Potential of optical waveguide structures to measure the chirality parameter of chiral substances

ilustraciones

Autores:
Enríquez Espinoza, Jim Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79660
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79660
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
620 - Ingeniería y operaciones afines
Guías de ondas ópticas
Chirality parameter
Chiral substances
Dispersion curves
Enantiomeric content
Guided modes
Polarization
Optical waveguide
Sensor
Parámetro de quiralidad
Sustancias quirales
Curvas de dispersión
Contenido enantiomérico
Modos guiados
Polarización
Guía de onda óptica
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_19b83602fc86b9a8f21615530be61e59
oai_identifier_str oai:repositorio.unal.edu.co:unal/79660
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Potential of optical waveguide structures to measure the chirality parameter of chiral substances
dc.title.translated.spa.fl_str_mv Potencial de las estructuras de guía de ondas ópticas para medir el parámetro de quiralidad de sustancias quirales
title Potential of optical waveguide structures to measure the chirality parameter of chiral substances
spellingShingle Potential of optical waveguide structures to measure the chirality parameter of chiral substances
530 - Física
620 - Ingeniería y operaciones afines
Guías de ondas ópticas
Chirality parameter
Chiral substances
Dispersion curves
Enantiomeric content
Guided modes
Polarization
Optical waveguide
Sensor
Parámetro de quiralidad
Sustancias quirales
Curvas de dispersión
Contenido enantiomérico
Modos guiados
Polarización
Guía de onda óptica
title_short Potential of optical waveguide structures to measure the chirality parameter of chiral substances
title_full Potential of optical waveguide structures to measure the chirality parameter of chiral substances
title_fullStr Potential of optical waveguide structures to measure the chirality parameter of chiral substances
title_full_unstemmed Potential of optical waveguide structures to measure the chirality parameter of chiral substances
title_sort Potential of optical waveguide structures to measure the chirality parameter of chiral substances
dc.creator.fl_str_mv Enríquez Espinoza, Jim Alexander
dc.contributor.advisor.none.fl_str_mv Torres Trujillo, Pedro Ignacio
dc.contributor.author.none.fl_str_mv Enríquez Espinoza, Jim Alexander
dc.contributor.researchgroup.spa.fl_str_mv Fotónica y Optoelectrónica
dc.subject.ddc.spa.fl_str_mv 530 - Física
620 - Ingeniería y operaciones afines
topic 530 - Física
620 - Ingeniería y operaciones afines
Guías de ondas ópticas
Chirality parameter
Chiral substances
Dispersion curves
Enantiomeric content
Guided modes
Polarization
Optical waveguide
Sensor
Parámetro de quiralidad
Sustancias quirales
Curvas de dispersión
Contenido enantiomérico
Modos guiados
Polarización
Guía de onda óptica
dc.subject.lemb.none.fl_str_mv Guías de ondas ópticas
dc.subject.proposal.eng.fl_str_mv Chirality parameter
Chiral substances
Dispersion curves
Enantiomeric content
Guided modes
Polarization
Optical waveguide
dc.subject.proposal.none.fl_str_mv Sensor
dc.subject.proposal.spa.fl_str_mv Parámetro de quiralidad
Sustancias quirales
Curvas de dispersión
Contenido enantiomérico
Modos guiados
Polarización
Guía de onda óptica
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-21T19:54:19Z
dc.date.available.none.fl_str_mv 2021-06-21T19:54:19Z
dc.date.issued.none.fl_str_mv 2021-02-18
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79660
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79660
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Nallamuthu Ananthi. Role of Chirality in Drugs. Organic Medicinal Chemistry International Journal, 5(3), 2018.
[2] Ernest Eliel, Samuel Wilen, and Lewis Mander. Stereochemistry of organic compounds. Number 9. 1995.
[3] Xin Zhang, Jun Yin, and Juyoung Yoon. Recent advances in development of chiral fluorescent and colorimetric sensors. Chemical Reviews, 114(9):4918–4959, 2014.
[4] Huishi Guo. Progress of quartz crystal microbalance in chiral analysis. Journal of Nanoscience and Nanotechnology, 14(2):1884–1897, 2014.
[5] Erhan Zor, Haluk Bingol, and Mustafa Ersoz. Chiral sensors. TrAC - Trends in Analytical Chemistry, 121:1–17, 2019.
[6] Brian Culshaw and Alan Kersey. Fiber-Optic Sensing: A Historical Perspective. 26(9):1064–1078, 2008.
[7] Byoungho Lee. Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2):58, 2003.
[8] M. Oksanen, P. K. Koivisto, and I. V. Lindell. Dispersion curves and fields for a chiral slab waveguide. IEE Proceedings H: Microwaves, Antennas and Propagation, 138(4):327–334, 1991.
[9] Cornel Eftimiu and L Wilson Pearson. Guided electromagnetic waves in chiral media. Radio Science, 24(03):351–359, 1989.
[10] Keqian Zhang, Jianguo Xiao and Lian Gong. Analysis of planar dielectric waveguide with chiral cladding. International Journal, 20(2):325–340, 1999.
[11] Nader Engheta and Philippe Pelet. Modes in chirowaveguides. Optics Letters, 14(11):593–595, 1989.
[12] Jian-Feng Dong and Chao Xu. Characteristics of guided modes in planar chiral nihility meta-material waveguides. Progress In Electromagnetics Research, 14:107–126, 2009.
[13] Haixin Zhou and Keqian Zhang. Analysis of circular dielectric waveguide with chiral cladding. International Journal of Infrared and Millimeter Waves, 20(11):1989–1999, 1999.
[14] Maoyan Wang, Hailong Li, Tong Xu, Guiping Li, Mengxia Yu, Baojun Jiang, Jun Xu, and Jian Wu. Probing a chiral drug using long period fiber gratings. Optics Express, 27(22):31407, 2019.
[15] N. Paliwal and J. John. Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review. IEEE Sensors Journal, 15(10):5361–5371, 2015.
[16] Luisa Torsi Kyriaki Manoli, Maria Magliulo. Chiral Sensor Devices for Differentiation of Enantiomers. In Schurig V. (eds) Differentiation of Enantiomers II. Topics in Current Chemistry, volume 341, pages 4–17. Springer, Cham, 2013.
[17] Jonathan Clayden, Nick Greeves, and Stuart Warren. Organic Chemistry. Oxford University Press, 2 edition, 2012.
[18] Ronny Wirz, Davide Ferri, Thomas Bürgi, and Alfons Baiker. Probing chiral recognition in liquid chromatography by absolute configuration modulation ATR-IR spectroscopy. Spectroscopy Europe, 19(1):8–16, 2007.
[19] Natalija Nakov, Rumenka Petkovska, Liljana Ugrinova, Zoran Kavrakovski, Aneta Dimitrovska, and Dobrin Svinarov. Critical development by design of a rugged HPLCMS/MS method for direct determination of ibuprofen enantiomers in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 992:67–75, 2015.
[20] C. J. Venkatramani, Mohammad Al-Sayah, Guannan Li, Meenakshi Goel, James Girotti, Lisa Zang, Larry Wigman, Peter Yehl, and Nik Chetwyn. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography. Talanta, 148:548–555, 2016.
[21] Cecilia Cagliero, Barbara Sgorbini, Chiara Cordero, Erica Liberto, Patrizia Rubiolo, and Carlo Bicchi. Enantioselective Gas Chromatography with Derivatized Cyclodextrins in the Flavour and Fragrance Field. Israel Journal of Chemistry, 56(11-12):925–939, 2016.
[22] Stefanie Kaffarnik, Carolina Heid, Yasemin Kayademir, Dorothee Eibler, and Walter Vetter. High enantiomeric excess of the flavor relevant 4-Alkyl-branched fatty acids in milk fat and subcutaneous adipose tissue of sheep and goat. Journal of Agricultural and Food Chemistry, 63(2):469–475, 2015.
[23] Robert W Woody. [4] Circular dichroism. In Biochemical Spectroscopy, volume 246 of Methods in Enzymology, pages 34–71. Academic Press, 1995.
[24] Sanmitra Barman and Eric V. Anslyn. Rapid determination of enantiomeric excess of α-chiral aldehydes using circular dichroism spectroscopy. Tetrahedron, 70(6):1357–1362, 2014.
[25] Qiaozhi Tang, Lu Zhao, Jingqian Xie, Kai Liu, Weiping Liu, and Shanshan Zhou. Deviations from Beer’s law in electronic absorption and circular dichroism: Detection for enantiomeric excess analysis. Chirality, 31(7):492–501, 2019.
[26] Hyun Hwa Jo, Chung Yon Lin, and Eric V. Anslyn. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 47(7):2212–2221, 2014.
[27] Marie Urbanová and Petr Maloň. Circular Dichroism Spectroscopy. Analytical Methods in Supramolecular Chemistry, Volume 1 & 2: Second Edition, 1:337–369, 2012.
[28] J Enrique Vázquez-Lozano and Alejandro Martínez. Toward chiral sensing and spectroscopy enabled by all-dielectric integrated photonic waveguides. Laser & Photonics Reviews, 14(9):1900422, 2020.
[29] Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duò, and Paolo Biagioni. Surface-enhanced chiroptical spectroscopy with superchiral surface waves. Chirality, 30(7):883–889, 2018.
[30] John McMurry. Organic Chemistry with Biological Applications. Broks/Cole, Cengage Learning, 2 edition, 2011.
[31] Maab H. Al-Hafidh, Andrew Glidle, Rab Wilson, Anthony E. Kelly, Julien Reboud, and Jonathan M. Cooper. Multireflection Polarimetry in Microfluidics. IEEE Sensors Letters, 3(10):1–4, 2019.
[32] Thomas C. Preston, Nathan D. Jones, Sven Stille, and Silvia Mittler. Simple liquid-core waveguide polarimetry. Applied Physics Letters, 89(25):10–13, 2006.
[33] Míriam Pérez-Trujillo, Teodor Parella, and Lars T. Kuhn. NMR-aided differentiation of enantiomers: Signal enantioresolution. Analytica Chimica Acta, 876:63–70, 2015.
[34] Ramisetti Nageswara Rao and Kondapalli Santhakumar. Cyclodextrin assisted enantiomeric recognition of emtricitabine by 19F NMR spectroscopy. New Journal of Chemistry, 40(10):8408–8417, 2016.
[35] Guangling Bian, Shiwei Yang, Huayin Huang, Hua Zong, and Ling Song. A bisthiourea-based 1H NMR chiral sensor for chiral discrimination of a variety of chiral compounds. Sensors and Actuators, B: Chemical, 231:129–134, 2016.
[36] Burkhard Luy. Disinction of enantiomers by NMR media. Journal Of The Indian Institute Of Science, 90:119–132, 2010.
[37] Armando Navarro-Vázquez, Philippe Berdagué, and Philippe Lesot. Integrated Computational Protocol for the Analysis of Quadrupolar Splittings from Natural-Abundance Deuterium NMR Spectra in (Chiral) Oriented Media. ChemPhysChem, 18(10):1252– 1266, 2017.
[38] Philippe Lesot, Philippe Berdagué, Abdelkrim Meddour, Alexander Kreiter, Markus Noll, and Michael Reggelin. 2 H and 13 C NMR-Based Enantiodetection Using Polyacetylene versus Polypeptide Aligning Media: Versatile and Complementary Tools for Chemists. ChemPlusChem, 84(2):144–153, 2019.
[39] Jonathan Farjon and Nicolas Giraud. 1H NMR analyses of enantiomeric mixtures using chiral liquid crystals. Current Opinion in Colloid and Interface Science, 33:1–8, 2018.
[40] Yap Wing Fen and W. Mahmood Mat Yunus. Optical characterization of multi layer thin films using surface plasmon resonance method: From electromagnetic theory to sensor application. AIP Conference Proceedings, 1482(2012):132–135, 2012.
[41] Briliant Adhi Prabowo, Agnes Purwidyantri, and Kou Chen Liu. Surface plasmon resonance optical sensor: A review on light source technology. Biosensors, 8(3), 2018.
[42] Ben M. Maoz, Yulia Chaikin, Alexander B. Tesler, Omri Bar Elli, Zhiyuan Fan, Alexander O. Govorov, and Gil Markovich. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Letters, 13(3):1203–1209, 2013.
[43] Dawei Zhai, Peng Wang, Rong Yao Wang, Xiaorui Tian, Yinglu Ji, Wenjing Zhao, Luming Wang, Hong Wei, Xiaochun Wu, and Xiangdong Zhang. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale, 7(24):10690– 10698, 2015.
[44] Guangcan Mi and Vien Van. Characteristics of surface plasmon polaritons at a chiral–metal interface. Optics Letters, 39(7):2028, 2014.
[45] Sotiris Droulias and Lykourgos Bougas. Surface Plasmon Platform for Angle-Resolved Chiral Sensing. ACS Photonics, 6(6):1485–1492, 2019.
[46] Maoyan Wang, Hailong Li, Tong Xu, Hu Zheng, Mengxia Yu, Guiping Li, Jun Xu, and Jian Wu. Probing bianisotropic biomolecules via a surface plasmon resonance sensor. Optics Express, 26(22):28277, 2018.
[47] Maoyan Wang, Hailong Li, Tong Xu, Mengxia Yu, Guiping Li, Hu Zheng, Jian Wu, and Jun Xu. Sensing and Manipulation of Bianisotropic Biomolecules Using a Surface Plasmon Resonance Based Optical Fiber Sensor. Journal of Lightwave Technology, 36(24):5927–5934, 2018.
[48] Katsunari Okamoto. Coupled mode theory. In Fundamentals of Optical Waveguides, pages 159–207. Academic, 2006.
[49] Frank Vollmer and Peer Fischer. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid. Optics Letters, 31(4):453, 2006.
[50] Haifeng Lu, Zhuangqi Cao, Honggen Li, and Qishen Shen. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide. Applied Physics Letters, 85(20):4579–4581, 2004.
[51] Xianping Wang, Cheng Yin, Honggen Li, Minghuang Sang, Wen Yuan, and Zhuangqi Cao. Ultrahigh-order mode-assisted determination of enantiomeric excess in chiral liquids. Optics Letters, 38(20):4085, 2013.
[52] Jiun You Lin. Determination of the refractive index and the chiral parameter of a chiral solution based on chiral reflection equations and heterodyne interferometry. Applied Optics, 47(21):3828–3834, 2008.
[53] Minghong Yang, Jiankun Peng, Gaopeng Wang, and Jixiang Dai. Fiber optic sensors based on nano-films. In Fiber Optic Sensors, pages 1–30. Springer, 2017.
[54] Anuj K. Sharma, Rajan Jha, and B. D. Gupta. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7(8):1118–1129, 2007.
[55] Bo Fan, Tongmengxue Zhang, Simin He, Maoyan Wang, Hailong Li, Mengxia Yu, Guiping Li, and Jun Xu. Chirality parameter sensing based on surface plasmon resonance D-type photonic crystal fiber sensors. Applied Optics, 60(12):3314, 2021.
[56] Mark A Ordal, LL Long, RJ Bell, SE Bell, RR Bell, RW Alexander, and CA Ward. Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Applied optics, 22(7):1099–1119, 1983.
[57] Tinko Eftimov. Sensor applications of fiber bragg and long period gratings. In Optical Waveguide Sensing and Imaging, pages 1–23. Springer, 2008.
[58] Xiaoyi Dong, Hao Zhang, Bo Liu, and Yinping Miao. Tilted fiber bragg gratings: Principle and sensing applications. Photonic Sensors, 1(1):6–30, 2011.
[59] Kurt Mislow. Molecular chirality. Top. Stereochem., 22:1–82, 1999.
[60] Georges H Wagni`ere. On chirality and the universal asymmetry: reflections on image and mirror image. John Wiley & Sons, 2007.
[61] Ari Henrik Sihvola. Electromagnetic modeling of bi-isotropic media. Progress In Electromagnetics Research, 9:45–86, 1994.
[62] Volker Schurig and Federica Balzano. Differentiation of Enantiomers I. Springer, 2013. [63] Alain Berthod. Chiral recognition in separation methods. Springer, 2010.
[64] Peter Vollhardt and Neil Schore. Organic Chemestry. Structure and Function. Number 2. Clancy Marshall, 6th edition, 2011.
[65] W. John Lough. Chiral analysis of pharmaceuticals. In Pharmaceutical Analysis, page 76. Blackwell Publishing, 2003.
[66] A. Horeau. Interactions d’enantiomeres en solution ; influence sur le pouvoir rotatoire : Purete optique et purete enantiomerique. Tetrahedron Letters, 10(36):3121–3124, 1969.
[67] Ben Yu-Kuang Hu. Kramers–Kronig in two lines. American Journal of Physics, 57(9):821–821, 1989.
[68] A. LakhtakiaV. K. VaradanV. V. Varadan. Time-Harmonic Electromagnetic Fields in Chiral Media. Springer, Berlin, Heidelberg, 1989.
[69] James Noonan and Tom G. Mackay. On electromagnetic surface waves supported by an isotropic chiral material. Optics Communications, 434(October 2018):224–229, 2019.
[70] J. Margineda, G.J. Molina-Cuberos, M.J. Nunez, A.J. Garcia-Collado, and E. Marti. Electromagnetic Characterization of Chiral Media. Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves, pages 1–22, 2012.
[71] Peter Atkins and Julio De Paula. Physical chemistry for the life sciences. Oxford University Press, USA, 2011.
[72] Laurence A. Nafie. Raman optical activity, theory. Encyclopedia of Spectroscopy and Spectrometry, 2628:891–899, 2016.
[73] Amnon Yariv and Pochi Yeh. Photonics : optical electronics in modern communications. Oxford University Press, Inc., sixth edition, 2007.
[74] Reza Mohammadi-Baghaee and Jalil Rashed-Mohassel. The Chirality Parameter for Chiral Chemical Solutions. Journal of Solution Chemistry, 45(8):1171–1181, 2016.
[75] Elena Benito-Peña, Mayra Granda Valdés, Bettina Glahn-Martínez, and Maria C. Moreno-Bondi. Fluorescence based fiber optic and planar waveguide biosensors. A review. Analytica Chimica Acta, 943:18, 2016.
[76] Aradhana Dutta, Bidyut Deka, and Partha Pratim Sahu. Planar Waveguide Optical Sensors. Springer, 2016.
[77] Brian Culshaw. Principles of Fiber Optic Sensors. Elsevier Inc., 2006.
[78] John F. Ready. Fiber Optics. In Industrial Applications of Lasers, page 542. Elsevier, 1997.
[79] Wei Liang, Yanyi Huang, Yong Xu, Reginald K Lee, and Amnon Yariv. Highly sensitive fiber bragg grating refractive index sensors. Applied physics letters, 86(15):151122, 2005.
[80] Tuan Guo, Fu Liu, Bai-Ou Guan, and Jacques Albert. Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 78:19–33, 2016.
[81] Liang Qi, Chun-Liu Zhao, Jianying Yuan, Manping Ye, Jianfeng Wang, Zaixuan Zhang, and Shangzhong Jin. Highly reflective long period fiber grating sensor and its application in refractive index sensing. Sensors and Actuators B: Chemical, 193:185–189, 2014.
[82] Ignacio Del Villar, Francisco J. Arregui, Carlos R. Zamarreño, Jesus M. Corres, Candido Bariain, Javier Goicoechea, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, Joaquin Ascorbe, and Ignacio R. Matias. Optical sensors based on lossy-mode resonances. Sensors and Actuators, B: Chemical, 240:174–185, 2017.
[83] Francisco J. Arregui, Ignacio Del Villar, Jesus M. Corres, Javier Goicoechea, Carlos R. Zamarreño, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, and Ignacio R. Matias. Fiber-optic lossy mode resonance sensors. Procedia Engineering, 87:3–8, 2014.
[84] Ignacio Del Villar, Carlos R. Zamarreño, Miguel Hernáez, Francisco J. Arregui, and Ignacio R. Matias. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. Journal of Lightwave Technology, 28(1):111–117, 2010.
[85] Miguel Hernáez, Ignacio Del Villar, Carlos R Zamarreño, Francisco J Arregui, and Ignacio R Matias. Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Applied optics, 49(20):3980–3985, 2010.
[86] A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sensors and Actuators, B: Chemical, 200:53–60, 2014.
[87] P. Zubiate, C. R. Zamarreño, I. Del Villar, I. R. Matias, and F.J. Arregui. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Optics Express, 23(6):8045, 2015.
[88] Hunsperger Robert. Integrated Optics. Theory and Technology. Springer-Verlag New York, 6 edition, 2009.
[89] Richard L. Burden and J. Douglas Faires. Numerical Analysis. The Prindle, Weber and Schmidt Series in Mathematics. PWS-Kent Publishing Company, Boston, fourth edition, 1989.
[90] Seojoo Lee, Ji Hun Kang, Seok Jae Yoo, and Q. Han Park. Robust numerical evaluation of circular dichroism from chiral medium/nanostructure coupled systems using the finite-element method. Scientific Reports, 8(1):1–8, 2018.
[91] Alfons Penzkofer. Optical Rotatory Dispersion Measurement of D-Glucose with Fixed Polarizer Analyzer Accessory in Conventional Spectrophotometer. Journal of Analytical Sciences, Methods and Instrumentation, 03(04):234–239, 2013.
[92] F. Reinscheid and U. M. Reinscheid. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data. Journal of Molecular Structure, 1106:141–153, 2016.
[93] C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sensors and Actuators, B: Chemical, 155(1):290–297, 2011.
[94] L. Ostrowski, M. Murawski, M. Szymanski, Z. Holdynski, T. Tenderenda, P. Pura, P. Mergo, P. Marć, T. Nasilowski, and L. R. Jaroszewicz. Numerical aperture analysis of specialty microstructured fibres in a broad wavelength range. Fifth European Workshop on Optical Fibre Sensors, 8794(May):879440, 2013.
[95] Omar Fuentes, Javier Goicoechea, Jesus M Corres, Ignacio Del Villar, Aritz Ozcariz, and Ignacio R Matias. Generation of lossy mode resonances with different nanocoatings deposited on coverslips. Opt. Express, 28(1):288–301, 2020.
[96] M. Hemissi, H. Amardjia-Adnani, and J. C. Plenet. Titanium oxide thin layers deposed by dip-coating method: Their optical and structural properties. Current Applied Physics, 9(4):717–721, 2009.
[97] Francisco J. Arregui, Ignacio Del Villar, Carlos R. Zamarreño, Pablo Zubiate, and Ignacio R. Matias. Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sensors and Actuators, B: Chemical, 232:660–665, 2016.
[98] Omar Fuentes, Ignacio Del Villar, Jesus M. Corres, and Ignacio R. Matias. Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Scientific Reports, 9(1):1–10, 2019.
[99] M Albooyeh. Chiral slab: COMSOL simulation. Unpublished paper, 2017.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 125 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Escuela de física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79660/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79660/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79660/4/1085321420.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79660/5/1085321420.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
9e5e2cd727130ebbe4029b547d06d941
5efe718b65c277dfa09e0bb31f8453af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089421182468096
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Trujillo, Pedro Ignacioe15bd4856b7b8afb46d688ce14cfc3ee600Enríquez Espinoza, Jim Alexander539cfe60cfafcf740784038d3d4b6aeaFotónica y Optoelectrónica2021-06-21T19:54:19Z2021-06-21T19:54:19Z2021-02-18https://repositorio.unal.edu.co/handle/unal/79660Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesThe chiral molecule interactions depend on their chirality. Important molecules of life such as proteins, enzymes, amino acids, carbohydrates, and so on, are chiral. Chiral substances which interact with them, such as drugs and agrochemicals, must present a specific enantiomeric content to assure effectiveness. Thus, whereas one enantiomer of a chiral drug or agrochemical product has a desired effect, the other one may be inactive or even toxic. The study of methods to identify the enantiomeric content of chiral substances is a current research topic. Although there are a wide variety of methods, which generally demand expensive reagents, large equipment, and the need for highly qualified personnel, new techniques are still in demand due to the continuous development of new chiral substances, and the industrial need to perform millions of tests during short periods of time. In this scenary, methods based on optical waveguide structures present a great potential, providing great sensitivity, real-time monitoring, and no invasiveness. For this reason, in this M.Sc. thesis, a theoretical and numerical study of optical waveguides involving chiral media is presented. The study is centered around planar symmetric and asymmetric waveguides, where the effects of the real, and for the first time, the imaginary part of the chirality parameter are analyzed in the characteristics of the guided light. As an application of the study, a lossy mode resonances (LMR) based optical fiber sensor is designed to measure the chirality parameter. (Tomado de la fuente)Las interacciones de moléculas quirales dependen de su quiralidad. Las moléculas importantes para la vida como proteínas, enzimas, aminoácidos, carbohidratos, etc., son quirales. Las sustancias quirales que interactúan con ellas, como fármacos y agroquímicos, deben poseer un contenido enantiomérico específico para asegurar su efectividad. De esta manera, mientras un enantiómero de un fármaco quiral o un agroquímico quiral produce los efectos deseados, el otro podría ser inactivo o incluso tóxico. El estudio de los métodos para identificar el contenido enantiomérico de sustancias quirales es un área de investigación actual. A pesar de que hay una amplia variedad de métodos, los cuales generalmente demandan reactivos caros, equipos de gran tamaño y la necesidad de personal altamente calificado, se demandan nuevas técnicas debido al continuo desarrollo de sustancias quirales y la necesidad industrial de llevar a cabo millones de pruebas en cortos periodos de tiempo. En este escenario, los métodos basados en guías de onda ópticas presentan un gran potencial, ofreciendo gran sensibilidad, monitoreo en tiempo real y no invasibidad. Por esta razón, en esta tesis de maestría en ciencias se presenta un estudio teórico y numérico de guías de onda óptica con medios quirales. El estudio se centra en guías de onda planas simétricas y asimétricas, donde se analizan los efectos de la parte real, y por primera vez, la parte imaginaria del parámetro de quiralidad sobre la luz guiada. Como una aplicación del estudio, se diseña un sensor basado en resonancias de modos con pérdidas en fibra óptica para medir el parámetro de quiralidad. (Tomado de la fuente)MaestríaMagíster en Ciencias - FísicaFotónica125 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - FísicaEscuela de físicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín530 - Física620 - Ingeniería y operaciones afinesGuías de ondas ópticasChirality parameterChiral substancesDispersion curvesEnantiomeric contentGuided modesPolarizationOptical waveguideSensorParámetro de quiralidadSustancias quiralesCurvas de dispersiónContenido enantioméricoModos guiadosPolarizaciónGuía de onda ópticaPotential of optical waveguide structures to measure the chirality parameter of chiral substancesPotencial de las estructuras de guía de ondas ópticas para medir el parámetro de quiralidad de sustancias quiralesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] Nallamuthu Ananthi. Role of Chirality in Drugs. Organic Medicinal Chemistry International Journal, 5(3), 2018.[2] Ernest Eliel, Samuel Wilen, and Lewis Mander. Stereochemistry of organic compounds. Number 9. 1995.[3] Xin Zhang, Jun Yin, and Juyoung Yoon. Recent advances in development of chiral fluorescent and colorimetric sensors. Chemical Reviews, 114(9):4918–4959, 2014.[4] Huishi Guo. Progress of quartz crystal microbalance in chiral analysis. Journal of Nanoscience and Nanotechnology, 14(2):1884–1897, 2014.[5] Erhan Zor, Haluk Bingol, and Mustafa Ersoz. Chiral sensors. TrAC - Trends in Analytical Chemistry, 121:1–17, 2019.[6] Brian Culshaw and Alan Kersey. Fiber-Optic Sensing: A Historical Perspective. 26(9):1064–1078, 2008.[7] Byoungho Lee. Review of the present status of optical fiber sensors. Optical Fiber Technology, 9(2):58, 2003.[8] M. Oksanen, P. K. Koivisto, and I. V. Lindell. Dispersion curves and fields for a chiral slab waveguide. IEE Proceedings H: Microwaves, Antennas and Propagation, 138(4):327–334, 1991.[9] Cornel Eftimiu and L Wilson Pearson. Guided electromagnetic waves in chiral media. Radio Science, 24(03):351–359, 1989.[10] Keqian Zhang, Jianguo Xiao and Lian Gong. Analysis of planar dielectric waveguide with chiral cladding. International Journal, 20(2):325–340, 1999.[11] Nader Engheta and Philippe Pelet. Modes in chirowaveguides. Optics Letters, 14(11):593–595, 1989.[12] Jian-Feng Dong and Chao Xu. Characteristics of guided modes in planar chiral nihility meta-material waveguides. Progress In Electromagnetics Research, 14:107–126, 2009.[13] Haixin Zhou and Keqian Zhang. Analysis of circular dielectric waveguide with chiral cladding. International Journal of Infrared and Millimeter Waves, 20(11):1989–1999, 1999.[14] Maoyan Wang, Hailong Li, Tong Xu, Guiping Li, Mengxia Yu, Baojun Jiang, Jun Xu, and Jian Wu. Probing a chiral drug using long period fiber gratings. Optics Express, 27(22):31407, 2019.[15] N. Paliwal and J. John. Lossy Mode Resonance (LMR) Based Fiber Optic Sensors: A Review. IEEE Sensors Journal, 15(10):5361–5371, 2015.[16] Luisa Torsi Kyriaki Manoli, Maria Magliulo. Chiral Sensor Devices for Differentiation of Enantiomers. In Schurig V. (eds) Differentiation of Enantiomers II. Topics in Current Chemistry, volume 341, pages 4–17. Springer, Cham, 2013.[17] Jonathan Clayden, Nick Greeves, and Stuart Warren. Organic Chemistry. Oxford University Press, 2 edition, 2012.[18] Ronny Wirz, Davide Ferri, Thomas Bürgi, and Alfons Baiker. Probing chiral recognition in liquid chromatography by absolute configuration modulation ATR-IR spectroscopy. Spectroscopy Europe, 19(1):8–16, 2007.[19] Natalija Nakov, Rumenka Petkovska, Liljana Ugrinova, Zoran Kavrakovski, Aneta Dimitrovska, and Dobrin Svinarov. Critical development by design of a rugged HPLCMS/MS method for direct determination of ibuprofen enantiomers in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 992:67–75, 2015.[20] C. J. Venkatramani, Mohammad Al-Sayah, Guannan Li, Meenakshi Goel, James Girotti, Lisa Zang, Larry Wigman, Peter Yehl, and Nik Chetwyn. Simultaneous achiral-chiral analysis of pharmaceutical compounds using two-dimensional reversed phase liquid chromatography-supercritical fluid chromatography. Talanta, 148:548–555, 2016.[21] Cecilia Cagliero, Barbara Sgorbini, Chiara Cordero, Erica Liberto, Patrizia Rubiolo, and Carlo Bicchi. Enantioselective Gas Chromatography with Derivatized Cyclodextrins in the Flavour and Fragrance Field. Israel Journal of Chemistry, 56(11-12):925–939, 2016.[22] Stefanie Kaffarnik, Carolina Heid, Yasemin Kayademir, Dorothee Eibler, and Walter Vetter. High enantiomeric excess of the flavor relevant 4-Alkyl-branched fatty acids in milk fat and subcutaneous adipose tissue of sheep and goat. Journal of Agricultural and Food Chemistry, 63(2):469–475, 2015.[23] Robert W Woody. [4] Circular dichroism. In Biochemical Spectroscopy, volume 246 of Methods in Enzymology, pages 34–71. Academic Press, 1995.[24] Sanmitra Barman and Eric V. Anslyn. Rapid determination of enantiomeric excess of α-chiral aldehydes using circular dichroism spectroscopy. Tetrahedron, 70(6):1357–1362, 2014.[25] Qiaozhi Tang, Lu Zhao, Jingqian Xie, Kai Liu, Weiping Liu, and Shanshan Zhou. Deviations from Beer’s law in electronic absorption and circular dichroism: Detection for enantiomeric excess analysis. Chirality, 31(7):492–501, 2019.[26] Hyun Hwa Jo, Chung Yon Lin, and Eric V. Anslyn. Rapid optical methods for enantiomeric excess analysis: From enantioselective indicator displacement assays to exciton-coupled circular dichroism. Accounts of Chemical Research, 47(7):2212–2221, 2014.[27] Marie Urbanová and Petr Maloň. Circular Dichroism Spectroscopy. Analytical Methods in Supramolecular Chemistry, Volume 1 & 2: Second Edition, 1:337–369, 2012.[28] J Enrique Vázquez-Lozano and Alejandro Martínez. Toward chiral sensing and spectroscopy enabled by all-dielectric integrated photonic waveguides. Laser & Photonics Reviews, 14(9):1900422, 2020.[29] Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duò, and Paolo Biagioni. Surface-enhanced chiroptical spectroscopy with superchiral surface waves. Chirality, 30(7):883–889, 2018.[30] John McMurry. Organic Chemistry with Biological Applications. Broks/Cole, Cengage Learning, 2 edition, 2011.[31] Maab H. Al-Hafidh, Andrew Glidle, Rab Wilson, Anthony E. Kelly, Julien Reboud, and Jonathan M. Cooper. Multireflection Polarimetry in Microfluidics. IEEE Sensors Letters, 3(10):1–4, 2019.[32] Thomas C. Preston, Nathan D. Jones, Sven Stille, and Silvia Mittler. Simple liquid-core waveguide polarimetry. Applied Physics Letters, 89(25):10–13, 2006.[33] Míriam Pérez-Trujillo, Teodor Parella, and Lars T. Kuhn. NMR-aided differentiation of enantiomers: Signal enantioresolution. Analytica Chimica Acta, 876:63–70, 2015.[34] Ramisetti Nageswara Rao and Kondapalli Santhakumar. Cyclodextrin assisted enantiomeric recognition of emtricitabine by 19F NMR spectroscopy. New Journal of Chemistry, 40(10):8408–8417, 2016.[35] Guangling Bian, Shiwei Yang, Huayin Huang, Hua Zong, and Ling Song. A bisthiourea-based 1H NMR chiral sensor for chiral discrimination of a variety of chiral compounds. Sensors and Actuators, B: Chemical, 231:129–134, 2016.[36] Burkhard Luy. Disinction of enantiomers by NMR media. Journal Of The Indian Institute Of Science, 90:119–132, 2010.[37] Armando Navarro-Vázquez, Philippe Berdagué, and Philippe Lesot. Integrated Computational Protocol for the Analysis of Quadrupolar Splittings from Natural-Abundance Deuterium NMR Spectra in (Chiral) Oriented Media. ChemPhysChem, 18(10):1252– 1266, 2017.[38] Philippe Lesot, Philippe Berdagué, Abdelkrim Meddour, Alexander Kreiter, Markus Noll, and Michael Reggelin. 2 H and 13 C NMR-Based Enantiodetection Using Polyacetylene versus Polypeptide Aligning Media: Versatile and Complementary Tools for Chemists. ChemPlusChem, 84(2):144–153, 2019.[39] Jonathan Farjon and Nicolas Giraud. 1H NMR analyses of enantiomeric mixtures using chiral liquid crystals. Current Opinion in Colloid and Interface Science, 33:1–8, 2018.[40] Yap Wing Fen and W. Mahmood Mat Yunus. Optical characterization of multi layer thin films using surface plasmon resonance method: From electromagnetic theory to sensor application. AIP Conference Proceedings, 1482(2012):132–135, 2012.[41] Briliant Adhi Prabowo, Agnes Purwidyantri, and Kou Chen Liu. Surface plasmon resonance optical sensor: A review on light source technology. Biosensors, 8(3), 2018.[42] Ben M. Maoz, Yulia Chaikin, Alexander B. Tesler, Omri Bar Elli, Zhiyuan Fan, Alexander O. Govorov, and Gil Markovich. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Letters, 13(3):1203–1209, 2013.[43] Dawei Zhai, Peng Wang, Rong Yao Wang, Xiaorui Tian, Yinglu Ji, Wenjing Zhao, Luming Wang, Hong Wei, Xiaochun Wu, and Xiangdong Zhang. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale, 7(24):10690– 10698, 2015.[44] Guangcan Mi and Vien Van. Characteristics of surface plasmon polaritons at a chiral–metal interface. Optics Letters, 39(7):2028, 2014.[45] Sotiris Droulias and Lykourgos Bougas. Surface Plasmon Platform for Angle-Resolved Chiral Sensing. ACS Photonics, 6(6):1485–1492, 2019.[46] Maoyan Wang, Hailong Li, Tong Xu, Hu Zheng, Mengxia Yu, Guiping Li, Jun Xu, and Jian Wu. Probing bianisotropic biomolecules via a surface plasmon resonance sensor. Optics Express, 26(22):28277, 2018.[47] Maoyan Wang, Hailong Li, Tong Xu, Mengxia Yu, Guiping Li, Hu Zheng, Jian Wu, and Jun Xu. Sensing and Manipulation of Bianisotropic Biomolecules Using a Surface Plasmon Resonance Based Optical Fiber Sensor. Journal of Lightwave Technology, 36(24):5927–5934, 2018.[48] Katsunari Okamoto. Coupled mode theory. In Fundamentals of Optical Waveguides, pages 159–207. Academic, 2006.[49] Frank Vollmer and Peer Fischer. Ring-resonator-based frequency-domain optical activity measurements of a chiral liquid. Optics Letters, 31(4):453, 2006.[50] Haifeng Lu, Zhuangqi Cao, Honggen Li, and Qishen Shen. Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide. Applied Physics Letters, 85(20):4579–4581, 2004.[51] Xianping Wang, Cheng Yin, Honggen Li, Minghuang Sang, Wen Yuan, and Zhuangqi Cao. Ultrahigh-order mode-assisted determination of enantiomeric excess in chiral liquids. Optics Letters, 38(20):4085, 2013.[52] Jiun You Lin. Determination of the refractive index and the chiral parameter of a chiral solution based on chiral reflection equations and heterodyne interferometry. Applied Optics, 47(21):3828–3834, 2008.[53] Minghong Yang, Jiankun Peng, Gaopeng Wang, and Jixiang Dai. Fiber optic sensors based on nano-films. In Fiber Optic Sensors, pages 1–30. Springer, 2017.[54] Anuj K. Sharma, Rajan Jha, and B. D. Gupta. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors Journal, 7(8):1118–1129, 2007.[55] Bo Fan, Tongmengxue Zhang, Simin He, Maoyan Wang, Hailong Li, Mengxia Yu, Guiping Li, and Jun Xu. Chirality parameter sensing based on surface plasmon resonance D-type photonic crystal fiber sensors. Applied Optics, 60(12):3314, 2021.[56] Mark A Ordal, LL Long, RJ Bell, SE Bell, RR Bell, RW Alexander, and CA Ward. Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Applied optics, 22(7):1099–1119, 1983.[57] Tinko Eftimov. Sensor applications of fiber bragg and long period gratings. In Optical Waveguide Sensing and Imaging, pages 1–23. Springer, 2008.[58] Xiaoyi Dong, Hao Zhang, Bo Liu, and Yinping Miao. Tilted fiber bragg gratings: Principle and sensing applications. Photonic Sensors, 1(1):6–30, 2011.[59] Kurt Mislow. Molecular chirality. Top. Stereochem., 22:1–82, 1999.[60] Georges H Wagni`ere. On chirality and the universal asymmetry: reflections on image and mirror image. John Wiley & Sons, 2007.[61] Ari Henrik Sihvola. Electromagnetic modeling of bi-isotropic media. Progress In Electromagnetics Research, 9:45–86, 1994.[62] Volker Schurig and Federica Balzano. Differentiation of Enantiomers I. Springer, 2013. [63] Alain Berthod. Chiral recognition in separation methods. Springer, 2010.[64] Peter Vollhardt and Neil Schore. Organic Chemestry. Structure and Function. Number 2. Clancy Marshall, 6th edition, 2011.[65] W. John Lough. Chiral analysis of pharmaceuticals. In Pharmaceutical Analysis, page 76. Blackwell Publishing, 2003.[66] A. Horeau. Interactions d’enantiomeres en solution ; influence sur le pouvoir rotatoire : Purete optique et purete enantiomerique. Tetrahedron Letters, 10(36):3121–3124, 1969.[67] Ben Yu-Kuang Hu. Kramers–Kronig in two lines. American Journal of Physics, 57(9):821–821, 1989.[68] A. LakhtakiaV. K. VaradanV. V. Varadan. Time-Harmonic Electromagnetic Fields in Chiral Media. Springer, Berlin, Heidelberg, 1989.[69] James Noonan and Tom G. Mackay. On electromagnetic surface waves supported by an isotropic chiral material. Optics Communications, 434(October 2018):224–229, 2019.[70] J. Margineda, G.J. Molina-Cuberos, M.J. Nunez, A.J. Garcia-Collado, and E. Marti. Electromagnetic Characterization of Chiral Media. Solutions and Applications of Scattering, Propagation, Radiation and Emission of Electromagnetic Waves, pages 1–22, 2012.[71] Peter Atkins and Julio De Paula. Physical chemistry for the life sciences. Oxford University Press, USA, 2011.[72] Laurence A. Nafie. Raman optical activity, theory. Encyclopedia of Spectroscopy and Spectrometry, 2628:891–899, 2016.[73] Amnon Yariv and Pochi Yeh. Photonics : optical electronics in modern communications. Oxford University Press, Inc., sixth edition, 2007.[74] Reza Mohammadi-Baghaee and Jalil Rashed-Mohassel. The Chirality Parameter for Chiral Chemical Solutions. Journal of Solution Chemistry, 45(8):1171–1181, 2016.[75] Elena Benito-Peña, Mayra Granda Valdés, Bettina Glahn-Martínez, and Maria C. Moreno-Bondi. Fluorescence based fiber optic and planar waveguide biosensors. A review. Analytica Chimica Acta, 943:18, 2016.[76] Aradhana Dutta, Bidyut Deka, and Partha Pratim Sahu. Planar Waveguide Optical Sensors. Springer, 2016.[77] Brian Culshaw. Principles of Fiber Optic Sensors. Elsevier Inc., 2006.[78] John F. Ready. Fiber Optics. In Industrial Applications of Lasers, page 542. Elsevier, 1997.[79] Wei Liang, Yanyi Huang, Yong Xu, Reginald K Lee, and Amnon Yariv. Highly sensitive fiber bragg grating refractive index sensors. Applied physics letters, 86(15):151122, 2005.[80] Tuan Guo, Fu Liu, Bai-Ou Guan, and Jacques Albert. Tilted fiber grating mechanical and biochemical sensors. Optics & Laser Technology, 78:19–33, 2016.[81] Liang Qi, Chun-Liu Zhao, Jianying Yuan, Manping Ye, Jianfeng Wang, Zaixuan Zhang, and Shangzhong Jin. Highly reflective long period fiber grating sensor and its application in refractive index sensing. Sensors and Actuators B: Chemical, 193:185–189, 2014.[82] Ignacio Del Villar, Francisco J. Arregui, Carlos R. Zamarreño, Jesus M. Corres, Candido Bariain, Javier Goicoechea, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, Joaquin Ascorbe, and Ignacio R. Matias. Optical sensors based on lossy-mode resonances. Sensors and Actuators, B: Chemical, 240:174–185, 2017.[83] Francisco J. Arregui, Ignacio Del Villar, Jesus M. Corres, Javier Goicoechea, Carlos R. Zamarreño, Cesar Elosua, Miguel Hernaez, Pedro J. Rivero, Abian B. Socorro, Aitor Urrutia, Pedro Sanchez, Pablo Zubiate, Diego Lopez, Nerea De Acha, and Ignacio R. Matias. Fiber-optic lossy mode resonance sensors. Procedia Engineering, 87:3–8, 2014.[84] Ignacio Del Villar, Carlos R. Zamarreño, Miguel Hernáez, Francisco J. Arregui, and Ignacio R. Matias. Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. Journal of Lightwave Technology, 28(1):111–117, 2010.[85] Miguel Hernáez, Ignacio Del Villar, Carlos R Zamarreño, Francisco J Arregui, and Ignacio R Matias. Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings. Applied optics, 49(20):3980–3985, 2010.[86] A. B. Socorro, I. Del Villar, J. M. Corres, F. J. Arregui, and I. R. Matias. Spectral width reduction in lossy mode resonance-based sensors by means of tapered optical fibre structures. Sensors and Actuators, B: Chemical, 200:53–60, 2014.[87] P. Zubiate, C. R. Zamarreño, I. Del Villar, I. R. Matias, and F.J. Arregui. High sensitive refractometers based on lossy mode resonances (LMRs) supported by ITO coated D-shaped optical fibers. Optics Express, 23(6):8045, 2015.[88] Hunsperger Robert. Integrated Optics. Theory and Technology. Springer-Verlag New York, 6 edition, 2009.[89] Richard L. Burden and J. Douglas Faires. Numerical Analysis. The Prindle, Weber and Schmidt Series in Mathematics. PWS-Kent Publishing Company, Boston, fourth edition, 1989.[90] Seojoo Lee, Ji Hun Kang, Seok Jae Yoo, and Q. Han Park. Robust numerical evaluation of circular dichroism from chiral medium/nanostructure coupled systems using the finite-element method. Scientific Reports, 8(1):1–8, 2018.[91] Alfons Penzkofer. Optical Rotatory Dispersion Measurement of D-Glucose with Fixed Polarizer Analyzer Accessory in Conventional Spectrophotometer. Journal of Analytical Sciences, Methods and Instrumentation, 03(04):234–239, 2013.[92] F. Reinscheid and U. M. Reinscheid. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data. Journal of Molecular Structure, 1106:141–153, 2016.[93] C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sensors and Actuators, B: Chemical, 155(1):290–297, 2011.[94] L. Ostrowski, M. Murawski, M. Szymanski, Z. Holdynski, T. Tenderenda, P. Pura, P. Mergo, P. Marć, T. Nasilowski, and L. R. Jaroszewicz. Numerical aperture analysis of specialty microstructured fibres in a broad wavelength range. Fifth European Workshop on Optical Fibre Sensors, 8794(May):879440, 2013.[95] Omar Fuentes, Javier Goicoechea, Jesus M Corres, Ignacio Del Villar, Aritz Ozcariz, and Ignacio R Matias. Generation of lossy mode resonances with different nanocoatings deposited on coverslips. Opt. Express, 28(1):288–301, 2020.[96] M. Hemissi, H. Amardjia-Adnani, and J. C. Plenet. Titanium oxide thin layers deposed by dip-coating method: Their optical and structural properties. Current Applied Physics, 9(4):717–721, 2009.[97] Francisco J. Arregui, Ignacio Del Villar, Carlos R. Zamarreño, Pablo Zubiate, and Ignacio R. Matias. Giant sensitivity of optical fiber sensors by means of lossy mode resonance. Sensors and Actuators, B: Chemical, 232:660–665, 2016.[98] Omar Fuentes, Ignacio Del Villar, Jesus M. Corres, and Ignacio R. Matias. Lossy mode resonance sensors based on lateral light incidence in nanocoated planar waveguides. Scientific Reports, 9(1):1–10, 2019.[99] M Albooyeh. Chiral slab: COMSOL simulation. Unpublished paper, 2017.EspecializadaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79660/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79660/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53ORIGINAL1085321420.2021.pdf1085321420.2021.pdfTesis Maestría en Ciencias - Físicaapplication/pdf10903242https://repositorio.unal.edu.co/bitstream/unal/79660/4/1085321420.2021.pdf9e5e2cd727130ebbe4029b547d06d941MD54THUMBNAIL1085321420.2021.pdf.jpg1085321420.2021.pdf.jpgGenerated Thumbnailimage/jpeg4557https://repositorio.unal.edu.co/bitstream/unal/79660/5/1085321420.2021.pdf.jpg5efe718b65c277dfa09e0bb31f8453afMD55unal/79660oai:repositorio.unal.edu.co:unal/796602024-07-22 23:40:03.471Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==