On the solvability of commutative power-associative nilalgebras of nilindex 4
Let $A$ be a commutative power-associative nilalgebra. In this paper we prove that when $A$ (of characteristic $\neq 2)$ is of dimension $\leq 10$ and the identity $x^{4}=0$ is valid in $A$, then $((y^{2})x^{2})x^{2}=0$ for all $y$, $x$ in $A$ and $((A^{2})^{2})^{2}=0$. That is, $A$ is solvable.
- Autores:
-
Elgueta, Luisa
Suazo, Avelino
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2010
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/39778
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/39778
http://bdigital.unal.edu.co/29875/
- Palabra clave:
- Commutative
Power-associative
Nilalgebra
Solvable
Nilpotent
17A05
17A30
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_194db2340e89e1c117059feb9de8e2b7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/39778 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Elgueta, Luisa34aa28c9-d7bc-441d-8ac3-44765246c4c1300Suazo, Avelino7f905a91-8d47-4f36-b19f-418572b0eb473002019-06-28T04:25:50Z2019-06-28T04:25:50Z2010https://repositorio.unal.edu.co/handle/unal/39778http://bdigital.unal.edu.co/29875/Let $A$ be a commutative power-associative nilalgebra. In this paper we prove that when $A$ (of characteristic $\neq 2)$ is of dimension $\leq 10$ and the identity $x^{4}=0$ is valid in $A$, then $((y^{2})x^{2})x^{2}=0$ for all $y$, $x$ in $A$ and $((A^{2})^{2})^{2}=0$. That is, $A$ is solvable.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/28571Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 44, núm. 2 (2010); 119-128 0034-7426Elgueta, Luisa and Suazo, Avelino (2010) On the solvability of commutative power-associative nilalgebras of nilindex 4. Revista Colombiana de Matemáticas; Vol. 44, núm. 2 (2010); 119-128 0034-7426 .On the solvability of commutative power-associative nilalgebras of nilindex 4Artículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTCommutativePower-associativeNilalgebraSolvableNilpotent17A0517A30ORIGINAL28571-142420-1-PB.htmltext/html4933https://repositorio.unal.edu.co/bitstream/unal/39778/1/28571-142420-1-PB.html2a85a1e561c93ebca3e7b3e90da97ba2MD5128571-102259-1-PB.pdfapplication/pdf183498https://repositorio.unal.edu.co/bitstream/unal/39778/2/28571-102259-1-PB.pdf080e1ad1a7e1d19c2ec40f63e7a83527MD52THUMBNAIL28571-102259-1-PB.pdf.jpg28571-102259-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4680https://repositorio.unal.edu.co/bitstream/unal/39778/3/28571-102259-1-PB.pdf.jpg6a25a35eb7882aeea68b072e1fbed7ecMD53unal/39778oai:repositorio.unal.edu.co:unal/397782024-01-21 23:06:43.682Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
title |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
spellingShingle |
On the solvability of commutative power-associative nilalgebras of nilindex 4 Commutative Power-associative Nilalgebra Solvable Nilpotent 17A05 17A30 |
title_short |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
title_full |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
title_fullStr |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
title_full_unstemmed |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
title_sort |
On the solvability of commutative power-associative nilalgebras of nilindex 4 |
dc.creator.fl_str_mv |
Elgueta, Luisa Suazo, Avelino |
dc.contributor.author.spa.fl_str_mv |
Elgueta, Luisa Suazo, Avelino |
dc.subject.proposal.spa.fl_str_mv |
Commutative Power-associative Nilalgebra Solvable Nilpotent 17A05 17A30 |
topic |
Commutative Power-associative Nilalgebra Solvable Nilpotent 17A05 17A30 |
description |
Let $A$ be a commutative power-associative nilalgebra. In this paper we prove that when $A$ (of characteristic $\neq 2)$ is of dimension $\leq 10$ and the identity $x^{4}=0$ is valid in $A$, then $((y^{2})x^{2})x^{2}=0$ for all $y$, $x$ in $A$ and $((A^{2})^{2})^{2}=0$. That is, $A$ is solvable. |
publishDate |
2010 |
dc.date.issued.spa.fl_str_mv |
2010 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T04:25:50Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T04:25:50Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/39778 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/29875/ |
url |
https://repositorio.unal.edu.co/handle/unal/39778 http://bdigital.unal.edu.co/29875/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/28571 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 44, núm. 2 (2010); 119-128 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Elgueta, Luisa and Suazo, Avelino (2010) On the solvability of commutative power-associative nilalgebras of nilindex 4. Revista Colombiana de Matemáticas; Vol. 44, núm. 2 (2010); 119-128 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/39778/1/28571-142420-1-PB.html https://repositorio.unal.edu.co/bitstream/unal/39778/2/28571-102259-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/39778/3/28571-102259-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
2a85a1e561c93ebca3e7b3e90da97ba2 080e1ad1a7e1d19c2ec40f63e7a83527 6a25a35eb7882aeea68b072e1fbed7ec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090043480866816 |