Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos
ilustraciones, gráficas, tablas
- Autores:
-
Páez Ramos, German Ricardo
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83834
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
Antifúngicos
Infecciones Fúngicas Invasoras
Antifungal Agents
Invasive Fungal Infections
Antifúngico
Acoplamiento molecular
Pirimidinas
Tiazolidonas
Síntesis de heterociclos
Antifungal
Molecular docking
Pyrimidines
Thiazolidones
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_1a955b12e84e08584e01a1d0e5e1f99f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83834 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
dc.title.translated.eng.fl_str_mv |
Rational design, synthesis and characterization of chimeric hybrids of nitrogenous and sulfur heterocycles as potential antifungal agents |
title |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
spellingShingle |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos 610 - Medicina y salud::615 - Farmacología y terapéutica Antifúngicos Infecciones Fúngicas Invasoras Antifungal Agents Invasive Fungal Infections Antifúngico Acoplamiento molecular Pirimidinas Tiazolidonas Síntesis de heterociclos Antifungal Molecular docking Pyrimidines Thiazolidones |
title_short |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
title_full |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
title_fullStr |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
title_full_unstemmed |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
title_sort |
Diseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicos |
dc.creator.fl_str_mv |
Páez Ramos, German Ricardo |
dc.contributor.advisor.none.fl_str_mv |
Orozco López, Fabián |
dc.contributor.author.none.fl_str_mv |
Páez Ramos, German Ricardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach) |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica Antifúngicos Infecciones Fúngicas Invasoras Antifungal Agents Invasive Fungal Infections Antifúngico Acoplamiento molecular Pirimidinas Tiazolidonas Síntesis de heterociclos Antifungal Molecular docking Pyrimidines Thiazolidones |
dc.subject.decs.spa.fl_str_mv |
Antifúngicos Infecciones Fúngicas Invasoras |
dc.subject.decs.eng.fl_str_mv |
Antifungal Agents Invasive Fungal Infections |
dc.subject.proposal.spa.fl_str_mv |
Antifúngico Acoplamiento molecular Pirimidinas Tiazolidonas Síntesis de heterociclos |
dc.subject.proposal.eng.fl_str_mv |
Antifungal Molecular docking Pyrimidines Thiazolidones |
description |
ilustraciones, gráficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-19T16:50:29Z |
dc.date.available.none.fl_str_mv |
2023-05-19T16:50:29Z |
dc.date.issued.none.fl_str_mv |
2023-04-27 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83834 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83834 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
D. Brown, D. Denning y S. Levitz, «Tackling Human Fungal Infections,» Science, vol. 336, nº 6082, p. 647, 2012. G. Brown, D. Denning, N. Gow y S. Levits, «Hidden Killers: Human Fungal Infections,» Science Translational Medicine, vol. 4, nº 165, 2012. C. Alvarez-Moreno, J. Cortes y A. Denning, «Burden of Fungal Infections in Colombia,» Journal of Fungi, vol. 4, nº 2, 2018. M. Ameen, C. Talhari y S. Talhari, «Advances in paracoccidioidomycosis,» Clinical and Experimental Dermatology, vol. 35, pp. 576-580, 2010. M. Nucci, F. Queiroz-Telles, T. Alvarado-Mature, I. Tiraboschi y J. Cortes, «Epidemiology of candidemia in Latin America: a laboratory-based survey,» PLoS One, vol. 8, nº 3, p. e59373, 2013. M. Nucci, F. Queiroz-Telles, A. Tobón, A. Restrepo y A. Colombo, «Epidemiology of opportunistic fungal infections in Latin America,» Clinical Infectious Diseases, vol. 51, nº 5, pp. 561-570, 2010. O. P. d. l. S. OPS, «Candida auris outbreaks in health care services in the context of the COVID-19 pandemic,» Washington, D.C., 2021. A. Casadevall y L. Pirofski, «The damage-response framework of microbial pathogenesis,» Nature Reviews Microbiology, vol. 1, pp. 17-24, 2003. L. Scorzoni, A. de Paula, C. Marcos, P. Assato, W. Melo, H. Oliveira y A. Fusco, «Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis,» Front Microbiology, vol. 8, nº 36, pp. 1-23, 2017. N. Wiederhold, «Antifungal resistance: current trends and future strategies to combat,» Infection and Drug Resistance, vol. 10, pp. 249-259, 2017. Y. Dong, M. Liu, J. Wang, Z. Ding y B. Sun, «Construction of antifungal dual-target (SE, CYP51) pharmacophore models and the discovery of novel antifungal inhibitors,» RSC Advances, vol. 9, pp. 26302-26314, 2019. X. Makhova, J. Viegas, R. Mosa, F. Viegas y O. Pooe, «Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases,» Drug Design, Development and Therapy, vol. 14, pp. 3235-3249, 2020. L. Bueno, Diseño racional y síntesis de compuestos tiazolidinónicos pirimidil sustituidos como potenciales agentes antifúngicos, Bogotá: Universidad Nacional de Colombia, 2017. L. Guerrero, Estudio de la reactividad de chalconas como precursores en la síntesis de nuevos compuestos pirazolínicos, betalactámicos y tiazolidínicos fusionados, Bogota: Universidad Nacional de Colombia, 2016. S. Campo y J. Adrio, «Antifungals,» Biochemical Pharmacology, vol. 133, pp. 86-96, 2017. D. Sanglard, «Emerging Threats in Antifungal-Resistant Fungal Pathogens,» Frontiers in Medicine, vol. 3, nº 11, 2016. W. Fang, D. Robinson, O. Raimi, D. Blair y D. Harrison, «N Myristoyltransferase Is a Cell Wall Target in Aspergillus fumigatus,» ACS Chemical Biology, vol. 10, nº 6, pp. 1425-1434, 2015. M. Keniya, M. Sabherwal, R. Wilson, M. Woods, A. Sagatova y J. Tyndall, «Crystal Structures of Full-Length Lanosterol 14 alpha-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery.,» Antimicrobial Agents and Chemotherapy, vol. 62, nº 11, pp. e01134-18, 2018. M. Richardson y D. Warnock, «1. Introduction,» de Fungal Infection (4th ed.), John Wiley & Sons, 2012, pp. 1-7. M. Richardson y D. Warnock, Fungal Infection: Diagnosis and Management, Fourth Edition, Chichester, UK: Diagnosis and Management, 2012. S. Vallabhaneni, R. Mody, T. Walker y T. Chiller, «The Global Burden of Fungal Diseases,» Elsevier Infectious Disease Clinics of North America, vol. 30, nº 1, pp. 1-16, 2016. Johnstone y R, «25. Mycoses and Algal infections,» de Weedon's Skin Pathology Essentials E-Book (2nd ed.), Elsevier, 2017, pp. 438-465. H. Kutzner, W. Kempf, J. Feit y O. Sangueza, «2. Fungal infections,» de Atlas of Clinical Dermatopathology: Infectious and Parasitic Dermatoses, Hoboken: Wiley Blackwell, 2021, pp. 77-108. M. Richardson, «Changing patterns and trends in systemic fungal infections,» Journal of Antimicrobial Chemotherapy, vol. 56, pp. i5-i11, 2005. K. Pianalto y A. Alspaugh, «New Horizons in Antifungal Therapy,» Journal of Fungi, vol. 2, nº 26, pp. 1-24, 2016. G. Barlow, I. Irving y P. Moss, « 20. Infectious diseases,» de Kumar and Clark's Clinical Medicine (10th ed., Elsevier, 2020, pp. 559-563. C. f. D. C. a. P. (CDC), «Fungal Diseases,» 26 08 2021. [En línea]. Available: https://www.cdc.gov/fungal/infections/index.html. [Último acceso: 2022 07 03]. O. Güzel-Akdemir, S. Carradori, R. Grande y k. Demir-Yazıcı, «Development of Thiazolidinones as Fungal Carbonic,» International Journal of Molecular Sciences, vol. 21, nº 8, pp. 1-17, 2020. F. Lamoth, S. Lockhart, E. Berkow y T. Calandra, «Changes in the epidemiological landscape of invasive candidiasis,» Journal of Antimicrobial Chemotherapy, vol. 73, nº 1, pp. i4-i13, 2018. A. Barac, M. Cevic, N. Colovic, D. Lekovic y G. Setefanovic, «Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit and a systematic review of nosocomial outbreaks,» Mycoses, vol. 63, nº 4, pp. 326-333, 2020. M. Pfaller, D. Diekema, T. J, M. Castanheira y R. Jones, «Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016,» Open Forum Infectious Diseases, vol. 6, nº 1, pp. S79-S94, 2019. B. McManus y D. Coleman, «Molecular epidemiology, phylogeny and evolution of Candida albicans,» Infection, Genetics and Evolution, vol. 21, pp. 166-178, 2014. K. Kathiravan, A. Salake, A. Chothe, P. Dudhe, R. Watode, M. Mukta y S. Gadhwe, «The biology and chemistry of antifungal agents: a review,» Bioorganic & Medicinal Chemistry, vol. 20, nº 19, pp. 5678-5698, 2012. B. Monk, A. Sagatova, P. Hosseini, Y. Ruma, R. Wilson y M. Keniya, «Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design,» Biochimica et Biophysica Acta - Proteins and Proteomics, vol. 1868, nº 3, p. 140206, 2020. L. Hogan, B. Klein y S. Levitz, «Virulence factors of medically important fungi,» Clinical Microbiology Reviews, vol. 9, nº 4, pp. 469-488, 1988. S. Brunke, S. Mogavero, L. Kasper y B. Hube, «Virulence factors in fungal pathogens of man,» Current Opinion in Microbiology, vol. 32, pp. 89-95, 2016. J. Houšť, J. Spížek y V. Havlíček, «Antifungal Drugs,» Metabolites, vol. 10, nº 3, p. 106, 2020. N. van der Weerden, M. Bleackley y M. Anderson, «Properties and mechanisms of action of naturally occurring antifungal peptides,» Cellular and Molecular Life Sciences, vol. 70, nº 19, pp. 3545-3570, 2013. S. Bowman y S. Free, «The structure and synthesis of the fungal cell wall,» BioEssays, vol. 28, nº 8, pp. 799-808, 2006. K. Gauwerky, C. Borelli y H. Korting, «Targeting virulence: a new paradigm for antifungals,» Drug Discovery Today, vol. 14, nº 3-4, pp. 214-222, 2009. M. Rodrigues, «The Multifunctional Fungal Ergosterol,» American Society for Microbiology, vol. 9, nº 5, pp. e01755-18, 2018. A. Carrillo, G. Giusiano, P. Ezkurra y G. Quindos, ««Antifungal agents: Mode of action in yeast cells,»a, vol. 19, nº 2, pp. 130-139, 2006.,» Revista Española de Quimioterapia, vol. 19, nº 2, pp. 130-139, 2006. Y. Tatsumi, M. Nagashima, T. Shibanushi, A. Iwata y Y. Kangawa, «Mechanism of Action of Efinaconazole, a Novel Triazole Antifungal Agent,» Antimicrobial Agents and Chemotherapy, vol. 57, nº 5, pp. 2405-2409, 2013. M. Hernáez, J. Pla y C. Nombela, «Aspectos moleculares y genéticos de la resistencia a azoles en Candida albicans,» Revista Iberoamericana de Micología, vol. 14, pp. 150-154, 1997. M. Waterman y G. Lepesheva, «Sterol 14α-demethylase, an abundant and essential mixed-function oxidase,» Biochemical and Biophysical Research Communications, vol. 338, nº 1, pp. 418-422, 2005. C. McEwen y S. Gutteridge, «Analysis of the Inhibition of the Ergosterol Pathway in Fungi Using the Atmospheric Solids Analysis Probe (ASAP) Method,» Journal of the American Society for Mass Spectrometry, vol. 18, nº 7, pp. 1274-1278, 2007. K. Lopez-Ávila, K. Dzul, K. Lugo, J. Arias y J. Zavala, «Mecanismos de resistencia antifúngica de los azoles en Candida,» Revista Biomédica, vol. 27, nº 3, pp. 127-136, 2016. Y. Wu, M. Wu, Y. Wang, Y. Chen, J. Gao y C. Ying, «ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans,» FEMS Yeast Research, vol. 18, nº 7, 2018. T. Hargrove, L. Friggeri, Z. Wawrzak, A. Qi, W. Hoekstra, R. Schotzinger, D. York, F. Guengerich y G. Lepesheva, «tructural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis,» Journal of Biological Chemistry, vol. 292, nº 16, pp. 6728-6743, 2017. W. Hoekstra, E. Garvey, W. Moore, S. Rafferty, C. Yates y R. Schotzinger, «Design and optimization of highly-selective fungal CYP51 inhibitors,» Bioorganic & Medicinal Chemistry Letters, vol. 24, nº 15, pp. 3455-3458, 2014. P. Selvakumar, S. Kumar, J. Dimmock y R. Sharma, «NMT1 (N-myristoyltransferase 1),» Atlas de Genética y Citogenética en Oncología y Hematología, vol. 15, nº 7, pp. 570-575, 2011. R. Duronio, D. Rudnick, R. Johnson, D. Johnson y G. J, «Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase,» Journal of Cell Biology, vol. 113, nº 6, pp. 1313-1330, 1991. S. Maurer-Stroh y F. Eisenhaber, «Myristoylation of viral and bacterial proteins,» Trends in Microbiology, vol. 12, nº 4, pp. 178-185, 2004. M. Wright, W. Heal, D. Mann y E. Tate, «Protein myristoylation in health and disease,» Chemistry & Biology, vol. 3, nº 1, pp. 19-35, 2010. S. Yang, A. Shrivastav, C. Kosinski, R. Sharma, M. Chen, L. Berthiaume, L. Peters, P. Chuang, S. Young y M. Bergo, «N-myristoyltransferase 1 is essential in early mouse development,» J Biol Chem., vol. 280, nº 19, pp. 18990-18995, 2005. C. Zhao y S. Ma, «Recent advances in the discovery of N-myristoyltransferase inhibitors,» ChemMedChem, vol. 9, nº 11, pp. 2425-2437, 2014. R. Weigand, C. Carr, J. Minnerly, A. Pauley, C. Carron y C. Lagner, «The Candida albicans myristoyl-CoA:protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coli,» Journal of Biological Chemistry, vol. 267, nº 12, pp. 8591-8598, 1992. W. Dismukes, «Cryptococcal Meningitis in Patients with AIDS Get access Arrow,» The Journal of Infections Diseases, vol. 157, nº 4, pp. 624-628, 1988. J. Wheat, «Histoplasmosis,» Infectious Disease Clinics of North America, vol. 2, nº 4, pp. 841-859, 1988. J. Lodge, R. Johnson, R. Weinberg y J. Gordon, «Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans.,» Journal of Biological Chemistry, vol. 269, nº 4, pp. 2996-3009, 1994. C. Wermuth, D. Aldous, P. Raboisson y D. Rognan, The Practice of Medicinal Chemistry, Fourth Edition, Washington: Elsevier, 2015. S. Mandal, M. Moudgil y S. Mandal, «Rational drug design,» European Journal of Pharmacology, vol. 625, nº 1-3, pp. 90-100, 2009. D. Wilshart, C. Knox, A. Guo, S. Shrivastava, M. Hassanali, P. Stothard y P. Woolsey, «DrugBank: a comprehensive resource for in silico drug discovery and exploration,» Nucleic Acids Research, vol. 34, pp. 668-672, 2006. L. Gavernet, Introducción a La Química Medicinal, Ciudad de la plata: Editorial de la Universidad Nacional de La Plata (EDULP):, 2021. D. Clarck, «What has virtual screening ever done for drug discovery?,» Expert Opinion on Drug Discovery, vol. 3, nº 8, pp. 841-851, 2008. G. Hartman, M. Egbertson, E. Halczenjo, W. Laswell, M. Duggan, R. Smith, A. Naylor, P. L. R. Manno, C. Chang y R. Gould, «Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors,» Journal of Medicinal Chemistry, vol. 35, pp. 4640-4642, 1992. H. Chen, B. Dardik, L. Qiu, X. Ren, S. Caplan, B. Burkey, B. Boettcher y J. Gromada, «Article Navigation Cevoglitazar, a Novel Peroxisome Proliferator-Activated Receptor-α/γ Dual Agonist, Potently Reduces Food Intake and Body Weight in Obese Mice and Cynomolgus Monkeys,» The Journal of Clinical Endocrinology & Metabolism, vol. 95, nº 6, p. 3076, 2010. R. Rajamani y A. Good, «Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development,» Current Opinion in Drug Discovery & Development, vol. 10, nº 3, pp. 308-315, 2007. L. Ferreira y A. Andricopulo, «ADMET modeling approaches in drug discovery,» Drug Discovery Today, vol. 24, nº 5, pp. 1157-1165, 2019. M. Gonzales, K. Naveja, C. Sanchez y J. Medina, «Open chemoinformatic resources to explore the structure, properties and chemical space of molecules,» RSC Advances, vol. 7, nº 85, pp. 54153-54163, 2017. M. Waring, J. Arrowsmith, A. Leach, P. Leeson, S. O. R. Mandrell y A. Weir, «An analysis of the attrition of drug candidates from four major pharmaceutical companies,» Nature Reviews Drug Discovery, vol. 14, nº 7, pp. 475-486, 2015. W. Zhang, J. Pei y L. Lai, «Computational Multitarget Drug Design,» Journal of Chemical Information and Modeling, vol. 57, nº 3, pp. 403-412, 2017. Z. Knight, H. Lin y K. Shokat, «Targeting the cancer kinome through polypharmacology,» Nature Reviews Cancer, vol. 10, nº 2, pp. 130-137, 2010. R. Ramsay, M. Popovic, K. Nikolic, E. Uliassi y M. Bolognesi, «A perspective on multi-target drug discovery and design for complex diseases,» Clinical and Translational Medicine, vol. 7, nº 3, pp. 1-14, 2019. Y. An, Y. Dong, M. Liu, J. Han, L. Zhao y B. Sun, «Novel naphthylamide derivatives as dual-target antifungal inhibitors: Design, synthesis and biological evaluation,» European Journal of Medicinal Chemistry, vol. 210, nº 112991, 2021. B. Sun, Y. Dong, K. Lei, J. Wang, L. Zhao y Liu, «Design, synthesis and biological evaluation of amide-pyridine derivatives as novel dual-target (SE, CYP51) antifungal inhibitors,» Bioorganic & Medicinal Chemistry, vol. 27, nº 11, pp. 2427-2437, 2019. B. Sun, Y. Dong, Y. An, M. Liu, J. Han, L. Zhao y X. Liu, «Design, synthesis and bioactivity evaluation of novel arylalkene-amide derivatives as dual-target antifungal inhibitors,» European Journal of Medicinal Chemistry, vol. 205, nº 112645, 2020. Y. Dong, X. Liu, Y. An, M. Liu, J. Han y B. Sun, «Potent arylamide derivatives as dual-target antifungal agents: Design, synthesis, biological evaluation, and molecular docking studies,» Bioorganic Chemistry, vol. 90, nº 103749, 2020. T. Zhu, X. Chen, C. Li, J. Tu y N. Liu, «Lanosterol 14α-demethylase (CYP51)/histone deacetylase (HDAC) dual inhibitors for treatment of Candida tropicalis and Cryptococcus neoformans infections,» European Journal of Medicinal Chemistry, vol. 221, nº 113524, 2021. C. Viegas-Junior, A. Danuello, V. da Silva, E. Barreiro y C. Manssour, «Molecular hybridization: a useful tool in the design of new drug prototypes,» Current Medicinal Chemistry, vol. 14, nº 17, pp. 1829-1852, 2007. J. Jampilek, «Heterocycles in Medicinal Chemistry,» Molecules, vol. 24, nº 21, p. 3839, 2019. A. Gomtsyan, «Heterocycles in drugs and drug discovery,» Chemistry of Heterocyclic Compounds volume, vol. 48, pp. 7-10, 2012. T. Gilchrist, Heterocyclic chemistry, Harlow, Essex, England: Longman Scientific & TechnicaL, 1992. A. Tripathi, S. Gupta, G. Fatima, P. Sonar, A. Verma y S. Saraf, «European Journal of Medicinal Chemistry,» 52-77, vol. 72, nº 44, pp. 52-77, 2014. A. Ayati, S. Emami, S. Moghimi y A. Foroumadi, «Thiazole in the targeted anticancer drug discovery,» Future Medicinal Chemistry, vol. 11, nº 15, pp. 1929-1952, 2019. K. Szychowskia, M. Leja, D. Kaminskyy, A. Kryshchyshyn y U. Binduga, «Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ),» European Journal of Medicinal Chemistry, vol. 141, pp. 162-168, 2017. S. Bondock, T. Naser y Y. Ammar, «Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents,» European Journal of Medicinal Chemistry, vol. 62, pp. 270-279, 2013. S. Angapelly, P. Ramya, R. SunithaRani, C. Kumar y A. Kamal, «Ultrasound assisted, VOSO4 catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives,» Tetrahedron Letters, vol. 58, nº 49, pp. 4632-4637, 2017. C. Lino, I. Gonçalves, B. Martins, T. Silvéiro y I. Santos, «Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives,» European Journal of Medicinal Chemistry, vol. 151, pp. 248-260, 2018. K. Omar, A. Geronikaki, P. Zoumpoulakis y C. Camoutsis, «Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs,» Bioorganic & Medicinal Chemistry, vol. 18, pp. 426-432, 2010. R. Sharma, F. Xavier, K. Vasu, S. Chaturvedi y S. Pancholi, «Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach,» Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, nº 3, pp. 890-897, 2009. M. Carretero, «Rosiglitazona,» Offarm: Farmacia y Sociedad,, vol. 21, nº 2, pp. 144-146, 2002. A. Perea y S. Diaz, «Perfil farmacológico del isavuconazol,» Revista Iberoamericana de Micología, vol. 35, nº 4, pp. 186-191, 2018. T. Eicher y S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications (2nd ed.), John Wiley & Sons press, 2003. P. Echevarría y V. Soriano, «Estavudina en el tratamiento antirretroviral,» Dialnet, vol. 129, nº 10, pp. 375-376, 2007. A. Butts y D. Krysan, «Antifungal Drug Discovery: Something Old and Something New,» PLOS Pathogens, vol. 8, nº 9, p. e1002870, 2012. T. Roemer y D. Krysan, «Antifungal drug development: challenges, unmet clinical needs, and new approaches,» Cold Spring Harbor Perspectives in Medicine, vol. 4, nº 5, p. 019703, 2014. D. Kontoyiannis, R. Lewis, B. Alexander, O. Lortholary, F. Dromer, K. Gupta y G. John, «Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis,» Antimicrobial Agents and Chemotherapy, vol. 52, nº 2, pp. 735-738, 2008. L. Cowen, S. Singh, J. Köhler, C. Collins y A. Zaas, «Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease,» Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences of the United States of America), vol. 106, nº 8, pp. 2818-2823, 2009. C. Mallikarjunaswamya, L. Mallesha, D. Bhadregodwa y O. Pinto, «Studies on synthesis of pyrimidine derivatives and their antimicrobial activity,» Arabian Journal of Chemistry, vol. 10, pp. s484-s490, 2017. A. Bath, R. Dongre, G. Naikoo, I. Hassan y T. Ara, «Proficient synthesis of bioactive annulated pyrimidine derivatives: A review,» Journal of Taibah University for Science, vol. 11, nº 6, pp. 1047-1069, 2017. L. Taglieri, F. Saccoliti, A. Nicolai, G. Peruzzi y V. Madia, «Discovery of a pyrimidine compund endowed with antitumot activity,» Investigational New Drugs, vol. 38, nº 1, pp. 327-329, 2020. Y. Gupta, V. Gupta y S. Singh, «Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives,» Journal of Pharmacy Research, vol. 7, nº 6, pp. 491-495, 2013. S. Sondhi, N. Sigh, M. Johar y A. Kumar, «Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives,» Bioorganic & Medicinal Chemistry, vol. 13, nº 22, pp. 6158-6166, 2005. A. Farghaly, O. AboulWafa, Y. Elshaier, W. Badawi, H. Haridy y H. Mubarak, «Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores,» Medicinal Chemistry Research, vol. 28, pp. 360-379, 2019. A. Nikaje, S. Tiwari, A. Sarkate y K. Karnik, «Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: ionic liquid mediated synthesis, biological evaluation and molecular docking study,» Medicinal Chemestry Research, vol. 27, nº 2, pp. 592-606, 2017. A. Stana, D. Vodnar, R. Tamaian, A. Pirnau, L. Vlase y I. Ionuj, «Design, Synthesis and Antifungal Activity Evaluation of New Thiazolin-4-ones as Potential Lanosterol 14α-Demethylase Inhibitors,» International Journal of Molecular Sciences, vol. 18, nº 1, p. 177, 2017. A. Pratima, S. Tiwari, A. Sarkate y K. Karnik, «Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: ionic liquid mediated synthesis, biological evaluation and molecular docking study,» Medicinal Chemistry Research volume, vol. 27, pp. 592-606, 2018. H. Chen, Z. Guo, Q. Yin, X. Duan, Y. Gu y X. Li, «Design, synthesis and HIV-RT inhibitory activity of novel thiazolidin-4-one derivatives,» Frontiers of Chemical Science and Engineering, vol. 5, pp. 231-237, 2011. A. Srinivas, A. Nagaraj y S. Sanjeeva, «Synthesis of some novel methylene-bis-pyrimidinyl-spiro-4-thiazolidinones as biologically potent agents,» Journal of Heterocyclic Chemistry, vol. 45, nº 4, pp. 1121-1125, 2009. P. Neuenfeldt, B. Drawanz, Q. Cunico, E. Tiekink, J. Wardell y S. Wardell, «4-(Pyrimidin-2-yl)-1-thia-4-aza¬spiro¬[4.5]decan-3-one,» Acta Crystallographica. Section E, Structure Reports Online, vol. 65, nº 12, 2009. A. Yadav, M. Kumar, T. Yadav y R. Jain, «An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles,» Tetrahedron Letters, vol. 50, nº 35, pp. 5031-5034, 2009. R. Barone, M. Chanon y R. Gallo, «Aminothiazoles and Their Derivatives, Part Two,» de Chemistry of Heterocyclic Compounds: Thiazole and its Derivatives, Part Two, Volume 34, John Wiley & Sons, Inc, 2008, pp. 9-368. D. Debasis, P. Sikdar y M. Bairagi, «Recent developments of 2-aminothiazoles in medicinal chemistry,» European Journal of Medicinal Chemistry, vol. 109, pp. 89-98, 2016. W. Klose, U. Niedballa, K. Schwarz y I. Böttcher, «[Nonsteroidal anti-inflammatory agents. 17. 4,5-Bis-(4-methoxyphenyl)-2-arylthioazoles with antiphlogistic activity],» Archiv der Pharmazie - Chemistry in Life Sciences, vol. 316, nº 11, pp. 941-951, 1983. M. Khalifa, «Recent Developments and Biological Activities of 2-Aminothiazole,» Acta Chimica Slovenica, vol. 65, nº 1, pp. 1-22, 2018. E. Kesicki, M. Bailey, Y. Ovechkina, J. Early, T. Alling, J. Bowman y E. Zuniga, «Synthesis and Evaluation of the 2-Aminothiazoles as Anti-Tubercular Agents,» PLoS One, vol. 11, nº 5, 2016. Y. Zheng, C. Tice y S. Singh, «The use of spirocyclic scaffolds in drug discovery,» Bioorganic & Medicinal Chemistry Letters, vol. 25, nº 16, pp. 3673-3682, 2014. D. James, H. Kunze y D. Faulkner, «Two new brominated tyrosine derivatives from the sponge Druinella (= Psammaplysilla) purpurea,» Journal of Natural Products (Lloydia), vol. 54, nº 4, pp. 1137-1140, 1991. J. Kovayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T. Sasaki y Y. Mikami, «Purealidins B and C, new bromotyrosine alkaloids from the okinawan marine sponge psammaplysilla purea,» Tetrahedron, vol. 47, nº 33, pp. 6617-6622, 1991. C. Marson, «New and unusual scaffolds in medicinal chemistry,» Chemical Society Reviews, vol. 40, nº 11, pp. 5514-5533, 2011. D. Havrylyuk, N. Kovach, B. Zimenkovsky, O. Vasylenko y R. Lesyk, «Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates,» Archiv der Pharmazie - Chemistry in Life Sciences, vol. 344, nº 8, pp. 514-522, 2011. A. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant y A. Loupy, «Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro [indole-thiazolidinones] as potent antifungal agents and crystal structure of spiro[3H-indole-3,2′-thiazolidine]-3′(1,2,4- triazol-3-yl)-2,4′(1H)-dione,» Bioorganic & Medicinal Chemistry, vol. 14, nº 7, pp. 2409-2417, 2006. D. Anekal y J. Biradar, «Synthesis and biological evaluation of novel Indolyl 4-thiazolidinones bearing thiadiazine nucleus,» Arabian Journal of Chemistry, vol. 10, nº 2, pp. s2098-s2105, 2017. N. Priyanka y A. Manishi, International Journal of Current Pharmaceutical Research,, vol. 11, nº 6, pp. 71-74, 2019. R. Sakhuja, S. Panda, L. Khanna, S. Khurana y S. Jain, «Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents,» Bioorganic & Medicinal Chemistry Letters, vol. 21, nº 18, pp. 5465-5469, 2011. R. de Paiba, J. da Silva, H. Moreira, O. Pinto, L. Camargo y P. Naves, «Synthesis, Antimicrobial Activity and Structure-Activity Relationship of Some 5-Arylidene-thiazolidine-2,4-dione Derivatives,» Journal of the Brazilian Chemical Society, vol. 30, nº 1, pp. 164-172, 2019. S. Jain, A. Kumar y D. Saini, «Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials,» Experimental Parasitology, vol. 185, pp. 107-114, 2018. R. Maccari, R. Vitale, R. Ottana, M. Rocchiccioli, A. Marrazzo, V. Cardile y A. Graziano, «Structure activity relationships and molecular modelling of new 5- arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents,» European Journal of Medicinal Chemistry, vol. 81, pp. 1-14, 2014. I. da Silva, J. da Silva, P. Gomez, M. Soarez, C. de Souza y F. Leite, «Synthesis and Antimicrobial Activities of 5-Arylidene-thiazolidine-2,4-dione Derivatives,» BioMed Research International, vol. 2014, pp. 1-8, 2014. M. Naim, M. Alam, S. Ahmad, F. Nawaz, N. Shrivastava, M. Sahi y O. Alam, «Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship,» European Journal of Medicinal Chemistry, vol. 129, pp. 218-250, 2017. S. Alegaon y K. Alawadi, «New thiazolidinedione-5-acetic acid amide derivatives: synthesis, characterization and investigation of antimicrobial and cytotoxic properties,» Medicinal Chemistry Research, vol. 21, nº 6, pp. 816-824, 2012. S. Shah y B. Singh, «Urea/thiourea catalyzed, solvent-free synthesis of 5-arylidenethiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-ones,» Bioorganic & Medicinal Chemistry Letters, vol. 22, nº 17, pp. 5388-5391, 2012. R. Ottana, R. Maccari, M. Giglio, A. Del Corso, A. Capiello y U. Mura, «Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications,» European Journal of Medicinal Chemistry, vol. 46, nº 7, pp. 2797-2806, 2011. Rester y U, «From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective,» Current Opinion in Drug Discovery & Development, vol. 11, nº 4, pp. 559-568, 2008. J. Rollinger, H. Stuppner y T. Langer, «Virtual screening for the discovery of bioactive natural products,» de Natural Compounds as Drugs, Volume I, vol. 65, Progress in Drug Research, 2008, p. 211–249. A. Daina, O. Michielin y V. Zoete, «SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,» Scientific Reports, vol. 7, nº 42717, pp. 1-13, 2017. H. Yang, C. Lou, L. Sun, Y. Cai, Z. Wang, W. Li, G. Liu y Y. Tang, «admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties,» Bioinformatics, vol. 35, nº 6, pp. 1067-1069, 2019. S. Lee, G. Chang, I. Lee, J. Chung, K. Sung y No, «The preadmeT: PC-based program for barch batch prediction of ADME properties,» de EuroQSAR, Istanbul, Turkey, 2004. G. Morris, H. Ruth, W. Lindstrom, M. Sanner, R. Belew, D. Goodsell y A. Olson, «AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,» Journal of Computational Chemistry, vol. 30, nº 16, pp. 2785-2791, 2009. W. Allen, T. Balius, S. Mukherjee, S. Brozell, D. Moustakas, P. Lang, D. Case, I. Kuntz y R. Rizzo, «DOCK 6: Impact of new features and current docking performance,» Journal of Computational Chemistry, vol. 36, nº 15, pp. 1132-1156, 2015. E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng y T. Ferrin, «UCSF Chimera--a visualization system for exploratory research and analysis,» Journal of Computational Chemistry, vol. 25, nº 13, pp. 1605-1612, 2004. Spinsolve, «The aldol condensation,» 2020. [En línea]. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiYzJ7Vt8P6AhWEsjEKHRY3AsIQFnoECAsQAQ&url=https%3A%2F%2Fmagritek.com%2Fwp-content%2Fuploads%2F2020%2F03%2FLab-Manual-Aldol-Condensation-web.pdf&usg=AOvVaw3e6zYOTtTqysa. [Último acceso: 10 Marzo 2021]. S. Dixon, «Identifying druggable disease-modifying gene products,» Current Opinion in Chemical Biology, vol. 13, nº 5-6, pp. 549-555, 2009. Y. Yuan, J. Pei y L. Lai, «Binding Site Detection and Druggability Prediction of Protein Targets for Structure- Based Drug Design,» Current Pharmaceutical Design, vol. 19, nº 12, pp. 2326-2333, 2013. F. Heynick, «The original ‘magic bullet’ is 100 years old – extra,» The British Journal of Psychiatry, vol. 5, p. 456, 2009. M. Bolognesi y A. Cavalli, «Multitarget Drug Discovery and Polypharmacology,» ChemMedChem, vol. 11, nº 12, pp. 1190-1192, 2016. S. Sogabe, M. Masubuchi, K. Sakata, T. Fukami, K. Morikami, Y. Shiratori, H. Ebiike, K. Kawasaki, Y. Aoki, N. Shimma, A. D'Arcy, F. Winkler, D. Banner y T. Ohtsuka, «Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors,» Chemistry & Biology, vol. 9, nº 10, pp. 1119-1128, 2002. S. Cosconati, S. Forli, A. Perryman, R. Harris, D. Goodsell y A. Olson, «Virtual screening with AutoDock: theory and practice,» Expert Opinion on Drug Discovery, vol. 5, nº 6, pp. 597-607, 2010. O. Trott y A. Olson, «AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,» Journal of Computational Chemistry, vol. 31, nº 2, pp. 455-461, 2009. O. Gómez, D. Andrade, E. Campos, R. Ballinas, A. Méndez, L. Villa y C. Álvarez, «Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines,» Molecules, vol. 23, nº 3, p. 599, 2018. Y. Mabkhot, F. Aldawsari, S. Al-Showiman, A. Barakat, T. Hadda, M. Mubarak, S. Naz, Z. Ul-Haq y A. Rauf, «Synthesis, Bioactivity, Molecular Docking and POM Analyses of Novel Substituted Thieno[2,3-b]thiophenes and Related Congeners,» Molecules, vol. 20, nº 2, pp. 1827-1841, 2015. C. Borsari, D. Trader, A. Tait y M. Costi, «Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology,» Journal of Medicinal Chemistry, vol. 63, nº 5, pp. 1908-1928, 2020. M. Szumilak, A. Wiktorowska y A. Stanczak, «Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance?,» Molecules, vol. 26, nº 9, pp. 1-31, 2021. K. Łączkowski, N. Konklewska y A. Biernasiuk, «Thiazoles with cyclopropyl fragment as antifungal, anticonvulsant, and anti-Toxoplasma gondii agents: synthesis, toxicity evaluation, and molecular docking study,» Medicinal Chemistry Research, vol. 27, pp. 2125-2140, 2018. C. Tratrat, A. Petrou, A. Geronikaki, M. Ivanov, M. Kostić, M. Soković, I. Vizirianakis, N. Theodoroula y M. Haroun, «Thiazolidin-4-Ones as Potential Antimicrobial Agents: Experimental and In Silico Evaluation,» Molecules, vol. 27, nº 6, p. 1930, 2022. A. Bell, Z. Yu, J. Hutton, M. Wright, J. Brannigan, D. Paape, S. Roberts y C. Sutherell, «Novel Thienopyrimidine Inhibitors of Leishmania N-Myristoyltransferase with On-Target Activity in Intracellular Amastigotes,» Journal of Medicinal Chemistry, vol. 3., nº 01, pp. 7740-7765, 2020. J. Choi, L. Podust y R. W, «Drug Strategies Targeting CYP51 in Neglected Tropical Diseases,» Chemical Reviews, vol. 114, nº 22, pp. 11242-11271, 2014. Y. Zheng, C. Tice y S. Singh, «The use of spirocyclic scaffolds in drug discovery,» Bioorganic & Medicinal Chemistry Letters, vol. 24, nº 16, pp. 3673-3782, 2014. T. Kennedy, «Managing the drug discovery/development interface,» Drug Discovery Today, vol. 2, nº 10, pp. 436-444, 1997. C. D. D. T. T. Lipinski, «Lead- and drug-like compounds: The rule-of-five revolution,» Drug Discovery Today: Technologies, vol. 1, nº 4, p. 337–341, 2004. J. Sangshetti, F. Kalam Khan, R. Chouthe, M. Damale y D. Shinde, «Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)- 4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents,» Chinese Chemical Letters, vol. 25, nº 7, pp. 1033-1038, 2014. D. Veber, S. Johnson, H. Cheng, B. Smith, K. Wards y W. Kopple, «Molecular Properties That Influence the Oral Bioavailability of Drug Candidates,» Journal of Medicinal Chemistry, vol. 45, nº 12, pp. 2615-2623, 2002. R. Brüggemann, I. Alffenaar, N. Blijlevens, E. Billaud y G. Kosterink, «Clinical Relevance of the Pharmacokinetic Interactions of Azole Antifungal Drugs with Other Coadministered Agents,» Clinical Infectious Diseases, vol. 48, nº 10, pp. 1441-1458, 2009. M. Ghannoum y M. Perfect, Antifungal Therapy, New York: Taylor & Francis Group, LLC, 2019, pp. 196-200. G. Peralta, M. Sanchez, S. Echevarria, E. Valdizan y A. Armijo, «Glucoproteína P e infección por el virus de la inmunodeficiencia humana,» Enfermedades Infecciosas y Microbiología Clínica, vol. 26, nº 3, pp. 150-159, 2008. J. Van der Laan, W. Buitenhuis, L. Wagenaar y A. V. S. E. Soffers, «Prediction of the Carcinogenic Potential of Human Pharmaceuticals Using Repeated Dose Toxicity Data and Their Pharmacological Properties,» Frontiers in Medicine, vol. 3, nº 45, pp. 1-24, 2016. K. Rim, «In silico prediction of toxicity and its applications for chemicals at work,» Toxicology and Environmental Health Sciences, vol. 12, nº 3, pp. 191-202, 2020. K. Hentz, «Safety Assessment of Pharmaceuticals: Examples of Inadequate Assessments and a Mechanistic Approach to Assuring Adequate Assessment,» Comprehensive Toxicology, pp. 17-28, 2010. J. McCann, E. Choi, E. Yamasaki y B. Ames, «Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals,» Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 72, nº 12, p. 2960, 2000. B. Priest, I. Bell y M. Garcia, «Role of hERG potassium channel assays in drug development,» Channels, vol. 2, nº 2, pp. 87-93, 2008. A. Oda, K. Tsuchida, T. Takakura y N. H. S. Yamaotsu, «Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes,» Journal of Chemical Information and Modeling, vol. 46, nº 1, pp. 380-391, 2006. D. Houston y M. Walkinshaw, «Consensus docking: Improving the reliability of docking in a virtual screening context,» Journal of Chemical Information and Modeling, vol. 53, nº 2, pp. 384-390, 2013. D. Plewczynski, M. Łaźniewski, M. von Grotthuss, L. Rychlewski y K. Ginalski, «VoteDock: consensus docking method for prediction of protein-ligand interactions,» Journal of Computational Chemistry, vol. 32, nº 4, pp. 568-581, 2011. P. Charifson, J. Corkery, M. Murcko y P. Walters, «Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins,» Journal of Medicinal Chemistry, vol. 42, pp. 5100-5109, 1999. J. Morschhäuser, «The genetic basis of fluconazole resistance development in Candida albicans,» Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1587, nº 2-3, pp. 240-248, 2002. A. Volkamer, D. Kuhn, F. Rippmann y M. Rarey, «DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment,» Bioinformatics, vol. 28, nº 15, pp. 2074-2075, 2012. A. Sagatova, M. Kenia, R. Wilson, B. Monk y J. Tyndall, «Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase,» Antimicrobial Agents and Chemotherapy, vol. 59, nº 8, pp. 4982-4989, 2015. F. Orozco, L. Guerrero y P. Cuervo, «Computer-aided design, synthesis, and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli,» Universitas Scientiarum, vol. 26, nº 1, pp. 17-35, 2021. M. Ahmad, S. Hassan y R. Nisa, «Synthesis, in vitro potential and computational studies on 2-amino-1, 4-dihydropyrimidines as multitarget antibacterial ligands,» Medicinal Chemistry Research, vol. 25, p. 1877–1894, 2016. G. Felluga, F. Benedetti, F. Berti, S. Drioli y G. Regini, «Efficient Biginelli Synthesis of 2-Aminodihydropyrimidines under Microwave Irradiation,» Synlett, vol. 29, nº 8, pp. 1047-1054, 2018. E. Scherbinina, D. Dar’in y P. Lobanov, «Investigation on possibility of rearrangement of pyrimidine-5-carboxylic acids esters,» Chemistry of Heterocyclic Compounds, vol. 46, pp. 1109-1115, 2010. H. Drust y G. Gokel, Química orgánica experimental, Barcelona: Reverté, 1985, p. 599. I. El-Deeb, T. Funakoshi, Y. Shimomoto, R. Masubara y M. Hayashi, «Dehydrogenative Formation of Resorcinol Derivatives Using Pd/C–Ethylene Catalytic System,» Journal of Organic Chemestry, pp. 2630-2640, 2017. P. Kuo, A. Damu, C. Cherng, J. Jeng, C. Teng, E. Lee y T. Wu, «Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents,» Archives of Pharmacal Research, vol. 28, nº 5, pp. 512-528, 2005. B. Furnis, A. Hannaford, P. Smith y A. Tatchell, VOGEL´s Textbook of practical Organic Chemestry, New York: Longman Scientific & Technical., 1989. A. Leśniare, A. Chojnacka y W. Gładkowski, «Application of Lecitase® Ultra-Catalyzed Hydrolysis to the Kinetic Resolution of (E)-4-phenylbut-3-en-2-yl Esters,» Catalysts, vol. 8, nº 10, p. 423, 2018. V. Mamaev y A. Vails, «Pyrimidines. XLVII. New method for the synthesis of 2-aminopyrimidines,» Chemistry of Heterocyclic Compounds, vol. 11, pp. 1322-1326, 1975. M. El Sayed, M. Massoud, A. Tantawy y M. Nasr, «Synthesis and biological evaluation of new unsaturated derivatives of cyclic compounds as potent antioxidant agent,» Der Pharma Chemica, vol. 4, nº 5, pp. 1785-1797, 2012. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional Derechos reservados al autor, 2023 http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
134 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83834/3/1053345401.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83834/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83834/4/1053345401.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
050045c7749c2c9f220a7e09fefed98c eb34b1cf90b7e1103fc9dfd26be24b4a ddcbc86dae8cc280904baefd72ae4845 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089662791155712 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orozco López, Fabián016e019176d8a9cdde6d278fa517dbbaPáez Ramos, German Ricardobea645b1c949e53e1df55dff80403861Grupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)2023-05-19T16:50:29Z2023-05-19T16:50:29Z2023-04-27https://repositorio.unal.edu.co/handle/unal/83834Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLas altas tasas de morbilidad y mortalidad causadas por infecciones fúngicas están intrínsecamente relacionadas con el desarrollo limitado de antimicóticos y la alta toxicidad de estos compuestos. Las infecciones micóticas son un problema de salud pública en estos tiempos, en vista de que los fármacos utilizados actualmente no son completamente efectivos debido al desarrollo de resistencia, toxicidad y efectos secundarios indeseables. Adicional a esto, la búsqueda de nuevos blancos farmacológicos es un gran desafío, ya que existen muchas similitudes entre las células fúngicas y humanas. Todo lo anterior limita el uso de medicamentos antifúngicos en la medicina actual, por esto es crucial la investigación de nuevos agentes antifúngicos y de nuevas dianas farmacológicas. Para este estudio se implementaron estrategias de acoplamiento molecular, en donde se evaluó mediante programas como AutoDock v.4.2.6, AutoDock Vina v.1.1.2 y Dock v.6.7, el acoplamiento de núcleos heterocíclicos como potenciales inhibidores de la N-miristoil transferasa (NMT) de la C. albicans y la lanosterol 14-α-desmetilasa (CYP51) de la C. albicans como blancos moleculares. Al terminar el cribado virtual, las moléculas fueron ordenadas de acuerdo con su valor de energía de unión al receptor. Con los resultados obtenidos en los tres programas se realizó un consenso usando el método de promedio ponderado de autoescalado (PPAE) para obtener un nuevo valor de puntuación, el cual permitió seleccionar los prototipos más promisorios y llevarlos a la fase de síntesis. Las reacciones de obtención de las moléculas objetivo se plantearon desde los principios de la química verde, por consiguiente, se llevaron a cabo estrategias multicomponente, metodologías de calentamiento no convencional como calentamiento asistido por microondas y ultrasonido, además, se realizaron estudios de disolventes, catalizadores y temperaturas de reacción. (Texto tomado de la fuente)High rates of morbidity and mortality caused by fungal infections are intrinsically related to the limited development of antifungal and their toxicity. Part of the reason is that current drugs are not completely effective due to the development of resistance, and undesirable side effects. In addition to this, searching of new pharmacological targets is a great challenge, considering the similarities between fungal and human cells. All these facts limit the use of antifungal drugs in current medicine; for this reason, investigations of new antifungal agents and pharmacological targets is crucial. In this study, molecular docking strategies were implemented, where the coupling of heterocyclic nuclei as potential inhibitors of N-myristoyl transferase (NMT) from C. albicans and lanosterol 14-α-demethylase (CYP51) from C. albicans as molecular targets. Upon completion of virtual screening, the molecules were ordered according to their receptor binding energy value. With the results obtained in the three programs, a consensus was made using the autoscaling weighted average method (PPAE) in order to obtain a new score value, which allowed selecting the most promising prototypes and taking them to the synthesis phase. The reactions to obtain the target molecules were proposed from the principles of green chemistry, therefore, multicomponent strategies were carried out, non-conventional heating methodologies such as microwave and ultrasound-assisted heating, in addition, studies of the effect of solvents, catalysts and reaction temperatures.MaestríaQuímica de heterociclos134 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaAntifúngicosInfecciones Fúngicas InvasorasAntifungal AgentsInvasive Fungal InfectionsAntifúngicoAcoplamiento molecularPirimidinasTiazolidonasSíntesis de heterociclosAntifungalMolecular dockingPyrimidinesThiazolidonesDiseño racional, síntesis y caracterización de híbridos quiméricos de heterociclos nitrogenados y azufrados como potenciales agentes antifúngicosRational design, synthesis and characterization of chimeric hybrids of nitrogenous and sulfur heterocycles as potential antifungal agentsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMD. Brown, D. Denning y S. Levitz, «Tackling Human Fungal Infections,» Science, vol. 336, nº 6082, p. 647, 2012.G. Brown, D. Denning, N. Gow y S. Levits, «Hidden Killers: Human Fungal Infections,» Science Translational Medicine, vol. 4, nº 165, 2012.C. Alvarez-Moreno, J. Cortes y A. Denning, «Burden of Fungal Infections in Colombia,» Journal of Fungi, vol. 4, nº 2, 2018.M. Ameen, C. Talhari y S. Talhari, «Advances in paracoccidioidomycosis,» Clinical and Experimental Dermatology, vol. 35, pp. 576-580, 2010.M. Nucci, F. Queiroz-Telles, T. Alvarado-Mature, I. Tiraboschi y J. Cortes, «Epidemiology of candidemia in Latin America: a laboratory-based survey,» PLoS One, vol. 8, nº 3, p. e59373, 2013.M. Nucci, F. Queiroz-Telles, A. Tobón, A. Restrepo y A. Colombo, «Epidemiology of opportunistic fungal infections in Latin America,» Clinical Infectious Diseases, vol. 51, nº 5, pp. 561-570, 2010.O. P. d. l. S. OPS, «Candida auris outbreaks in health care services in the context of the COVID-19 pandemic,» Washington, D.C., 2021.A. Casadevall y L. Pirofski, «The damage-response framework of microbial pathogenesis,» Nature Reviews Microbiology, vol. 1, pp. 17-24, 2003.L. Scorzoni, A. de Paula, C. Marcos, P. Assato, W. Melo, H. Oliveira y A. Fusco, «Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis,» Front Microbiology, vol. 8, nº 36, pp. 1-23, 2017.N. Wiederhold, «Antifungal resistance: current trends and future strategies to combat,» Infection and Drug Resistance, vol. 10, pp. 249-259, 2017.Y. Dong, M. Liu, J. Wang, Z. Ding y B. Sun, «Construction of antifungal dual-target (SE, CYP51) pharmacophore models and the discovery of novel antifungal inhibitors,» RSC Advances, vol. 9, pp. 26302-26314, 2019.X. Makhova, J. Viegas, R. Mosa, F. Viegas y O. Pooe, «Potential Impact of the Multi-Target Drug Approach in the Treatment of Some Complex Diseases,» Drug Design, Development and Therapy, vol. 14, pp. 3235-3249, 2020.L. Bueno, Diseño racional y síntesis de compuestos tiazolidinónicos pirimidil sustituidos como potenciales agentes antifúngicos, Bogotá: Universidad Nacional de Colombia, 2017.L. Guerrero, Estudio de la reactividad de chalconas como precursores en la síntesis de nuevos compuestos pirazolínicos, betalactámicos y tiazolidínicos fusionados, Bogota: Universidad Nacional de Colombia, 2016.S. Campo y J. Adrio, «Antifungals,» Biochemical Pharmacology, vol. 133, pp. 86-96, 2017.D. Sanglard, «Emerging Threats in Antifungal-Resistant Fungal Pathogens,» Frontiers in Medicine, vol. 3, nº 11, 2016.W. Fang, D. Robinson, O. Raimi, D. Blair y D. Harrison, «N Myristoyltransferase Is a Cell Wall Target in Aspergillus fumigatus,» ACS Chemical Biology, vol. 10, nº 6, pp. 1425-1434, 2015.M. Keniya, M. Sabherwal, R. Wilson, M. Woods, A. Sagatova y J. Tyndall, «Crystal Structures of Full-Length Lanosterol 14 alpha-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provide Tools for Antifungal Discovery.,» Antimicrobial Agents and Chemotherapy, vol. 62, nº 11, pp. e01134-18, 2018.M. Richardson y D. Warnock, «1. Introduction,» de Fungal Infection (4th ed.), John Wiley & Sons, 2012, pp. 1-7.M. Richardson y D. Warnock, Fungal Infection: Diagnosis and Management, Fourth Edition, Chichester, UK: Diagnosis and Management, 2012.S. Vallabhaneni, R. Mody, T. Walker y T. Chiller, «The Global Burden of Fungal Diseases,» Elsevier Infectious Disease Clinics of North America, vol. 30, nº 1, pp. 1-16, 2016.Johnstone y R, «25. Mycoses and Algal infections,» de Weedon's Skin Pathology Essentials E-Book (2nd ed.), Elsevier, 2017, pp. 438-465.H. Kutzner, W. Kempf, J. Feit y O. Sangueza, «2. Fungal infections,» de Atlas of Clinical Dermatopathology: Infectious and Parasitic Dermatoses, Hoboken: Wiley Blackwell, 2021, pp. 77-108.M. Richardson, «Changing patterns and trends in systemic fungal infections,» Journal of Antimicrobial Chemotherapy, vol. 56, pp. i5-i11, 2005.K. Pianalto y A. Alspaugh, «New Horizons in Antifungal Therapy,» Journal of Fungi, vol. 2, nº 26, pp. 1-24, 2016.G. Barlow, I. Irving y P. Moss, « 20. Infectious diseases,» de Kumar and Clark's Clinical Medicine (10th ed., Elsevier, 2020, pp. 559-563.C. f. D. C. a. P. (CDC), «Fungal Diseases,» 26 08 2021. [En línea]. Available: https://www.cdc.gov/fungal/infections/index.html. [Último acceso: 2022 07 03].O. Güzel-Akdemir, S. Carradori, R. Grande y k. Demir-Yazıcı, «Development of Thiazolidinones as Fungal Carbonic,» International Journal of Molecular Sciences, vol. 21, nº 8, pp. 1-17, 2020.F. Lamoth, S. Lockhart, E. Berkow y T. Calandra, «Changes in the epidemiological landscape of invasive candidiasis,» Journal of Antimicrobial Chemotherapy, vol. 73, nº 1, pp. i4-i13, 2018.A. Barac, M. Cevic, N. Colovic, D. Lekovic y G. Setefanovic, «Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit and a systematic review of nosocomial outbreaks,» Mycoses, vol. 63, nº 4, pp. 326-333, 2020.M. Pfaller, D. Diekema, T. J, M. Castanheira y R. Jones, «Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997–2016,» Open Forum Infectious Diseases, vol. 6, nº 1, pp. S79-S94, 2019.B. McManus y D. Coleman, «Molecular epidemiology, phylogeny and evolution of Candida albicans,» Infection, Genetics and Evolution, vol. 21, pp. 166-178, 2014.K. Kathiravan, A. Salake, A. Chothe, P. Dudhe, R. Watode, M. Mukta y S. Gadhwe, «The biology and chemistry of antifungal agents: a review,» Bioorganic & Medicinal Chemistry, vol. 20, nº 19, pp. 5678-5698, 2012.B. Monk, A. Sagatova, P. Hosseini, Y. Ruma, R. Wilson y M. Keniya, «Fungal Lanosterol 14α-demethylase: A target for next-generation antifungal design,» Biochimica et Biophysica Acta - Proteins and Proteomics, vol. 1868, nº 3, p. 140206, 2020.L. Hogan, B. Klein y S. Levitz, «Virulence factors of medically important fungi,» Clinical Microbiology Reviews, vol. 9, nº 4, pp. 469-488, 1988.S. Brunke, S. Mogavero, L. Kasper y B. Hube, «Virulence factors in fungal pathogens of man,» Current Opinion in Microbiology, vol. 32, pp. 89-95, 2016.J. Houšť, J. Spížek y V. Havlíček, «Antifungal Drugs,» Metabolites, vol. 10, nº 3, p. 106, 2020.N. van der Weerden, M. Bleackley y M. Anderson, «Properties and mechanisms of action of naturally occurring antifungal peptides,» Cellular and Molecular Life Sciences, vol. 70, nº 19, pp. 3545-3570, 2013.S. Bowman y S. Free, «The structure and synthesis of the fungal cell wall,» BioEssays, vol. 28, nº 8, pp. 799-808, 2006.K. Gauwerky, C. Borelli y H. Korting, «Targeting virulence: a new paradigm for antifungals,» Drug Discovery Today, vol. 14, nº 3-4, pp. 214-222, 2009.M. Rodrigues, «The Multifunctional Fungal Ergosterol,» American Society for Microbiology, vol. 9, nº 5, pp. e01755-18, 2018.A. Carrillo, G. Giusiano, P. Ezkurra y G. Quindos, ««Antifungal agents: Mode of action in yeast cells,»a, vol. 19, nº 2, pp. 130-139, 2006.,» Revista Española de Quimioterapia, vol. 19, nº 2, pp. 130-139, 2006.Y. Tatsumi, M. Nagashima, T. Shibanushi, A. Iwata y Y. Kangawa, «Mechanism of Action of Efinaconazole, a Novel Triazole Antifungal Agent,» Antimicrobial Agents and Chemotherapy, vol. 57, nº 5, pp. 2405-2409, 2013.M. Hernáez, J. Pla y C. Nombela, «Aspectos moleculares y genéticos de la resistencia a azoles en Candida albicans,» Revista Iberoamericana de Micología, vol. 14, pp. 150-154, 1997.M. Waterman y G. Lepesheva, «Sterol 14α-demethylase, an abundant and essential mixed-function oxidase,» Biochemical and Biophysical Research Communications, vol. 338, nº 1, pp. 418-422, 2005.C. McEwen y S. Gutteridge, «Analysis of the Inhibition of the Ergosterol Pathway in Fungi Using the Atmospheric Solids Analysis Probe (ASAP) Method,» Journal of the American Society for Mass Spectrometry, vol. 18, nº 7, pp. 1274-1278, 2007.K. Lopez-Ávila, K. Dzul, K. Lugo, J. Arias y J. Zavala, «Mecanismos de resistencia antifúngica de los azoles en Candida,» Revista Biomédica, vol. 27, nº 3, pp. 127-136, 2016.Y. Wu, M. Wu, Y. Wang, Y. Chen, J. Gao y C. Ying, «ERG11 couples oxidative stress adaptation, hyphal elongation and virulence in Candida albicans,» FEMS Yeast Research, vol. 18, nº 7, 2018.T. Hargrove, L. Friggeri, Z. Wawrzak, A. Qi, W. Hoekstra, R. Schotzinger, D. York, F. Guengerich y G. Lepesheva, «tructural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis,» Journal of Biological Chemistry, vol. 292, nº 16, pp. 6728-6743, 2017.W. Hoekstra, E. Garvey, W. Moore, S. Rafferty, C. Yates y R. Schotzinger, «Design and optimization of highly-selective fungal CYP51 inhibitors,» Bioorganic & Medicinal Chemistry Letters, vol. 24, nº 15, pp. 3455-3458, 2014.P. Selvakumar, S. Kumar, J. Dimmock y R. Sharma, «NMT1 (N-myristoyltransferase 1),» Atlas de Genética y Citogenética en Oncología y Hematología, vol. 15, nº 7, pp. 570-575, 2011.R. Duronio, D. Rudnick, R. Johnson, D. Johnson y G. J, «Myristic acid auxotrophy caused by mutation of S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase,» Journal of Cell Biology, vol. 113, nº 6, pp. 1313-1330, 1991.S. Maurer-Stroh y F. Eisenhaber, «Myristoylation of viral and bacterial proteins,» Trends in Microbiology, vol. 12, nº 4, pp. 178-185, 2004.M. Wright, W. Heal, D. Mann y E. Tate, «Protein myristoylation in health and disease,» Chemistry & Biology, vol. 3, nº 1, pp. 19-35, 2010.S. Yang, A. Shrivastav, C. Kosinski, R. Sharma, M. Chen, L. Berthiaume, L. Peters, P. Chuang, S. Young y M. Bergo, «N-myristoyltransferase 1 is essential in early mouse development,» J Biol Chem., vol. 280, nº 19, pp. 18990-18995, 2005.C. Zhao y S. Ma, «Recent advances in the discovery of N-myristoyltransferase inhibitors,» ChemMedChem, vol. 9, nº 11, pp. 2425-2437, 2014.R. Weigand, C. Carr, J. Minnerly, A. Pauley, C. Carron y C. Lagner, «The Candida albicans myristoyl-CoA:protein N-myristoyltransferase gene. Isolation and expression in Saccharomyces cerevisiae and Escherichia coli,» Journal of Biological Chemistry, vol. 267, nº 12, pp. 8591-8598, 1992.W. Dismukes, «Cryptococcal Meningitis in Patients with AIDS Get access Arrow,» The Journal of Infections Diseases, vol. 157, nº 4, pp. 624-628, 1988.J. Wheat, «Histoplasmosis,» Infectious Disease Clinics of North America, vol. 2, nº 4, pp. 841-859, 1988.J. Lodge, R. Johnson, R. Weinberg y J. Gordon, «Comparison of myristoyl-CoA:protein N-myristoyltransferases from three pathogenic fungi: Cryptococcus neoformans, Histoplasma capsulatum, and Candida albicans.,» Journal of Biological Chemistry, vol. 269, nº 4, pp. 2996-3009, 1994.C. Wermuth, D. Aldous, P. Raboisson y D. Rognan, The Practice of Medicinal Chemistry, Fourth Edition, Washington: Elsevier, 2015.S. Mandal, M. Moudgil y S. Mandal, «Rational drug design,» European Journal of Pharmacology, vol. 625, nº 1-3, pp. 90-100, 2009.D. Wilshart, C. Knox, A. Guo, S. Shrivastava, M. Hassanali, P. Stothard y P. Woolsey, «DrugBank: a comprehensive resource for in silico drug discovery and exploration,» Nucleic Acids Research, vol. 34, pp. 668-672, 2006.L. Gavernet, Introducción a La Química Medicinal, Ciudad de la plata: Editorial de la Universidad Nacional de La Plata (EDULP):, 2021.D. Clarck, «What has virtual screening ever done for drug discovery?,» Expert Opinion on Drug Discovery, vol. 3, nº 8, pp. 841-851, 2008.G. Hartman, M. Egbertson, E. Halczenjo, W. Laswell, M. Duggan, R. Smith, A. Naylor, P. L. R. Manno, C. Chang y R. Gould, «Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors,» Journal of Medicinal Chemistry, vol. 35, pp. 4640-4642, 1992.H. Chen, B. Dardik, L. Qiu, X. Ren, S. Caplan, B. Burkey, B. Boettcher y J. Gromada, «Article Navigation Cevoglitazar, a Novel Peroxisome Proliferator-Activated Receptor-α/γ Dual Agonist, Potently Reduces Food Intake and Body Weight in Obese Mice and Cynomolgus Monkeys,» The Journal of Clinical Endocrinology & Metabolism, vol. 95, nº 6, p. 3076, 2010.R. Rajamani y A. Good, «Ranking poses in structure-based lead discovery and optimization: current trends in scoring function development,» Current Opinion in Drug Discovery & Development, vol. 10, nº 3, pp. 308-315, 2007.L. Ferreira y A. Andricopulo, «ADMET modeling approaches in drug discovery,» Drug Discovery Today, vol. 24, nº 5, pp. 1157-1165, 2019.M. Gonzales, K. Naveja, C. Sanchez y J. Medina, «Open chemoinformatic resources to explore the structure, properties and chemical space of molecules,» RSC Advances, vol. 7, nº 85, pp. 54153-54163, 2017.M. Waring, J. Arrowsmith, A. Leach, P. Leeson, S. O. R. Mandrell y A. Weir, «An analysis of the attrition of drug candidates from four major pharmaceutical companies,» Nature Reviews Drug Discovery, vol. 14, nº 7, pp. 475-486, 2015.W. Zhang, J. Pei y L. Lai, «Computational Multitarget Drug Design,» Journal of Chemical Information and Modeling, vol. 57, nº 3, pp. 403-412, 2017.Z. Knight, H. Lin y K. Shokat, «Targeting the cancer kinome through polypharmacology,» Nature Reviews Cancer, vol. 10, nº 2, pp. 130-137, 2010.R. Ramsay, M. Popovic, K. Nikolic, E. Uliassi y M. Bolognesi, «A perspective on multi-target drug discovery and design for complex diseases,» Clinical and Translational Medicine, vol. 7, nº 3, pp. 1-14, 2019.Y. An, Y. Dong, M. Liu, J. Han, L. Zhao y B. Sun, «Novel naphthylamide derivatives as dual-target antifungal inhibitors: Design, synthesis and biological evaluation,» European Journal of Medicinal Chemistry, vol. 210, nº 112991, 2021.B. Sun, Y. Dong, K. Lei, J. Wang, L. Zhao y Liu, «Design, synthesis and biological evaluation of amide-pyridine derivatives as novel dual-target (SE, CYP51) antifungal inhibitors,» Bioorganic & Medicinal Chemistry, vol. 27, nº 11, pp. 2427-2437, 2019.B. Sun, Y. Dong, Y. An, M. Liu, J. Han, L. Zhao y X. Liu, «Design, synthesis and bioactivity evaluation of novel arylalkene-amide derivatives as dual-target antifungal inhibitors,» European Journal of Medicinal Chemistry, vol. 205, nº 112645, 2020.Y. Dong, X. Liu, Y. An, M. Liu, J. Han y B. Sun, «Potent arylamide derivatives as dual-target antifungal agents: Design, synthesis, biological evaluation, and molecular docking studies,» Bioorganic Chemistry, vol. 90, nº 103749, 2020.T. Zhu, X. Chen, C. Li, J. Tu y N. Liu, «Lanosterol 14α-demethylase (CYP51)/histone deacetylase (HDAC) dual inhibitors for treatment of Candida tropicalis and Cryptococcus neoformans infections,» European Journal of Medicinal Chemistry, vol. 221, nº 113524, 2021.C. Viegas-Junior, A. Danuello, V. da Silva, E. Barreiro y C. Manssour, «Molecular hybridization: a useful tool in the design of new drug prototypes,» Current Medicinal Chemistry, vol. 14, nº 17, pp. 1829-1852, 2007.J. Jampilek, «Heterocycles in Medicinal Chemistry,» Molecules, vol. 24, nº 21, p. 3839, 2019.A. Gomtsyan, «Heterocycles in drugs and drug discovery,» Chemistry of Heterocyclic Compounds volume, vol. 48, pp. 7-10, 2012.T. Gilchrist, Heterocyclic chemistry, Harlow, Essex, England: Longman Scientific & TechnicaL, 1992.A. Tripathi, S. Gupta, G. Fatima, P. Sonar, A. Verma y S. Saraf, «European Journal of Medicinal Chemistry,» 52-77, vol. 72, nº 44, pp. 52-77, 2014.A. Ayati, S. Emami, S. Moghimi y A. Foroumadi, «Thiazole in the targeted anticancer drug discovery,» Future Medicinal Chemistry, vol. 11, nº 15, pp. 1929-1952, 2019.K. Szychowskia, M. Leja, D. Kaminskyy, A. Kryshchyshyn y U. Binduga, «Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ),» European Journal of Medicinal Chemistry, vol. 141, pp. 162-168, 2017.S. Bondock, T. Naser y Y. Ammar, «Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents,» European Journal of Medicinal Chemistry, vol. 62, pp. 270-279, 2013.S. Angapelly, P. Ramya, R. SunithaRani, C. Kumar y A. Kamal, «Ultrasound assisted, VOSO4 catalyzed synthesis of 4-thiazolidinones: Antimicrobial evaluation of indazole-4-thiazolidinone derivatives,» Tetrahedron Letters, vol. 58, nº 49, pp. 4632-4637, 2017.C. Lino, I. Gonçalves, B. Martins, T. Silvéiro y I. Santos, «Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives,» European Journal of Medicinal Chemistry, vol. 151, pp. 248-260, 2018.K. Omar, A. Geronikaki, P. Zoumpoulakis y C. Camoutsis, «Novel 4-thiazolidinone derivatives as potential antifungal and antibacterial drugs,» Bioorganic & Medicinal Chemistry, vol. 18, pp. 426-432, 2010.R. Sharma, F. Xavier, K. Vasu, S. Chaturvedi y S. Pancholi, «Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach,» Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 24, nº 3, pp. 890-897, 2009.M. Carretero, «Rosiglitazona,» Offarm: Farmacia y Sociedad,, vol. 21, nº 2, pp. 144-146, 2002.A. Perea y S. Diaz, «Perfil farmacológico del isavuconazol,» Revista Iberoamericana de Micología, vol. 35, nº 4, pp. 186-191, 2018.T. Eicher y S. Hauptmann, The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications (2nd ed.), John Wiley & Sons press, 2003.P. Echevarría y V. Soriano, «Estavudina en el tratamiento antirretroviral,» Dialnet, vol. 129, nº 10, pp. 375-376, 2007.A. Butts y D. Krysan, «Antifungal Drug Discovery: Something Old and Something New,» PLOS Pathogens, vol. 8, nº 9, p. e1002870, 2012.T. Roemer y D. Krysan, «Antifungal drug development: challenges, unmet clinical needs, and new approaches,» Cold Spring Harbor Perspectives in Medicine, vol. 4, nº 5, p. 019703, 2014.D. Kontoyiannis, R. Lewis, B. Alexander, O. Lortholary, F. Dromer, K. Gupta y G. John, «Calcineurin Inhibitor Agents Interact Synergistically with Antifungal Agents In Vitro against Cryptococcus neoformans Isolates: Correlation with Outcome in Solid Organ Transplant Recipients with Cryptococcosis,» Antimicrobial Agents and Chemotherapy, vol. 52, nº 2, pp. 735-738, 2008.L. Cowen, S. Singh, J. Köhler, C. Collins y A. Zaas, «Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease,» Proceedings of the National Academy of Sciences (Proceedings of the National Academy of Sciences of the United States of America), vol. 106, nº 8, pp. 2818-2823, 2009.C. Mallikarjunaswamya, L. Mallesha, D. Bhadregodwa y O. Pinto, «Studies on synthesis of pyrimidine derivatives and their antimicrobial activity,» Arabian Journal of Chemistry, vol. 10, pp. s484-s490, 2017.A. Bath, R. Dongre, G. Naikoo, I. Hassan y T. Ara, «Proficient synthesis of bioactive annulated pyrimidine derivatives: A review,» Journal of Taibah University for Science, vol. 11, nº 6, pp. 1047-1069, 2017.L. Taglieri, F. Saccoliti, A. Nicolai, G. Peruzzi y V. Madia, «Discovery of a pyrimidine compund endowed with antitumot activity,» Investigational New Drugs, vol. 38, nº 1, pp. 327-329, 2020.Y. Gupta, V. Gupta y S. Singh, «Synthesis, characterization and antimicrobial activity of pyrimidine based derivatives,» Journal of Pharmacy Research, vol. 7, nº 6, pp. 491-495, 2013.S. Sondhi, N. Sigh, M. Johar y A. Kumar, «Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives,» Bioorganic & Medicinal Chemistry, vol. 13, nº 22, pp. 6158-6166, 2005.A. Farghaly, O. AboulWafa, Y. Elshaier, W. Badawi, H. Haridy y H. Mubarak, «Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores,» Medicinal Chemistry Research, vol. 28, pp. 360-379, 2019.A. Nikaje, S. Tiwari, A. Sarkate y K. Karnik, «Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: ionic liquid mediated synthesis, biological evaluation and molecular docking study,» Medicinal Chemestry Research, vol. 27, nº 2, pp. 592-606, 2017.A. Stana, D. Vodnar, R. Tamaian, A. Pirnau, L. Vlase y I. Ionuj, «Design, Synthesis and Antifungal Activity Evaluation of New Thiazolin-4-ones as Potential Lanosterol 14α-Demethylase Inhibitors,» International Journal of Molecular Sciences, vol. 18, nº 1, p. 177, 2017.A. Pratima, S. Tiwari, A. Sarkate y K. Karnik, «Imidazole-thiazole coupled derivatives as novel lanosterol 14-α demethylase inhibitors: ionic liquid mediated synthesis, biological evaluation and molecular docking study,» Medicinal Chemistry Research volume, vol. 27, pp. 592-606, 2018.H. Chen, Z. Guo, Q. Yin, X. Duan, Y. Gu y X. Li, «Design, synthesis and HIV-RT inhibitory activity of novel thiazolidin-4-one derivatives,» Frontiers of Chemical Science and Engineering, vol. 5, pp. 231-237, 2011.A. Srinivas, A. Nagaraj y S. Sanjeeva, «Synthesis of some novel methylene-bis-pyrimidinyl-spiro-4-thiazolidinones as biologically potent agents,» Journal of Heterocyclic Chemistry, vol. 45, nº 4, pp. 1121-1125, 2009.P. Neuenfeldt, B. Drawanz, Q. Cunico, E. Tiekink, J. Wardell y S. Wardell, «4-(Pyrimidin-2-yl)-1-thia-4-aza¬spiro¬[4.5]decan-3-one,» Acta Crystallographica. Section E, Structure Reports Online, vol. 65, nº 12, 2009.A. Yadav, M. Kumar, T. Yadav y R. Jain, «An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles,» Tetrahedron Letters, vol. 50, nº 35, pp. 5031-5034, 2009.R. Barone, M. Chanon y R. Gallo, «Aminothiazoles and Their Derivatives, Part Two,» de Chemistry of Heterocyclic Compounds: Thiazole and its Derivatives, Part Two, Volume 34, John Wiley & Sons, Inc, 2008, pp. 9-368.D. Debasis, P. Sikdar y M. Bairagi, «Recent developments of 2-aminothiazoles in medicinal chemistry,» European Journal of Medicinal Chemistry, vol. 109, pp. 89-98, 2016.W. Klose, U. Niedballa, K. Schwarz y I. Böttcher, «[Nonsteroidal anti-inflammatory agents. 17. 4,5-Bis-(4-methoxyphenyl)-2-arylthioazoles with antiphlogistic activity],» Archiv der Pharmazie - Chemistry in Life Sciences, vol. 316, nº 11, pp. 941-951, 1983.M. Khalifa, «Recent Developments and Biological Activities of 2-Aminothiazole,» Acta Chimica Slovenica, vol. 65, nº 1, pp. 1-22, 2018.E. Kesicki, M. Bailey, Y. Ovechkina, J. Early, T. Alling, J. Bowman y E. Zuniga, «Synthesis and Evaluation of the 2-Aminothiazoles as Anti-Tubercular Agents,» PLoS One, vol. 11, nº 5, 2016.Y. Zheng, C. Tice y S. Singh, «The use of spirocyclic scaffolds in drug discovery,» Bioorganic & Medicinal Chemistry Letters, vol. 25, nº 16, pp. 3673-3682, 2014.D. James, H. Kunze y D. Faulkner, «Two new brominated tyrosine derivatives from the sponge Druinella (= Psammaplysilla) purpurea,» Journal of Natural Products (Lloydia), vol. 54, nº 4, pp. 1137-1140, 1991.J. Kovayashi, M. Tsuda, K. Agemi, H. Shigemori, M. Ishibashi, T. Sasaki y Y. Mikami, «Purealidins B and C, new bromotyrosine alkaloids from the okinawan marine sponge psammaplysilla purea,» Tetrahedron, vol. 47, nº 33, pp. 6617-6622, 1991.C. Marson, «New and unusual scaffolds in medicinal chemistry,» Chemical Society Reviews, vol. 40, nº 11, pp. 5514-5533, 2011.D. Havrylyuk, N. Kovach, B. Zimenkovsky, O. Vasylenko y R. Lesyk, «Synthesis and anticancer activity of isatin-based pyrazolines and thiazolidines conjugates,» Archiv der Pharmazie - Chemistry in Life Sciences, vol. 344, nº 8, pp. 514-522, 2011.A. Dandia, R. Singh, S. Khaturia, C. Mérienne, G. Morgant y A. Loupy, «Efficient microwave enhanced regioselective synthesis of a series of benzimidazolyl/triazolyl spiro [indole-thiazolidinones] as potent antifungal agents and crystal structure of spiro[3H-indole-3,2′-thiazolidine]-3′(1,2,4- triazol-3-yl)-2,4′(1H)-dione,» Bioorganic & Medicinal Chemistry, vol. 14, nº 7, pp. 2409-2417, 2006.D. Anekal y J. Biradar, «Synthesis and biological evaluation of novel Indolyl 4-thiazolidinones bearing thiadiazine nucleus,» Arabian Journal of Chemistry, vol. 10, nº 2, pp. s2098-s2105, 2017.N. Priyanka y A. Manishi, International Journal of Current Pharmaceutical Research,, vol. 11, nº 6, pp. 71-74, 2019.R. Sakhuja, S. Panda, L. Khanna, S. Khurana y S. Jain, «Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents,» Bioorganic & Medicinal Chemistry Letters, vol. 21, nº 18, pp. 5465-5469, 2011.R. de Paiba, J. da Silva, H. Moreira, O. Pinto, L. Camargo y P. Naves, «Synthesis, Antimicrobial Activity and Structure-Activity Relationship of Some 5-Arylidene-thiazolidine-2,4-dione Derivatives,» Journal of the Brazilian Chemical Society, vol. 30, nº 1, pp. 164-172, 2019.S. Jain, A. Kumar y D. Saini, «Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials,» Experimental Parasitology, vol. 185, pp. 107-114, 2018.R. Maccari, R. Vitale, R. Ottana, M. Rocchiccioli, A. Marrazzo, V. Cardile y A. Graziano, «Structure activity relationships and molecular modelling of new 5- arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents,» European Journal of Medicinal Chemistry, vol. 81, pp. 1-14, 2014.I. da Silva, J. da Silva, P. Gomez, M. Soarez, C. de Souza y F. Leite, «Synthesis and Antimicrobial Activities of 5-Arylidene-thiazolidine-2,4-dione Derivatives,» BioMed Research International, vol. 2014, pp. 1-8, 2014.M. Naim, M. Alam, S. Ahmad, F. Nawaz, N. Shrivastava, M. Sahi y O. Alam, «Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship,» European Journal of Medicinal Chemistry, vol. 129, pp. 218-250, 2017.S. Alegaon y K. Alawadi, «New thiazolidinedione-5-acetic acid amide derivatives: synthesis, characterization and investigation of antimicrobial and cytotoxic properties,» Medicinal Chemistry Research, vol. 21, nº 6, pp. 816-824, 2012.S. Shah y B. Singh, «Urea/thiourea catalyzed, solvent-free synthesis of 5-arylidenethiazolidine-2,4-diones and 5-arylidene-2-thioxothiazolidin-4-ones,» Bioorganic & Medicinal Chemistry Letters, vol. 22, nº 17, pp. 5388-5391, 2012.R. Ottana, R. Maccari, M. Giglio, A. Del Corso, A. Capiello y U. Mura, «Identification of 5-arylidene-4-thiazolidinone derivatives endowed with dual activity as aldose reductase inhibitors and antioxidant agents for the treatment of diabetic complications,» European Journal of Medicinal Chemistry, vol. 46, nº 7, pp. 2797-2806, 2011.Rester y U, «From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective,» Current Opinion in Drug Discovery & Development, vol. 11, nº 4, pp. 559-568, 2008.J. Rollinger, H. Stuppner y T. Langer, «Virtual screening for the discovery of bioactive natural products,» de Natural Compounds as Drugs, Volume I, vol. 65, Progress in Drug Research, 2008, p. 211–249.A. Daina, O. Michielin y V. Zoete, «SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,» Scientific Reports, vol. 7, nº 42717, pp. 1-13, 2017.H. Yang, C. Lou, L. Sun, Y. Cai, Z. Wang, W. Li, G. Liu y Y. Tang, «admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties,» Bioinformatics, vol. 35, nº 6, pp. 1067-1069, 2019.S. Lee, G. Chang, I. Lee, J. Chung, K. Sung y No, «The preadmeT: PC-based program for barch batch prediction of ADME properties,» de EuroQSAR, Istanbul, Turkey, 2004.G. Morris, H. Ruth, W. Lindstrom, M. Sanner, R. Belew, D. Goodsell y A. Olson, «AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility,» Journal of Computational Chemistry, vol. 30, nº 16, pp. 2785-2791, 2009.W. Allen, T. Balius, S. Mukherjee, S. Brozell, D. Moustakas, P. Lang, D. Case, I. Kuntz y R. Rizzo, «DOCK 6: Impact of new features and current docking performance,» Journal of Computational Chemistry, vol. 36, nº 15, pp. 1132-1156, 2015.E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng y T. Ferrin, «UCSF Chimera--a visualization system for exploratory research and analysis,» Journal of Computational Chemistry, vol. 25, nº 13, pp. 1605-1612, 2004.Spinsolve, «The aldol condensation,» 2020. [En línea]. Available: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiYzJ7Vt8P6AhWEsjEKHRY3AsIQFnoECAsQAQ&url=https%3A%2F%2Fmagritek.com%2Fwp-content%2Fuploads%2F2020%2F03%2FLab-Manual-Aldol-Condensation-web.pdf&usg=AOvVaw3e6zYOTtTqysa. [Último acceso: 10 Marzo 2021].S. Dixon, «Identifying druggable disease-modifying gene products,» Current Opinion in Chemical Biology, vol. 13, nº 5-6, pp. 549-555, 2009.Y. Yuan, J. Pei y L. Lai, «Binding Site Detection and Druggability Prediction of Protein Targets for Structure- Based Drug Design,» Current Pharmaceutical Design, vol. 19, nº 12, pp. 2326-2333, 2013.F. Heynick, «The original ‘magic bullet’ is 100 years old – extra,» The British Journal of Psychiatry, vol. 5, p. 456, 2009.M. Bolognesi y A. Cavalli, «Multitarget Drug Discovery and Polypharmacology,» ChemMedChem, vol. 11, nº 12, pp. 1190-1192, 2016.S. Sogabe, M. Masubuchi, K. Sakata, T. Fukami, K. Morikami, Y. Shiratori, H. Ebiike, K. Kawasaki, Y. Aoki, N. Shimma, A. D'Arcy, F. Winkler, D. Banner y T. Ohtsuka, «Crystal structures of Candida albicans N-myristoyltransferase with two distinct inhibitors,» Chemistry & Biology, vol. 9, nº 10, pp. 1119-1128, 2002.S. Cosconati, S. Forli, A. Perryman, R. Harris, D. Goodsell y A. Olson, «Virtual screening with AutoDock: theory and practice,» Expert Opinion on Drug Discovery, vol. 5, nº 6, pp. 597-607, 2010.O. Trott y A. Olson, «AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading,» Journal of Computational Chemistry, vol. 31, nº 2, pp. 455-461, 2009.O. Gómez, D. Andrade, E. Campos, R. Ballinas, A. Méndez, L. Villa y C. Álvarez, «Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines,» Molecules, vol. 23, nº 3, p. 599, 2018.Y. Mabkhot, F. Aldawsari, S. Al-Showiman, A. Barakat, T. Hadda, M. Mubarak, S. Naz, Z. Ul-Haq y A. Rauf, «Synthesis, Bioactivity, Molecular Docking and POM Analyses of Novel Substituted Thieno[2,3-b]thiophenes and Related Congeners,» Molecules, vol. 20, nº 2, pp. 1827-1841, 2015.C. Borsari, D. Trader, A. Tait y M. Costi, «Designing Chimeric Molecules for Drug Discovery by Leveraging Chemical Biology,» Journal of Medicinal Chemistry, vol. 63, nº 5, pp. 1908-1928, 2020.M. Szumilak, A. Wiktorowska y A. Stanczak, «Hybrid Drugs-A Strategy for Overcoming Anticancer Drug Resistance?,» Molecules, vol. 26, nº 9, pp. 1-31, 2021.K. Łączkowski, N. Konklewska y A. Biernasiuk, «Thiazoles with cyclopropyl fragment as antifungal, anticonvulsant, and anti-Toxoplasma gondii agents: synthesis, toxicity evaluation, and molecular docking study,» Medicinal Chemistry Research, vol. 27, pp. 2125-2140, 2018.C. Tratrat, A. Petrou, A. Geronikaki, M. Ivanov, M. Kostić, M. Soković, I. Vizirianakis, N. Theodoroula y M. Haroun, «Thiazolidin-4-Ones as Potential Antimicrobial Agents: Experimental and In Silico Evaluation,» Molecules, vol. 27, nº 6, p. 1930, 2022.A. Bell, Z. Yu, J. Hutton, M. Wright, J. Brannigan, D. Paape, S. Roberts y C. Sutherell, «Novel Thienopyrimidine Inhibitors of Leishmania N-Myristoyltransferase with On-Target Activity in Intracellular Amastigotes,» Journal of Medicinal Chemistry, vol. 3., nº 01, pp. 7740-7765, 2020.J. Choi, L. Podust y R. W, «Drug Strategies Targeting CYP51 in Neglected Tropical Diseases,» Chemical Reviews, vol. 114, nº 22, pp. 11242-11271, 2014.Y. Zheng, C. Tice y S. Singh, «The use of spirocyclic scaffolds in drug discovery,» Bioorganic & Medicinal Chemistry Letters, vol. 24, nº 16, pp. 3673-3782, 2014.T. Kennedy, «Managing the drug discovery/development interface,» Drug Discovery Today, vol. 2, nº 10, pp. 436-444, 1997.C. D. D. T. T. Lipinski, «Lead- and drug-like compounds: The rule-of-five revolution,» Drug Discovery Today: Technologies, vol. 1, nº 4, p. 337–341, 2004.J. Sangshetti, F. Kalam Khan, R. Chouthe, M. Damale y D. Shinde, «Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1-H-1,2,4-triazol-3-yl) methyl)- 4,5,6,7-tetrahydrothieno[3,2-c]pyridine as antifungal agents,» Chinese Chemical Letters, vol. 25, nº 7, pp. 1033-1038, 2014.D. Veber, S. Johnson, H. Cheng, B. Smith, K. Wards y W. Kopple, «Molecular Properties That Influence the Oral Bioavailability of Drug Candidates,» Journal of Medicinal Chemistry, vol. 45, nº 12, pp. 2615-2623, 2002.R. Brüggemann, I. Alffenaar, N. Blijlevens, E. Billaud y G. Kosterink, «Clinical Relevance of the Pharmacokinetic Interactions of Azole Antifungal Drugs with Other Coadministered Agents,» Clinical Infectious Diseases, vol. 48, nº 10, pp. 1441-1458, 2009.M. Ghannoum y M. Perfect, Antifungal Therapy, New York: Taylor & Francis Group, LLC, 2019, pp. 196-200.G. Peralta, M. Sanchez, S. Echevarria, E. Valdizan y A. Armijo, «Glucoproteína P e infección por el virus de la inmunodeficiencia humana,» Enfermedades Infecciosas y Microbiología Clínica, vol. 26, nº 3, pp. 150-159, 2008.J. Van der Laan, W. Buitenhuis, L. Wagenaar y A. V. S. E. Soffers, «Prediction of the Carcinogenic Potential of Human Pharmaceuticals Using Repeated Dose Toxicity Data and Their Pharmacological Properties,» Frontiers in Medicine, vol. 3, nº 45, pp. 1-24, 2016.K. Rim, «In silico prediction of toxicity and its applications for chemicals at work,» Toxicology and Environmental Health Sciences, vol. 12, nº 3, pp. 191-202, 2020.K. Hentz, «Safety Assessment of Pharmaceuticals: Examples of Inadequate Assessments and a Mechanistic Approach to Assuring Adequate Assessment,» Comprehensive Toxicology, pp. 17-28, 2010.J. McCann, E. Choi, E. Yamasaki y B. Ames, «Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals,» Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 72, nº 12, p. 2960, 2000.B. Priest, I. Bell y M. Garcia, «Role of hERG potassium channel assays in drug development,» Channels, vol. 2, nº 2, pp. 87-93, 2008.A. Oda, K. Tsuchida, T. Takakura y N. H. S. Yamaotsu, «Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes,» Journal of Chemical Information and Modeling, vol. 46, nº 1, pp. 380-391, 2006.D. Houston y M. Walkinshaw, «Consensus docking: Improving the reliability of docking in a virtual screening context,» Journal of Chemical Information and Modeling, vol. 53, nº 2, pp. 384-390, 2013.D. Plewczynski, M. Łaźniewski, M. von Grotthuss, L. Rychlewski y K. Ginalski, «VoteDock: consensus docking method for prediction of protein-ligand interactions,» Journal of Computational Chemistry, vol. 32, nº 4, pp. 568-581, 2011.P. Charifson, J. Corkery, M. Murcko y P. Walters, «Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins,» Journal of Medicinal Chemistry, vol. 42, pp. 5100-5109, 1999.J. Morschhäuser, «The genetic basis of fluconazole resistance development in Candida albicans,» Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol. 1587, nº 2-3, pp. 240-248, 2002.A. Volkamer, D. Kuhn, F. Rippmann y M. Rarey, «DoGSiteScorer: a web server for automatic binding site prediction, analysis and druggability assessment,» Bioinformatics, vol. 28, nº 15, pp. 2074-2075, 2012.A. Sagatova, M. Kenia, R. Wilson, B. Monk y J. Tyndall, «Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase,» Antimicrobial Agents and Chemotherapy, vol. 59, nº 8, pp. 4982-4989, 2015.F. Orozco, L. Guerrero y P. Cuervo, «Computer-aided design, synthesis, and characterization of molecular hybrids of dihydropyrazoles, aminopyrimidines, and thiazolidin-4-ones as potential inhibitors of the penicillin-binding protein 3 (PBP-3) of Escherichia coli,» Universitas Scientiarum, vol. 26, nº 1, pp. 17-35, 2021.M. Ahmad, S. Hassan y R. Nisa, «Synthesis, in vitro potential and computational studies on 2-amino-1, 4-dihydropyrimidines as multitarget antibacterial ligands,» Medicinal Chemistry Research, vol. 25, p. 1877–1894, 2016.G. Felluga, F. Benedetti, F. Berti, S. Drioli y G. Regini, «Efficient Biginelli Synthesis of 2-Aminodihydropyrimidines under Microwave Irradiation,» Synlett, vol. 29, nº 8, pp. 1047-1054, 2018.E. Scherbinina, D. Dar’in y P. Lobanov, «Investigation on possibility of rearrangement of pyrimidine-5-carboxylic acids esters,» Chemistry of Heterocyclic Compounds, vol. 46, pp. 1109-1115, 2010.H. Drust y G. Gokel, Química orgánica experimental, Barcelona: Reverté, 1985, p. 599.I. El-Deeb, T. Funakoshi, Y. Shimomoto, R. Masubara y M. Hayashi, «Dehydrogenative Formation of Resorcinol Derivatives Using Pd/C–Ethylene Catalytic System,» Journal of Organic Chemestry, pp. 2630-2640, 2017.P. Kuo, A. Damu, C. Cherng, J. Jeng, C. Teng, E. Lee y T. Wu, «Isolation of a natural antioxidant, dehydrozingerone from Zingiber officinale and synthesis of its analogues for recognition of effective antioxidant and antityrosinase agents,» Archives of Pharmacal Research, vol. 28, nº 5, pp. 512-528, 2005.B. Furnis, A. Hannaford, P. Smith y A. Tatchell, VOGEL´s Textbook of practical Organic Chemestry, New York: Longman Scientific & Technical., 1989.A. Leśniare, A. Chojnacka y W. Gładkowski, «Application of Lecitase® Ultra-Catalyzed Hydrolysis to the Kinetic Resolution of (E)-4-phenylbut-3-en-2-yl Esters,» Catalysts, vol. 8, nº 10, p. 423, 2018.V. Mamaev y A. Vails, «Pyrimidines. XLVII. New method for the synthesis of 2-aminopyrimidines,» Chemistry of Heterocyclic Compounds, vol. 11, pp. 1322-1326, 1975.M. El Sayed, M. Massoud, A. Tantawy y M. Nasr, «Synthesis and biological evaluation of new unsaturated derivatives of cyclic compounds as potent antioxidant agent,» Der Pharma Chemica, vol. 4, nº 5, pp. 1785-1797, 2012.EstudiantesMaestrosORIGINAL1053345401.2023.pdf1053345401.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf6757145https://repositorio.unal.edu.co/bitstream/unal/83834/3/1053345401.2023.pdf050045c7749c2c9f220a7e09fefed98cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83834/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1053345401.2023.pdf.jpg1053345401.2023.pdf.jpgGenerated Thumbnailimage/jpeg5375https://repositorio.unal.edu.co/bitstream/unal/83834/4/1053345401.2023.pdf.jpgddcbc86dae8cc280904baefd72ae4845MD54unal/83834oai:repositorio.unal.edu.co:unal/838342023-08-04 23:04:17.734Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |