Desarrollo y caracterización de un material de referencia de especies de mercurio en peces
ilustraciones (principalmente a color), diagramas, fotografías
- Autores:
-
Garzón Zuluaga, Diego Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86533
- Palabra clave:
- 540 - Química y ciencias afines::543 - Química analítica
Mercurio en peces
Contaminación por mercurio
Peces - Efecto de los metales
Bagres
Bagre rayado
Fishes -- Effect of metlas
Ictaluridae
Material de referencia certificado
Especiación química
Mercurio
Metilmercurio
Certified reference material
Chemical speciation
Mercury
Methylmercury
Pseudoplatystoma magdaleniatum
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_1a7662f627aae59d82c4feb446775a93 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86533 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
dc.title.translated.eng.fl_str_mv |
Development and characterization of a reference material of mercury species in fish |
title |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
spellingShingle |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces 540 - Química y ciencias afines::543 - Química analítica Mercurio en peces Contaminación por mercurio Peces - Efecto de los metales Bagres Bagre rayado Fishes -- Effect of metlas Ictaluridae Material de referencia certificado Especiación química Mercurio Metilmercurio Certified reference material Chemical speciation Mercury Methylmercury Pseudoplatystoma magdaleniatum |
title_short |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
title_full |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
title_fullStr |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
title_full_unstemmed |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
title_sort |
Desarrollo y caracterización de un material de referencia de especies de mercurio en peces |
dc.creator.fl_str_mv |
Garzón Zuluaga, Diego Alexander |
dc.contributor.advisor.none.fl_str_mv |
Castillo Serna, Elianna Ahumada-Forigua, Diego Alejandro |
dc.contributor.author.none.fl_str_mv |
Garzón Zuluaga, Diego Alexander |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Metrología Química y Bioanálisis del Instituto Nacional de Metrología de Colombia |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::543 - Química analítica |
topic |
540 - Química y ciencias afines::543 - Química analítica Mercurio en peces Contaminación por mercurio Peces - Efecto de los metales Bagres Bagre rayado Fishes -- Effect of metlas Ictaluridae Material de referencia certificado Especiación química Mercurio Metilmercurio Certified reference material Chemical speciation Mercury Methylmercury Pseudoplatystoma magdaleniatum |
dc.subject.lemb.spa.fl_str_mv |
Mercurio en peces Contaminación por mercurio Peces - Efecto de los metales Bagres Bagre rayado |
dc.subject.lemb.eng.fl_str_mv |
Fishes -- Effect of metlas Ictaluridae |
dc.subject.proposal.spa.fl_str_mv |
Material de referencia certificado Especiación química Mercurio Metilmercurio |
dc.subject.proposal.eng.fl_str_mv |
Certified reference material Chemical speciation Mercury Methylmercury |
dc.subject.wikidata.N/A.fl_str_mv |
Pseudoplatystoma magdaleniatum |
description |
ilustraciones (principalmente a color), diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-07-17T17:41:53Z |
dc.date.available.none.fl_str_mv |
2024-07-17T17:41:53Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86533 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86533 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
T. W. Clarkson, “Human toxicology of Mercury,” The Journal of Trace Elements in Experimental Medicine, vol. 11, no. 23, pp. 303–317, 1998, doi: 10.1002/(sici)1520-670x(1998) “FAO - News Article: Codex Alimentarius Commission:17-22 July 2017.” Accessed: Apr. 12, 2021. [Online]. Available: http://www.fao.org/news/story/en/item/1024512/icode/ “La importancia de detectar metales pesados en los alimentos - TierraFértil®.” Accessed: Jan. 26, 2024. [Online]. Available: https://tierrafertil.com.mx/2023/06/21/la-importancia-de-detectar-metales-pesados-en-los-alimentos/ M. allister Universidad de Antioquia. Facultad de Ciencias Agrarias. and Colegio de Médicos Veterinarios y de Zootecnistas de Antioquia., Revista colombiana de ciencias pecuarias, vol. 22, no. 3. Colvesa, 1978. Accessed: Jan. 26, 2024. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300009&lng=en&nrm=iso&tlng=es Diego A. Ahumada, Cristhian Paredes, Johanna Abella, and Ivonne González, VALIDACIÓN DE MÉTODOS EN ANÁLISIS QUÍMICO CUANTITATIVO. 2023. Accessed: Jun. 04, 2023. [Online]. Available: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdf C. I. P. Thomas, “The Future of Food Safety,” in In Food We Trust, UNP - Nebraska, 2017, pp. 162–186. doi: 10.2307/j.ctt1d9nmqm.14. CONGRESO DE COLOMBIA, “Ley 1892. Por Medio De La Cual Se Aprueba El Convenio De Minamata Sobre El Mercurio, Hecho En Kumamoto (Japón) El 10 De Octubre De 2013,” no. 1892, 2018, [Online]. Available: http://es.presidencia.gov.co/normativa/normativa/LEY 1892 DEL 11 DE MAYO DE 2018.pdf “Ley 1658 de 2013 - Gestor Normativo - Función Pública.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=53781# L. Córdoba-Tovar, J. Marrugo-Negrete, P. A. Ramos Barón, and S. Díez, “Ecological and human health risk from exposure to contaminated sediments in a tropical river impacted by gold mining in Colombia,” Environ Res, vol. 236, Nov. 2023, doi: 10.1016/j.envres.2023.116759. G. Caicedo-Rivas, M. Salas-Moreno, and J. Marrugo-Negrete, “Health Risk Assessment for Human Exposure to Heavy Metals via Food Consumption in Inhabitants of Middle Basin of the Atrato River in the Colombian Pacific,” Int J Environ Res Public Health, vol. 20, no. 1, Jan. 2023, doi: 10.3390/ijerph20010435. C. L. López-Jiménez, J. Uribe-Guevara, and J. J. Cuesta-Ramírez, “Perceived impact on the artisanal miner’s health from quinchía´s municipality (Colombia) by the use of cyanide and mercury in the amalgamation process of gold,” Revista de Salud Publica, vol. 21, no. 3, pp. 1–8, 2019, doi: 10.15446/RSAP.V21N3.81048. L. Suárez-Criado, P. Rodríguez-González, J. Marrugo-Negrete, J. I. García Alonso, and S. Díez, “Determination of methylmercury and inorganic mercury in human hair samples of individuals from Colombian gold mining regions by double spiking isotope dilution and GC-ICP-MS,” Environ Res, vol. 231, Aug. 2023, doi: 10.1016/j.envres.2023.115970. M. F. Lizarazo et al., “Contamination of staple crops by heavy metals in Sibaté, Colombia,” Heliyon, vol. 6, no. 7, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04212. H. A. Chamizo-García, “Exposición a la contaminación antropogénica por mercurio y sus efectos en la salud. Revisión Bibliográfica.,” Revista de Ciencias Ambientales, vol. 57, no. 2, pp. 1–24, Jun. 2023, doi: 10.15359/rca.57-2.12. C. Hu, T. Hu, and L. Liang, “Spatial variation and potential ecological risk assessment of trace elements in the sediments of Chaohu Lake in China,” J Freshw Ecol, vol. 39, no. 1, Dec. 2024, doi: 10.1080/02705060.2023.2294129. K. Prabakaran, P. Sompongchaiyakul, S. Bureekul, X. Wang, and C. Charoenpong, “Heavy metal bioaccumulation and risk assessment in fishery resources from the Gulf of Thailand,” Mar Pollut Bull, vol. 198, Jan. 2024, doi: 10.1016/j.marpolbul.2023.115864. K. Novotná Kružíková, Z. Široká, and Z. Svobodová, “Total mercury content in selected tissues of common carp (Cyprinus carpio) pond farmed in the Czech Republic,” Acta Veterinaria Brno, vol. 92, no. 4, pp. 419–425, 2023, doi: 10.2754/avb202392040419. T. H. Kim et al., “Methylmercury determination in fish by direct mercury analyzer,” J AOAC Int, vol. 103, no. 1, pp. 244–249, 2021, doi: 10.5740/jaoacint.18-0254. M. Winter, F. Lessmann, and V. Harth, “A method for reliable quantification of mercury in occupational and environmental medical urine samples by inductively coupled plasma mass spectrometry,” Analytical Methods, 2023, doi: 10.1039/d2ay02051c. H. Polkowska-Motrenko et al., “Preparation of Three New Certified Reference Materials for Food and Environmental Analysis and Certification Using Laboratory Intercomparison as well as Primary Reference Measurement Procedures,” Food Anal Methods, vol. 15, no. 2, pp. 377–390, Feb. 2022, doi: 10.1007/s12161-021-02081-6. J. C. Ulrich and J. E. S. Sarkis, “Preparation and certification of a reference material for the total mercury and methylmercury mass fractions in fish,” Accreditation and Quality Assurance, vol. 18, no. 6, pp. 511–516, 2013, doi: 10.1007/s00769-013-1019-2. V. Ivanova, C. Oster, A. Surleva, and P. Fisicaro, “Comparative evaluation of methods for quantification of mercury at trace level in aquatic biota samples as a bio-indicator,” 2022. T. A. Saleh, G. Fadillah, E. Ciptawati, and M. Khaled, “Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas,” TrAC - Trends in Analytical Chemistry, vol. 132, pp. 1–12, 2020, doi: 10.1016/j.trac.2020.116016. E. M. Krupp, Z. Gajdosechova, T. Schwerdtle, and H. Lohren, “Mercury Toxicity and Speciation Analysis,” in Metallomics Analytical Techniques and Speciation Methods, 2016. doi: 10.1002/9783527694907.ch9. T. Charette, M. Rosabal, and M. Amyot, “Mapping metal (Hg, As, Se), lipid and protein levels within fish muscular system in two fish species (Striped Bass and Northern Pike),” Chemosphere, vol. 265, 2021, doi: 10.1016/j.chemosphere.2020.129036. J. Feldmann et al., “Microwave-Assisted Sample Preparation for Element Speciation,” in Microwave-Assisted Sample Preparation for Trace Element Analysis, Elsevier, 2014, pp. 281–312. doi: 10.1016/B978-0-444-59420-4.00010-6. J. L. M. Viana, A. A. Menegário, and A. H. Fostier, “Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques,” Talanta, vol. 226, no. September 2020, 2021, doi: 10.1016/j.talanta.2021.122119. J. E. Sánchez Uría and A. Sanz-Medel, “Inorganic and methylmercury speciation in environmental samples,” Talanta, vol. 47, no. 3, pp. 509–524, 1998, doi: 10.1016/S0039-9140(98)00116-7. O. F. X. Donard and J. A. Caruso, “Trace metal and metalloid species determination: evolution and trends,” Spectrochim Acta Part B At Spectrosc, vol. 53, no. 2, pp. 157–163, Feb. 1998, doi: 10.1016/S0584-8547(98)00092-5. K. Leopold, M. Foulkes, and P. Worsfold, “Methods for the determination and speciation of mercury in natural waters-A review,” Analytica Chimica Acta, vol. 663, no. 2. pp. 127–138, Mar. 2010. doi: 10.1016/j.aca.2010.01.048. S. L. C. Ferreira et al., “Analytical strategies of sample preparation for the determination of mercury in food matrices — A review,” Microchemical Journal, vol. 121, pp. 227–236, Jul. 2015, doi: 10.1016/j.microc.2015.02.012. J. V. Cizdziel, T. A. Hinners, and E. M. Heithmar, “Determination of total mercury in fish tissues using combustion atomic absorption spectrometry with gold amalgamation,” Water Air Soil Pollut, vol. 135, no. 1–4, pp. 355–370, 2002, doi: 10.1023/A:1014798012212. B. D. Barst et al., “Determination of mercury speciation in fish tissue with a direct mercury analyzer,” Environ Toxicol Chem, vol. 32, no. 6, pp. 1237–1241, 2013, doi: 10.1002/etc.2184. AOAC, “AOAC Official Method 2015.01 Heavy Metals in Food Inductively Coupled Plasma–Mass Spectrometry First Action 2015,” AOAC Official Method 2015.01, pp. 1–15, 2015, [Online]. Available: doi: 10.5740/jaoac.int.2012.007 J. García-Bellido, L. Freije-Carrelo, M. Moldovan, and J. R. Encinar, “Recent advances in GC-ICP-MS: Focus on the current and future impact of MS/MS technology,” TrAC - Trends in Analytical Chemistry, vol. 130, 2020, doi: 10.1016/j.trac.2020.115963. L. Yang, V. Colombini, P. Maxwell, Z. Mester, and R. E. Sturgeon, “Application of isotope dilution to the determination of methylmercury in fish tissue by solid-phase microextraction gas chromatography–mass spectrometry,” J Chromatogr A, vol. 1011, no. 1–2, pp. 135–142, Sep. 2003, doi: 10.1016/S0021-9673(03)01122-1. T. Kuballa, E. Leonhardt, K. Schoeberl, and D. W. Lachenmeier, “Determination of methylmercury in fish and seafood using optimized digestion and derivatization followed by gas chromatography with atomic emission detection,” European Food Research and Technology, vol. 228, no. 3, pp. 425–431, 2009, doi: 10.1007/s00217-008-0949-0. R. Rai, W. Maher, and F. Kirkowa, “Measurement of inorganic and methylmercury in fish tissues by enzymatic hydrolysis and HPLC-ICP-MS,” J Anal At Spectrom, vol. 17, no. 11, pp. 1560–1563, 2002, doi: 10.1039/b208041a. M. P. Rodríguez-Reino, R. Rodríguez-Fernández, E. Peña-Vázquez, R. Domínguez-González, P. Bermejo-Barrera, and A. Moreda-Piñeiro, “Mercury speciation in seawater by liquid chromatography-inductively coupled plasma-mass spectrometry following solid phase extraction pre-concentration by using an ionic imprinted polymer based on methyl-mercury-phenobarbital interaction,” J Chromatogr A, vol. 1391, no. 1, pp. 9–17, 2015, doi: 10.1016/j.chroma.2015.02.068. J. Qvarnström and W. Frech, “Mercury species transformations during sample pre-treatment of biological tissues studied by HPLC-ICP-MS,” J Anal At Spectrom, vol. 17, no. 11, pp. 1486–1491, 2002, doi: 10.1039/b205246f. M. J. Griffin et al., “A Nanoengineered Conductometric Device for Accurate Analysis of Elemental Mercury Vapor,” Environ Sci Technol, vol. 50, no. 3, pp. 1384–1392, 2016, doi: 10.1021/acs.est.5b05700. A. Shah et al., “Amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions,” Electrochim Acta, vol. 321, 2019, doi: 10.1016/j.electacta.2019.134658. R. Koplík, I. Klimešová, K. Mališová, and O. Mestek, “Determination of mercury species in foodstuffs using LC-ICP-MS: The applicability and limitations of the method,” Czech Journal of Food Sciences, vol. 32, no. 3, pp. 249–259, 2014, doi: 10.17221/577/2013-cjfs. Y. Cai and J. M. Bayona, “Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry,” J Chromatogr A, vol. 696, no. 1, pp. 113–122, Apr. 1995, doi: 10.1016/0021-9673(94)01177-G. P. Rodríguez-González, J. M. Marchante-Gayón, J. I. García Alonso, and A. Sanz-Medel, “Isotope dilution analysis for elemental speciation: a tutorial review,” Spectrochim Acta Part B At Spectrosc, vol. 60, no. 2, pp. 151–207, Feb. 2005, doi: 10.1016/j.sab.2005.01.005. R. Wahlen, “A comparison of GC-ICP-MS and HPLC-ICP-MS for the analysis of organotin compounds,” LC GC Eur, no. October, pp. 1–8, 2002, [Online]. Available: http://www.chem.agilent.com/Library/applications/5988-6697.pdf%5Cnhttp://prdwww.lvld.agilent.com/Library/applications/5988-6697.pdf X. P. Yan, Y. Li, and Y. Jiang, “Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry,” Anal Chem, vol. 75, no. 10, pp. 2251–2255, 2003, doi: 10.1021/ac026415f. M. Horvat, A. R. Byrne, and K. May, “A modified method for the determination of methylmercury by gas chromatography,” Talanta, vol. 37, no. 2, pp. 207–212, Feb. 1990, doi: 10.1016/0039-9140(90)80024-A. Y. G. Yin, J. F. Liu, and G. Bin Jiang, “Recent advances in speciation analysis of mercury, arsenic and selenium,” Chinese Science Bulletin, vol. 58, no. 2, pp. 150–161, 2013, doi: 10.1007/s11434-012-5497-0. Y. Cai and J. M. Bayona, “Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry,” J Chromatogr A, vol. 696, no. 1, pp. 113–122, 1995, doi: 10.1016/0021-9673(94)01177-G. N. Demuth and K. G. Heumann, “Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS,” Anal Chem, 2001, doi: 10.1021/ac010366+. Y. Mao, G. Liu, G. Meichel, Y. Cai, and G. Jiang, “Simultaneous speciation of monomethylmercury and monoethylmercury by aqueous phenylation and purge-and-trap preconcentration followed by atomic spectrometry detection,” Anal Chem, vol. 80, no. 18, pp. 7163–7168, 2008, doi: 10.1021/ac800908b. Ines. Baer, B. de la. Calle, Inge. Verbist, E. Institute for Reference Materials and Measurements., and R. Piotr, IMEP-30 : total arsenic, cadmium, lead and mercury, as well as methylmercury and inorganic arsenic in seafood : interlaboratory comparison report. Publications Office, 2010. Accessed: Jun. 30, 2019. [Online]. Available: http://publications.jrc.ec.europa.eu/repository/handle/JRC61380 “Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=1677 “Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=1189 “Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=441 “Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=864 A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, Apr. 2012, doi: 10.1007/s00769-011-0827-5. W. R. Kelly, B. S. MacDonald, and W. F. Guthrie, “Gravimetric approach to the standard addition method in instrumental analysis. 1,” Anal Chem, vol. 80, no. 16, pp. 6154–6158, Aug. 2008, doi: 10.1021/ac702437f. R. Ketrin, E. M. Handayani, and I. Komalasari, “Bracketing method with certified reference materials for high precision and accuracy determination of trace cadmium in drinking water by Inductively Coupled Plasma - Mass Spectrometry,” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2017. doi: 10.1063/1.4973185. B. Magnusson and U. Ornemark, La Adecuación al Uso de los Métodos Analíticos, vol. 1. 2014. doi: ST/NAR/41. P.P Morillas y colaboradores, Guía Eurachem: La adecuación al uso de los Métodos Analíticos, vol. 1. 2016. doi: ST/NAR/41. D. Garzón, D. Ahumada, J. Abella Gamba, J. Ágreda, and E. Castillo, “Quantification of Arsenic, Cadmium, Mercury and Lead in Pineapple: Method Development, Validation and Evaluation of In-House Reference Materials,” J Braz Chem Soc, vol. 31, no. 6, pp. 1296–1305, 2020, doi: 10.21577/0103-5053.20200015. J. Abella Gamba, “MANUAL DE PRODUCCIÓN DE MATERIALES DE REFERENCIA Y ACTIVIDADES DE LA SMQB. MANUAL TECNICO,” Subdirección de Metrologia Quimica y Biologia, vol. 1, no. Instituto Nacional de Metrologia de Colombia, 2021. D. A. AHUMADA F. and J. A. GUERRERO D., “STUDY OF MATRIX EFFECT IN PESTICIDE ANALYSIS BY GAS CHROMATOGRAPHY,” Vitae, vol. 17, no. 1, pp. 51–58, Mar. 2010, doi: 10.17533/udea.vitae.4974. M. V. Salvia, C. Cren-Olivé, and E. Vulliet, “Statistical evaluation of the influence of soil properties on recoveries and matrix effects during the analysis of pharmaceutical compounds and steroids by quick, easy, cheap, effective, rugged and safe extraction followed by liquid chromatography-tandem mass spectrometry,” J Chromatogr A, vol. 1315, pp. 53–60, Nov. 2013, doi: 10.1016/j.chroma.2013.09.056. L. Cuadros-Rodríguez et al., “Correction function on biased results due to matrix effects Application to the routine analysis of pesticide residues,” 2003. Alexander Mateus, Diego Alejandro Ahumada, and Elianna Castillo, “Determinación de mercurio total en peces por espectroscopia de absorción atómica de vapor en frío (CV-AAS) y espectrometría de masas con plasma acoplado inductivamente (ICP-MS) ,” Poster, Universidad Nacional de Colombia, Bogota, Colombia, 2019. P. Morrillas, V. Barwick, Ellison Stephen, J. Engman, and B. Magnusson, Guía Eurachem: La adecuación al uso de los métodos analíticos – Una Guía de laboratorio para la validación de métodos y temas relacionados. 2016. doi: ST/NAR/41. S. Clémens, M. Monperrus, O. F. X. Donard, D. Amouroux, and T. Guérin, “Mercury speciation analysis in seafood by species-specific isotope dilution: Method validation and occurrence data,” Anal Bioanal Chem, vol. 401, no. 9, pp. 2699–2711, 2011, doi: 10.1007/s00216-011-5040-1. JCGM and Centro Español de Metrologia, Evaluación de datos de medición Guía para la Expresión de la Incertidumbre de Medida. 2008. “Metrodata GmbH - Home.” Accessed: Jan. 01, 2024. [Online]. Available: http://www.metrodata.de/index_en.html S. Rȷo-Segade and C. Bendicho, “Selective Reduction Method for Separate Determination of Inorganic and Total Mercury in Mussel Tissue by Flow-Injection Cold Vapor Technique,” Ecotoxicol Environ Saf, vol. 42, no. 3, pp. 245–252, Mar. 1999, doi: 10.1006/eesa.1998.1753. S. B. Adeloju and T. F. Mann, “Acid Effects on the Measurement of Mercury by Cold Vapor Atomic Absorption Spectrometry,” Anal Lett, vol. 20, no. 7, pp. 985–1000, Jul. 1987, doi: 10.1080/00032718708064586. Codex Alimentarius, “Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos,” CODEX STAN 193-1995. Adoptada en 1995. Revisión: 2009. Enmienda: 2016, no. Codex Stan 193-1995 (Enmienda 2015), p. 76, 1995, [Online]. Available: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B193-1995%252FCXS_193s.pdf S. L. R. Ellison and M. Thompson, “Standard additions: Myth and reality,” Analyst, vol. 133, no. 8, pp. 992–997, 2008, doi: 10.1039/b717660k. “¿Cómo detectar el efecto matriz en un método analítico? | Analytical.” Accessed: Sep. 17, 2023. [Online]. Available: https://www.analytical.cl/post/como-detectar-efecto-matriz-metodo-analitico/ F. J. Egea González, M. E. Hernández Torres, L. Cuadros Rodríguez, E. Almansa López, and J. L. Martínez Vidal, “Estimation and correction of matrix effects in gas chromatographic pesticide multiresidue analytical methods with a nitrogen-phosphorus detector,” Analyst, vol. 127, no. 8, pp. 1038–1044, 2002, doi: 10.1039/b201461k. D. C. Wigfield and S. A. Eatock, “The Matrix Effect in the Cold-Vapor Atomic Absorption Analysis of Mercury in Various Biological Tissues,” J Anal Toxicol, vol. 11, no. 4, pp. 137–139, Jul. 1987, doi: 10.1093/jat/11.4.137. D. C. Wigfield, S. M. Croteau, and S. L. Perkins, “Elimination of the Matrix Effect in the Cold-Vapor Atomic Absorption Analysis of Mercury in Human Hair Samples,” J Anal Toxicol, vol. 5, no. 1, pp. 52–55, Jan. 1981, doi: 10.1093/jat/5.1.52. W. Horwitz and R. Albert, “The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision,” J AOAC Int, vol. 89, no. 4, pp. 1095–1109, Jul. 2006, doi: 10.1093/jaoac/89.4.1095. J. Thompson and R. S. Houk, “A Study of Internal Standardization in Inductively Coupled Plasma-Mass Spectrometry,” 1987. F. Cubadda, “Inductively coupled plasma mass spectrometry,” in Food Toxicants Analysis, Elsevier, 2007, pp. 697–751. doi: 10.1016/B978-044452843-8/50020-1. N. Strigul, A. Koutsospyros, and C. Christodoulatos, “Tungsten speciation and toxicity: Acute toxicity of mono- and poly-tungstates to fish,” Ecotoxicol Environ Saf, vol. 73, no. 2, pp. 164–171, Feb. 2010, doi: 10.1016/j.ecoenv.2009.08.016. W. Espejo et al., “Biomagnification of Tantalum through Diverse Aquatic Food Webs,” Environ Sci Technol Lett, vol. 5, no. 4, pp. 196–201, Apr. 2018, doi: 10.1021/acs.estlett.8b00051. K. V Wood, S. A. McLuckeyt, and R. Graham Cooks, “The Effect of Ion Source Temperature on the Fragmentation of 2-Pentanone,” 1986. W. Genuit and N. M. M. Nibbering, “THE EFFECT OF TEMPERATURE MASS SPECTRA ON PHOTOIONISATION,” 1986. W. C. Davis et al., “Certification of methylmercury content in two fresh-frozen reference materials: SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis),” in Analytical and Bioanalytical Chemistry, Apr. 2007, pp. 2335–2341. doi: 10.1007/s00216-006-1106-x. L. D’Ulivo, L. Yang, Y.-L. Feng, and Z. Mester, “Acid extraction for the determination of methyl mercury in biotissues by isotope dilution gas chromatography inductively coupled plasma-mass spectrometry,” Analytical Methods, vol. 5, no. 24, p. 7127, 2013, doi: 10.1039/c3ay40909k. A. Boudou and F. Ribeyre, “Aquatic Ecotoxicology: From the Ecosystem to the Cellular and Molecular Levels,” Environ Health Perspect, vol. 105, p. 21, Feb. 1997, doi: 10.2307/3433395. R. C. R. Martín-Doimeadios, E. Krupp, D. Amouroux, and O. F. X. Donard, “Application of isotopically labeled methylmercury for isotope dilution analysis of biological samples using gas chromatography/ICPMS,” Anal Chem, vol. 74, no. 11, pp. 2505–2512, Jun. 2002, doi: 10.1021/ac011157s. J. C. Ulrich and J. E. S. Sarkis, “Preparation and certification of a reference material for the total mercury and methylmercury mass fractions in fish,” Accreditation and Quality Assurance, vol. 18, no. 6, pp. 511–516, Dec. 2013, doi: 10.1007/s00769-013-1019-2. E. Bulska, A. Krata, M. Kałabun, and M. Wojciechowski, “On the use of certified reference materials for assuring the quality of results for the determination of mercury in environmental samples,” Environmental Science and Pollution Research, vol. 24, no. 9, pp. 7889–7897, Mar. 2017, doi: 10.1007/s11356-016-7262-4. A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, Apr. 2012, doi: 10.1007/s00769-011-0827-5. M. Rutkowska, J. Namieśnik, and P. Konieczka, “Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury,” Microchemical Journal, vol. 153, Mar. 2020, doi: 10.1016/j.microc.2019.104338. H. M. Skip Kingston, L. H. Reyes, G. M. Mizanur Rahman, and T. Fahrenholz, “Comparison of methods with respect to efficiencies, recoveries, and quantitation of mercury species interconversions in food demonstrated using tuna fish,” Anal Bioanal Chem, vol. 390, no. 8, pp. 2123–2132, Apr. 2008, doi: 10.1007/s00216-008-1966-3. R. Jagtap, F. Krikowa, W. Maher, S. Foster, and M. Ellwood, “Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGAAS,” Talanta, vol. 85, no. 1, pp. 49–55, Jul. 2011, doi: 10.1016/j.talanta.2011.03.022. JCGM, “Vocabulario Internacional de Metrología - Conceptos fundamentales y generales, y términos asociados (VIM),” International Organization for Standardization Geneva ISBN, 2012, doi: 10.1016/0263-2241(85)90006-5. International Organization for Standardization, “ISO 17034:2016 General requirements for the competence of reference material producers,” 1. S. Valbuena-Rodríguez and M. Á. Navarro-Ramírez, “Mercurio total en bagre rayado y bocachico del río Meta, Colombia,” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 24, no. 2, Oct. 2021, doi: 10.31910/rudca.v24.n2.2021.1880. Parques Nacionales Naturales de Colombia Dirección Territorial Amazonía, “El Mercurio en comunidades de la Amazonia Colombiana.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2019/07/MERCURIO-EN-COMUNIDADES-DE-LA-AMAZONIA-2018-1.pdf E. A. López-Barrera and R. G. Barragán-Gonzalez, “Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans,” Journal of Toxicology and Environmental Health - Part A: Current Issues, vol. 79, no. 5, pp. 232–243, Mar. 2016, doi: 10.1080/15287394.2016.1149130. J. Olivero-Verbel, L. Carranza-Lopez, K. Caballero-Gallardo, A. Ripoll-Arboleda, and D. Muñoz-Sosa, “Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon,” Environmental Science and Pollution Research, vol. 23, no. 20, pp. 20761–20771, Oct. 2016, doi: 10.1007/s11356-016-7255-3. International Organization for Standardization, “ISO Guide 35: 2017 Reference materials - guidance for characterization and assessment of homogeneity and stability,” 4. Accessed: Jan. 28, 2019. [Online]. Available: https://www.iso.org/standard/60281.html F. Ulberth, “Certified reference materials for inorganic and organic contaminants in environmental matrices,” Anal Bioanal Chem, vol. 386, no. 4, pp. 1121–1136, Oct. 2006, doi: 10.1007/s00216-006-0660-6. K. Kupiec, P. Konieczka, and J. Namieśnik, “Prospects for the Production, Research and Utilization of Reference Materials,” Crit Rev Anal Chem, vol. 39, no. 4, pp. 311–322, Oct. 2009, doi: 10.1080/10408340903253182. “DORM-4 | National Research Council Canada.” Accessed: Mar. 29, 2022. [Online]. Available: https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/49/html “ERM-CE464 TUNA FISH (total Hg, methylmercury) - Certified Reference Materials catalogue of the JRC.” Accessed: Feb. 27, 2022. [Online]. Available: https://crm.jrc.ec.europa.eu/p/40456/40494/By-analyte-group/Extractable-element-species/ERM-CE464-TUNA-FISH-total-Hg-methylmercury/ERM-CE464 S. Wood and A. Botha, “The new ISO Guide 80: Guidance for the in-house preparation of quality control materials (QCMs),” Accreditation and Quality Assurance. Accessed: Jan. 27, 2019. [Online]. Available: https://www.iso.org/standard/44313.html “EVISA’s Materials Database.” Accessed: Mar. 29, 2022. [Online]. Available: http://www.speciation.net/Database/Materials/?ACTION=SEARCH&Name=&Keyword=Mercury&Manufacture=&Type=0&Status=0&Material=0&Element=0&Species= D. A. Ahumada-Forigua, L. L. Soto-Morales, L. V. Morales-Erazo, and J. P. Abella-Gamba, “Development of a certified reference material for elemental analysis of drinking water,” Revista Colombiana de Quimica, vol. 48, no. 3, pp. 36–44, Sep. 2019, doi: 10.15446/rev.colomb.quim.v48n3.78660. H. Ebrahimi-Najafabadi, R. Leardi, and M. Jalali-Heravi, “Experimental design in analytical chemistry -Part I: Theory,” J AOAC Int, vol. 97, no. 1, pp. 3–11, 2014, doi: 10.5740/jaoacint.SGEEbrahimi1. J. Díaz-Garzón, P. Fernández-Calle, and C. Ricós, “Modelos para estimar la variación biológica y la interpretación de resultados seriados: bondades y limitaciones,” Advances in Laboratory Medicine / Avances en Medicina de Laboratorio, vol. 1, no. 3, Sep. 2020, doi: 10.1515/almed-2020-0017. Diego A. Garzón, Leonardo Soto, Fabian Niño, and Diego Ahumada, “Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.imeko.org/publications/tc10-2020/IMEKO-TC10-2020-014.pdf A. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, 2016, doi: 10.1002/jrsm.1164. T. P. J. Linsinger, “Evaluation of CRM homogeneity in cases of insufficient method repeatability: Comparison of Bayesian analysis with substitutes for ANOVA based estimates,” Anal Chim Acta X, vol. 5, p. 100049, Jul. 2020, doi: 10.1016/j.acax.2020.100049. S. Caroli, “Certified reference materials: use, manufacture and certification,” Anal Chim Acta, vol. 283, no. 1, pp. 573–582, Nov. 1993, doi: 10.1016/0003-2670(93)85270-T. International Organization for Standardization, “ISO Guide 35: 2017 Reference materials - guidance for characterization and assessment of homogeneity and stability,” 4. Accessed: Jan. 28, 2019. [Online]. Available: https://www.iso.org/standard/60281.html T. P. J. Linsinger and H. Emons, “Characterization of reference materials: Proposal for a simplification of the options listed in ISO Guide 34,” Accreditation and Quality Assurance, vol. 18, no. 2, pp. 149–152, Apr. 2013, doi: 10.1007/s00769-013-0971-1. S. Zamuz et al., “Fat and fatty acids,” Food Lipids, pp. 155–172, Jan. 2022, doi: 10.1016/B978-0-12-823371-9.00012-5. S. B. Smith and L. Cisneros-Zevallos, “RAPID DETERMINATION OF MOISTURE AND FAT IN MEATS BY MICROWAVE AND NUCLEAR MAGNETIC RESONANCE ANALYSIS,” 2013. K. Inagaki et al., “Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis,” Anal Bioanal Chem, vol. 391, no. 6, pp. 2047–2054, Jul. 2008, doi: 10.1007/s00216-008-1957-4. J. H. Mol, J. S. Ramlal, C. Lietar, and M. Verloo, “Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America,” Environ Res, vol. 86, no. 2, pp. 183–197, 2001, doi: 10.1006/ENRS.2001.4256. J. Marrugo-Negrete, L. N. Benitez, and J. Olivero-Verbel, “Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia,” Arch Environ Contam Toxicol, vol. 55, no. 2, pp. 305–316, Aug. 2008, doi: 10.1007/S00244-007-9129-7. AOAC Official Method, “AOAC 930.15-1930(1999), Loss on drying (Moisture) for feeds.” Accessed: Jan. 04, 2024. [Online]. Available:http://www.aoacofficialmethod.org/index.php?main_page=product_info&pro ducts_id=2702 C. J. Pillco Cochan, D. Guzmán Loayza, and J. E. Cuéllar Bautista, “COMPOSICIÓN FÍSICO QUÍMICA Y ANÁLISIS PROXIMAL DEL FRUTO DE SOFAIQUE ‘Geoffroea decorticans (Hook. et Arn.)’ PROCEDENTE DE LA REGIÓN ICA-PERÚ,” Revista de la Sociedad Química del Perú, vol. 87, no. 1, pp. 14–25, Mar. 2021, doi: 10.37761/rsqp.v87i1.319. B. Carrillo and M. Mosquera, “Evaluación de la extracción de ácidos grasos a partir de cabezas de sardina (Opisthonema libertate) subproducto de la industria pesquera,” Enfoque UTE, vol. 8, no. 4, pp. 68–85, Sep. 2017, doi: 10.29019/enfoqueute.v8n4.173. AOAC Official Method, “AOAC 960.39-1960, Fat (crude) or ether extract in meat.” Accessed: Jan. 04, 2024. [Online]. Available: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=605 M. S. Levenson et al., “An approach to combining results from multiple methods motivated by the ISO GUM,” J Res Natl Inst Stand Technol, vol. 105, no. 4, p. 571, Jul. 2000, doi: 10.6028/jres.105.047. E. Vasileva, S. Azemard, J. Oh, P. Bustamante, and M. Betti, “Certification for trace elements and methyl mercury mass fractions in IAEA-452 scallop (Pecten Maximus) sample,” Accreditation and Quality Assurance, vol. 16, no. 8, pp. 439–447, Aug. 2011, doi: 10.1007/s00769-011-0793-y. S. Wati, A. Kasim, and H. Hasbullah, “Yield And Quality Of Flour From Peperek Fish (Leiognatus Equulus) In West Sumatera Waters,” International Journal of Progressive Sciences and Technologies (IJPSAT, vol. 24, no. 2, pp. 360–369, 2021, [Online]. Available: http://ijpsat.ijsht-journals.org L. V Allen, “Quality Control: Water Activity Considerations for Beyond-use Dates.,” Int J Pharm Compd, vol. 22, no. 4, pp. 288–293, 2018. Gustavo V. Barbosa‐Cánovas, Jr. Anthony J. Fontana, Shelly J. Schmidt, and Theodore P. Labuza, Water activity in food: Fundamentals and applications, Second. Pondicherry: Wiley, 2020. E. Kurniawati, B. Ibrahim, and Desniar, “Homogeneity and stability of a secondary microbiological reference material candidate for Salmonella in fish matrix,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1755-1315/404/1/012036. R. Dybczyński, H. Polkowska-Motrenko, Z. Samczyński, and Z. Szopa, “Virginia Tobacco Leaves (CTA-VTL-2) - New Polish CRM for inorganic trace analysis including microanalysis,” in Fresenius’ Journal of Analytical Chemistry, Springer Verlag, 1998, pp. 384–387. doi: 10.1007/s002160050718. “DOLT-5 | National Research Council Canada.” Accessed: Feb. 27, 2022. [Online]. Available: https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/40/html M. Horvat, L. Liang, S. Azemard, V. Mandić, J.-P. Villeneuve, and M. Coquery, “Certification of total mercury and methylmercury concentrations in mussel homogenate (Mytilus edulis) reference material, IAEA-142,” Fresenius J Anal Chem, vol. 358, no. 3, pp. 411–418, Jun. 1997, doi: 10.1007/s002160050439. A. A. Veroniki et al., “Methods to estimate the between‐study variance and its uncertainty in meta‐analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016, doi: 10.1002/jrsm.1164. R. H. Atallah and D. A. Kalman, “Selective Determination of Inorganic Mercury and Methylmercury in Tissues by Continuous Flow and Cold Vapor Atomic Absorption Spectrometry,” J Anal Toxicol, vol. 17, no. 2, pp. 87–92, Mar. 1993, doi: 10.1093/jat/17.2.87. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 22-172 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.spa.fl_str_mv |
América del Sur América Central Amazonas |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86533/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86533/2/1015445404.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86533/3/1015445404.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a a992ff9e7fc8bb5fd0c066aca6ed963f 5605573c4a0871ff5dd211d0bb30fd6c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089221237899264 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castillo Serna, Eliannad91218a62c77a7200f9bd653ed801258600Ahumada-Forigua, Diego Alejandro010dad49ae795bd18069f6926bac6319600Garzón Zuluaga, Diego Alexander2cfcbc0e59300984288b17ce2cbebb0bGrupo de Investigación en Metrología Química y Bioanálisis del Instituto Nacional de Metrología de Colombia2024-07-17T17:41:53Z2024-07-17T17:41:53Z2023https://repositorio.unal.edu.co/handle/unal/86533Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramas, fotografíasEl mercurio es un elemento toxico ampliamente estudiado y la determinación de sus especies se ha priorizado, sin embargo, en la actualidad no hay disponibles referencias de medición en especies características de la región Latinoamericana y del Amazonas. En este sentido el objetivo de esta investigación fue producir un material de referencia de mercurio total y metilmercurio en bagre rayado. Con este propósito se desarrollaron y validaron métodos de medición que permitieron determinar la homogeneidad, estabilidad del material y la medición de los analitos de interés. Los métodos desarrollados tuvieron un alcance entre 0.25 mg/kg y 20 mg/kg y para todos se obtuvieron variaciones y sesgos aceptables. Finalmente, para resolver esta problemática se obtuvo un material de referencia certificado de especies de mercurio en bagre rayado; el INM-017-1, con un tamaño de lote de 119 unidades, de 15 g de contenido con un valor certificado de HgTotal de 3.94 ± 0.28 mg/kg (k= 1.97) y de MeHg 3.80 ± 0.32 mg/kg (k= 1.97) (Texto tomado de la fuente).Mercury is a widely studied toxic element and the determination of its species has been prioritized, however, currently there are no measurement references available in species characteristic of the Latin American and Amazon region. In this sense, the objective of this research was to produce a reference material for total mercury and methylmercury in striped catfish. For this purpose, measurement methods were developed and validated that allowed determining the homogeneity, stability of the material and the measurement of the analytes of interest. The developed methods had a range between 0.25 mg/kg and 20 mg/kg and acceptable variations and biases were obtained for all of them. Finally, to solve this problem, certified reference material of mercury species in striped catfish was obtained; the INM-017-1, with a batch size of 119 units, 15 g content with a certified value of HgTotal of 3.93 ± 0.27 mg/kg (k= 1.97) and MeHg 3.79 ± 0.32 mg/kg (k = 1.97).Instituto Nacional de Metrologia de ColombiaMaestríaMagister en Ciencias - QuímicaMetrología química aplicadaxx, 22-172 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::543 - Química analíticaMercurio en pecesContaminación por mercurioPeces - Efecto de los metalesBagresBagre rayadoFishes -- Effect of metlasIctaluridaeMaterial de referencia certificadoEspeciación químicaMercurioMetilmercurioCertified reference materialChemical speciationMercuryMethylmercuryPseudoplatystoma magdaleniatumDesarrollo y caracterización de un material de referencia de especies de mercurio en pecesDevelopment and characterization of a reference material of mercury species in fishTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAmérica del SurAmérica CentralAmazonasT. W. Clarkson, “Human toxicology of Mercury,” The Journal of Trace Elements in Experimental Medicine, vol. 11, no. 23, pp. 303–317, 1998, doi: 10.1002/(sici)1520-670x(1998)“FAO - News Article: Codex Alimentarius Commission:17-22 July 2017.” Accessed: Apr. 12, 2021. [Online]. Available: http://www.fao.org/news/story/en/item/1024512/icode/“La importancia de detectar metales pesados en los alimentos - TierraFértil®.” Accessed: Jan. 26, 2024. [Online]. Available: https://tierrafertil.com.mx/2023/06/21/la-importancia-de-detectar-metales-pesados-en-los-alimentos/M. allister Universidad de Antioquia. Facultad de Ciencias Agrarias. and Colegio de Médicos Veterinarios y de Zootecnistas de Antioquia., Revista colombiana de ciencias pecuarias, vol. 22, no. 3. Colvesa, 1978. Accessed: Jan. 26, 2024. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902009000300009&lng=en&nrm=iso&tlng=esDiego A. Ahumada, Cristhian Paredes, Johanna Abella, and Ivonne González, VALIDACIÓN DE MÉTODOS EN ANÁLISIS QUÍMICO CUANTITATIVO. 2023. Accessed: Jun. 04, 2023. [Online]. Available: https://inm.gov.co/web/wp-content/uploads/2023/05/Guia_ValidacionMetodosAnalisisQuimicoCuantitativo-16.pdfC. I. P. Thomas, “The Future of Food Safety,” in In Food We Trust, UNP - Nebraska, 2017, pp. 162–186. doi: 10.2307/j.ctt1d9nmqm.14.CONGRESO DE COLOMBIA, “Ley 1892. Por Medio De La Cual Se Aprueba El Convenio De Minamata Sobre El Mercurio, Hecho En Kumamoto (Japón) El 10 De Octubre De 2013,” no. 1892, 2018, [Online]. Available: http://es.presidencia.gov.co/normativa/normativa/LEY 1892 DEL 11 DE MAYO DE 2018.pdf“Ley 1658 de 2013 - Gestor Normativo - Función Pública.” Accessed: Dec. 18, 2023. [Online]. Available: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=53781#L. Córdoba-Tovar, J. Marrugo-Negrete, P. A. Ramos Barón, and S. Díez, “Ecological and human health risk from exposure to contaminated sediments in a tropical river impacted by gold mining in Colombia,” Environ Res, vol. 236, Nov. 2023, doi: 10.1016/j.envres.2023.116759.G. Caicedo-Rivas, M. Salas-Moreno, and J. Marrugo-Negrete, “Health Risk Assessment for Human Exposure to Heavy Metals via Food Consumption in Inhabitants of Middle Basin of the Atrato River in the Colombian Pacific,” Int J Environ Res Public Health, vol. 20, no. 1, Jan. 2023, doi: 10.3390/ijerph20010435.C. L. López-Jiménez, J. Uribe-Guevara, and J. J. Cuesta-Ramírez, “Perceived impact on the artisanal miner’s health from quinchía´s municipality (Colombia) by the use of cyanide and mercury in the amalgamation process of gold,” Revista de Salud Publica, vol. 21, no. 3, pp. 1–8, 2019, doi: 10.15446/RSAP.V21N3.81048.L. Suárez-Criado, P. Rodríguez-González, J. Marrugo-Negrete, J. I. García Alonso, and S. Díez, “Determination of methylmercury and inorganic mercury in human hair samples of individuals from Colombian gold mining regions by double spiking isotope dilution and GC-ICP-MS,” Environ Res, vol. 231, Aug. 2023, doi: 10.1016/j.envres.2023.115970.M. F. Lizarazo et al., “Contamination of staple crops by heavy metals in Sibaté, Colombia,” Heliyon, vol. 6, no. 7, Jul. 2020, doi: 10.1016/j.heliyon.2020.e04212.H. A. Chamizo-García, “Exposición a la contaminación antropogénica por mercurio y sus efectos en la salud. Revisión Bibliográfica.,” Revista de Ciencias Ambientales, vol. 57, no. 2, pp. 1–24, Jun. 2023, doi: 10.15359/rca.57-2.12.C. Hu, T. Hu, and L. Liang, “Spatial variation and potential ecological risk assessment of trace elements in the sediments of Chaohu Lake in China,” J Freshw Ecol, vol. 39, no. 1, Dec. 2024, doi: 10.1080/02705060.2023.2294129.K. Prabakaran, P. Sompongchaiyakul, S. Bureekul, X. Wang, and C. Charoenpong, “Heavy metal bioaccumulation and risk assessment in fishery resources from the Gulf of Thailand,” Mar Pollut Bull, vol. 198, Jan. 2024, doi: 10.1016/j.marpolbul.2023.115864.K. Novotná Kružíková, Z. Široká, and Z. Svobodová, “Total mercury content in selected tissues of common carp (Cyprinus carpio) pond farmed in the Czech Republic,” Acta Veterinaria Brno, vol. 92, no. 4, pp. 419–425, 2023, doi: 10.2754/avb202392040419.T. H. Kim et al., “Methylmercury determination in fish by direct mercury analyzer,” J AOAC Int, vol. 103, no. 1, pp. 244–249, 2021, doi: 10.5740/jaoacint.18-0254.M. Winter, F. Lessmann, and V. Harth, “A method for reliable quantification of mercury in occupational and environmental medical urine samples by inductively coupled plasma mass spectrometry,” Analytical Methods, 2023, doi: 10.1039/d2ay02051c.H. Polkowska-Motrenko et al., “Preparation of Three New Certified Reference Materials for Food and Environmental Analysis and Certification Using Laboratory Intercomparison as well as Primary Reference Measurement Procedures,” Food Anal Methods, vol. 15, no. 2, pp. 377–390, Feb. 2022, doi: 10.1007/s12161-021-02081-6.J. C. Ulrich and J. E. S. Sarkis, “Preparation and certification of a reference material for the total mercury and methylmercury mass fractions in fish,” Accreditation and Quality Assurance, vol. 18, no. 6, pp. 511–516, 2013, doi: 10.1007/s00769-013-1019-2.V. Ivanova, C. Oster, A. Surleva, and P. Fisicaro, “Comparative evaluation of methods for quantification of mercury at trace level in aquatic biota samples as a bio-indicator,” 2022.T. A. Saleh, G. Fadillah, E. Ciptawati, and M. Khaled, “Analytical methods for mercury speciation, detection, and measurement in water, oil, and gas,” TrAC - Trends in Analytical Chemistry, vol. 132, pp. 1–12, 2020, doi: 10.1016/j.trac.2020.116016.E. M. Krupp, Z. Gajdosechova, T. Schwerdtle, and H. Lohren, “Mercury Toxicity and Speciation Analysis,” in Metallomics Analytical Techniques and Speciation Methods, 2016. doi: 10.1002/9783527694907.ch9.T. Charette, M. Rosabal, and M. Amyot, “Mapping metal (Hg, As, Se), lipid and protein levels within fish muscular system in two fish species (Striped Bass and Northern Pike),” Chemosphere, vol. 265, 2021, doi: 10.1016/j.chemosphere.2020.129036.J. Feldmann et al., “Microwave-Assisted Sample Preparation for Element Speciation,” in Microwave-Assisted Sample Preparation for Trace Element Analysis, Elsevier, 2014, pp. 281–312. doi: 10.1016/B978-0-444-59420-4.00010-6.J. L. M. Viana, A. A. Menegário, and A. H. Fostier, “Preparation of environmental samples for chemical speciation of metal/metalloids: A review of extraction techniques,” Talanta, vol. 226, no. September 2020, 2021, doi: 10.1016/j.talanta.2021.122119.J. E. Sánchez Uría and A. Sanz-Medel, “Inorganic and methylmercury speciation in environmental samples,” Talanta, vol. 47, no. 3, pp. 509–524, 1998, doi: 10.1016/S0039-9140(98)00116-7.O. F. X. Donard and J. A. Caruso, “Trace metal and metalloid species determination: evolution and trends,” Spectrochim Acta Part B At Spectrosc, vol. 53, no. 2, pp. 157–163, Feb. 1998, doi: 10.1016/S0584-8547(98)00092-5.K. Leopold, M. Foulkes, and P. Worsfold, “Methods for the determination and speciation of mercury in natural waters-A review,” Analytica Chimica Acta, vol. 663, no. 2. pp. 127–138, Mar. 2010. doi: 10.1016/j.aca.2010.01.048.S. L. C. Ferreira et al., “Analytical strategies of sample preparation for the determination of mercury in food matrices — A review,” Microchemical Journal, vol. 121, pp. 227–236, Jul. 2015, doi: 10.1016/j.microc.2015.02.012.J. V. Cizdziel, T. A. Hinners, and E. M. Heithmar, “Determination of total mercury in fish tissues using combustion atomic absorption spectrometry with gold amalgamation,” Water Air Soil Pollut, vol. 135, no. 1–4, pp. 355–370, 2002, doi: 10.1023/A:1014798012212.B. D. Barst et al., “Determination of mercury speciation in fish tissue with a direct mercury analyzer,” Environ Toxicol Chem, vol. 32, no. 6, pp. 1237–1241, 2013, doi: 10.1002/etc.2184.AOAC, “AOAC Official Method 2015.01 Heavy Metals in Food Inductively Coupled Plasma–Mass Spectrometry First Action 2015,” AOAC Official Method 2015.01, pp. 1–15, 2015, [Online]. Available: doi: 10.5740/jaoac.int.2012.007J. García-Bellido, L. Freije-Carrelo, M. Moldovan, and J. R. Encinar, “Recent advances in GC-ICP-MS: Focus on the current and future impact of MS/MS technology,” TrAC - Trends in Analytical Chemistry, vol. 130, 2020, doi: 10.1016/j.trac.2020.115963.L. Yang, V. Colombini, P. Maxwell, Z. Mester, and R. E. Sturgeon, “Application of isotope dilution to the determination of methylmercury in fish tissue by solid-phase microextraction gas chromatography–mass spectrometry,” J Chromatogr A, vol. 1011, no. 1–2, pp. 135–142, Sep. 2003, doi: 10.1016/S0021-9673(03)01122-1.T. Kuballa, E. Leonhardt, K. Schoeberl, and D. W. Lachenmeier, “Determination of methylmercury in fish and seafood using optimized digestion and derivatization followed by gas chromatography with atomic emission detection,” European Food Research and Technology, vol. 228, no. 3, pp. 425–431, 2009, doi: 10.1007/s00217-008-0949-0.R. Rai, W. Maher, and F. Kirkowa, “Measurement of inorganic and methylmercury in fish tissues by enzymatic hydrolysis and HPLC-ICP-MS,” J Anal At Spectrom, vol. 17, no. 11, pp. 1560–1563, 2002, doi: 10.1039/b208041a.M. P. Rodríguez-Reino, R. Rodríguez-Fernández, E. Peña-Vázquez, R. Domínguez-González, P. Bermejo-Barrera, and A. Moreda-Piñeiro, “Mercury speciation in seawater by liquid chromatography-inductively coupled plasma-mass spectrometry following solid phase extraction pre-concentration by using an ionic imprinted polymer based on methyl-mercury-phenobarbital interaction,” J Chromatogr A, vol. 1391, no. 1, pp. 9–17, 2015, doi: 10.1016/j.chroma.2015.02.068.J. Qvarnström and W. Frech, “Mercury species transformations during sample pre-treatment of biological tissues studied by HPLC-ICP-MS,” J Anal At Spectrom, vol. 17, no. 11, pp. 1486–1491, 2002, doi: 10.1039/b205246f.M. J. Griffin et al., “A Nanoengineered Conductometric Device for Accurate Analysis of Elemental Mercury Vapor,” Environ Sci Technol, vol. 50, no. 3, pp. 1384–1392, 2016, doi: 10.1021/acs.est.5b05700.A. Shah et al., “Amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions,” Electrochim Acta, vol. 321, 2019, doi: 10.1016/j.electacta.2019.134658.R. Koplík, I. Klimešová, K. Mališová, and O. Mestek, “Determination of mercury species in foodstuffs using LC-ICP-MS: The applicability and limitations of the method,” Czech Journal of Food Sciences, vol. 32, no. 3, pp. 249–259, 2014, doi: 10.17221/577/2013-cjfs.Y. Cai and J. M. Bayona, “Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry,” J Chromatogr A, vol. 696, no. 1, pp. 113–122, Apr. 1995, doi: 10.1016/0021-9673(94)01177-G.P. Rodríguez-González, J. M. Marchante-Gayón, J. I. García Alonso, and A. Sanz-Medel, “Isotope dilution analysis for elemental speciation: a tutorial review,” Spectrochim Acta Part B At Spectrosc, vol. 60, no. 2, pp. 151–207, Feb. 2005, doi: 10.1016/j.sab.2005.01.005.R. Wahlen, “A comparison of GC-ICP-MS and HPLC-ICP-MS for the analysis of organotin compounds,” LC GC Eur, no. October, pp. 1–8, 2002, [Online]. Available: http://www.chem.agilent.com/Library/applications/5988-6697.pdf%5Cnhttp://prdwww.lvld.agilent.com/Library/applications/5988-6697.pdfX. P. Yan, Y. Li, and Y. Jiang, “Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry,” Anal Chem, vol. 75, no. 10, pp. 2251–2255, 2003, doi: 10.1021/ac026415f.M. Horvat, A. R. Byrne, and K. May, “A modified method for the determination of methylmercury by gas chromatography,” Talanta, vol. 37, no. 2, pp. 207–212, Feb. 1990, doi: 10.1016/0039-9140(90)80024-A.Y. G. Yin, J. F. Liu, and G. Bin Jiang, “Recent advances in speciation analysis of mercury, arsenic and selenium,” Chinese Science Bulletin, vol. 58, no. 2, pp. 150–161, 2013, doi: 10.1007/s11434-012-5497-0.Y. Cai and J. M. Bayona, “Determination of methylmercury in fish and river water samples using in situ sodium tetraethylborate derivatization following by solid-phase microextraction and gas chromatography-mass spectrometry,” J Chromatogr A, vol. 696, no. 1, pp. 113–122, 1995, doi: 10.1016/0021-9673(94)01177-G.N. Demuth and K. G. Heumann, “Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS,” Anal Chem, 2001, doi: 10.1021/ac010366+.Y. Mao, G. Liu, G. Meichel, Y. Cai, and G. Jiang, “Simultaneous speciation of monomethylmercury and monoethylmercury by aqueous phenylation and purge-and-trap preconcentration followed by atomic spectrometry detection,” Anal Chem, vol. 80, no. 18, pp. 7163–7168, 2008, doi: 10.1021/ac800908b.Ines. Baer, B. de la. Calle, Inge. Verbist, E. Institute for Reference Materials and Measurements., and R. Piotr, IMEP-30 : total arsenic, cadmium, lead and mercury, as well as methylmercury and inorganic arsenic in seafood : interlaboratory comparison report. Publications Office, 2010. Accessed: Jun. 30, 2019. [Online]. Available: http://publications.jrc.ec.europa.eu/repository/handle/JRC61380“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=1677“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=1189“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=441“Comparison Display.” Accessed: Sep. 09, 2023. [Online]. Available: https://www.bipm.org/kcdb/comparison?id=864A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, Apr. 2012, doi: 10.1007/s00769-011-0827-5.W. R. Kelly, B. S. MacDonald, and W. F. Guthrie, “Gravimetric approach to the standard addition method in instrumental analysis. 1,” Anal Chem, vol. 80, no. 16, pp. 6154–6158, Aug. 2008, doi: 10.1021/ac702437f.R. Ketrin, E. M. Handayani, and I. Komalasari, “Bracketing method with certified reference materials for high precision and accuracy determination of trace cadmium in drinking water by Inductively Coupled Plasma - Mass Spectrometry,” in AIP Conference Proceedings, American Institute of Physics Inc., Jan. 2017. doi: 10.1063/1.4973185.B. Magnusson and U. Ornemark, La Adecuación al Uso de los Métodos Analíticos, vol. 1. 2014. doi: ST/NAR/41.P.P Morillas y colaboradores, Guía Eurachem: La adecuación al uso de los Métodos Analíticos, vol. 1. 2016. doi: ST/NAR/41.D. Garzón, D. Ahumada, J. Abella Gamba, J. Ágreda, and E. Castillo, “Quantification of Arsenic, Cadmium, Mercury and Lead in Pineapple: Method Development, Validation and Evaluation of In-House Reference Materials,” J Braz Chem Soc, vol. 31, no. 6, pp. 1296–1305, 2020, doi: 10.21577/0103-5053.20200015.J. Abella Gamba, “MANUAL DE PRODUCCIÓN DE MATERIALES DE REFERENCIA Y ACTIVIDADES DE LA SMQB. MANUAL TECNICO,” Subdirección de Metrologia Quimica y Biologia, vol. 1, no. Instituto Nacional de Metrologia de Colombia, 2021.D. A. AHUMADA F. and J. A. GUERRERO D., “STUDY OF MATRIX EFFECT IN PESTICIDE ANALYSIS BY GAS CHROMATOGRAPHY,” Vitae, vol. 17, no. 1, pp. 51–58, Mar. 2010, doi: 10.17533/udea.vitae.4974.M. V. Salvia, C. Cren-Olivé, and E. Vulliet, “Statistical evaluation of the influence of soil properties on recoveries and matrix effects during the analysis of pharmaceutical compounds and steroids by quick, easy, cheap, effective, rugged and safe extraction followed by liquid chromatography-tandem mass spectrometry,” J Chromatogr A, vol. 1315, pp. 53–60, Nov. 2013, doi: 10.1016/j.chroma.2013.09.056.L. Cuadros-Rodríguez et al., “Correction function on biased results due to matrix effects Application to the routine analysis of pesticide residues,” 2003.Alexander Mateus, Diego Alejandro Ahumada, and Elianna Castillo, “Determinación de mercurio total en peces por espectroscopia de absorción atómica de vapor en frío (CV-AAS) y espectrometría de masas con plasma acoplado inductivamente (ICP-MS) ,” Poster, Universidad Nacional de Colombia, Bogota, Colombia, 2019.P. Morrillas, V. Barwick, Ellison Stephen, J. Engman, and B. Magnusson, Guía Eurachem: La adecuación al uso de los métodos analíticos – Una Guía de laboratorio para la validación de métodos y temas relacionados. 2016. doi: ST/NAR/41.S. Clémens, M. Monperrus, O. F. X. Donard, D. Amouroux, and T. Guérin, “Mercury speciation analysis in seafood by species-specific isotope dilution: Method validation and occurrence data,” Anal Bioanal Chem, vol. 401, no. 9, pp. 2699–2711, 2011, doi: 10.1007/s00216-011-5040-1.JCGM and Centro Español de Metrologia, Evaluación de datos de medición Guía para la Expresión de la Incertidumbre de Medida. 2008.“Metrodata GmbH - Home.” Accessed: Jan. 01, 2024. [Online]. Available: http://www.metrodata.de/index_en.htmlS. Rȷo-Segade and C. Bendicho, “Selective Reduction Method for Separate Determination of Inorganic and Total Mercury in Mussel Tissue by Flow-Injection Cold Vapor Technique,” Ecotoxicol Environ Saf, vol. 42, no. 3, pp. 245–252, Mar. 1999, doi: 10.1006/eesa.1998.1753.S. B. Adeloju and T. F. Mann, “Acid Effects on the Measurement of Mercury by Cold Vapor Atomic Absorption Spectrometry,” Anal Lett, vol. 20, no. 7, pp. 985–1000, Jul. 1987, doi: 10.1080/00032718708064586.Codex Alimentarius, “Norma general para los contaminantes y las toxinas presentes en los alimentos y piensos,” CODEX STAN 193-1995. Adoptada en 1995. Revisión: 2009. Enmienda: 2016, no. Codex Stan 193-1995 (Enmienda 2015), p. 76, 1995, [Online]. Available: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B193-1995%252FCXS_193s.pdfS. L. R. Ellison and M. Thompson, “Standard additions: Myth and reality,” Analyst, vol. 133, no. 8, pp. 992–997, 2008, doi: 10.1039/b717660k.“¿Cómo detectar el efecto matriz en un método analítico? | Analytical.” Accessed: Sep. 17, 2023. [Online]. Available: https://www.analytical.cl/post/como-detectar-efecto-matriz-metodo-analitico/F. J. Egea González, M. E. Hernández Torres, L. Cuadros Rodríguez, E. Almansa López, and J. L. Martínez Vidal, “Estimation and correction of matrix effects in gas chromatographic pesticide multiresidue analytical methods with a nitrogen-phosphorus detector,” Analyst, vol. 127, no. 8, pp. 1038–1044, 2002, doi: 10.1039/b201461k.D. C. Wigfield and S. A. Eatock, “The Matrix Effect in the Cold-Vapor Atomic Absorption Analysis of Mercury in Various Biological Tissues,” J Anal Toxicol, vol. 11, no. 4, pp. 137–139, Jul. 1987, doi: 10.1093/jat/11.4.137.D. C. Wigfield, S. M. Croteau, and S. L. Perkins, “Elimination of the Matrix Effect in the Cold-Vapor Atomic Absorption Analysis of Mercury in Human Hair Samples,” J Anal Toxicol, vol. 5, no. 1, pp. 52–55, Jan. 1981, doi: 10.1093/jat/5.1.52.W. Horwitz and R. Albert, “The Horwitz Ratio (HorRat): A Useful Index of Method Performance with Respect to Precision,” J AOAC Int, vol. 89, no. 4, pp. 1095–1109, Jul. 2006, doi: 10.1093/jaoac/89.4.1095.J. Thompson and R. S. Houk, “A Study of Internal Standardization in Inductively Coupled Plasma-Mass Spectrometry,” 1987.F. Cubadda, “Inductively coupled plasma mass spectrometry,” in Food Toxicants Analysis, Elsevier, 2007, pp. 697–751. doi: 10.1016/B978-044452843-8/50020-1.N. Strigul, A. Koutsospyros, and C. Christodoulatos, “Tungsten speciation and toxicity: Acute toxicity of mono- and poly-tungstates to fish,” Ecotoxicol Environ Saf, vol. 73, no. 2, pp. 164–171, Feb. 2010, doi: 10.1016/j.ecoenv.2009.08.016.W. Espejo et al., “Biomagnification of Tantalum through Diverse Aquatic Food Webs,” Environ Sci Technol Lett, vol. 5, no. 4, pp. 196–201, Apr. 2018, doi: 10.1021/acs.estlett.8b00051.K. V Wood, S. A. McLuckeyt, and R. Graham Cooks, “The Effect of Ion Source Temperature on the Fragmentation of 2-Pentanone,” 1986.W. Genuit and N. M. M. Nibbering, “THE EFFECT OF TEMPERATURE MASS SPECTRA ON PHOTOIONISATION,” 1986.W. C. Davis et al., “Certification of methylmercury content in two fresh-frozen reference materials: SRM 1947 Lake Michigan fish tissue and SRM 1974b organics in mussel tissue (Mytilus edulis),” in Analytical and Bioanalytical Chemistry, Apr. 2007, pp. 2335–2341. doi: 10.1007/s00216-006-1106-x.L. D’Ulivo, L. Yang, Y.-L. Feng, and Z. Mester, “Acid extraction for the determination of methyl mercury in biotissues by isotope dilution gas chromatography inductively coupled plasma-mass spectrometry,” Analytical Methods, vol. 5, no. 24, p. 7127, 2013, doi: 10.1039/c3ay40909k.A. Boudou and F. Ribeyre, “Aquatic Ecotoxicology: From the Ecosystem to the Cellular and Molecular Levels,” Environ Health Perspect, vol. 105, p. 21, Feb. 1997, doi: 10.2307/3433395.R. C. R. Martín-Doimeadios, E. Krupp, D. Amouroux, and O. F. X. Donard, “Application of isotopically labeled methylmercury for isotope dilution analysis of biological samples using gas chromatography/ICPMS,” Anal Chem, vol. 74, no. 11, pp. 2505–2512, Jun. 2002, doi: 10.1021/ac011157s.J. C. Ulrich and J. E. S. Sarkis, “Preparation and certification of a reference material for the total mercury and methylmercury mass fractions in fish,” Accreditation and Quality Assurance, vol. 18, no. 6, pp. 511–516, Dec. 2013, doi: 10.1007/s00769-013-1019-2.E. Bulska, A. Krata, M. Kałabun, and M. Wojciechowski, “On the use of certified reference materials for assuring the quality of results for the determination of mercury in environmental samples,” Environmental Science and Pollution Research, vol. 24, no. 9, pp. 7889–7897, Mar. 2017, doi: 10.1007/s11356-016-7262-4.A. L. Hauswaldt et al., “Uncertainty of standard addition experiments: A novel approach to include the uncertainty associated with the standard in the model equation,” Accreditation and Quality Assurance, vol. 17, no. 2, pp. 129–138, Apr. 2012, doi: 10.1007/s00769-011-0827-5.M. Rutkowska, J. Namieśnik, and P. Konieczka, “Production of certified reference materials - homogeneity and stability study based on the determination of total mercury and methylmercury,” Microchemical Journal, vol. 153, Mar. 2020, doi: 10.1016/j.microc.2019.104338.H. M. Skip Kingston, L. H. Reyes, G. M. Mizanur Rahman, and T. Fahrenholz, “Comparison of methods with respect to efficiencies, recoveries, and quantitation of mercury species interconversions in food demonstrated using tuna fish,” Anal Bioanal Chem, vol. 390, no. 8, pp. 2123–2132, Apr. 2008, doi: 10.1007/s00216-008-1966-3.R. Jagtap, F. Krikowa, W. Maher, S. Foster, and M. Ellwood, “Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGAAS,” Talanta, vol. 85, no. 1, pp. 49–55, Jul. 2011, doi: 10.1016/j.talanta.2011.03.022.JCGM, “Vocabulario Internacional de Metrología - Conceptos fundamentales y generales, y términos asociados (VIM),” International Organization for Standardization Geneva ISBN, 2012, doi: 10.1016/0263-2241(85)90006-5.International Organization for Standardization, “ISO 17034:2016 General requirements for the competence of reference material producers,” 1.S. Valbuena-Rodríguez and M. Á. Navarro-Ramírez, “Mercurio total en bagre rayado y bocachico del río Meta, Colombia,” Revista U.D.C.A Actualidad & Divulgación Científica, vol. 24, no. 2, Oct. 2021, doi: 10.31910/rudca.v24.n2.2021.1880.Parques Nacionales Naturales de Colombia Dirección Territorial Amazonía, “El Mercurio en comunidades de la Amazonia Colombiana.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.parquesnacionales.gov.co/portal/wp-content/uploads/2019/07/MERCURIO-EN-COMUNIDADES-DE-LA-AMAZONIA-2018-1.pdfE. A. López-Barrera and R. G. Barragán-Gonzalez, “Metals and metalloid in eight fish species consumed by citizens of Bogota D.C., Colombia, and potential risk to humans,” Journal of Toxicology and Environmental Health - Part A: Current Issues, vol. 79, no. 5, pp. 232–243, Mar. 2016, doi: 10.1080/15287394.2016.1149130.J. Olivero-Verbel, L. Carranza-Lopez, K. Caballero-Gallardo, A. Ripoll-Arboleda, and D. Muñoz-Sosa, “Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon,” Environmental Science and Pollution Research, vol. 23, no. 20, pp. 20761–20771, Oct. 2016, doi: 10.1007/s11356-016-7255-3.International Organization for Standardization, “ISO Guide 35: 2017 Reference materials - guidance for characterization and assessment of homogeneity and stability,” 4. Accessed: Jan. 28, 2019. [Online]. Available: https://www.iso.org/standard/60281.htmlF. Ulberth, “Certified reference materials for inorganic and organic contaminants in environmental matrices,” Anal Bioanal Chem, vol. 386, no. 4, pp. 1121–1136, Oct. 2006, doi: 10.1007/s00216-006-0660-6.K. Kupiec, P. Konieczka, and J. Namieśnik, “Prospects for the Production, Research and Utilization of Reference Materials,” Crit Rev Anal Chem, vol. 39, no. 4, pp. 311–322, Oct. 2009, doi: 10.1080/10408340903253182.“DORM-4 | National Research Council Canada.” Accessed: Mar. 29, 2022. [Online]. Available: https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/49/html“ERM-CE464 TUNA FISH (total Hg, methylmercury) - Certified Reference Materials catalogue of the JRC.” Accessed: Feb. 27, 2022. [Online]. Available: https://crm.jrc.ec.europa.eu/p/40456/40494/By-analyte-group/Extractable-element-species/ERM-CE464-TUNA-FISH-total-Hg-methylmercury/ERM-CE464S. Wood and A. Botha, “The new ISO Guide 80: Guidance for the in-house preparation of quality control materials (QCMs),” Accreditation and Quality Assurance. Accessed: Jan. 27, 2019. [Online]. Available: https://www.iso.org/standard/44313.html“EVISA’s Materials Database.” Accessed: Mar. 29, 2022. [Online]. Available: http://www.speciation.net/Database/Materials/?ACTION=SEARCH&Name=&Keyword=Mercury&Manufacture=&Type=0&Status=0&Material=0&Element=0&Species=D. A. Ahumada-Forigua, L. L. Soto-Morales, L. V. Morales-Erazo, and J. P. Abella-Gamba, “Development of a certified reference material for elemental analysis of drinking water,” Revista Colombiana de Quimica, vol. 48, no. 3, pp. 36–44, Sep. 2019, doi: 10.15446/rev.colomb.quim.v48n3.78660.H. Ebrahimi-Najafabadi, R. Leardi, and M. Jalali-Heravi, “Experimental design in analytical chemistry -Part I: Theory,” J AOAC Int, vol. 97, no. 1, pp. 3–11, 2014, doi: 10.5740/jaoacint.SGEEbrahimi1.J. Díaz-Garzón, P. Fernández-Calle, and C. Ricós, “Modelos para estimar la variación biológica y la interpretación de resultados seriados: bondades y limitaciones,” Advances in Laboratory Medicine / Avances en Medicina de Laboratorio, vol. 1, no. 3, Sep. 2020, doi: 10.1515/almed-2020-0017.Diego A. Garzón, Leonardo Soto, Fabian Niño, and Diego Ahumada, “Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment.” Accessed: Dec. 18, 2022. [Online]. Available: https://www.imeko.org/publications/tc10-2020/IMEKO-TC10-2020-014.pdfA. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, 2016, doi: 10.1002/jrsm.1164.T. P. J. Linsinger, “Evaluation of CRM homogeneity in cases of insufficient method repeatability: Comparison of Bayesian analysis with substitutes for ANOVA based estimates,” Anal Chim Acta X, vol. 5, p. 100049, Jul. 2020, doi: 10.1016/j.acax.2020.100049.S. Caroli, “Certified reference materials: use, manufacture and certification,” Anal Chim Acta, vol. 283, no. 1, pp. 573–582, Nov. 1993, doi: 10.1016/0003-2670(93)85270-T.International Organization for Standardization, “ISO Guide 35: 2017 Reference materials - guidance for characterization and assessment of homogeneity and stability,” 4. Accessed: Jan. 28, 2019. [Online]. Available: https://www.iso.org/standard/60281.htmlT. P. J. Linsinger and H. Emons, “Characterization of reference materials: Proposal for a simplification of the options listed in ISO Guide 34,” Accreditation and Quality Assurance, vol. 18, no. 2, pp. 149–152, Apr. 2013, doi: 10.1007/s00769-013-0971-1.S. Zamuz et al., “Fat and fatty acids,” Food Lipids, pp. 155–172, Jan. 2022, doi: 10.1016/B978-0-12-823371-9.00012-5.S. B. Smith and L. Cisneros-Zevallos, “RAPID DETERMINATION OF MOISTURE AND FAT IN MEATS BY MICROWAVE AND NUCLEAR MAGNETIC RESONANCE ANALYSIS,” 2013.K. Inagaki et al., “Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis,” Anal Bioanal Chem, vol. 391, no. 6, pp. 2047–2054, Jul. 2008, doi: 10.1007/s00216-008-1957-4.J. H. Mol, J. S. Ramlal, C. Lietar, and M. Verloo, “Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America,” Environ Res, vol. 86, no. 2, pp. 183–197, 2001, doi: 10.1006/ENRS.2001.4256.J. Marrugo-Negrete, L. N. Benitez, and J. Olivero-Verbel, “Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia,” Arch Environ Contam Toxicol, vol. 55, no. 2, pp. 305–316, Aug. 2008, doi: 10.1007/S00244-007-9129-7.AOAC Official Method, “AOAC 930.15-1930(1999), Loss on drying (Moisture) for feeds.” Accessed: Jan. 04, 2024. [Online]. Available:http://www.aoacofficialmethod.org/index.php?main_page=product_info&pro ducts_id=2702C. J. Pillco Cochan, D. Guzmán Loayza, and J. E. Cuéllar Bautista, “COMPOSICIÓN FÍSICO QUÍMICA Y ANÁLISIS PROXIMAL DEL FRUTO DE SOFAIQUE ‘Geoffroea decorticans (Hook. et Arn.)’ PROCEDENTE DE LA REGIÓN ICA-PERÚ,” Revista de la Sociedad Química del Perú, vol. 87, no. 1, pp. 14–25, Mar. 2021, doi: 10.37761/rsqp.v87i1.319.B. Carrillo and M. Mosquera, “Evaluación de la extracción de ácidos grasos a partir de cabezas de sardina (Opisthonema libertate) subproducto de la industria pesquera,” Enfoque UTE, vol. 8, no. 4, pp. 68–85, Sep. 2017, doi: 10.29019/enfoqueute.v8n4.173.AOAC Official Method, “AOAC 960.39-1960, Fat (crude) or ether extract in meat.” Accessed: Jan. 04, 2024. [Online]. Available: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=605M. S. Levenson et al., “An approach to combining results from multiple methods motivated by the ISO GUM,” J Res Natl Inst Stand Technol, vol. 105, no. 4, p. 571, Jul. 2000, doi: 10.6028/jres.105.047.E. Vasileva, S. Azemard, J. Oh, P. Bustamante, and M. Betti, “Certification for trace elements and methyl mercury mass fractions in IAEA-452 scallop (Pecten Maximus) sample,” Accreditation and Quality Assurance, vol. 16, no. 8, pp. 439–447, Aug. 2011, doi: 10.1007/s00769-011-0793-y.S. Wati, A. Kasim, and H. Hasbullah, “Yield And Quality Of Flour From Peperek Fish (Leiognatus Equulus) In West Sumatera Waters,” International Journal of Progressive Sciences and Technologies (IJPSAT, vol. 24, no. 2, pp. 360–369, 2021, [Online]. Available: http://ijpsat.ijsht-journals.orgL. V Allen, “Quality Control: Water Activity Considerations for Beyond-use Dates.,” Int J Pharm Compd, vol. 22, no. 4, pp. 288–293, 2018.Gustavo V. Barbosa‐Cánovas, Jr. Anthony J. Fontana, Shelly J. Schmidt, and Theodore P. Labuza, Water activity in food: Fundamentals and applications, Second. Pondicherry: Wiley, 2020.E. Kurniawati, B. Ibrahim, and Desniar, “Homogeneity and stability of a secondary microbiological reference material candidate for Salmonella in fish matrix,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics Publishing, Dec. 2019. doi: 10.1088/1755-1315/404/1/012036.R. Dybczyński, H. Polkowska-Motrenko, Z. Samczyński, and Z. Szopa, “Virginia Tobacco Leaves (CTA-VTL-2) - New Polish CRM for inorganic trace analysis including microanalysis,” in Fresenius’ Journal of Analytical Chemistry, Springer Verlag, 1998, pp. 384–387. doi: 10.1007/s002160050718.“DOLT-5 | National Research Council Canada.” Accessed: Feb. 27, 2022. [Online]. Available: https://nrc.canada.ca/en/certifications-evaluations-standards/certified-reference-materials/list/40/htmlM. Horvat, L. Liang, S. Azemard, V. Mandić, J.-P. Villeneuve, and M. Coquery, “Certification of total mercury and methylmercury concentrations in mussel homogenate (Mytilus edulis) reference material, IAEA-142,” Fresenius J Anal Chem, vol. 358, no. 3, pp. 411–418, Jun. 1997, doi: 10.1007/s002160050439.A. A. Veroniki et al., “Methods to estimate the between‐study variance and its uncertainty in meta‐analysis,” Res Synth Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016, doi: 10.1002/jrsm.1164.R. H. Atallah and D. A. Kalman, “Selective Determination of Inorganic Mercury and Methylmercury in Tissues by Continuous Flow and Cold Vapor Atomic Absorption Spectrometry,” J Anal Toxicol, vol. 17, no. 2, pp. 87–92, Mar. 1993, doi: 10.1093/jat/17.2.87.Desarrollo de referencias de medición para la cuantificación de especies tóxicas de mercurio y arsénico en alimentos”. CD 82489 CT ICETEX 2022-0760Desarrollo e implementación de herramientas analíticas para asegurar la calidad y la trazabilidad metrológica en las mediciones de elementos tóxicos de peces del AmazonasMINCIENCIASPhysikalisch-Technische BundesanstaltBibliotecariosEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86533/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015445404.2024.pdf1015445404.2024.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf7583919https://repositorio.unal.edu.co/bitstream/unal/86533/2/1015445404.2024.pdfa992ff9e7fc8bb5fd0c066aca6ed963fMD52THUMBNAIL1015445404.2024.pdf.jpg1015445404.2024.pdf.jpgGenerated Thumbnailimage/jpeg5821https://repositorio.unal.edu.co/bitstream/unal/86533/3/1015445404.2024.pdf.jpg5605573c4a0871ff5dd211d0bb30fd6cMD53unal/86533oai:repositorio.unal.edu.co:unal/865332024-07-17 23:05:54.165Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |