Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo
ilustraciones, gráficas, tablas
- Autores:
-
López González, David Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80620
- Palabra clave:
- 570 - Biología::572 - Bioquímica
Oncogenes
Metilación de ADN
Receptor IGF Tipo 2
Oncogenes
DNA Methylation
Receptor, IGF Type 2
Cáncer
Metilación del DNA
Placenta
Factor de crecimiento
Epigenética
Cancer
IGF signaling system
Epigenetics
Genomic instability
Genic expression
Malignant transformation
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_1abc612225c87985c86faab72eecdeb0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80620 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
dc.title.translated.eng.fl_str_mv |
Effect of IGF2 on the DNA methylation landscape and associated mRNA expression in HTR-8/SVneo cell line |
title |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
spellingShingle |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo 570 - Biología::572 - Bioquímica Oncogenes Metilación de ADN Receptor IGF Tipo 2 Oncogenes DNA Methylation Receptor, IGF Type 2 Cáncer Metilación del DNA Placenta Factor de crecimiento Epigenética Cancer IGF signaling system Epigenetics Genomic instability Genic expression Malignant transformation |
title_short |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
title_full |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
title_fullStr |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
title_full_unstemmed |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
title_sort |
Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo |
dc.creator.fl_str_mv |
López González, David Alejandro |
dc.contributor.advisor.spa.fl_str_mv |
Umaña Pérez, Yadi Adriana |
dc.contributor.author.spa.fl_str_mv |
López González, David Alejandro |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Hormonas |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica |
topic |
570 - Biología::572 - Bioquímica Oncogenes Metilación de ADN Receptor IGF Tipo 2 Oncogenes DNA Methylation Receptor, IGF Type 2 Cáncer Metilación del DNA Placenta Factor de crecimiento Epigenética Cancer IGF signaling system Epigenetics Genomic instability Genic expression Malignant transformation |
dc.subject.decs.spa.fl_str_mv |
Oncogenes Metilación de ADN Receptor IGF Tipo 2 |
dc.subject.decs.eng.fl_str_mv |
Oncogenes DNA Methylation Receptor, IGF Type 2 |
dc.subject.proposal.spa.fl_str_mv |
Cáncer Metilación del DNA Placenta Factor de crecimiento Epigenética |
dc.subject.proposal.eng.fl_str_mv |
Cancer IGF signaling system Epigenetics Genomic instability Genic expression Malignant transformation |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-27T14:11:50Z |
dc.date.available.none.fl_str_mv |
2021-10-27T14:11:50Z |
dc.date.issued.none.fl_str_mv |
2021-07-28 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80620 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80620 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Burrows, T. D., King, A., and Loke, Y. W. (1996) Trophoblast migration during human placental implantation Jauniaux, E., Moffett, A., and Burton, G. J. (2020) Placental Implantation Disorders. Obstet. Gynecol. Clin. North Am. 47, 117–132 Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., and Bellet, D. (2007) Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update. 13, 121–141 De La Chapelle, A. (2004) Genetic predisposition to colorectal cancer. Nat. Rev. Cancer. 4, 769–780 Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J., and Lydon, N. B. (1996) Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells. Nat. Med. 2, 561–566 Lynch, J. P., and Hoops, T. C. (2002) The genetic pathogenesis of colorectal cancer. Hematol. Oncol. Clin. North Am. 16, 775–810 Fearon, E. R., and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell. 61, 759–767 Jung, G., Hernández-Illán, E., Moreira, L., Balaguer, F., and Goel, A. (2020) Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111–130 Tubiana, M. (2009) To cite this article: Maurice Tubiana (1989) Tumor Cell Proliferation Kinetics and Tumor Growth Rate. Acta Oncol. (Madr). 28, 113–121 Moore, L. D., Le, T., and Fan, G. (2013) DNA Methylation and Its Basic Function. Neuropsychopharmacology. 38, 23–38 Smith, Z. D., and Meissner, A. (2013) DNA methylation : roles in mammalian development. Nat. Rev. Genet. 14, 204–220 Lewis, J., and Bird, A. (1991) DNA methylation and chromatin structure. FEBS Lett. 285, 155–159 Ng, H.-H., and Adrian, B. (1999) DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163 Feinberg, A. P., and Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer. 4, 143–153 Eden, A. (2003) Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science (80-. ). 300, 455–455 Ehrlich, M. (2009) DNA hypomethylation in cancer cells. Epigenomics. 1, 239–259 Wilson, A. S., Power, B. E., and Molloy, P. L. (2007) DNA hypomethylation and human diseases. Biochim. Biophys. Acta - Rev. Cancer. 1775, 138–162 Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., and Feinberg, A. P. (1993) Relaxation of imprinted genes in human cancer. Nature. 362, 747–749 Paksa, A., and Rajagopal, J. (2017) The epigenetic basis of cellular plasticity. Curr. Opin. Cell Biol. 49, 116–122 Smith, Z. D., Shi, J., Gu, H., Donaghey, J., Clement, K., Cacchiarelli, D., Gnirke, A., Michor, F., and Meissner, A. (2017) Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature. 549, 543–547 Witsch, E., Sela, M., and Yarden, Y. (2010) Roles for Growth Factors in Cancer Progression. Physiology. 25, 85–101 Guzeloglu-Kayisli, O., Kayisli, U., and Taylor, H. (2009) The Role of Growth Factors and Cytokines during Implantation: Endocrine and Paracrine Interactions. Semin. Reprod. Med. 27, 062–079 Weroha, S. J., and Haluska, P. (2012) The Insulin-Like Growth Factor System in Cancer. Endocrinol. Metab. Clin. North Am. 41, 335–350 Bowman, C. J., Streck, R. D., and Chapin, R. E. (2010) Maternal-placental insulin-like growth factor (IGF) signaling and its importance to normal embryo-fetal development. Birth Defects Res. Part B - Dev. Reprod. Toxicol. 89, 339–349 Constância, M., Hemberger, M., Hughes, J., Dean, W., Ferguson-Smith, A., Fundele, R., Stewart, F., Kelsey, G., Fowden, A., Sibley, C., and Reik, W. (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 417, 945–948 Chao, W., and D’Amore, P. A. (2008) IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19, 111–120 Ogawa, O., Eccles, M. R., Szeto, J., McNoe, L. A., Yun, K., Maw, M. A., Smith, P. J., and Reeve, A. E. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 362, 749–751 Xu, W., Fan, H., He, X., Zhang, J., and Xie, W. (2006) LOI of IGF2 is associated with esophageal cancer and linked to methylation status of IGF2 DMR. J. Exp. Clin. Cancer Res. 25, 543—547 Murphy, S. K. (2006) Frequent IGF2/H19 Domain Epigenetic Alterations and Elevated IGF2 Expression in Epithelial Ovarian Cancer. Mol. Cancer Res. 4, 283–292 Byun, H.-M., Wong, H.-L., Birnstein, E. A., Wolff, E. M., Liang, G., and Yang, A. S. (2007) Examination of IGF2 and H19 Loss of Imprinting in Bladder Cancer. Cancer Res. 67, 10753–10758 Cui, H. (2003) Loss of IGF2 Imprinting: A Potential Marker of Colorectal Cancer Risk. Science (80-. ). 299, 1753–1755 Lala, P. K., Lee, B. P., Xu, G., and Chakraborty, C. (2002) Human placental trophoblast as an in vitro model for tumor progression. Can. J. Physiol. Pharmacol. 80, 142–149 Hannan, N. J., Paiva, P., Dimitriadis, E., and Salamonsen, L. A. (2010) Models for Study of Human Embryo Implantation: Choice of Cell Lines? Biol. Reprod. 82, 235–245 Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., and Lala, P. K. (1993) Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211 Zhang, W., Klinkebiel, D., Barger, C. J., Pandey, S., Guda, C., Miller, A., Akers, S. N., Odunsi, K., and Karpf, A. R. (2020) Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability. Cancers (Basel). 12, 764 Sheaffer, K. L., Elliott, E. N., and Kaestner, K. H. (2016) DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev. Res. 9, 534–546 Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R. (2003) Induction of tumors in mice by genomic hypomethylation. Science (80-. ). 300, 489–492 Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., Yoshida, T., and Sasaki, H. (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res. 65, 2115–2124 Sato, N., and Goggins, M. (2006) The role of epigenetic alterations in pancreatic cancer. J. Hepatobiliary. Pancreat. Surg. 13, 286–295 Pogribny, I. P., and Beland, F. A. (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell. Mol. Life Sci. 66, 2249–2261 Guo, S. X., Taki, T., Ohnishi, H., Piao, H. Y., Tabuchi, K., Bessho, F., Hanada, R., Yanagisawa, M., and Hayashi, Y. (2000) Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk. Res. 24, 39–46 Zhang, J. C., Gao, B., Yu, Z. T., Liu, X. B., Lu, J., Xie, F., Luo, H. J., and Li, H. P. (2014) Promoter hypermethylation of p14 ARF, RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection. Tumor Biol. 35, 2795–2802 Yeh, K. T., Chang, J. G., Lin, T. H., Wang, Y. F., Tien, N., Chang, J. Y., Chen, J. C., and Shih, M. C. (2003) Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol. Rep. 10, 659–663 Silva, A. L., Dawson, S. N., Arends, M. J., Guttula, K., Hall, N., Cameron, E. A., Huang, T. H. M., Brenton, J. D., Tavaré, S., Bienz, M., and Ibrahim, A. E. K. (2014) Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer. 14, 891 Hou, Y., Chen, K., Liao, R., Li, Y., Yang, H., and Gong, J. (2021) LINC01419-mediated epigenetic silencing of ZIC1 promotes metastasis in hepatocellular carcinoma through the PI3K/Akt signaling pathway. Lab. Investig. 10.1038/s41374-021-00539-z Ju, J., Chen, A., Deng, Y., Liu, M., Wang, Y., Wang, Y., Nie, M., Wang, C., Ding, H., Yao, B., Gui, T., Li, X., Xu, Z., Ma, C., Song, Y., Kvansakul, M., Zen, K., Zhang, C.-Y., Luo, C., Fang, M., Huang, D. C. S., Allis, C. D., Tan, R., Zeng, C. K., Wei, J., and Zhao, Q. (2017) NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat. Commun. 8, 928 Yusufova, N., Kloetgen, A., Teater, M., Osunsade, A., Camarillo, J. M., Chin, C. R., Doane, A. S., Venters, B. J., Portillo-Ledesma, S., Conway, J., Phillip, J. M., Elemento, O., Scott, D. W., Béguelin, W., Licht, J. D., Kelleher, N. L., Staudt, L. M., Skoultchi, A. I., Keogh, M.-C., Apostolou, E., Mason, C. E., Imielinski, M., Schlick, T., David, Y., Tsirigos, A., Allis, C. D., Soshnev, A. A., Cesarman, E., and Melnick, A. M. (2021) Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature. 589, 299–305 Li, J., Galbo, P. M., Gong, W., Storey, A. J., Tsai, Y.-H., Yu, X., Ahn, J. H., Guo, Y., Mackintosh, S. G., Edmondson, R. D., Byrum, S. D., Farrar, J. E., He, S., Cai, L., Jin, J., Tackett, A. J., Zheng, D., and Wang, G. G. (2021) ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat. Commun. 12, 1045 Silva-Fisher, J. M., Dang, H. X., White, N. M., Strand, M. S., Krasnick, B. A., Rozycki, E. B., Jeffers, G. G. L., Grossman, J. G., Highkin, M. K., Tang, C., Cabanski, C. R., Eteleeb, A., Mudd, J., Goedegebuure, S. P., Luo, J., Mardis, E. R., Wilson, R. K., Ley, T. J., Lockhart, A. C., Fields, R. C., and Maher, C. A. (2020) Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat. Commun. 11, 2156 Klutstein, M., Nejman, D., Greenfield, R., and Cedar, H. (2016) DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450 Saghafinia, S., Mina, M., Riggi, N., Hanahan, D., and Ciriello, G. (2018) Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep. 25, 1066-1080.e8 Ahmed, M., Soares, F., Xia, J.-H., Yang, Y., Li, J., Guo, H., Su, P., Tian, Y., Lee, H. J., Wang, M., Akhtar, N., Houlahan, K. E., Bosch, A., Zhou, S., Mazrooei, P., Hua, J. T., Chen, S., Petricca, J., Zeng, Y., Davies, A., Fraser, M., Quigley, D. A., Feng, F. Y., Boutros, P. C., Lupien, M., Zoubeidi, A., Wang, L., Walsh, M. J., Wang, T., Ren, S., Wei, G.-H., and He, H. H. (2021) CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat. Commun. 12, 19 Ando, M., Saito, Y., Xu, G., Bui, N. Q., Medetgul-Ernar, K., Pu, M., Fisch, K., Ren, S., Sakai, A., Fukusumi, T., Liu, C., Haft, S., Pang, J., Mark, A., Gaykalova, D. A., Guo, T., Favorov, A. V., Yegnasubramanian, S., Fertig, E. J., Ha, P., Tamayo, P., Yamasoba, T., Ideker, T., Messer, K., and Califano, J. A. (2019) Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat. Commun. 10, 2188 Ulrey, C. L., Liu, L., Andrews, L. G., and Tollefsbol, T. O. (2005) The impact of metabolism on DNA methylation. Hum. Mol. Genet. 14, R139–R147 Mehrmohamadi, M., Mentch, L. K., Clark, A. G., and Locasale, J. W. (2016) Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nat. Commun. 7, 1–13 Cuyàs, E., Fernández-Arroyo, S., Verdura, S., García, R. Á. F., Stursa, J., Werner, L., Blanco-González, E., Montes-Bayón, M., Joven, J., Viollet, B., Neuzil, J., and Menendez, J. A. (2018) Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene. 37, 963–970 Ali, A., Sina, I., Carrascosa, L. G., Liang, Z., Grewal, Y. S., Wardiana, A., Shiddiky, M. J. A., Gardiner, R. A., Samaratunga, H., Gandhi, M. K., Scott, R. J., Korbie, D., and Trau, M. (2018) Epigenetically reprogrammed methylation serves as a universal cancer biomarker. Nat. Commun. 10.1038/s41467-018-07214-w Bates, S. E. (2020) Epigenetic Therapies for Cancer. N. Engl. J. Med. 383, 650–663 Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., Han, J., and Wei, X. (2019) Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 1–39 Jones, P. A., Ohtani, H., Chakravarthy, A., and De Carvalho, D. D. (2019) Epigenetic therapy in immune-oncology. Nat. Rev. Cancer. 19, 151–161 Bronchud, M. H., Tresserra, F., and Zantop, B. S. (2018) Epigenetic changes found in uterine decidual and placental tissues can also be found in the breast cancer microenvironment of the same unique patient: description and potential interpretations. Oncotarget. 9, 6028–6041 Tai, B.-J., Yao, M., Zheng, W.-J., Shen, Y.-C., Wang, L., Sun, J.-Y., Wu, M.-N., Dong, Z.-Z., and Yao, D.-F. (2019) Alteration of oncogenic IGF-II gene methylation status associates with hepatocyte malignant transformation. Hepatobiliary Pancreat. Dis. Int. 18, 158–163 Malik, A., Pal, R., and Gupta, S. K. (2020) EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci. Rep. 10, 12274 Malik, A., Pal, R., and Gupta, S. K. (2017) Interdependence of JAK-STAT and MAPK signaling pathways during EGF-mediated HTR-8/SVneo cell invasion. PLoS One. 12, e0178269 Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., and Salomon, D. S. (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 366, 2–16 Wen, Z., Chen, Y., Long, Y., Yu, J., and Li, M. (2018) Tumor necrosis factor-alpha suppresses the invasion of HTR-8/SVneo trophoblast cells through microRNA-145-5p-mediated downregulation of Cyr61. Life Sci. 209, 132–139 Cabezas-Perez, R., Vallejo-Pulido, A., Freyre-Bernal, S., Umaña-Perez, A., and Sanchez-Gomez, M. (2011) IGF-II y la Gonadotropina Coriónica regulan la proliferación, migración e invasión de células de trofoblasto humano. Acta Biol. Colomb. 16, 143–152 Sánchez-gómez, M. (2014) Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc. 38(Supl.), 118–28 Espelund, U., Cold, S., Frystyk, J., Ørskov, H., and Flyvbjerg, A. (2008) Elevated free IGF2 levels in localized, early-stage breast cancer in women. Eur. J. Endocrinol. 159, 595–601 Wu, L.-P., Wang, N.-C., Chang, Y.-H., Tian, X.-Y., Na, D.-Y., Zhang, L.-Y., Zheng, L., Lan, T., Wang, L.-F., and Liang, G.-D. (2007) Duration of Antibody Responses after Severe Acute Respiratory Syndrome. Emerg. Infect. Dis. 13, 1562–1564 Tian, D., Mitchell, I., and Kreeger, P. K. (2015) Quantitative analysis of insulin-like growth factor 2 receptor and insulin-like growth factor binding proteins to identify control mechanisms for insulin-like growth factor 1 receptor phosphorylation. BMC Syst. Biol. 10, 15 Kushlinskii, N. E., Gershtein, E. S., Nikolaev, A. A., Delektorskaya, V. V., Korotkova, E. A., Dvorova, E. K., and Kostyleva, O. I. (2014) Insulin-like growth factors (IGF), IGF-binding proteins (IGFBP), and vascular endothelial growth factor (VEGF) in blood serum of patients with colorectal cancer. Bull. Exp. Biol. Med. 156, 684–688 Novoa-herrán, S. S., and Sánchez de Gómez, M. (2011) El IGF-II estimula la actividad de MMP-9 y MMP-2 en un modelo de trofoblasto humano. Acta Biológica Colomb. 16, 121–131 Freyre Bernal, S. I. (2010) Papel del Sistema de Factores de Crecimiento Similares a la Insulina (IGF) en la Regulacion y Diferenciación Trofoblastica. Ph.D. thesis, Universidad Nacional de Colombia Cabezas Pérez, R. J. (2010) Implicaciones del factor de crecimiento similar a la insulina tipo II (IGF-II) en el desarrollo de la enfermedad trofoblástica gestacional. Ph.D. thesis, Universidad Nacional de Colombia Harris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., and Westwood, M. (2011) IGF2 Actions on Trophoblast in Human Placenta Are Regulated by the Insulin-Like Growth Factor 2 Receptor, Which Can Function as Both a Signaling and Clearance Receptor1. Biol. Reprod. 84, 440–446 McKinnon, T., Chakraborty, C., Gleeson, L. M., Chidiac, P., and Lala, P. K. (2001) Stimulation of Human Extravillous Trophoblast Involving Inhibitory G Protein ( s ) and Phosphorylation. J. Clin. Endocrinol. Metab. 86, 3665–3674 Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. (2006) The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 1–14 Zhang, X., and Jonassen, I. (2020) RASflow: An RNA-Seq analysis workflow with Snakemake. BMC Bioinformatics. 21, 110 Andrews, S. (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data [Online] Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 10.1186/s13059-014-0550-8 Moran, S., Arribas, C., and Esteller, M. (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 8, 389–399 Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P., Van Djik, S., Muhlhausler, B., Stirzaker, C., and Clark, S. J. (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208 Müller, F., Scherer, M., Assenov, Y., Lutsik, P., Walter, J., Lengauer, T., and Bock, C. (2019) RnBeads 2.0: Comprehensive analysis of DNA methylation data. Genome Biol. 20, 55 Perrier, F., Novoloaca, A., Ambatipudi, S., Baglietto, L., Ghantous, A., Perduca, V., Barrdahl, M., Harlid, S., Ong, K. K., Cardona, A., Polidoro, S., Nøst, T. H., Overvad, K., Omichessan, H., Dollé, M., Bamia, C., Huerta, J. M., Vineis, P., Herceg, Z., Romieu, I., and Ferrari, P. (2018) Identifying and correcting epigenetics measurements for systematic sources of variation. Clin. Epigenetics. 10, 38 McCartney, D. L., Walker, R. M., Morris, S. W., McIntosh, A. M., Porteous, D. J., and Evans, K. L. (2016) Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genomics Data. 9, 22–24 AE, T., F, M., M, L., T, B., J, T., D, G.-C., and S, B. (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 29, 189–196 Du, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., and Lin, S. M. (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 11, 587 Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 Illumina Illumina MethylationEPIC Manifiest file Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., and Ma’ayan, A. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 Gebäck, T., Schulz, M. M. P., Koumoutsakos, P., and Detmar, M. (2018) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. https://doi.org/10.2144/000113083. 46, 265–274 Forbes, K., Westwood, M., Baker, P. N., and Aplin, J. D. (2008) Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am. J. Physiol. Physiol. 294, C1313–C1322 Umana-Perez, A., Novoa-Herran, S., Castro, J., Correa-Sanchez, A., Guevara, V., Lopez-Gonzalez, D., and Sanchez-Gomez, M. (2020) Role of the Insulin-like growth factor axis and the Transforming growth factor-β in the regulation of the placenta and the pathogenesis of Gestational Trophoblastic Diseases. Med. Res. Arch. 10.18103/mra.v8i10.2247 Li, E., and Zhang, Y. (2014) DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 10.1101/cshperspect.a019133 Lowdon, R. F., Jang, H. S., and Wang, T. (2016) Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet. 32, 269–283 Zhang, X., and Ho, S. M. (2011) Epigenetics meets endocrinology. J. Mol. Endocrinol. 46, R11 Houshdaran, S., Oke, A. B., Fung, J. C., Vo, K. C., Nezhat, C., and Giudice, L. C. (2020) Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 16, e1008601 Li, J.-Y., Pu, M.-T., Hirasawa, R., Li, B.-Z., Huang, Y.-N., Zeng, R., Jing, N.-H., Chen, T., Li, E., Sasaki, H., and Xu, G.-L. (2007) Synergistic Function of DNA Methyltransferases Dnmt3a and Dnmt3b in the Methylation of Oct4 and Nanog. Mol. Cell. Biol. 27, 8748–8759 Wang, G., Weng, R., Lan, Y., Guo, X., Liu, Q., Liu, X., Lu, C., and Kang, J. (2017) Synergetic effects of DNA methylation and histone modification during mouse induced pluripotent stem cell generation. Sci. Rep. 7, 1–12 Rountree, M. R., Bachman, K. E., Herman, J. G., and Baylin, S. B. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene. 20, 3156–3165 Varley, K. E., Gertz, J., Bowling, K. M., Parker, S. L., Reddy, T. E., Pauli-Behn, F., Cross, M. K., Williams, B. A., Stamatoyannopoulos, J. A., Crawford, G. E., Absher, D. M., Wold, B. J., and Myers, R. M. (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555–567 Blake, L. E., Roux, J., Hernando-Herraez, I., Banovich, N. E., Perez, R. G., Hsiao, C. J., Eres, I., Cuevas, C., Marques-Bonet, T., and Gilad, Y. (2020) A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res. 30, 250–262 Nordor, A. V., Nehar-Belaid, D., Richon, S., Klatzmann, D., Bellet, D., Dangles-Marie, V., Fournier, T., and Aryee, M. J. (2017) The early pregnancy placenta foreshadows DNA methylation alterations of solid tumors. Epigenetics. 12, 793–803 Schmit, K., and Michiels, C. (2018) TMEM Proteins in Cancer: A Review. Front. Pharmacol. 9, 1345 Abu-Odeh, M., Bar-Mag, T., Huang, H., Kim, T. H., Salah, Z., Abdeen, S. K., Sudol, M., Reichmann, D., Sidhu, S., Kim, P. M., and Aqeilan, R. I. (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J. Biol. Chem. 289, 8865–8880 Ludes-Meyers, J. H., Kil, H., Bednarek, A. K., Drake, J., Bedford, M. T., and Aldaz, C. M. (2004) WWOX binds the specific proline-rich ligand PPXY: Identification of candidate interacting proteins. Oncogene. 23, 5049–5055 Zhou, J. G., Zhao, H. T., Jin, S. H., Tian, X., and Ma, H. (2019) Identification of a RNA-seq-based signature to improve prognostics for uterine sarcoma. Gynecol. Oncol. 155, 499–507 Zhang, X., Liu, B., Zhang, J., Yang, X., Zhang, G., Yang, S., Wang, J., Shi, J., Hu, K., Wang, J., Jing, H., Ke, X., and Fu, L. (2019) Expression level of ACOT7 influences the prognosis in acute myeloid leukemia patients. Cancer Biomarkers. 26, 441–449 Feng, H., and Liu, X. (2020) Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Med. J. 61, 471–481 Natunen, T., Helisalmi, S., Vepsäläinen, S., Sarajärvi, T., Antikainen, L., Mäkinen, P., Herukka, S. K., Koivisto, A. M., Haapasalo, A., Soininen, H., and Hiltunen, M. (2012) Genetic analysis of genes involved in amyloid-β degradation and clearance in Alzheimer’s disease. J. Alzheimer’s Dis. 28, 553–559 Pinto, F. M., Ravina, C. G., Subiran, N., Cejudo-Román, A., Fernández-Sánchez, M., Irazusta, J., Garrido, N., and Candenas, L. (2010) Autocrine regulation of human sperm motility by tachykinins. Reprod. Biol. Endocrinol. 8, 104 Ren, J., Niu, G., Wang, X., Song, T., Hu, Z., and Ke, C. (2018) Overexpression of FNDC1 in gastric cancer and its prognostic significance. J. Cancer. 9, 4586–4595 Yumrutas, O., Oztuzcu, S., Büyükhatipoglu, H., Bozgeyik, I., Bozgeyik, E., Igci, Y. Z., Bagis, H., Cevik, M. O., Kalender, M. E., Eslik, Z., and Arslan, A. (2015) The role of the UTS2 gene polymorphisms and plasma Urotensin-II levels in breast cancer. Tumor Biol. 36, 4427–4432 Fang, C., Jiang, B., Shi, X., and Fan, C. (2019) Hes3 enhances the malignant phenotype of lung cancer through upregulating cyclin D1, cyclin D3 and MMP7 expression. Int. J. Med. Sci. 16, 470–476 Velasco, G., Pendás, A. M., Fueyo, A., Knäuper, V., Murphy, G., and López-Otín, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576 Allione, A., Pardini, B., Viberti, C., Giribaldi, G., Turini, S., Di Gaetano, C., Guarrera, S., Cordero, F., Oderda, M., Allasia, M., Gontero, P., Sacerdote, C., Vineis, P., and Matullo, G. (2018) MMP23B expression and protein levels in blood and urine are associated with bladder cancer. Carcinogenesis. 39, 1254–1263 Barron, C. C., Bilan, P. J., Tsakiridis, T., and Tsiani, E. (2016) Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism. 65, 124–139 Chai, Y. J., Yi, J. W., Oh, S. W., Kim, Y. A., Yi, K. H., Kim, J. H., and Lee, K. E. (2017) Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: Analysis of data from The Cancer Genome Atlas. in Surgery (United States), pp. 188–194, Mosby Inc., 161, 188–194 Idriss, H. T., and Naismith, J. H. (2000) TNFα and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 50, 184–195 Yu-Di, Z., and Ming-Yue, L. (2018) Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis. Mol. Med. Rep. 18, 3403–3410 Kotsiou, E., Okosun, J., Besley, C., Iqbal, S., Matthews, J., Fitzgibbon, J., Gribben, J. G., and Davies, J. K. (2016) TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses. Blood. 128, 72–81 Chai, P., Yu, J., Ge, S., Jia, R., and Fan, X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. 10.1186/s13045-020-00883-5 Razin, A., and Kantor, B. (2005) DNA methylation in epigenetic control of gene expression. Prog. Mol. Subcell. Biol. 38, 151–167 Lindner, M., Verhagen, I., Viitaniemi, H. M., Laine, V. N., Visser, M. E., Husby, A., and van Oers, K. (2021) Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics. 22, 36 Motwani, J., Rodger, E. J., Stockwell, P. A., Baguley, B. C., Macaulay, E. C., and Eccles, M. R. (2021) Genome-wide DNA methylation and RNA expression differences correlate with invasiveness in melanoma cell lines. Epigenomics. 10.2217/epi-2020-0440 Siegfried, Z., and Simon, I. (2010) DNA methylation and gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 362–371 Wang, Z. Q., Sun, X. L., Wang, Y. L., and Miao, Y. L. (2020) Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression. J. Recept. Signal Transduct. 10.1080/10799893.2020.1811325 Henrich, K. O., Bauer, T., Schulte, J., Ehemann, V., Deubzer, H., Gogolin, S., Muth, D., Fischer, M., Benner, A., König, R., Schwab, M., and Westermann, F. (2011) CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Res. 71, 3142–3151 Habbig, S., Bartram, M. P., Müller, R. U., Schwarz, R., Andriopoulos, N., Chen, S., Sägmüller, J. G., Hoehne, M., Burst, V., Liebau, M. C., Reinhardt, H. C., Benzing, T., and Schermer, B. (2011) NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J. Cell Biol. 193, 633–642 Jin, W. (2020) Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J. Clin. Med. 9, 1256 Holm, M., Joenväärä, S., Saraswat, M., Tohmola, T., Ristimäki, A., Renkonen, R., and Haglund, C. (2020) Plasma protein expression differs between colorectal cancer patients depending on primary tumor location. Cancer Med. 9, 5221–5234 Chen, S., Tan, Y., Deng, H., Shen, Z., Liu, Y., Wu, P., Tan, C., and Jiang, Y. (2017) UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget. 8, 71736–71749 Oo, A. K. K., Calle, A. S., Nair, N., Mahmud, H., Vaidyanath, A., Yamauchi, J., Khayrani, A. C., Du, J., Alam, M. J., Seno, A., Mizutani, A., Murakami, H., Iwasaki, Y., Chen, L., Kasai, T., and Seno, M. (2018) Up-Regulation of PI 3-Kinases and the Activation of PI3K-Akt Signaling Pathway in Cancer Stem-Like Cells Through DNA Hypomethylation Mediated by the Cancer Microenvironment. Transl. Oncol. 11, 653–663 Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 10.1038/nrg3230 Borodinova, A. A., Kuznetsova, M. A., Alekseeva, V. S., and Balaban, P. M. (2019) Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci. Rep. 9, 1–12 Rymen, B., Kawamura, A., Lambolez, A., Inagaki, S., Takebayashi, A., Iwase, A., Sakamoto, Y., Sako, K., Favero, D. S., Ikeuchi, M., Suzuki, T., Seki, M., Kakutani, T., Roudier, F., and Sugimoto, K. (2019) Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun. Biol. 2, 1–15 Glasow, A., Barrett, A., Petrie, K., Gupta, R., Boix-Chornet, M., Zhou, D. C., Grimwade, D., Gallagher, R., Von Lindern, M., Waxman, S., Enver, T., Hildebrandt, G., and Zelent, A. (2008) DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood. 111, 2374–2377 Zhou, J.-D., Zhang, T.-J., Li, X.-X., Ma, J.-C., Guo, H., Wen, X.-M., Yao, D.-M., Zhang, W., Lin, J., and Qian, J. (2018) Methylation-independent CHFR expression is a potential biomarker affecting prognosis in acute myeloid leukemia. J. Cell. Physiol. 233, 4707–4714 Navasa, N., Martin-Ruiz, I., Atondo, E., Sutherland, J. D., Angel Pascual-Itoiz, M., Carreras-González, A., Izadi, H., Tomás-Cortázar, J., Ayaz, F., Martin-Martin, N., Torres, I. M., Barrio, R., Carracedo, A., Olivera, E. R., Rincón, M., and Anguita, J. (2015) Ikaros mediates the DNA methylation-independent silencing of MCJ/DNAJC15 gene expression in macrophages. Sci. Rep. 5, 14692 Kim, J., Lee, Y., Lu, X., Song, B., Fong, K. W., Cao, Q., Licht, J. D., Zhao, J. C., and Yu, J. (2018) Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Rep. 25, 2808-2820.e4 Mumtaz Taqi, M., Bazov, I., Watanabe, H., Sheedy, D., Harper, C., Alkass, K., Druid, H., Wentzel, P., Nyberg, F., Yakovleva, T., and Bakalkin, G. (2011) Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Wiley Online Libr. 16, 499–509 Samy, M. D., Yavorski, J. M., Mauro, J. A., and Blanck, G. (2016) Impact of SNPs on CpG Islands in the MYC and HRAS oncogenes and in a wide variety of tumor suppressor genes: A multi-cancer approach. Cell Cycle. 15, 1572–1578 Schoenfelder, S., and Fraser, P. (2019) Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 Zheng, H., and Xie, W. (2019) The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 de Moraes Salgado, C., da Silva Miyaguti, N. A., de Oliveira, S. C. P., Favero-Santos, B. C., Viana, L. R., de Moraes Santos Oliveira, M., and Gomes-Marcondes, M. C. C. (2021) Cancer during pregnancy. Maternal, placenta, and fetal damage. Nutrition, antioxidant defenses, and adult offspring tumor-bearing. in Cancer, pp. 121–129, Elsevier, 10.1016/b978-0-12-819547-5.00012-2 Maghbooli, Z., Hossein-nezhad, A., Adabi, E., Asadollah-pour, E., Sadeghi, M., Mohammad-nabi, S., Zakeri Rad, L., Malek Hosseini, A., Radmehr, M., Faghihi, F., Aghaei, A., Omidifar, A., Aghababei, Y., and Behzadi, H. (2018) Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 13, e0199772 Santos, H. P., Bhattacharya, A., Martin, E. M., Addo, K., Psioda, M., Smeester, L., Joseph, R. M., Hooper, S. R., Frazier, J. A., Kuban, K. C., O’Shea, T. M., and Fry, R. C. (2019) Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 14, 751–765 Tekola-Ayele, F., Zeng, X., Ouidir, M., Workalemahu, T., Zhang, C., Delahaye, F., and Wapner, R. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. 10.1186/s13148-020-00873-x Rousseaux, S., Seyve, E., Chuffart, F., Bourova-Flin, E., Benmerad, M., Charles, M. A., Forhan, A., Heude, B., Siroux, V., Slama, R., Tost, J., Vaiman, D., Khochbin, S., and Lepeule, J. (2020) Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med. 18, 306 Radhakrishna, U., Vishweswaraiah, S., Uppala, L. V., Szymanska, M., Macknis, J., Kumar, S., Saleem-Rasheed, F., Aydas, B., Forray, A., Muvvala, S. B., Mishra, N. K., Guda, C., Carey, D. J., Metpally, R. P., Crist, R. C., Berrettini, W. H., and Bahado-Singh, R. O. (2021) Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics. 113, 1127–1135 Kinnon, T. M. C., Chakraborty, C., Gleeson, L. M., Chidiac, P., Lala, P. K., Anatomy, D., M, C. B. T., and Pathology, C. C. (2001) Stimulation of Human Extravillous Trophoblast Migration by IGF-II Is Mediated by IGF Type 2 Receptor Involving Inhibitory G Protein ( s ) and Phosphorylation of MAPK. 86, 3665–3674 Crosley, E. J., Dunk, C. E., Beristain, A. G., and Christians, J. K. (2014) IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells. Reprod. Biol. Endocrinol. 12, 1–7 Annunziata, M., Granata, R., and Ghigo, E. (2011) The IGF system. Acta Diabetol. 48, 1–9 Weroha, S. J., and Haluska, P. (2013) IGF System in Cancer. Endocinol Metab Clin North Am. 41, 1–15 Nakamura, H., Dan, S., Akashi, T., Okui, M., Egawa, S., Ishikawa, Y., Unno, M., and Yamori, T. (2007) Ectopic expression of PIK3CD in human cancer cell lines and human lung carcinoma. Cancer Res. Chen, J. S., Huang, J. Q., Luo, B., Dong, S. H., Wang, R. C., Jiang, Z. kun, Xie, Y. K., Yi, W., Wen, G. M., and Zhong, J. F. (2019) PIK3CD induces cell growth and invasion by activating AKT/GSK-3β/β-catenin signaling in colorectal cancer. Cancer Sci. 110, 997–1011 Yao, Z., Di Poto, C., Mavodza, G., Oliver, E., Ressom, H. W., and Sherif, Z. A. (2019) DNA Methylation Activates TP73 Expression in Hepatocellular Carcinoma and Gastrointestinal Cancer. Sci. Rep. 9, 1–10 Costanzo, A., Pediconi, N., Narcisi, A., Guerrieri, F., Belloni, L., Fausti, F., Botti, E., and Levrero, M. (2014) TP63 and TP73 in cancer, an unresolved “family” puzzle of complexity, redundancy and hierarchy. FEBS Lett. 588, 2590–2599 Franke, T. F. PI3K/Akt: getting it right matters. 10.1038/onc.2008.313 Jiang, N., Dai, Q., Su, X., Fu, J., Feng, X., and Peng, J. (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep. 47, 4587–4629 Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W. C., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Wooster, R., Stratton, M. R., and Futreal, P. A. (2002) Mutations of the BRAF gene in human cancer. Nature. 417, 949–954 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
viii, 62 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80620/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80620/3/1013638215.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80620/4/1013638215.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 16497d7e774c86057593af1a23adca53 f655ee719b7970a7287528d030c85b70 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089885592584192 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Umaña Pérez, Yadi Adrianad652013090d46425f836051252c18e62López González, David Alejandro4fecb1c9885cec0383419bbf14e3e6d7Grupo de Investigación en Hormonas2021-10-27T14:11:50Z2021-10-27T14:11:50Z2021-07-28https://repositorio.unal.edu.co/handle/unal/80620Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl proceso de implantación placentaria depende de una minuciosa regulación de la invasión de la decidua materna por parte del subtipo celular denominado trofoblasto extravelloso, la evasión del sistema inmune de la madre y la remodelación de la vasculatura local. Estos y otros procesos hacen que la implantación placentaria sea notablemente similar a la invasión tumoral. Las células de cáncer deben su origen a una pérdida de la identidad celular somática acompañada del desarrollo de un fenotipo aberrante que se alcanza como consecuencia de la reactivación de programas de desarrollo embrionario. Se cree que la pérdida de la identidad celular, así como la reactivación de los programas de desarrollo se deben en gran medida a una pérdida de la estabilidad genómica, que a su vez depende del panorama de metilación a nivel genómico. Se sabe que diversos estímulos extracelulares son capaces de promover una remodelación del panorama de metilación de células somáticas tal que contribuye a una transición maligna hacia un fenotipo altamente proliferativo e invasivo, que se debe tanto a la activación estocástica de oncogenes, como a un silenciamiento de genes supresores de tumores. Utilizando la línea celular derivada de trofoblasto, HTR-8/SVneo, por su fenotipo pseudomaligno y como modelo para el estudio de la biología placentaria y de la progresión tumoral, el propósito de este trabajo fue analizar la respuesta funcional de la línea ante un estímulo mitogénico con el péptido IGF2, y determinar cómo esta respuesta se relaciona con la variación en el panorama de metilación genómico y la expresión de RNA mensajero. A través de la interrogación del panorama de metilación genómico y la actividad transcripcional de la línea celular se identificaron variaciones que aparecen por efecto del estímulo y que ocurren de manera simultánea con un aumento de la actividad proliferativa, migratoria e invasiva de la línea celular. Muchos de los genes comprometidos en estas variaciones han sido descritos previamente en cáncer y más aún, hacen parte de vías de señalización a través de las cuales podría estar procediendo el estímulo con IGF2 y que además, son importantes para la adquisición de un fenotipo maligno en diversos tipos de cáncer. En conclusión, el péptido IGF2 tiene la capacidad de aumentar la actividad proliferativa, migratoria e invasiva de la línea celular, y estos cambios ocurren de manera paralela, y probablemente como consecuencia de alteraciones a nivel epigenético y transcripcional. (Texto tomado de la fuente)The process of placental implantation depends on a thorough regulation of the invasion of the maternal decidua by the cellular subtype known as extravillous trophoblast, invasion of the maternal immune system and remodeling of the local vasculature. These and other processes make the placental implantation remarkably similar to tumor invasion. Cancer cells owe their origin to a loss of somatic cellular identity, accompanied by the development of an aberrant phenotype achieved as a consequence of the stochastic reactivation of embryonic development programs. It is believed that this loss of cellular identity, as well as the reactivation of these programs is owed to a great extent to a loss of genomic stability, which in turn depends on the DNA methylation landscape at the genomic level. It has been observed that extracellular stimuli of diverse kinds are capable of promoting a remodeling of the DNA methylation landscape in somatic cell such that it contributes to a malignant transformation to a highly proliferative, migratory and invasive phenotype, which is owed both to a stochastic activation of oncogenes and a silencing of tumor-repressor genes. Using trophoblast-derived HTR-8/SVneo cell line because its pseudo malignant phenotype and as model for the study of placental biology and tumor progression, the purpose of this work was to analyze the functional response of the cell line as a response to a mitogenic stimulus with IGF2, and to determine how this response is related to the variation of the methylation landscape and the transcriptional activity of the cell line. Through interrogation of the genomic methylation landscape and the transcriptional activity of the cell line, some alterations were identified that appear as a consequence of the stimulus and that occur simultaneously with an increase of the proliferative, migratory and invasive activity of the cell line. Many of the genes compromised in these alterations have been previously described in cancer and moreover, take part in signaling pathways through which the IGF2 stimulus could be proceeding and that are important for the acquisition of a malignant phenotype in several types of cancer. In conclusion, IGF2 peptide has the capacity of promoting the proliferative, migratory and invasive capacities of the cell line and these changes happen simultaneously, and probably as a consequence of alterations at epigenetic and transcriptional levels.MaestríaMagíster en Ciencias - BioquímicaFactores de crecimiento, diferenciación y cáncerviii, 62 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - BioquímicaOncogenesMetilación de ADNReceptor IGF Tipo 2OncogenesDNA MethylationReceptor, IGF Type 2CáncerMetilación del DNAPlacentaFactor de crecimientoEpigenéticaCancerIGF signaling systemEpigeneticsGenomic instabilityGenic expressionMalignant transformationEfecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneoEffect of IGF2 on the DNA methylation landscape and associated mRNA expression in HTR-8/SVneo cell lineTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBurrows, T. D., King, A., and Loke, Y. W. (1996) Trophoblast migration during human placental implantationJauniaux, E., Moffett, A., and Burton, G. J. (2020) Placental Implantation Disorders. Obstet. Gynecol. Clin. North Am. 47, 117–132Ferretti, C., Bruni, L., Dangles-Marie, V., Pecking, A. P., and Bellet, D. (2007) Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum. Reprod. Update. 13, 121–141De La Chapelle, A. (2004) Genetic predisposition to colorectal cancer. Nat. Rev. Cancer. 4, 769–780Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J., and Lydon, N. B. (1996) Effects of a selective inhibitor of the Ab1 tyrosine kinase on the growth of Bcr-Ab1 positive cells. Nat. Med. 2, 561–566Lynch, J. P., and Hoops, T. C. (2002) The genetic pathogenesis of colorectal cancer. Hematol. Oncol. Clin. North Am. 16, 775–810Fearon, E. R., and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis. Cell. 61, 759–767Jung, G., Hernández-Illán, E., Moreira, L., Balaguer, F., and Goel, A. (2020) Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111–130Tubiana, M. (2009) To cite this article: Maurice Tubiana (1989) Tumor Cell Proliferation Kinetics and Tumor Growth Rate. Acta Oncol. (Madr). 28, 113–121Moore, L. D., Le, T., and Fan, G. (2013) DNA Methylation and Its Basic Function. Neuropsychopharmacology. 38, 23–38Smith, Z. D., and Meissner, A. (2013) DNA methylation : roles in mammalian development. Nat. Rev. Genet. 14, 204–220Lewis, J., and Bird, A. (1991) DNA methylation and chromatin structure. FEBS Lett. 285, 155–159Ng, H.-H., and Adrian, B. (1999) DNA methylation and chromatin modification. Curr. Opin. Genet. Dev. 9, 158–163Feinberg, A. P., and Tycko, B. (2004) The history of cancer epigenetics. Nat. Rev. Cancer. 4, 143–153Eden, A. (2003) Chromosomal Instability and Tumors Promoted by DNA Hypomethylation. Science (80-. ). 300, 455–455Ehrlich, M. (2009) DNA hypomethylation in cancer cells. Epigenomics. 1, 239–259Wilson, A. S., Power, B. E., and Molloy, P. L. (2007) DNA hypomethylation and human diseases. Biochim. Biophys. Acta - Rev. Cancer. 1775, 138–162Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., and Feinberg, A. P. (1993) Relaxation of imprinted genes in human cancer. Nature. 362, 747–749Paksa, A., and Rajagopal, J. (2017) The epigenetic basis of cellular plasticity. Curr. Opin. Cell Biol. 49, 116–122Smith, Z. D., Shi, J., Gu, H., Donaghey, J., Clement, K., Cacchiarelli, D., Gnirke, A., Michor, F., and Meissner, A. (2017) Epigenetic restriction of extraembryonic lineages mirrors the somatic transition to cancer. Nature. 549, 543–547Witsch, E., Sela, M., and Yarden, Y. (2010) Roles for Growth Factors in Cancer Progression. Physiology. 25, 85–101Guzeloglu-Kayisli, O., Kayisli, U., and Taylor, H. (2009) The Role of Growth Factors and Cytokines during Implantation: Endocrine and Paracrine Interactions. Semin. Reprod. Med. 27, 062–079Weroha, S. J., and Haluska, P. (2012) The Insulin-Like Growth Factor System in Cancer. Endocrinol. Metab. Clin. North Am. 41, 335–350Bowman, C. J., Streck, R. D., and Chapin, R. E. (2010) Maternal-placental insulin-like growth factor (IGF) signaling and its importance to normal embryo-fetal development. Birth Defects Res. Part B - Dev. Reprod. Toxicol. 89, 339–349Constância, M., Hemberger, M., Hughes, J., Dean, W., Ferguson-Smith, A., Fundele, R., Stewart, F., Kelsey, G., Fowden, A., Sibley, C., and Reik, W. (2002) Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 417, 945–948Chao, W., and D’Amore, P. A. (2008) IGF2: Epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev. 19, 111–120Ogawa, O., Eccles, M. R., Szeto, J., McNoe, L. A., Yun, K., Maw, M. A., Smith, P. J., and Reeve, A. E. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature. 362, 749–751Xu, W., Fan, H., He, X., Zhang, J., and Xie, W. (2006) LOI of IGF2 is associated with esophageal cancer and linked to methylation status of IGF2 DMR. J. Exp. Clin. Cancer Res. 25, 543—547Murphy, S. K. (2006) Frequent IGF2/H19 Domain Epigenetic Alterations and Elevated IGF2 Expression in Epithelial Ovarian Cancer. Mol. Cancer Res. 4, 283–292Byun, H.-M., Wong, H.-L., Birnstein, E. A., Wolff, E. M., Liang, G., and Yang, A. S. (2007) Examination of IGF2 and H19 Loss of Imprinting in Bladder Cancer. Cancer Res. 67, 10753–10758Cui, H. (2003) Loss of IGF2 Imprinting: A Potential Marker of Colorectal Cancer Risk. Science (80-. ). 299, 1753–1755Lala, P. K., Lee, B. P., Xu, G., and Chakraborty, C. (2002) Human placental trophoblast as an in vitro model for tumor progression. Can. J. Physiol. Pharmacol. 80, 142–149Hannan, N. J., Paiva, P., Dimitriadis, E., and Salamonsen, L. A. (2010) Models for Study of Human Embryo Implantation: Choice of Cell Lines? Biol. Reprod. 82, 235–245Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., and Lala, P. K. (1993) Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211Zhang, W., Klinkebiel, D., Barger, C. J., Pandey, S., Guda, C., Miller, A., Akers, S. N., Odunsi, K., and Karpf, A. R. (2020) Global DNA Hypomethylation in Epithelial Ovarian Cancer: Passive Demethylation and Association with Genomic Instability. Cancers (Basel). 12, 764Sheaffer, K. L., Elliott, E. N., and Kaestner, K. H. (2016) DNA hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev. Res. 9, 534–546Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R. (2003) Induction of tumors in mice by genomic hypomethylation. Science (80-. ). 300, 489–492Nishigaki, M., Aoyagi, K., Danjoh, I., Fukaya, M., Yanagihara, K., Sakamoto, H., Yoshida, T., and Sasaki, H. (2005) Discovery of aberrant expression of R-RAS by cancer-linked DNA hypomethylation in gastric cancer using microarrays. Cancer Res. 65, 2115–2124Sato, N., and Goggins, M. (2006) The role of epigenetic alterations in pancreatic cancer. J. Hepatobiliary. Pancreat. Surg. 13, 286–295Pogribny, I. P., and Beland, F. A. (2009) DNA hypomethylation in the origin and pathogenesis of human diseases. Cell. Mol. Life Sci. 66, 2249–2261Guo, S. X., Taki, T., Ohnishi, H., Piao, H. Y., Tabuchi, K., Bessho, F., Hanada, R., Yanagisawa, M., and Hayashi, Y. (2000) Hypermethylation of p16 and p15 genes and RB protein expression in acute leukemia. Leuk. Res. 24, 39–46Zhang, J. C., Gao, B., Yu, Z. T., Liu, X. B., Lu, J., Xie, F., Luo, H. J., and Li, H. P. (2014) Promoter hypermethylation of p14 ARF, RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection. Tumor Biol. 35, 2795–2802Yeh, K. T., Chang, J. G., Lin, T. H., Wang, Y. F., Tien, N., Chang, J. Y., Chen, J. C., and Shih, M. C. (2003) Epigenetic changes of tumor suppressor genes, P15, P16, VHL and P53 in oral cancer. Oncol. Rep. 10, 659–663Silva, A. L., Dawson, S. N., Arends, M. J., Guttula, K., Hall, N., Cameron, E. A., Huang, T. H. M., Brenton, J. D., Tavaré, S., Bienz, M., and Ibrahim, A. E. K. (2014) Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists. BMC Cancer. 14, 891Hou, Y., Chen, K., Liao, R., Li, Y., Yang, H., and Gong, J. (2021) LINC01419-mediated epigenetic silencing of ZIC1 promotes metastasis in hepatocellular carcinoma through the PI3K/Akt signaling pathway. Lab. Investig. 10.1038/s41374-021-00539-zJu, J., Chen, A., Deng, Y., Liu, M., Wang, Y., Wang, Y., Nie, M., Wang, C., Ding, H., Yao, B., Gui, T., Li, X., Xu, Z., Ma, C., Song, Y., Kvansakul, M., Zen, K., Zhang, C.-Y., Luo, C., Fang, M., Huang, D. C. S., Allis, C. D., Tan, R., Zeng, C. K., Wei, J., and Zhao, Q. (2017) NatD promotes lung cancer progression by preventing histone H4 serine phosphorylation to activate Slug expression. Nat. Commun. 8, 928Yusufova, N., Kloetgen, A., Teater, M., Osunsade, A., Camarillo, J. M., Chin, C. R., Doane, A. S., Venters, B. J., Portillo-Ledesma, S., Conway, J., Phillip, J. M., Elemento, O., Scott, D. W., Béguelin, W., Licht, J. D., Kelleher, N. L., Staudt, L. M., Skoultchi, A. I., Keogh, M.-C., Apostolou, E., Mason, C. E., Imielinski, M., Schlick, T., David, Y., Tsirigos, A., Allis, C. D., Soshnev, A. A., Cesarman, E., and Melnick, A. M. (2021) Histone H1 loss drives lymphoma by disrupting 3D chromatin architecture. Nature. 589, 299–305Li, J., Galbo, P. M., Gong, W., Storey, A. J., Tsai, Y.-H., Yu, X., Ahn, J. H., Guo, Y., Mackintosh, S. G., Edmondson, R. D., Byrum, S. D., Farrar, J. E., He, S., Cai, L., Jin, J., Tackett, A. J., Zheng, D., and Wang, G. G. (2021) ZMYND11-MBTD1 induces leukemogenesis through hijacking NuA4/TIP60 acetyltransferase complex and a PWWP-mediated chromatin association mechanism. Nat. Commun. 12, 1045Silva-Fisher, J. M., Dang, H. X., White, N. M., Strand, M. S., Krasnick, B. A., Rozycki, E. B., Jeffers, G. G. L., Grossman, J. G., Highkin, M. K., Tang, C., Cabanski, C. R., Eteleeb, A., Mudd, J., Goedegebuure, S. P., Luo, J., Mardis, E. R., Wilson, R. K., Ley, T. J., Lockhart, A. C., Fields, R. C., and Maher, C. A. (2020) Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat. Commun. 11, 2156Klutstein, M., Nejman, D., Greenfield, R., and Cedar, H. (2016) DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450Saghafinia, S., Mina, M., Riggi, N., Hanahan, D., and Ciriello, G. (2018) Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors. Cell Rep. 25, 1066-1080.e8Ahmed, M., Soares, F., Xia, J.-H., Yang, Y., Li, J., Guo, H., Su, P., Tian, Y., Lee, H. J., Wang, M., Akhtar, N., Houlahan, K. E., Bosch, A., Zhou, S., Mazrooei, P., Hua, J. T., Chen, S., Petricca, J., Zeng, Y., Davies, A., Fraser, M., Quigley, D. A., Feng, F. Y., Boutros, P. C., Lupien, M., Zoubeidi, A., Wang, L., Walsh, M. J., Wang, T., Ren, S., Wei, G.-H., and He, H. H. (2021) CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat. Commun. 12, 19Ando, M., Saito, Y., Xu, G., Bui, N. Q., Medetgul-Ernar, K., Pu, M., Fisch, K., Ren, S., Sakai, A., Fukusumi, T., Liu, C., Haft, S., Pang, J., Mark, A., Gaykalova, D. A., Guo, T., Favorov, A. V., Yegnasubramanian, S., Fertig, E. J., Ha, P., Tamayo, P., Yamasoba, T., Ideker, T., Messer, K., and Califano, J. A. (2019) Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nat. Commun. 10, 2188Ulrey, C. L., Liu, L., Andrews, L. G., and Tollefsbol, T. O. (2005) The impact of metabolism on DNA methylation. Hum. Mol. Genet. 14, R139–R147Mehrmohamadi, M., Mentch, L. K., Clark, A. G., and Locasale, J. W. (2016) Integrative modelling of tumour DNA methylation quantifies the contribution of metabolism. Nat. Commun. 7, 1–13Cuyàs, E., Fernández-Arroyo, S., Verdura, S., García, R. Á. F., Stursa, J., Werner, L., Blanco-González, E., Montes-Bayón, M., Joven, J., Viollet, B., Neuzil, J., and Menendez, J. A. (2018) Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism. Oncogene. 37, 963–970Ali, A., Sina, I., Carrascosa, L. G., Liang, Z., Grewal, Y. S., Wardiana, A., Shiddiky, M. J. A., Gardiner, R. A., Samaratunga, H., Gandhi, M. K., Scott, R. J., Korbie, D., and Trau, M. (2018) Epigenetically reprogrammed methylation serves as a universal cancer biomarker. Nat. Commun. 10.1038/s41467-018-07214-wBates, S. E. (2020) Epigenetic Therapies for Cancer. N. Engl. J. Med. 383, 650–663Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., Han, J., and Wei, X. (2019) Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 4, 1–39Jones, P. A., Ohtani, H., Chakravarthy, A., and De Carvalho, D. D. (2019) Epigenetic therapy in immune-oncology. Nat. Rev. Cancer. 19, 151–161Bronchud, M. H., Tresserra, F., and Zantop, B. S. (2018) Epigenetic changes found in uterine decidual and placental tissues can also be found in the breast cancer microenvironment of the same unique patient: description and potential interpretations. Oncotarget. 9, 6028–6041Tai, B.-J., Yao, M., Zheng, W.-J., Shen, Y.-C., Wang, L., Sun, J.-Y., Wu, M.-N., Dong, Z.-Z., and Yao, D.-F. (2019) Alteration of oncogenic IGF-II gene methylation status associates with hepatocyte malignant transformation. Hepatobiliary Pancreat. Dis. Int. 18, 158–163Malik, A., Pal, R., and Gupta, S. K. (2020) EGF-mediated reduced miR-92a-1-5p controls HTR-8/SVneo cell invasion through activation of MAPK8 and FAS which in turn increase MMP-2/-9 expression. Sci. Rep. 10, 12274Malik, A., Pal, R., and Gupta, S. K. (2017) Interdependence of JAK-STAT and MAPK signaling pathways during EGF-mediated HTR-8/SVneo cell invasion. PLoS One. 12, e0178269Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., and Salomon, D. S. (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 366, 2–16Wen, Z., Chen, Y., Long, Y., Yu, J., and Li, M. (2018) Tumor necrosis factor-alpha suppresses the invasion of HTR-8/SVneo trophoblast cells through microRNA-145-5p-mediated downregulation of Cyr61. Life Sci. 209, 132–139Cabezas-Perez, R., Vallejo-Pulido, A., Freyre-Bernal, S., Umaña-Perez, A., and Sanchez-Gomez, M. (2011) IGF-II y la Gonadotropina Coriónica regulan la proliferación, migración e invasión de células de trofoblasto humano. Acta Biol. Colomb. 16, 143–152Sánchez-gómez, M. (2014) Entendiendo el papel del sistema de factores de crecimiento similares a la insulina ( IGF ) en la regulación funcional del trofoblasto humano. Rev. Acad. Colomb. Cienc. 38(Supl.), 118–28Espelund, U., Cold, S., Frystyk, J., Ørskov, H., and Flyvbjerg, A. (2008) Elevated free IGF2 levels in localized, early-stage breast cancer in women. Eur. J. Endocrinol. 159, 595–601Wu, L.-P., Wang, N.-C., Chang, Y.-H., Tian, X.-Y., Na, D.-Y., Zhang, L.-Y., Zheng, L., Lan, T., Wang, L.-F., and Liang, G.-D. (2007) Duration of Antibody Responses after Severe Acute Respiratory Syndrome. Emerg. Infect. Dis. 13, 1562–1564Tian, D., Mitchell, I., and Kreeger, P. K. (2015) Quantitative analysis of insulin-like growth factor 2 receptor and insulin-like growth factor binding proteins to identify control mechanisms for insulin-like growth factor 1 receptor phosphorylation. BMC Syst. Biol. 10, 15Kushlinskii, N. E., Gershtein, E. S., Nikolaev, A. A., Delektorskaya, V. V., Korotkova, E. A., Dvorova, E. K., and Kostyleva, O. I. (2014) Insulin-like growth factors (IGF), IGF-binding proteins (IGFBP), and vascular endothelial growth factor (VEGF) in blood serum of patients with colorectal cancer. Bull. Exp. Biol. Med. 156, 684–688Novoa-herrán, S. S., and Sánchez de Gómez, M. (2011) El IGF-II estimula la actividad de MMP-9 y MMP-2 en un modelo de trofoblasto humano. Acta Biológica Colomb. 16, 121–131Freyre Bernal, S. I. (2010) Papel del Sistema de Factores de Crecimiento Similares a la Insulina (IGF) en la Regulacion y Diferenciación Trofoblastica. Ph.D. thesis, Universidad Nacional de ColombiaCabezas Pérez, R. J. (2010) Implicaciones del factor de crecimiento similar a la insulina tipo II (IGF-II) en el desarrollo de la enfermedad trofoblástica gestacional. Ph.D. thesis, Universidad Nacional de ColombiaHarris, L. K., Crocker, I. P., Baker, P. N., Aplin, J. D., and Westwood, M. (2011) IGF2 Actions on Trophoblast in Human Placenta Are Regulated by the Insulin-Like Growth Factor 2 Receptor, Which Can Function as Both a Signaling and Clearance Receptor1. Biol. Reprod. 84, 440–446McKinnon, T., Chakraborty, C., Gleeson, L. M., Chidiac, P., and Lala, P. K. (2001) Stimulation of Human Extravillous Trophoblast Involving Inhibitory G Protein ( s ) and Phosphorylation. J. Clin. Endocrinol. Metab. 86, 3665–3674Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. (2006) The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 7, 1–14Zhang, X., and Jonassen, I. (2020) RASflow: An RNA-Seq analysis workflow with Snakemake. BMC Bioinformatics. 21, 110Andrews, S. (2010) FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., and Kingsford, C. (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 10.1186/s13059-014-0550-8Moran, S., Arribas, C., and Esteller, M. (2016) Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 8, 389–399Pidsley, R., Zotenko, E., Peters, T. J., Lawrence, M. G., Risbridger, G. P., Molloy, P., Van Djik, S., Muhlhausler, B., Stirzaker, C., and Clark, S. J. (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol. 17, 208Müller, F., Scherer, M., Assenov, Y., Lutsik, P., Walter, J., Lengauer, T., and Bock, C. (2019) RnBeads 2.0: Comprehensive analysis of DNA methylation data. Genome Biol. 20, 55Perrier, F., Novoloaca, A., Ambatipudi, S., Baglietto, L., Ghantous, A., Perduca, V., Barrdahl, M., Harlid, S., Ong, K. K., Cardona, A., Polidoro, S., Nøst, T. H., Overvad, K., Omichessan, H., Dollé, M., Bamia, C., Huerta, J. M., Vineis, P., Herceg, Z., Romieu, I., and Ferrari, P. (2018) Identifying and correcting epigenetics measurements for systematic sources of variation. Clin. Epigenetics. 10, 38McCartney, D. L., Walker, R. M., Morris, S. W., McIntosh, A. M., Porteous, D. J., and Evans, K. L. (2016) Identification of polymorphic and off-target probe binding sites on the Illumina Infinium MethylationEPIC BeadChip. Genomics Data. 9, 22–24AE, T., F, M., M, L., T, B., J, T., D, G.-C., and S, B. (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 29, 189–196Du, P., Zhang, X., Huang, C. C., Jafari, N., Kibbe, W. A., Hou, L., and Lin, S. M. (2010) Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 11, 587Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., and Smyth, G. K. (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47Illumina Illumina MethylationEPIC Manifiest fileKuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., and Ma’ayan, A. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97Gebäck, T., Schulz, M. M. P., Koumoutsakos, P., and Detmar, M. (2018) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. https://doi.org/10.2144/000113083. 46, 265–274Forbes, K., Westwood, M., Baker, P. N., and Aplin, J. D. (2008) Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am. J. Physiol. Physiol. 294, C1313–C1322Umana-Perez, A., Novoa-Herran, S., Castro, J., Correa-Sanchez, A., Guevara, V., Lopez-Gonzalez, D., and Sanchez-Gomez, M. (2020) Role of the Insulin-like growth factor axis and the Transforming growth factor-β in the regulation of the placenta and the pathogenesis of Gestational Trophoblastic Diseases. Med. Res. Arch. 10.18103/mra.v8i10.2247Li, E., and Zhang, Y. (2014) DNA methylation in mammals. Cold Spring Harb. Perspect. Biol. 10.1101/cshperspect.a019133Lowdon, R. F., Jang, H. S., and Wang, T. (2016) Evolution of Epigenetic Regulation in Vertebrate Genomes. Trends Genet. 32, 269–283Zhang, X., and Ho, S. M. (2011) Epigenetics meets endocrinology. J. Mol. Endocrinol. 46, R11Houshdaran, S., Oke, A. B., Fung, J. C., Vo, K. C., Nezhat, C., and Giudice, L. C. (2020) Steroid hormones regulate genome-wide epigenetic programming and gene transcription in human endometrial cells with marked aberrancies in endometriosis. PLoS Genet. 16, e1008601Li, J.-Y., Pu, M.-T., Hirasawa, R., Li, B.-Z., Huang, Y.-N., Zeng, R., Jing, N.-H., Chen, T., Li, E., Sasaki, H., and Xu, G.-L. (2007) Synergistic Function of DNA Methyltransferases Dnmt3a and Dnmt3b in the Methylation of Oct4 and Nanog. Mol. Cell. Biol. 27, 8748–8759Wang, G., Weng, R., Lan, Y., Guo, X., Liu, Q., Liu, X., Lu, C., and Kang, J. (2017) Synergetic effects of DNA methylation and histone modification during mouse induced pluripotent stem cell generation. Sci. Rep. 7, 1–12Rountree, M. R., Bachman, K. E., Herman, J. G., and Baylin, S. B. (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene. 20, 3156–3165Varley, K. E., Gertz, J., Bowling, K. M., Parker, S. L., Reddy, T. E., Pauli-Behn, F., Cross, M. K., Williams, B. A., Stamatoyannopoulos, J. A., Crawford, G. E., Absher, D. M., Wold, B. J., and Myers, R. M. (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res. 23, 555–567Blake, L. E., Roux, J., Hernando-Herraez, I., Banovich, N. E., Perez, R. G., Hsiao, C. J., Eres, I., Cuevas, C., Marques-Bonet, T., and Gilad, Y. (2020) A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res. 30, 250–262Nordor, A. V., Nehar-Belaid, D., Richon, S., Klatzmann, D., Bellet, D., Dangles-Marie, V., Fournier, T., and Aryee, M. J. (2017) The early pregnancy placenta foreshadows DNA methylation alterations of solid tumors. Epigenetics. 12, 793–803Schmit, K., and Michiels, C. (2018) TMEM Proteins in Cancer: A Review. Front. Pharmacol. 9, 1345Abu-Odeh, M., Bar-Mag, T., Huang, H., Kim, T. H., Salah, Z., Abdeen, S. K., Sudol, M., Reichmann, D., Sidhu, S., Kim, P. M., and Aqeilan, R. I. (2014) Characterizing WW domain interactions of tumor suppressor WWOX reveals its association with multiprotein networks. J. Biol. Chem. 289, 8865–8880Ludes-Meyers, J. H., Kil, H., Bednarek, A. K., Drake, J., Bedford, M. T., and Aldaz, C. M. (2004) WWOX binds the specific proline-rich ligand PPXY: Identification of candidate interacting proteins. Oncogene. 23, 5049–5055Zhou, J. G., Zhao, H. T., Jin, S. H., Tian, X., and Ma, H. (2019) Identification of a RNA-seq-based signature to improve prognostics for uterine sarcoma. Gynecol. Oncol. 155, 499–507Zhang, X., Liu, B., Zhang, J., Yang, X., Zhang, G., Yang, S., Wang, J., Shi, J., Hu, K., Wang, J., Jing, H., Ke, X., and Fu, L. (2019) Expression level of ACOT7 influences the prognosis in acute myeloid leukemia patients. Cancer Biomarkers. 26, 441–449Feng, H., and Liu, X. (2020) Interaction between ACOT7 and LncRNA NMRAL2P via methylation regulates gastric cancer progression. Yonsei Med. J. 61, 471–481Natunen, T., Helisalmi, S., Vepsäläinen, S., Sarajärvi, T., Antikainen, L., Mäkinen, P., Herukka, S. K., Koivisto, A. M., Haapasalo, A., Soininen, H., and Hiltunen, M. (2012) Genetic analysis of genes involved in amyloid-β degradation and clearance in Alzheimer’s disease. J. Alzheimer’s Dis. 28, 553–559Pinto, F. M., Ravina, C. G., Subiran, N., Cejudo-Román, A., Fernández-Sánchez, M., Irazusta, J., Garrido, N., and Candenas, L. (2010) Autocrine regulation of human sperm motility by tachykinins. Reprod. Biol. Endocrinol. 8, 104Ren, J., Niu, G., Wang, X., Song, T., Hu, Z., and Ke, C. (2018) Overexpression of FNDC1 in gastric cancer and its prognostic significance. J. Cancer. 9, 4586–4595Yumrutas, O., Oztuzcu, S., Büyükhatipoglu, H., Bozgeyik, I., Bozgeyik, E., Igci, Y. Z., Bagis, H., Cevik, M. O., Kalender, M. E., Eslik, Z., and Arslan, A. (2015) The role of the UTS2 gene polymorphisms and plasma Urotensin-II levels in breast cancer. Tumor Biol. 36, 4427–4432Fang, C., Jiang, B., Shi, X., and Fan, C. (2019) Hes3 enhances the malignant phenotype of lung cancer through upregulating cyclin D1, cyclin D3 and MMP7 expression. Int. J. Med. Sci. 16, 470–476Velasco, G., Pendás, A. M., Fueyo, A., Knäuper, V., Murphy, G., and López-Otín, C. (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274, 4570–4576Allione, A., Pardini, B., Viberti, C., Giribaldi, G., Turini, S., Di Gaetano, C., Guarrera, S., Cordero, F., Oderda, M., Allasia, M., Gontero, P., Sacerdote, C., Vineis, P., and Matullo, G. (2018) MMP23B expression and protein levels in blood and urine are associated with bladder cancer. Carcinogenesis. 39, 1254–1263Barron, C. C., Bilan, P. J., Tsakiridis, T., and Tsiani, E. (2016) Facilitative glucose transporters: Implications for cancer detection, prognosis and treatment. Metabolism. 65, 124–139Chai, Y. J., Yi, J. W., Oh, S. W., Kim, Y. A., Yi, K. H., Kim, J. H., and Lee, K. E. (2017) Upregulation of SLC2 (GLUT) family genes is related to poor survival outcomes in papillary thyroid carcinoma: Analysis of data from The Cancer Genome Atlas. in Surgery (United States), pp. 188–194, Mosby Inc., 161, 188–194Idriss, H. T., and Naismith, J. H. (2000) TNFα and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 50, 184–195Yu-Di, Z., and Ming-Yue, L. (2018) Increased expression of TNFRSF14 indicates good prognosis and inhibits bladder cancer proliferation by promoting apoptosis. Mol. Med. Rep. 18, 3403–3410Kotsiou, E., Okosun, J., Besley, C., Iqbal, S., Matthews, J., Fitzgibbon, J., Gribben, J. G., and Davies, J. K. (2016) TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses. Blood. 128, 72–81Chai, P., Yu, J., Ge, S., Jia, R., and Fan, X. Genetic alteration, RNA expression, and DNA methylation profiling of coronavirus disease 2019 (COVID-19) receptor ACE2 in malignancies: a pan-cancer analysis. 10.1186/s13045-020-00883-5Razin, A., and Kantor, B. (2005) DNA methylation in epigenetic control of gene expression. Prog. Mol. Subcell. Biol. 38, 151–167Lindner, M., Verhagen, I., Viitaniemi, H. M., Laine, V. N., Visser, M. E., Husby, A., and van Oers, K. (2021) Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics. 22, 36Motwani, J., Rodger, E. J., Stockwell, P. A., Baguley, B. C., Macaulay, E. C., and Eccles, M. R. (2021) Genome-wide DNA methylation and RNA expression differences correlate with invasiveness in melanoma cell lines. Epigenomics. 10.2217/epi-2020-0440Siegfried, Z., and Simon, I. (2010) DNA methylation and gene expression. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 362–371Wang, Z. Q., Sun, X. L., Wang, Y. L., and Miao, Y. L. (2020) Agrin promotes the proliferation, invasion and migration of rectal cancer cells via the WNT signaling pathway to contribute to rectal cancer progression. J. Recept. Signal Transduct. 10.1080/10799893.2020.1811325Henrich, K. O., Bauer, T., Schulte, J., Ehemann, V., Deubzer, H., Gogolin, S., Muth, D., Fischer, M., Benner, A., König, R., Schwab, M., and Westermann, F. (2011) CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer Res. 71, 3142–3151Habbig, S., Bartram, M. P., Müller, R. U., Schwarz, R., Andriopoulos, N., Chen, S., Sägmüller, J. G., Hoehne, M., Burst, V., Liebau, M. C., Reinhardt, H. C., Benzing, T., and Schermer, B. (2011) NPHP4, a cilia-associated protein, negatively regulates the Hippo pathway. J. Cell Biol. 193, 633–642Jin, W. (2020) Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J. Clin. Med. 9, 1256Holm, M., Joenväärä, S., Saraswat, M., Tohmola, T., Ristimäki, A., Renkonen, R., and Haglund, C. (2020) Plasma protein expression differs between colorectal cancer patients depending on primary tumor location. Cancer Med. 9, 5221–5234Chen, S., Tan, Y., Deng, H., Shen, Z., Liu, Y., Wu, P., Tan, C., and Jiang, Y. (2017) UBE2J2 promotes hepatocellular carcinoma cell epithelial-mesenchymal transition and invasion in vitro. Oncotarget. 8, 71736–71749Oo, A. K. K., Calle, A. S., Nair, N., Mahmud, H., Vaidyanath, A., Yamauchi, J., Khayrani, A. C., Du, J., Alam, M. J., Seno, A., Mizutani, A., Murakami, H., Iwasaki, Y., Chen, L., Kasai, T., and Seno, M. (2018) Up-Regulation of PI 3-Kinases and the Activation of PI3K-Akt Signaling Pathway in Cancer Stem-Like Cells Through DNA Hypomethylation Mediated by the Cancer Microenvironment. Transl. Oncol. 11, 653–663Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 10.1038/nrg3230Borodinova, A. A., Kuznetsova, M. A., Alekseeva, V. S., and Balaban, P. M. (2019) Histone acetylation determines transcription of atypical protein kinases in rat neurons. Sci. Rep. 9, 1–12Rymen, B., Kawamura, A., Lambolez, A., Inagaki, S., Takebayashi, A., Iwase, A., Sakamoto, Y., Sako, K., Favero, D. S., Ikeuchi, M., Suzuki, T., Seki, M., Kakutani, T., Roudier, F., and Sugimoto, K. (2019) Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun. Biol. 2, 1–15Glasow, A., Barrett, A., Petrie, K., Gupta, R., Boix-Chornet, M., Zhou, D. C., Grimwade, D., Gallagher, R., Von Lindern, M., Waxman, S., Enver, T., Hildebrandt, G., and Zelent, A. (2008) DNA methylation-independent loss of RARA gene expression in acute myeloid leukemia. Blood. 111, 2374–2377Zhou, J.-D., Zhang, T.-J., Li, X.-X., Ma, J.-C., Guo, H., Wen, X.-M., Yao, D.-M., Zhang, W., Lin, J., and Qian, J. (2018) Methylation-independent CHFR expression is a potential biomarker affecting prognosis in acute myeloid leukemia. J. Cell. Physiol. 233, 4707–4714Navasa, N., Martin-Ruiz, I., Atondo, E., Sutherland, J. D., Angel Pascual-Itoiz, M., Carreras-González, A., Izadi, H., Tomás-Cortázar, J., Ayaz, F., Martin-Martin, N., Torres, I. M., Barrio, R., Carracedo, A., Olivera, E. R., Rincón, M., and Anguita, J. (2015) Ikaros mediates the DNA methylation-independent silencing of MCJ/DNAJC15 gene expression in macrophages. Sci. Rep. 5, 14692Kim, J., Lee, Y., Lu, X., Song, B., Fong, K. W., Cao, Q., Licht, J. D., Zhao, J. C., and Yu, J. (2018) Polycomb- and Methylation-Independent Roles of EZH2 as a Transcription Activator. Cell Rep. 25, 2808-2820.e4Mumtaz Taqi, M., Bazov, I., Watanabe, H., Sheedy, D., Harper, C., Alkass, K., Druid, H., Wentzel, P., Nyberg, F., Yakovleva, T., and Bakalkin, G. (2011) Prodynorphin CpG-SNPs associated with alcohol dependence: elevated methylation in the brain of human alcoholics. Wiley Online Libr. 16, 499–509Samy, M. D., Yavorski, J. M., Mauro, J. A., and Blanck, G. (2016) Impact of SNPs on CpG Islands in the MYC and HRAS oncogenes and in a wide variety of tumor suppressor genes: A multi-cancer approach. Cell Cycle. 15, 1572–1578Schoenfelder, S., and Fraser, P. (2019) Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455Zheng, H., and Xie, W. (2019) The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550de Moraes Salgado, C., da Silva Miyaguti, N. A., de Oliveira, S. C. P., Favero-Santos, B. C., Viana, L. R., de Moraes Santos Oliveira, M., and Gomes-Marcondes, M. C. C. (2021) Cancer during pregnancy. Maternal, placenta, and fetal damage. Nutrition, antioxidant defenses, and adult offspring tumor-bearing. in Cancer, pp. 121–129, Elsevier, 10.1016/b978-0-12-819547-5.00012-2Maghbooli, Z., Hossein-nezhad, A., Adabi, E., Asadollah-pour, E., Sadeghi, M., Mohammad-nabi, S., Zakeri Rad, L., Malek Hosseini, A., Radmehr, M., Faghihi, F., Aghaei, A., Omidifar, A., Aghababei, Y., and Behzadi, H. (2018) Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS One. 13, e0199772Santos, H. P., Bhattacharya, A., Martin, E. M., Addo, K., Psioda, M., Smeester, L., Joseph, R. M., Hooper, S. R., Frazier, J. A., Kuban, K. C., O’Shea, T. M., and Fry, R. C. (2019) Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 14, 751–765Tekola-Ayele, F., Zeng, X., Ouidir, M., Workalemahu, T., Zhang, C., Delahaye, F., and Wapner, R. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. 10.1186/s13148-020-00873-xRousseaux, S., Seyve, E., Chuffart, F., Bourova-Flin, E., Benmerad, M., Charles, M. A., Forhan, A., Heude, B., Siroux, V., Slama, R., Tost, J., Vaiman, D., Khochbin, S., and Lepeule, J. (2020) Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med. 18, 306Radhakrishna, U., Vishweswaraiah, S., Uppala, L. V., Szymanska, M., Macknis, J., Kumar, S., Saleem-Rasheed, F., Aydas, B., Forray, A., Muvvala, S. B., Mishra, N. K., Guda, C., Carey, D. J., Metpally, R. P., Crist, R. C., Berrettini, W. H., and Bahado-Singh, R. O. (2021) Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics. 113, 1127–1135Kinnon, T. M. C., Chakraborty, C., Gleeson, L. M., Chidiac, P., Lala, P. K., Anatomy, D., M, C. B. T., and Pathology, C. C. (2001) Stimulation of Human Extravillous Trophoblast Migration by IGF-II Is Mediated by IGF Type 2 Receptor Involving Inhibitory G Protein ( s ) and Phosphorylation of MAPK. 86, 3665–3674Crosley, E. J., Dunk, C. E., Beristain, A. G., and Christians, J. K. (2014) IGFBP-4 and -5 are expressed in first-trimester villi and differentially regulate the migration of HTR-8/SVneo cells. Reprod. Biol. Endocrinol. 12, 1–7Annunziata, M., Granata, R., and Ghigo, E. (2011) The IGF system. Acta Diabetol. 48, 1–9Weroha, S. J., and Haluska, P. (2013) IGF System in Cancer. Endocinol Metab Clin North Am. 41, 1–15Nakamura, H., Dan, S., Akashi, T., Okui, M., Egawa, S., Ishikawa, Y., Unno, M., and Yamori, T. (2007) Ectopic expression of PIK3CD in human cancer cell lines and human lung carcinoma. Cancer Res.Chen, J. S., Huang, J. Q., Luo, B., Dong, S. H., Wang, R. C., Jiang, Z. kun, Xie, Y. K., Yi, W., Wen, G. M., and Zhong, J. F. (2019) PIK3CD induces cell growth and invasion by activating AKT/GSK-3β/β-catenin signaling in colorectal cancer. Cancer Sci. 110, 997–1011Yao, Z., Di Poto, C., Mavodza, G., Oliver, E., Ressom, H. W., and Sherif, Z. A. (2019) DNA Methylation Activates TP73 Expression in Hepatocellular Carcinoma and Gastrointestinal Cancer. Sci. Rep. 9, 1–10Costanzo, A., Pediconi, N., Narcisi, A., Guerrieri, F., Belloni, L., Fausti, F., Botti, E., and Levrero, M. (2014) TP63 and TP73 in cancer, an unresolved “family” puzzle of complexity, redundancy and hierarchy. FEBS Lett. 588, 2590–2599Franke, T. F. PI3K/Akt: getting it right matters. 10.1038/onc.2008.313Jiang, N., Dai, Q., Su, X., Fu, J., Feng, X., and Peng, J. (2020) Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol. Biol. Rep. 47, 4587–4629Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W. C., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Wooster, R., Stratton, M. R., and Futreal, P. A. (2002) Mutations of the BRAF gene in human cancer. Nature. 417, 949–954Ministerio de Ciencia, Tecnología e InnovaciónInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80620/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1013638215.2021.pdf1013638215.2021.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf1903587https://repositorio.unal.edu.co/bitstream/unal/80620/3/1013638215.2021.pdf16497d7e774c86057593af1a23adca53MD53THUMBNAIL1013638215.2021.pdf.jpg1013638215.2021.pdf.jpgGenerated Thumbnailimage/jpeg4860https://repositorio.unal.edu.co/bitstream/unal/80620/4/1013638215.2021.pdf.jpgf655ee719b7970a7287528d030c85b70MD54unal/80620oai:repositorio.unal.edu.co:unal/806202023-07-29 23:04:00.682Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |