals: Multifunctional Applications in Reductive Degradation of Organic Pollutants and Nonenzymatic Electrochemical Sensing of Glucose. ACS Sustain. Chem. Eng. 6, 9771–9783. https://doi.org/10.1021/acssuschemeng.8b00838 57. Jiang, Y., Liu, X., Cai, F., Liu, H., 2017. Direct Growth of Feather-Like ZnO Structures by a Facile Solution Technique for Photo-Detecting Application. Nanoscale Res. Lett. 12, 1-6. https://doi.org/10.1186/s11671-017-2252-0 58. Jiao, F., Frei, H., 2010. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 3, 1018. https://doi.org/10.1039/c002074e 59. Jiao, S., Xu, L., Hu, K., Li, J., Gao, S., Xu, D., 2010. Morphological control of α-FeOOH nanostructures by electrodeposition. J. Phys. Chem. C. 114, 269–273. https://doi.org/10.1021/jp909072m 60. Jordan, V., Dasireddy, V.D.B.C., Likozar, B., Podgornik, A., Rečnik, A., 2018. Material’s Design beyond Lateral Attachment: Twin-Controlled Spatial Branching of Rutile TiO2. Cryst. Growth Des. 18, 4484–4494. https://doi.org/10.1021/acs.cgd.8b00479 61. Jung, S.H., Oh, E., Lee, K.H., Yang, Y., Park, C.G., Park, W., Jeong, S.H., 2008. Sonochemical preparation of shape-selective ZnO nanostructures. Cryst. Growth Des. 8, 265–269. https://doi.org/10.1021/cg070296l 62. Kavosh, M., Moallemian, H., Salmi, S., Dehdashti, M.E., Mehraniya, H., 2013. Synthesis and characterization of cluster flower-like ZnO nanostructure by hydrothermal method. Synth. React. Inorganic, Met. Nano-Metal Chem. 43, 519–523. https://doi.org/10.1080/15533174.2012.740734 63. Kay, A., Cesar, I., Grätzel, M., 2006. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721. https://doi.org/10.1021/ja064380l 64. Khedir, K.R., Saifaldeen, Z.S., Demirkan, T., Abdulrahman, R.B., Karabacak, T., 2017. Growth of Zinc Oxide Nanorod and Nanoflower Structures by Facile Treatment of Zinc Thin Films in Boiling De-Ionized Water. J. Nanosci. Nanotechnol. 17, 4842–4850. https://doi.org/10.1166/jnn.2017.13432 65. Khusaimi, Z., Ghani, N.A., Noor, F.W.M., Amizam, S., Rafaie, H.A., Mamat, M.H., Sahdan, M.Z., Abdullah, N., Abdullah, S., Rusop, M., 2009. Surface morphology study on effect of deposition temperature on nanostructured zinc oxide by chemical vapour deposition method. Mater. Res. Innov. 13, 196–198. https://doi.org/10.1179/143307509x437608 66. Kibis, L.S., Stadnichenko, A.I., Koscheev, S. V., Zaikovskii, V.I., Boronin, A.I., 2016. XPS Study of Nanostructured Rhodium Oxide Film Comprising Rh4+ Species. J. Phys. Chem. C 120, 19142–19150. https://doi.org/10.1021/acs.jpcc.6b05219 67. Kim, S.I., Lee, J.S., Ahn, H.J., Song, H.K., Jang, J.H., 2013. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl. Mater. Interfaces. 5, 1596–1603. https://doi.org/10.1021/am3021894 68. Kong, S., Yang, F., Cheng, K., Ouyang, T., Ye, K., Wang, G., Cao, D., 2017. In-situ growth of cobalt oxide nanoflakes from cobalt nanosheet on nickel foam for battery-type supercapacitors with high specific capacity. J. Electroanal. Chem. 785, 103–108. https://doi.org/10.1016/j.jelechem.2016.12.002 69. Kowsari, E., Faraghi, G., 2010. Synthesis by an ionic liquid-assisted method and optical properties of nanoflower Y2O3. Mater. Res. Bull. 45, 939–945. https://doi.org/10.1016/j.materresbull.2010.04.015 70. Kozhummal, R., Yang, Y., Güder, F., Hartel, A., Lu, X., Küçükbayrak, U.M., Mateo-Alonso, A., Elwenspoek, M., Zacharias, M., 2012. Homoepitaxial branching: An unusual polymorph of zinc oxide derived from seeded solution growth. ACS Nano. 6, 7133–7141. https://doi.org/10.1021/nn302188q 71. Kumar, A., Madaria, A.R., Zhou, C., 2010. Growth of Aligned Single-Crystalline Rutile TiO2 nanowires on Arbitrary Substrates and Their Application in Dye-Sensitized Solar Cells. J.Phys. Chem.C. 114, 7787–7792. https://doi.org/ 10.1021/jp100491h 72. Kumar, N., Mittal, H., Reddy, L., Nair, P., Ngila, J.C., Parashar, V., 2015. Morphogenesis of ZnO nanostructures: Role of acetate (COOH-) and nitrate (NO3-) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties. RSC Adv. 5, 38801–38809. https://doi.org/10.1039/c5ra04162g 73. Kusano, Y., Fujii, T., Takada, J., Fukuhara, M., Doi, A., Ikeda, Y., Takano, M., 2008. Epitaxial growth of ε-Fe2O3 on mullite found through studies on a traditional Japanese stoneware. Chem. Mater. 20, 151–156. https://doi.org/10.1021/cm7023247 74. Lan, S., Sheng, X., Lu, Y., Li, C., Zhao, S., Liu, N., 2018. Modification of Antibacterial ZnO Nanorods with CeO2 Nanoparticles: Role of CeO2 in Impacting Morphology and Antibacterial Activity. Colloids Interface Sci. Commun. 26, 32–38. https://doi.org/10.1016/j.colcom.2018.08.002 75. Lee, W.W., Yi, J., Kim, S.B., Kim, Y.H., Park, H.G., Park, W. Il, 2011. Morphology-controlled three-dimensional nanoarchitectures produced by exploiting vertical and in-plane crystallographic orientations in hydrothermal ZnO crystals. Cryst. Growth Des. 11, 4927–4932. https://doi.org/10.1021/cg200806a 76. Li, G., Jiang, L., Pang, S., Peng, H., Zhang, Z., 2006. Molybdenum trioxide nanostructures: The evolution from helical nanosheets to crosslike nanoflowers to nanobelts. J. Phys. Chem. B. 110, 24472–24475. https://doi.org/10.1021/jp064855v 77. Li, G.R., Lu, X.H., Qu, D.L., Yao, C.Z., Zheng, F.L., Bu, Q., Dawa, C.R., Tong, Y.X., 2007. Electrochemical growth and control of ZnO dendritic structures. J. Phys. Chem. C. 111, 6678–6683. https://doi.org/10.1021/jp068401+ 78. Li, S.S., Li, W.J., Jiang, T.J., Liu, Z.G., Chen, X., Cong, H.P., Liu, J.H., Huang, Y.Y., Li, L.N., Huang, X.J., 2015. Iron Oxide with Different Crystal Phases (α- and γ-Fe2O3) in Electroanalysis and Ultrasensitive and Selective Detection of Lead(II): An Advancing Approach Using XPS and EXAFS, Analytical Chemistry. 88, 906-914. https://doi.org/10.1021/acs.analchem.5b03570 79. Li, W., Bu, Y., Jin, H., Wang, Jian, Zhang, W., Wang, S., Wang, Jichang, 2013. The preparation of hierarchical flowerlike NiO/reduced graphene oxide composites for high performance supercapacitor applications. Energy and Fuels. 27, 6304–6310. https://doi.org/10.1021/ef401190b 80. Li, Y., Tan, H., Lebedev, O., Verbeeck, J., Biermans, E., Van Tendeloo, G., Su, B.L., 2010. Insight into the growth of multiple branched MnOOH nanorods. Cryst. Growth Des. 10, 2969–2976. https://doi.org/10.1021/cg100009k 81. Li, Z., Xu, F., Sun, X., Zhang, W., 2008. Oriented attachment in vapor: Formation of ZnO three-dimensional structures by intergrowth of ZnO microcrystals. Cryst. Growth Des. 8, 805–807. https://doi.org/10.1021/cg060830+ 82. Lim, B., Xia, Y., 2011. Metal nanocrystals with highly branched morphologies. Angew. Chemie - Int. Ed. 50, 76–85. https://doi.org/10.1002/anie.201002024 83. Lin, C.K., Lin, P.C., Shih, S.J., Chang, C.J., Shi, J.B., Chen, C.Y., 2017. Pseudocapacitive performance of manganese oxide coated hierarchical cobalt oxide structure prepared by hydrothermal process. Ceram. Int. 43, S739–S746. https://doi.org/10.1016/j.ceramint.2017.05.288 84. Lin, M., Tan, H.R., Tan, J.P.Y., Bai, S., 2013. Understanding the Growth Mechanism of α‑Fe2O3 Nanoparticles through a Controlled Shape Transformation. J. Phys. Chem. C. 117, 11242–11250. https://doi.org/10.1142/s1793292011002846 85. Ling, Y., Lim, S., Chyuan, H., Tong, W., 2016. Research progress on iron oxide-based magnetic materials : Synthesis techniques and photocatalytic applications. Ceram. Int. 42, 9–34. https://doi.org/10.1016/j.ceramint.2015.08.144 86. Liu, H., Shi, L., Li, D., Yu, J., Zhang, H.M., Ullah, S., Yang, B., Li, C., Zhu, C., Xu, J., 2018. Rational design of hierarchical ZnO/Carbon nanoflower for high performance lithium ion battery anodes. J. Power Sources. 387, 64–71. https://doi.org/10.1016/j.jpowsour.2018.03.047 87. Liu, J., Wu, Z., Tian, Q., Wu, W., Xiao, X., 2016. Shape-controlled iron oxide nanocrystals: Synthesis, magnetic properties and energy conversion applications. CrystEngComm. 18, 6303–6326. https://doi.org/10.1039/c6ce01307d 88. Liu, N., Tao, P., Jing, C., Huang, W., Zhang, X., Wu, M., Lei, J., Tang, L., 2018. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation. J. Mater. Sci. 53, 15051–15063. https://doi.org/10.1007/s10853-018-2696-3 89. Liu, R., Zhao, Yuzhen, Huang, R., Zhao, Yongjie, Zhou, H., 2011. Phase transformation and shape evolution of iron oxide nanocrystals synthesized in the ethylene glycol-water system. Sci. China Physics, Mech. Astron. 54, 1271–1276. https://doi.org/10.1007/s11433-011-4369-y 90. Lu, G., Li, C., Shi, G., 2007, Synthesis and characterization of 3D dendritic Gold Nanostructures and their use as substrates for surface-enhances Raman scattering. Chem. Mater. 19, 3433-3440. https://doi.org/10.1021/cm0706393 91. Luo, Y., Li, S., Ren, Q., Liu, J., Xing, L., Wang, Y., Yu, Y., Jia, Z., Li, J., 2007. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route. Cryst. Growth Des. 7, 87–92. https://doi.org/10.1021/cg060491k 92. Ma, C.Y., Mu, Z., Li, J.J., Jin, Y.G., Cheng, J., Lu, G.Q., Hao, Z.P., Qiao, S.Z., 2010. Mesoporous Co3O4 and Au/Co3O4 Catalysts for Low-Temperature Oxidation of Trace Ethylene. J. Am. Chem. Soc. 132, 2608–2613. https://doi.org/10.1021/ja906274t 93. Ma, Q.L., Huang, J., 2015. Fractal growth of fern-like ZnO nanoleaves and their photocatalytic activities. Mater. Res. Innov. 19, s2–s6. https://doi.org/10.1179/1432891715z.0000000002042 94. Mahajan, H., Bae, J., Yun, K., 2018. Facile synthesis of ZnO-Au nanocomposites for high-performance supercapacitors. J. Alloys Compd. 758, 131–139. https://doi.org/10.1016/j.jallcom.2018.04.238 95. McShane, C.M., Choi, K.S., 2009. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J. Am. Chem. Soc. 131, 2561–2569. https://doi.org/10.1021/ja806370s 96. Milošević, S., Stojković, I., Kurko, S., Novaković, J.G., Cvjetićanin, N., 2012. The simple one-step solvothermal synthesis of nanostructurated VO2 (B). Ceram. Int. 38, 2313–2317. https://doi.org/10.1016/j.ceramint.2011.11.001 97. Mishra, A.K., Nayak, A.K., Das, A.K., Pradhan, D., 2018. Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C. 122, 11249–11261. https://doi.org/10.1021/acs.jpcc.8b02210 98. Mo, M., Wang, D., Du, X., Qian, X., Chen, D., Qian, Y., 2009. Engineering of Nanotips in ZnO Submicrorods and Patterned arrays. Cryst. Growth Des. 9, 797–802. https://doi.org/10.1021/cg800362z 99. Moura Ramos, J.J., Diogo, H.P., 2009. Are Crystallization and Melting the Reverse Transformation of Each Other? J. Chem. Educ. 83, 1389. https://doi.org/10.1021/ed083p1389 100. Navaladian, S., Viswanathan, B., 2012. Synthesis of Different Architectures Like Stars, Multipods, Ellipsoids and Spikes of Zinc Oxide by Surfactantless Precipitation. J. Nanosci. Nanotechnology. 11, 10219–10226. https://doi.org/10.1166/jnn.2011.4997 101. Navrotsky, A., Mazeina, L., Majzlan, J., 2008. Size-driven structural and thermodynamic complexity in iron oxides. Science. 319, 1635–1638. https://doi.org/10.1126/science.1148614 102. Niu, M., Huang, F., Cui, L., Huang, P., Yu, Y., Wang, Y., 2010. Hydritermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanohererostructures. 4, 681–688. https://doi.org/ 10.1021/nn901119a 103. Niklasson, G.A., Granqvist, C.G., 2007. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127–156. https://doi.org/10.1039/B612174H 104. Nishinaga, T., 2016. Thermodynamics -for understanding crystal growth-. Prog. Cryst. Growth Charact. Mater. 62, 43–57. https://doi.org/10.1016/j.pcrysgrow.2016.04.001 105. Ould-ely, T., Prieto-centurion, D., Kumar, A., Guo, W., Knowles, W. V, Asokan, S., Wong, M.S., Rusakova, I., Lüttge, A., Whitmire, K.H., 2006. Manganese (II) oxide nanohexapods: Insight into controlling the form of nanocrystals. Chem. Mater. 18, 1821-1829. https://doi.org/ 10.1021/cm052492q 106. Paino, I.M.M., Gonçalves, F.J., Souza, F.L., Zucolotto, V., 2016. Zinc Oxide Flower-Like Nanostructures That Exhibit Enhanced Toxicology Effects in Cancer Cells. ACS Appl. Mater. Interfaces. 8, 32699–32705. https://doi.org/10.1021/acsami.6b11950 107. Pang, H., Gao, F., Lu, Q., 2009. Morphology effect on antibacterial activity of cuprous oxide. Chem. Commun. 9, 1076-1078. https://doi.org/10.1039/b816670f 108. Parida, M.R., Vijayan, C., Rout, C.S., Suchand Sandeep, C.S., Philip, R., Deshmukh, P.C., 2011. Room Temperature Ferromagnetism and Optical Limiting in V2O5 Nanoflowers Synthesized by a Novel Method. J. Phys. Chem. C. 115, 112–117. https://doi.org/10.1143/jpsj.77.023706 109. Parkinson, G.S., 2016. Iron oxide surfaces. Surface Science Reports. 71, 272–365. https://doi.org/10.1016/j.surfrep.2016.02.001 110. Pauling, L., Hendricks, S.B., 1925. The crystal structures of hematite and corundum. J. Am. Chem. Soc. 47, 781–790. https://doi.org/10.1021/ja01680a027 111. Pokropivny, V. V., Skorokhod, V. V., 2007. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C. 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023 112. Polshettiwar, V., Baruwati, B., Varma, R.S., 2009. Self-Assembly of Metal Oxides into Synthesis and Application in Catalysis. ACS Nano. 3, 728–736. https://doi.org/10.1021/nn800903p 113. Qiao, L., Swihart, M.T., 2017. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Adv. Colloid Interface Sci. 244, 199–266. https://doi.org/10.1016/j.cis.2016.01.005 114. Qiu, G., Dharmarathna, S., Zhang, Y., Opembe, N., Huang, H., Suib, S.L., 2012. Facile microwave-assisted hydrothermal synthesis of CuO nanomaterials and their catalytic and electrochemical properties. J. Phys. Chem. C. 116, 468–477. https://doi.org/10.1021/jp209911k 115. Qiu, J., Guo, M., Wang, X., 2011. Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 3, 2358–2367. https://doi.org/10.1021/am2002789 116. Qiu, M., Sun, P., Shen, L., Wang, K., Song, S., Yu, X., Tan, S., Zhao, C., Mai, W., 2016. WO3 nanoflowers with excellent pseudo-capacitive performance and the capacitance contribution analysis. J. Mater. Chem. A. 4, 7266–7273. https://doi.org/10.1039/c6ta00237d 117. Qu, X.F., Zhou, G.T., Yao, Q.Z., Fu, S.Q., 2010. A spartic-acid-assisted hydrothermal growth and properties of magnetite octahedrons. J. Phys. Chem. C 114, 284–289. https://doi.org/10.1021/jp909175s 118. Rubiano, G.N., 2000. Fractales para profanos, Universidad Nacional de Colombia.ed. 119. Saifullah, M.S.M., Chong, W.T., Ganesan, R., Yong, J.J., Thian, E.S., Dinachali, S.S., Lim, A.H.H., Lim, S.H., Low, H.Y., He, C., 2012. Direct nanoimprint lithography of Al2O3 using a chelated monomer-based precursor . Nanotechnology. 23, 315304. https://doi.org/10.1088/0957-4484/23/31/315304 120. Self, K., Zhou, W., 2016. Surface charge driven growth of eight-branched Cu2O crystals. Cryst. Growth Des. 16, 5377–5384. https://doi.org/10.1021/acs.cgd.6b00883 121. Selvakumar, K., Senthil Kumar, S.M., Thangamuthu, R., Ganesan, K., Murugan, P., Rajput, P., Jha, S.N., Bhattacharyya, D., 2015. Physiochemical investigation of shape-designed MnO2 nanostructures and their influence on oxygen reduction reaction activity in alkaline solution. J. Phys. Chem. C. 119, 6604–6618. https://doi.org/10.1021/jp5127915 122. Sheng, X., He, D., Yang, J., Zhu, K., Feng, X., 2014. Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852. https://doi.org/10.1021/nl4046262 123. Shi, Z., Walker, A. V., 2015. Chemical bath deposition of ZnO on functionalized self-assembled monolayers: Selective deposition and control of deposit morphology. Langmuir. 31, 1421–1428. https://doi.org/10.1021/la5040239 124. Sinha, B., Goswami, T., Paul, S., Misra, A., 2014. The impact of surface structure and band gap on the optoelectronic properties of Cu2O nanoclusters of varying size and symmetry. RSC Adv. 4, 5092. https://doi.org/10.1039/c3ra45387a 125. Song, B., Wang, Y., Cui, X., Kou, Z., Si, L., Tian, W., Yi, C., Wei, T., Sun, Y., 2016. A Series of Unique Architecture Building of Layered Zinc Hydroxides: Self-Assembling Stepwise Growth of Layered Zinc Hydroxide Carbonate and Conversion into Three-Dimensional ZnO. Cryst. Growth Des. 16, 887–894. https://doi.org/10.1021/acs.cgd.5b01450 126. Sounart, T.L., Liu, J., Voigt, J.A., Huo, M., Spoerke, E.D., Mckenzie, B., 2007. Secondary Nucleation and Growth of ZnO. J. Am. Chem. Soc. 129, 15786–15793. https://doi.org/ 10.1021/ja071209g 127. Stolzenburg, P., Freytag, A., Bigall, N.C., Garnweitner, G., 2016. Fractal growth of ZrO2 nanoparticles induced by synthesis conditions. CrystEngComm. 18, 8396–8405. https://doi.org/10.1039/c6ce01916a 128. Subramani, K., Sathish, M., 2019. Facile synthesis of ZnO nanoflowers/reduced graphene oxide nanocomposite using zinc hexacyanoferrate for supercapacitor applications. Mater. Lett. 236, 424–427. https://doi.org/10.1016/j.matlet.2018.10.111 129. Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., Yang, Z., 2013. Hierarchical CuO nanoflowers: Water-required synthesis and their application in a nonenzymatic glucose biosensor. Phys. Chem. Chem. Phys. 15, 10904–10913. https://doi.org/10.1039/c3cp50922b 130. Sun, Y., Fox, N.A., Riley, D.J., Ashfold, M.N.R., 2008. Hydrothermal growth of ZnO nanorods aligned parallel to the substrate surface. J. Phys. Chem. C. 112, 9234–9239. https://doi.org/10.1021/jp8019107 131. Sun, Yan, Su, Zhang, J., Liao, Yin, 2002. Control of ZnO Morphology via a Simple Solution Route. Chem. Mater. 14, 4172–4177. https://doi.org/10.1021/cm020077h 132. Sun, Z., Kim, J.H., Zhao, Y., Bijarbooneh, F., Malgras, V., Lee, Y., Kang, Y., Dou, S.X., 2011. Rational Design of 3D Dendritic TiO2 Nanostructures with Favorable architectures. J. Am. Chem. Soc. 133, 19314–19317. https://doi.org/10.1021/ja208468d 133. Sunagawa, I., 1999. Growth and morphology of quasicrystals. Phase Transitions. 14, 69–79. https://doi.org/10.1080/01411599308210261 134. Tao, T., Chen, Y., Chen, Y., Fox, D., Zhang, H., Zhou, M., Raveggi, M., Barlow, A. J., Glushenkov, A.M., 2016. Two-dimensional metal oxide nanoflower-like architectures: a general growth method and their applications in energy storage and as model materials for nanofabrication. Chempluschem. 82, 295-302. https://doi.org/ 10.1002/cplu.201600463 135. Teja, A.S., Koh, P., 2009. Synthesis , properties , and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45. https://doi.org/10.1016/j.pcrysgrow.2008.08.003 136. Tian, L., Wang, J., Wang, K., Wo, H., Wang, X., Zhuang, W., Li, T., Du, X., 2019. Carbon-quantum-dots-embedded MnO2 nanoflower as an efficient electrocatalyst for oxygen evolution in alkaline media. Carbon N. Y. 143, 457–466. https://doi.org/10.1016/j.carbon.2018.11.041 137. Tiwari, J.N., Tiwari, R.N., Kim, K.S., 2012. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 57, 724–803. https://doi.org/10.1016/j.pmatsci.2011.08.003 138. Viswanatha, R., Chakraborty, S., Basu, S., Sarma, D.D., 2006. Blue-emitting copper-doped zinc oxide nanocrystals. J. Phys. Chem. B. 110, 22310–22312. https://doi.org/10.1021/jp065384f 139. Wang, D., Kang, Y., Ye, X., Murray, C.B., 2014. Mineralizer-assisted shape-control of rare earth oxide nanoplates. Chem. Mater. 26, 6328–6332. https://doi.org/10.1021/cm502301u 140. Wang, G.-H., Li, W.-C., Jia, K.-M., Lu, A.-H., Feyen, M., Spliethoff, B., Schüth, F., 2011. A facile synthesis of shape- and size-controlled α-Fe2O3 nanoparticles through hydrothermal method. Nano. 6, 469–479. https://doi.org/10.1142/s1793292011002846 141. Wang, T., Costan, J., Centeno, A., Pang, J.S., Darvill, D., Ryan, M.P., Xie, F., 2015. Broadband enhanced fluorescence using zinc-oxide nanoflower arrays. J. Mater. Chem. C. 3, 2656–2663. https://doi.org/10.1039/c4tc02751e 142. Wang, X.F., Xu, J.J., Chen, H.Y., 2008. Dendritic CdO nanomaterials prepared by electrochemical deposition and their electrogenerated chemilumineseence behaviors in aqueous systems. J. Phys. Chem. C. 112, 7151–7157. https://doi.org/10.1021/jp711093z 143. Watt, J., Cheong, S., Tilley, R.D., 2013. How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis. Nano Today. 8, 198–215. https://doi.org/10.1016/j.nantod.2013.03.001 144. Wen, B., Huang, Y., Boland, J.J., 2008. Controllable growth of ZnO nanostructures by a simple solvothermal process. J. Phys. Chem. C. 112, 106–111. https://doi.org/10.1021/jp076789i 145. Wisitsoraat, A., Pimtara, I., Phokharatkul, D., Jaruwongrangsee, K., Tuantranont, A., 2010. Zinc Oxide Nanopolypods Synthesized by Thermal Evaporation of Carbon Nanotubes and Zinc Oxide Mixed Powder. Curr. Nanosci. 6, 45–53. https://doi.org/10.2174/157341310790226315 146. Wu, H. Bin, Pan, A., Hng, H.H., Lou, X.W., 2013. Template-assisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 23, 5669–5674. https://doi.org/10.1002/adfm.201300976 147. Wu, H., Wang, L., 2014. Applied Surface Science Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Appl. Surf. Sci. 288, 398–404. https://doi.org/10.1016/j.apsusc.2013.10.046 148. Wu, N., Du, W., Liu, G., Zhou, Z., Fu, H.R., Tang, Q., Liu, X., He, Y.B., 2017. Synthesis of Hierarchical Sisal-Like V2O5 with Exposed Stable {001} Facets as Long Life Cathode Materials for Advanced Lithium-Ion Batteries. ACS Appl. Mater. Interfaces. 9, 43681–43687. https://doi.org/10.1021/acsami.7b13944 149. Wu, Y., Xi, Z., Zhang, G., Zhang, J., Guo, D., 2008. Fabrication of Hierarchical Zinc Oxide Nanostructures through multistage gas-phase reaction. Cryst. Growth Des. 8, 2646-2651. https://doi.org/ 10.1021/cg0702611 150. Xi-Guang, H., Ming-Shang, J., Qin, K., Xi, Z., Zhao-Xiong, X., Lan-Sun, Z., 2009. Directional etching formation of single-crystalline branched nanostructures: A case of six-horn-like manganese oxide. J. Phys. Chem. C. 113, 2867–2872. https://doi.org/10.1021/jp8092836 151. Xie, J., Wu, Q., Zhang, D., Ding, Y., 2009. Biomolecular-induced synthesis of self-assembled hierarchical La(OH)CO3 one-dimensional nanostructures and its morphology-held conversion toward La2O3 and La(OH)3. Cryst. Growth Des. 9, 3889–3897. https://doi.org/10.1021/cg801053p 152. Xu, C.X., Sun, X.W., 2005. Multipod zinc oxide nanowhiskers. J. Cryst. Growth. 277, 330–334. https://doi.org/10.1016/j.jcrysgro.2005.01.052 153. Xu, X., Liu, Z., Zuo, Z., Zhang, M., Zhao, Z., Shen, Y., Zhou, H., Chen, Q., Yang, Y., Wang, M., 2015. Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Lett. 15, 2402–2408. https://doi.org/10.1021/nl504701y 154. Xue, X.Y., Chen, Z.H., Xing, L.L., Ma, C.H., Chen, Y.J., Wang, T.H., 2010. Enhanced optical and sensing properties of one-step synthesized Pt-ZnO nanoflowers. J. Phys. Chem. C. 114, 18607–18611. https://doi.org/10.1021/jp1070067 155. Yan, B., Wang, Y., Jiang, T., Wu, X., 2016. Fabrication of snowflake-like CuO nanostructure via electrodeposition method and its properties. J. Mater. Sci. Mater. Electron. 27, 4035–4042. https://doi.org/10.1007/s10854-015-4258-7 156. Yan, C., Xue, D., 2006. General, spontaneous ion replacement reaction for the synthesis of micro- and nanostructured metal oxides. J. Phys. Chem. B. 110, 1581–1586. https://doi.org/10.1021/jp056373+ 157. Yang, D., Liu, H., Zheng, Z., Yuan, Y., Zhao, J., 2009. An Efficient Photocatalyst Structure : TiO2 (B) Nanofibers with a Shell of Anatase Nanocrystals. J. Am. Chem. Soc. 2, 17885–17893. https://doi.org/10.1021/acs.jpcc.6b08842 158. Yan, F., Huang, L., Zheng, J., Huang, J., Lin, Z., Huang, F., Wei, M., 2010. Effect of surface etching on the efficiency of ZnO-based dye-sensitized solar cells. Langmuir. 26, 7153–7156. https://doi.org/10.1021/la904238n 159. Yan, X., Li, Z., Zou, C., Li, S., Yang, J., Chen, R., Han, J., Gao, W., 2010. Renucleation and sequential growth of ZnO complex nano/microstructure: From nano/microrod to ball-shaped cluster. J. Phys. Chem. C. 114, 1436–1443. https://doi.org/10.1021/jp908101z 160. Yang, T., Gordon, Z.D., Chan, C.K., 2013. Synthesis of hyperbranched perovskite nanostructures. Cryst. Growth Des. 13, 3901–3907. https://doi.org/10.1021/cg4005483 161. Yang, X., Zhuang, J., Li, X., Chen, D., Ouyang, G., Mao, Z., Han, Y., He, Z., Liang, C., Wu, M., Yu, J.C., 2009. Hierarchically nanostructured rutile arrays: Acid vapor oxidation growth and tunable morphologies. ACS Nano. 3, 1212–1218. https://doi.org/10.1021/nn900084e 162. Yang, Y., Tian, C., Wang, J., Sun, L., Shi, K., Zhou, W., Fu, H., 2014. Facile synthesis of novel 3D nanoflower-like CuxO/multilayer graphene composites for room temperature NOx gas sensor application. Nanoscale. 6, 7369–7378. https://doi.org/10.1039/c4nr00196f 163. Yao, H., Ma, J., Mu, Y., Chen, Y., Su, S., Lv, P., Zhang, X., Ding, D., Fu, W., Yang, H., 2015. Hierarchical TiO2 nanoflowers/nanosheets array film: Synthesis, growth mechanism and enhanced photoelectrochemical properties. RSC Adv. 5, 6429–6436. https://doi.org/10.1039/c4ra12245c 164. Yuan, J., Li, W., Gomez, S., Suib, S.L., 2005. Shape-Controlled Synthesis of Manganese Oxide Octahedral Molecular Sieve Three-Dimensional Nanostructures. J. Am. Che. 127, 14184–14185. https://doi.org/ 10.1021/ja053463j 165. Zeng, H., Liu, P., Cai, W., Cao, X., Yang, S., 2007. Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission. Cryst. Growth Des. 7, 1092–1097. https://doi.org/10.1021/cg0607147 166. Zhang, B., Lu, L., Hu, Q., Huang, F., Lin, Z., 2014. ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens. Bioelectron. 56, 243–249. https://doi.org/10.1016/j.bios.2014.01.026 167. Zhang, H., Cao, G., Wang, Z., Yang, Y., Shi, Z., Gu, Z., 2008. Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. Nano Lett. 8, 2664–2668. https://doi.org/10.1021/nl800925j 168. Zhang, H., Duan, G., Li, Y., Xu, X., Dai, Z., Cai, W., 2012. Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging. Cryst. Growth Des. 12, 2646–2652. https://doi.org/10.1021/cg300226r 169. Zhang, J., Sun, L.D., Jiang, X.C., Liao, C.S., Yan, C.H., 2004. Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system. Cryst. Growth Des. 4, 309–313. https://doi.org/10.1021/cg034142r 170. Zhang, L.C., Liu, Z.H., Lv, H., Tang, X., Ooi, K., 2007. Shape-controllable synthesis and electrochemical properties of nanostructured manganese oxides. J. Phys. Chem. C. 111, 8418–8423. https://doi.org/10.1021/jp070982v 171. Zhang, X., Sui, C., Gong, J., Su, Z., Qu, L., 2007. Preparation and formation mechanism of different α-Fe2O3 morphologies from snowflake to paired microplates, dumbbell, and spindle microstructures. J. Phys. Chem. C. 111, 9049–9054. https://doi.org/10.1021/jp0688310 172. Zhang, Y., Zhong, X., Zhu, J., Song, X., 2007. Alcoholysis route to monodisperse CoO nanotetrapods with tunable size. Nanotechnology. 18, 1-6. https://doi.org/10.1088/0957-4484/18/19/195605 173. Zhang, Y., Zhu, J., Song, X., Zhong, X., 2008. Controlling the synthesis of CoO nanocrystals with various morphologies. J. Phys. Chem. C. 112, 5322–5327. https://doi.org/10.1021/jp709943x 174. Zhao, C., E., Y., Fan, L., 2012. Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite. Microchim. Acta. 178, 107–114. https://doi.org/10.1007/s00604-012-0818-1 175. Zhao, H.Y., Wang, Y.F., Zeng, J.H., 2008. Hydrothermal synthesis of uniform cuprous oxide microcrystals with controlled morphology. Cryst. Growth Des. 8, 3731–3734. https://doi.org/10.1021/cg8003678 176. Zheng, D., Yin, Z., Zhang, W., Tan, X., Sun, S., 2006. Novel branched γ-MnOOH and β-MnO2 multiped nanostructures. Cryst. Growth Des. 6, 1733–1735. https://doi.org/10.1021/cg060223m 177. Zhou, M., Zhang, X., Wei, J., Zhao, S., Wang, L., Feng, B., 2011. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C. 115, 1398–1402. https://doi.org/10.1021/jp106652x 178. Zhou, W.Y., Zhang, X.X., Zhao, D., Gao, M., Xie, S.S., 2013. ZnO nanorods: Morphology control, optical properties, and nanodevice applications. Sci. China Physics, Mech. Astron. 56, 2243–2265. https://doi.org/10.1007/s11433-013-5350-8 179. Zhou, Z., Zhu, X., Wu, D., Chen, Q., Huang, D., Sun, C., Xin, J., Ni, K., Gao, J., 2015. Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chem. Mater. 27, 3505–3515. https://doi.org/10.1021/acs.chemmater.5b00944 180. Zhu, P., Zhang, J., Wu, Z., Zhang, Z., 2008. Microwave-assisted synthesis of various ZnO hierarchical nanostructures: Effects of heating parameters of microwave oven. Cryst. Growth Des. 8, 3148–3153. https://doi.org/10.1021/cg0704504 181. Zhu, Z., Li, X., Zeng, Y., Sun, W., Zhu, W., Huang, X., 2011. Application of cobalt oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with ionic liquid as enhancer. J. Phys. Chem. C. 115, 12547–12553. https://doi.org/10.1021/jp202500n 182. Zitoun, D., Pinna, N., Frolet, N., Belin, C., 2005. Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 127, 15034–15035. https://doi.org/10.1021/ja0555926 183. Zou, G., Xiong, K., Jiang, C., Li, H., Li, T., Du, J., Qian, Y., 2005. Fe3O4 Nanocrystrals with Novel Fractal. J.Phys. Chem. B. 109, 18356-18360. https://doi.org/10.1088/1674-1056/22/4/047505 184. Zou, J., Song, W., Xie, W., Huang, B., Yang, H., Luo, Z., 2018. A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection. Nanotechnology. 29, 1-10. https://doi.org/10.1088/1361-6528/aaa72bORIGINAL1013600812.2020.pdf1013600812.2020.pdfapplication/pdf9606818https://repositorio.unal.edu.co/bitstream/unal/75512/1/1013600812.2020.pdf6342331b3465572bb70e5ac356b173b2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/75512/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/75512/3/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD53THUMBNAIL1013600812.2020.pdf.jpg1013600812.2020.pdf.jpgGenerated Thumbnailimage/jpeg4795https://repositorio.unal.edu.co/bitstream/unal/75512/4/1013600812.2020.pdf.jpg1454c8ec4564591f9423de3d0ac39975MD54unal/75512oai:repositorio.unal.edu.co:unal/755122023-03-09 23:10:57.099Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |