Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes

ilustraciones, fotografías, gráficas, tablas

Autores:
Silva Velandia, Silvia Fernanda
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84071
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84071
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Resistencia fisiológica al estrés
Salinidad
Raphanus
physiological stress resistance
salinity
Raphanus
ACC desaminasa
Penicillium
Rhodotorula
Fosfato
Aspergillus
ACC deaminase
Phosphate
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_19119065c952fe4175da5d5124bc85be
oai_identifier_str oai:repositorio.unal.edu.co:unal/84071
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
dc.title.translated.eng.fl_str_mv Mitigation of salt stress in radish (Raphanus sativus) by halotolerant fungi inoculation
title Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
spellingShingle Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Resistencia fisiológica al estrés
Salinidad
Raphanus
physiological stress resistance
salinity
Raphanus
ACC desaminasa
Penicillium
Rhodotorula
Fosfato
Aspergillus
ACC deaminase
Phosphate
title_short Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
title_full Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
title_fullStr Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
title_full_unstemmed Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
title_sort Evaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantes
dc.creator.fl_str_mv Silva Velandia, Silvia Fernanda
dc.contributor.advisor.spa.fl_str_mv Sánchez Nieves, Jimena
Melgarejo Muñoz, Luz Marina
dc.contributor.author.spa.fl_str_mv Silva Velandia, Silvia Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Resistencia fisiológica al estrés
Salinidad
Raphanus
physiological stress resistance
salinity
Raphanus
ACC desaminasa
Penicillium
Rhodotorula
Fosfato
Aspergillus
ACC deaminase
Phosphate
dc.subject.agrovoc.spa.fl_str_mv Resistencia fisiológica al estrés
Salinidad
Raphanus
dc.subject.agrovoc.eng.fl_str_mv physiological stress resistance
salinity
Raphanus
dc.subject.proposal.spa.fl_str_mv ACC desaminasa
Penicillium
Rhodotorula
Fosfato
Aspergillus
dc.subject.proposal.eng.fl_str_mv ACC deaminase
Phosphate
description ilustraciones, fotografías, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-06-26T19:44:20Z
dc.date.available.none.fl_str_mv 2023-06-26T19:44:20Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84071
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84071
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Agrosavia
Agrovoc
dc.relation.references.spa.fl_str_mv 1. Abdel A., Mohammad A. Abbas, Amal A. Abdel Wahid, W. Paul Quick, Gaber M. Abogadallah, (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress, Journal of Experimental Botany, Volume 54, Issue 392. Pages 2553–2562, https://doi.org/10.1093/jxb/erg277
2. Abdel T.M.; Alawlaqi, M.M. (2018) Molecular Identification of Rhizospheric Thermo-Halotolerant Aspergillus terreus and Its Correlation to Sustainable Agriculture. BioResources Doi: 1380128023.
3. Africano K, Pinzón E. (2014). Comportamiento fisiológico de plantas de rábano (Raphanus sativus L.) sometidas a estrés por salinidad. Conexión agropecuaria JDC 4(2), p 13-24.
4. Ahima, J., Zhang, X., Yang, Q., Zhao, L., Maurice Tibiru, A., Zhang, H. (2019). Biocontrol activity of Rhodotorula mucilaginosa combined with salicylic acid against Penicillium digitatum infection in oranges. Biological Control. doi: 10.1016/j.biocontrol.2019.0
5. Ali, I., Khaliq, S., Sajid, S., Akbar, A. (2019). Biotechnological Applications of Halophilic Fungi: Past, Present, and Future. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, 291–306. doi:10.1007/978-3-030-19030-9_1
6. Ali, R., Gul, H., Hamayun, M., Rauf, M., Iqbal, A., Shah, M., Hussain, A., Bibi, H., Lee, I.-J. (2021). Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/s40538-021-00208-9
7. Asaf, S.; Hamayun, M.; Khan, A.L.; Waqas, M.; Khan, M.A.; Jan, R.; Lee, I.J.; Hussain, A (2018). Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol. Biochem, 128, 13–23.
8. Ashraf, M., Shahzad, S. M., Imtiaz, M., Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes: A review. J. Plant Nutr. 41, 1065–1081. doi: 10.1016/ j. crvi.2009.03.009
9. Asif M, Anwar H, Muhammad I, Naeem K, Muhammad H, Ismail Sahib Gul Afridi, In-Jung Lee (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish, Journal of Plant Interactions, 13:1, 532-542, DOI: 10.1080/17429145.2018.1542041
10. Ayyub CM, Shaheen MR, Raza S, Yaqoob MS, Qadri RWK, Azam M, Ghani MA, Khan I, Akhtar N (2016). Evaluation of different radish (Raphanus sativus) genotypes under different saline regimes. American Journal of Plant Sciences 7(6):894-898. DOI: http://dx.doi.org/10.4236/ajps.2016.76084
11. Badawy, A.A.; Alotaibi, M.O.; Abdelaziz, A.M.; Osman, M.S.; Khalil, A.M.A.; Saleh, A.M.; Mohammed, A.E.; Hashem, A.H (2021) Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites , 11, 428. https://doi.org/10.3390/metabo11070428
12. Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222. doi:10.1016/j.chemosphere.2018
13. Beltagi, S., mohamed, A., Rashed, m. M. (2010). Response of Antioxidative Enzymes to Cadmium Stress in Leaves and Roots of Radish (Raphanus sativus L.). Notulae Scientia Biologicae, 2(4), 76-82. https://doi.org/10.15835/nsb245395
14. Bernstein, N. (2019). Plants and salt: Plant response and adaptations to salinity. Model Ecosystems in Extreme Environments, 101–112. doi:10.1016/b978-0-12-812742-1.00005-2
15. Bibi, S., Hussain, A., Hamayun, M., Rahman, H., Iqbal, A., Shah, M., … Islam, B. (2018). Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere, 211, 653–663. doi:10.1016/j.chemosphere.2018.
16. Bonilla M (2005). Estrategias adaptativas de plantas del páramo y del bosque altoandino en la Cordillera Oriental de Colombia. Colección Textos . Universidad Nacional de Colombia - Unibiblos, Bogotá. p 177-190.
17. Boughalleb, N., Salem, I. B., M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1). doi:10.1186/s41938-017-0010-3
18. Brotman, Y., Landau, U., Cuadros-Inostroza, A., Tohge, T., Fernie, A. R., Chet, I., et al. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9:e1003221. doi: 10.1371/journal.ppat.1003221
19. Callejas, R., Kania, E., Contreras, A., Peppi, C., Morales, L. (2013). Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 31(4), 19–26. https://doi.org/10.4067/S0718-34292013000400003
20. Calvente, V., de Orellano, M. E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M. I. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226–229. doi:10.1038/sj.jim.7000117
21. Cao, W. H., Liu, J., He, X. J., Mu, R. L., Zhou, H. L., Chen, S. Y., et al. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707–719. doi: 10.1104/pp.106.094292
22. Casares. E. (1981). Producción de hortalizas. Tercera edición. San José Costa Rica. Pág. 272-275
23. Chammoun N, Geller D, Das K (2013). Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel. Industrial Crops and Products, 45, 155–159. https://doi.org/10.1016/j.indcrop.2012.11.029
24. Cheng, Z., Chi, M., Li, G., Chen, H., Sui, Y., Sun, H. Liu, J. (2016). Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 95, 49–56. doi:10.1016/j.biocontrol.2016.01.001
25. Dallas JE (2000) Metodos multivariados aplicados al analisis de datos.Mexico: Thomson Paraninfo S.A.
26. Dassarma, Priya, Coker, James Huse, Valerie Dassarma, Shiladitya. (2010). Halophiles, Industrial Applications. 10.1002/9780470054581.eib439.
27. De Lucca, A.J (2007). Harmful Fungi in Both Agriculture and Medicine. Rev. Iberoam. Micol. 24, 3–13.
28. DIONISIO-SESE, M.L.; TOBITA, S (2000) Effect of salinity on sodium content and photosynthetic responses of rice seedling differing in salt tolerance. Journal of Plant Physiology, v.157, p.54- 58.
29. Elgharably, A., Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere, 18, 100345. doi:10.1016/j.rhisph.2021.10034
30. Esquivel R., Gavilanes-Ruiz, M., Cruz-Ortega, R. y Huante, P. (2013). Importancia agrobiotecnoló-gica de la enzima ACC desaminasa en rizobac-terias, una revisión. Revista Fitotecnia Mexicana, 36(3), 251-258.
31. Etesami, H., Emami, S., Alikhani, H. A.. (2017). Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬A review. Journal of soil science and plant nutrition, 17(4), 897-911. https://dx.doi.org/10.4067/S0718-95162017000400005
32. Firrincieli, A., Otillar, R., Salamov, A., Schmutz, J., Khan, Z., Redman, R. S. Doty, S. L. (2015). Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.00978
33. Gaballah M.S. , Gomaa A.M., (2004). Performance of Faba Bean Varieties Grown under Salinity Stress and Biofertilized with Yeast. Journal of Applied Sciences, 4: 93-99.DOI: 10.3923/jas.2004.93.99
34. Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Corrêa, B. O., da Silva Brasil, M., Zanoelo, F. F. (2021). Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere, 18, 100332. https://doi.org/10.1016/j.rhisph.2021.100332
35. García, Adriana, Rhoden, Sandro A, Rubin Filho, Celso J, Nakamura, Celso V, Pamphile, João A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L . and their localization by scanning electron microscopy. Biological Research, 45(2), 139-148. https://dx.doi.org/10.4067/S0716-97602012000200006
36. Ghilardi, C., Sanmartin Negrete, P., Carelli, A. A., Borroni, V. (2020). Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing, 7(1). doi:10.1186/s40643-020-00341-7
37. Gomaa, A.M. Gaballah M. S., Hazaa M.M. (2005). Changes in Compatible Solutes of Some Maize Varieties Grown in Sandy Soil and Biofertilized with Rhodotorula glutinis under Saline Conditions. Journal of Applied Sciences Research 1(5): 347-351, 2005
38. Gómez L. (2011). Evaluación del cultivo de rábano (Raphanus sativus L.) bajo diferentes condiciones de fertilización orgánica e inorgánica. Universidad Autónoma Agraria Antonio Narro. México.
39. Gopinath, S. C. B., Hilda, A., Anbu, P. (2005). Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience, 46(2), 119–126. doi:10.1007/s10267-004-0221-9
40. Gunde, N., Ramos, J., Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological Research, 113(11), 1231–1241. doi:10.1016/j.mycres.2009.09.002
41. Hadas, A (1977). Water uptake and germination of leguminous seeds in soils of changing matrix and osmotic water potential. Journal of Experimental Botany, v.28, p.977-985.
42. Hakim Safinah, and Tri W. Yuwati. (2020). "The Use of Fungal Endophyte Penicillium Citrinum On Tree Seedling: Applicability and Limitation." BIO web of conferences, v. 20 ,. pp. 03005. doi: 10.1051/bioconf/20202003005
43. Hamedi, J., Mohammadipanah, F., Ventosa, A. (2012). Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 17(1), 1–13. doi:10.1007/s00792-012-0493-5
44. Hossain, M. M., Sultana, F., Islam, S. (2017). Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives, 135–191. doi:10.1007/978-981-10-6593-4_6
45. Hsieh, E. J., Cheng, M. C., and Lin, T. P. (2013). Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 82, 223–237. doi: 10.1007/s11103-013-0054-z
46. Ibrar, M., Ullah, M. W., Manan, S., Farooq, U., Rafiq, M., Hasan, F. (2020). Fungi from the extremes of life: an untapped treasure for bioactive compounds. Applied Microbiology and Biotechnology. doi:10.1007/s00253-020-10399-0
47. IDEAM. (2017). Mapa Nacional de degradación de suelos por salinización. Recuperado de: http://www.ideam.gov.co/documents/24277/69989379/Lanzamiento+mapa+Salinizacion+FN+OPT.pdf/624515d0-799d-41ef-b1ef-bb7e868680f3
48. Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302–318. doi:10.3103/s0095452712050040
49. Islam, N.F. Borthakur SK. (2012). Screening of mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology Quarantine — Doi 10.5943/ppq/2/1/11
50. Islam, S., Akanda, A. M., Sultana, F., Hossain, M. M. (2013). Chilli rhizosphere fungusAspergillusspp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Archives Of Phytopathology And Plant Protection, 47(10), 1231–1238. doi:10.1080/03235408.2013.83763
51. Jafarinia, Mojtaba Shariati, Mahmoud. (2012). Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. Iranian Journal of Science and Technology, Transaction A: Science. 36. 73-76.
53. Javed, A., Khan, S.A., Shah, A.H., Hussain, A., Shinwari, Z.K. (2020). Potential of endophytic fungus aspergillus terreus as potent plant growth promoter. Pakistan Journal of Botany, 52(3), 1083-1086.
54. Kasim, W.A., K.M. Saad-Allah and M. Hamouda, (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). Int. J. Agric. Biol., 18: 653‒660
55. Khan MI, Ali N, Jan G, Hamayun M, Jan FG, Iqbal A, Hussain A, Lee IJ (2022). Salt Stress Alleviation in Triticum aestivum Through Primary and Secondary Metabolites Modulation by Aspergillus terreus BTK-1. Front Plant Sci. Mar 10;13:779623. doi: 10.3389/fpls.2022.779623. PMID: 35360328; PMCID: PMC8960994.
56. Khan SA, Hamayun M, Hyeokjun Y, Kim H, Suh S, Hwang S, Kim J, Lee I, Choo Y,YoonU, et al. (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8:231.
57. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, I.-J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852–861. doi:10.1016/j.plaphy.2011.03.005
58. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, J.-H., Lee, I.-J. (2011). Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochemistry, 46(2), 440–447. doi:10.1016/j.procbio.2010.09.0
59. Khan, M. S., Zaidi, A., Ahmad, E. (2014). Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. Phosphate Solubilizing Microorganisms, 31–62. doi:10.1007/978-3-319-08216-5_2
60. Khushdil, F., Jan, F. G., Jan, G., Hamayun, M., Iqbal, A., Hussain, A., Bibi, N. (2019). Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus L. Plant Physiology and Biochemistry, 144, 127–134. doi:10.1016/j.plaphy.2019.09.038
61. KURAMATA, M., FUJIOKA, S., SHIMADA, A., KAWANO, T., KIMURA, Y. (2007). Citrinolactones A, B and C, and Sclerotinin C, Plant Growth Regulators fromPenicillium citrinum. Bioscience, Biotechnology, and Biochemistry, 71(2), 499–503. doi:10.1271/bbb.60538
62. Kurjogi, K.N. Basavesha, V.P. Savalgi (2021) Impact of potassium solubilizing fungi as biopesticides and its role in crop improvement, Biocontrol Agents and Secondary Metabolites. https://doi.org/10.1016/B978-0-12-822919-4.00002-8.
63. Kurtzman C.P., J.W. Fell, Teun Boekhout (2011). The Yeast A taxonomic study. Elsevier. P 1973-1906.
64. Li X, Zhao C, Zhang T, Wang G,Amombo E, Xie Y and Fu J (2021)Exogenous Aspergillus aculeatusEnhances Drought and HeatTolerance of Perennial Ryegrass.Front. Microbiol. 12:593722.doi: 10.3389/fmicb.2021.593722
65. Lian, B., Wang, B., Pan, M., Liu, C., Teng, H. H. (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72(1), 87–98. doi:10.1016/j.gca.2007.10.005
66. Liu, Z.; Cheng, R.; Xiao, W.; Guo, Q.; Wang, N. (2014) Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9, 1–9.
67. Lubna, Asaf, S., Hamayun, M., Khan, A. L., Waqas, M., Khan, M. A., … Hussain, A. (2018). Salt tolerance of Glycine max .L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiology and Biochemistry, 128, 13–23. doi:10.1016/j.plaphy.2018.05.00
68. Lugtenberg B, Kamilova F. (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol.;63:541-56. doi: 10.1146/annurev.micro.62.081307.162918. PMID: 19575558.
Ma Y. , Erwin A. Galinski , William D. Grant , Aharon Oren , and Antonio Ventosa (2010) Halophiles 2010: Life in Saline Environments. ASM journals. Doi: https://doi.org/10.1128/AEM.01868-10
70. Machuca, A., Milagres, A. M. F. (2003). Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Letters in Applied Microbiology, 36(3), 177–181. doi:10.1046/j.1472-765x.2003.012
71. Maheshwari, D. K., Saraf, M. (2015). Halophiles. Sustainable Development and Biodiversity. doi:10.1007/978-3-319-14595-2
72. Marcelis, L., Van Hooijdonk, J. (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil 215, 57–64. https://doi.org/10.1023/A:1004742713538.
73. Mathur, P., Chaturvedi, P., Sharma, C. (2022). Improved seed germination and plant growth mediated by compounds synthesized by endophytic Aspergillus niger (isolate 29) isolated from Albizia lebbeck (L.) Benth. 3 Biotech 12, 271. https://doi.org/10.1007/s13205-022-03332-x
74. Maxwell, K.; Johnson, G (2000). Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668
75. Melgarejo L. (2010) Libro de experimentos en fisiología vegetal. Universidad Nacional de Colombia. 1ra ed. Bogotá, Colombia.
76. Membrillera, José (1950). Clave determinativa de las especies del género penicillium. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/6407
77. Membrillera, José (1951). Clave determinativa de las especies del género aspergillus. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/6407
78. Mendes, G.O.; Galvez, A.; Vassileva, M.; Vassilev, N (2017). Fermentation Liquid Containing Microbially Solubilized P Significantly Improved Plant Growth and P Uptake in Both Soil and Soilless Experiments. Appl. Soil Ecol. 2017, 117, 208–211
79. Mittal, V., Singh, O., Nayyar, H., Kaur, J., Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40(3), 718–727. doi:10.1016/j.soilbio.2007.10.0
80. Mohamed, H. M., El-Homosy, R. F., Abd-Ellatef, A.-E. H., Salh, F. M., Hussein, M. Y. (2016). Identification of Yeast Strains Isolated from Agricultural Soils for Releasing Potassium-bearing Minerals. Geomicrobiology Journal, 34(3), 261–266. doi:10.1080/01490451.2016.11867
81. Monica Boscaiu, Cristina Lull, Josep Llinares, Oscar Vicente, Herminio Boira (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species, Journal of Plant Ecology, Volume 6, Issue 2, Pages 177–186, https://doi.org/10.1093/jpe/rts017
82. Moreno-C, Lina Margarita, López-Casallas, Marcela, Cruz Barrera, Fredy Mauricio. (2021). Phosphate solubilization by Burkholderia species isolated from Oxisols from the Colombian high plains. Ciencia y Tecnología Agropecuaria, 22(2), Epub May 01, 2021.https://doi.org/10.21930/rcta.vol22_num2_art:1897
83. Moukhtari, A., Cabassa-Hourton, C., Farissi, M., Savouré, A. (2020). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.01127
84. Moukhtari, A., Farissi, M., Savouré, A. (2019). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.01127
85. Mrudula S, Murugammal R. (2011) Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. Jul;42(3):1119-27. doi: 10.1590/S1517-838220110003000033. Epub 2011 Sep 1. PMID: 24031730; PMCID: PMC3768773.
86. Mujica Y, Sales J. (2013). Funcionamiento de la inoculación líquida con hongos micorrízicos arbusculares (HMA) en plantas de tomate (Solanum lycopersicum L.). Cultivos Tropicales, 34(4), 5-8. Recuperado en 16 de noviembre de 2020, de http://scielo.sld.cu/scielo.php?script=sci_arttext pid=S0258-59362013000400001 lng=es tlng=es.
87. Mundra, S., Arora, R., Stobdan, T. (2011). Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World Journal of Microbiology and Biotechnology, 27(10), 2387–2396. doi:10.1007/s11274-011-0708-4
88. Murali, M., Sudisha, J., Amruthesh, K. N., Ito, S.-I., Shetty, H. S. (2012). Rhizosphere fungusPenicillium chrysogenumpromotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology, 15(1), 111–118. doi:10.1111/j.1438-8677.2012.00617.x
89. Muthukumarasamy, M., Gupta, S.D. Panneerselvam, R. (2000) Influence of Triadimefon on the Metabolism of NaCl Stressed Radish. Biologia Plantarum 43, 67–72. https://doi.org/10.1023/A:1026503013445
90. Netondo, G. W., Onyango, J. C., Beck, E. (2004). Sorghum and Salinity. Crop Science, 44(3), 806. doi:10.2135/cropsci2004.8060
91. Niehus, R., Picot, A., Oliveira, N. M., Mitri, S., Foster, K. R. (2017). The evolution of siderophore production as a competitive trait. Evolution, 71(6), 1443–1455. doi:10.1111/evo.13230
92. Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. (2009) Biotechnological Production of Itaconic Acid and Its Biosynthesis in Aspergillus terreus. App. Microbiol. Biotechnol. 84, 597–606.
93. Olivera Viciedo, D., Mello Prado, R., Lizcano Toledo, R., Salas Aguilar, D., Claudio Nascimento dos Santos, L., Calero Hurtado, A., … Betancourt Aguilar, C. (2020). Physiological role of silicon in radish seedlings under ammonium toxicity. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.10587
94. Oren A (2002) Diversity of halophilic microorganisms: enviroments,phylogeny, physiology and application. J Ind Microbiol Biotechnol 28:56–63
95. Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8-9), 825–834. doi:10.1080/09593330903370026
96. Pandey, A., Das, N., Kumar, B., Rinu, K., Trivedi, P. (2007). Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World Journal of Microbiology and Biotechnology, 24(1), 97–102. doi:10.1007/s11274-007-9444-1
97. Parihar, P., Singh, S., Singh, R., Singh, V. P., Prasad, S. M. (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075. doi:10.1007/s11356-014-3739-1
98. Parmar, S., Gharat, S. A., Tagirasa, R., Chandra, T., Behera, L., Dash, S. K., Shaw, B. P. (2020). Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLOS ONE, 15(4), e0230958. doi:10.1371/journal.pone.0230958
99. Patil, R.H.; Patil, M.P.; Maheshwari, V.L. (2016) Bioactive Secondary Metabolites From Endophytic Fungi: A Review of Biotechnological Production and Their Potential Applications. Stud. Nat. Prod. Chem. 49, 189–205.
100. Pazouki, M. & Felse, PA & Sinha, Jayashy & Panda, Tapobrata. (2000). Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose. Bioprocess Engineering. 22. 353-361. 10.1007/PL00009115.
101. Penrose, D. M., Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. doi:10.1034/j.1399-3054.2003.00086.x
102. Perrone, G., Gallo, A. (2016). Aspergillus Species and Their Associated Mycotoxins. Mycotoxigenic Fungi, 33–49. doi:10.1007/978-1-4939-6707-0_3
103. Pi, HW., Anandharaj, M., Kao, YY. (2018). Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 8, 10850 https://doi.org/10.1038/s41598-018-29194-z
104. Pikovskaya, R.I., (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17,362–370.
105. Putti, F.F., J.F. Silva Junior, R. Ludwig, L.R.A. Gabriel Filho, C.P.Cremasco, and A.E. Klar. (2014). Avaliacao da cultura do rabanete ao longo do ciclo submetido em diferentes niveis de salinidade. J. Agron. Sci. 3(2), p. 80-90.
106. Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295
107. Ramos-G, J., Bustamante-Brito, R., Ángeles de Paz, G., Medina-Canales, M. G., Vásquez-Murrieta, M. S., Wang, E. T., Rodríguez-Tovar, A. V. (2016). Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Canadian Journal of Microbiology, 62(4), 307–319. doi:10.1139/cjm-2015-0226
108. Romero A. (2020). Caracterización de microorganismos halófilos y halotolerantes con potencial actividad promotora de crecimiento vegetal de la mina de sal de Zipaquirá (Colombia). Tesis de pregrado. Universidad INCCA, Bogotá, Colombia.
109. Sah, Stuti, Singh, Rajni. (2015) "Siderophore: Structural And Functional Characterisation – A Comprehensive Review" Agriculture (vol.61, no.3, 2015, pp.97-114. https://doi.org/10.1515/agri-2015-0015
110. Salazar-Garcia G, Balaguera-Lopez HE, Hernandez JP.(2022). Effect of Plant Growth-Promoting Bacteria Azospirillum brasilense on the Physiology of Radish (Raphanus sativus L.) under Waterlogging Stress. Agronomy. 12(3):726. https://doi.org/10.3390/agronomy12030726
111. Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, H. N. (2018). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology. doi:10.1016/j.apsoil.2018.09.012
112. Shahid, S. A., Zaman, M., Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 43–53. doi:10.1007/978-3-319-96190-3
113. Sharma, P.K., and D.O. Hall. (1991). Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant Physiol. 138:614–619.
114. Shilev, S., Sancho, E. D., Benlloch-González, M. (2012). Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 95, S37–S41. doi:10.1016/j.jenvman.2010.07.019
115. Shirinbayan, S., Khosravi, H., Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138-145. https://doi.org/10.1016/j.apsoil.2018.09.015
116. Sidari M, Carmelo Mallamaci, Adele Muscolo (2008) Drought, salinity and heat differently affect seed germination of Pinus pinea, Journal of Forest Research, 13:5, 326-330, DOI: 10.1007/s10310-008-0086-4
117. Signorelli, S. (2016). The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front.PlantSci.7:1339. doi: 10.3389/fpls.2016.01339
118. Silambarasan S, Logeswari P, Vangnai AS, Cornejo P. (2022). Rhodotorula mucilaginosa CAM4 improved selenium uptake in Spinacia oleracea L. and soil enzymatic activities under abiotic stresses. Environ Sci Pollut Res Int. . doi: 10.1007/s11356-022-21935-y. Epub ahead of print. PMID: 35859235.
119. Silambarasan, S., Logeswari, P., Cornejo, P., Kannan, V. R. (2018). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2018.10.016
120. Sousa L, Basílio A, Da Silva T, De Moura J, Gonçalves A, De Melo J, Dias T. (2018). Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana, 36(3), 257–265. doi: 10.15446/agron.colomb.v36n3.74149
121. Sreevidya, M., Gopalakrishnan, S., Melø, T. M., Simic, N., Bruheim, P., Sharma, M., … Alekhya, G. (2015). Biological control ofBotrytis cinereaand plant growth promotion potential byPenicillium citrinumin chickpea (Cicer arietinumL.). Biocontrol Science and Technology, 25(7), 739–755. doi:10.1080/09583157.2015.10104
122. Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou(2004): Chlorophyll a Fluorescence. Pp. 321-362. Springer, Berlin.
123. Taiz L, Zeiger E (2015) Plant physiology. 6th ed. Sinauer Associates, Sunderland, Massachusetts, 764 pp.
124. Tanaka M, Taniguchi M, Morinaga T, Matsuno R, Kamikubo T (1980) Cellulase productivity of Eupenicillium javanicum. J Ferment Technol 58:149–154
125. Tapia-Vázquez, I., Sánchez-Cruz, R., Arroyo-Domínguez, M., Lira-Ruan, V., Sánchez-Reyes, A., del Rayo Sánchez-Carbente, M., Padilla-Chacón, D., Batista-García, R. A., Folch-Mallol, J. L. (2020). Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano
126. Teather, R., & Wood, P. (1982). Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied Environmental Microbiology, 43(4), 777–780.
127. Ting, A. S. Y., Mah, S. W., Tee, C. S. (2012). Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biological Control, 61(2), 155–159. doi:10.1016/j.biocontrol.2012.01.010
128. Vashisth A., S. Nagarajan. (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology ;167:149–156.
129. Vassileva, M.; Malusá, E.; Eichler-Löbermann, B.; Vassilev, N. (2020) Aspegillus terreus: From Soil to Industry and Back. Microorganisms, 8, 1655. https://doi.org/10.3390/microorganisms8111655
130. Venkatesh, J., Upadhyaya, C.P., Yu, J.W., Hemavathi, A., Kim, D.H., Strasser, R.J., Park, S.W. (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D- galacturonic acid reductase gene for salinity stress tolerance. -Hort. Environ. Biotechnol. 53: 320-328.
131. Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, Vol. 8. (American Society of Plant Biologists), e0140. doi: 10.1199/tab.0140
132. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.-M., Kim, J.-G., Lee, I.-J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example ofPenicillium citrinumandAspergillus terreus. Journal of Plant Interactions, 10(1), 280–287. doi:10.1080/17429145.2015.107974
133. Yan J, Hiroyuki ITO, Hirokazu MATSUI, Mamoru HONMA (2000). 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Induced by ACC Synthesized and Accumulated in Penicillium citrinum Intracellular Spaces, Bioscience, Biotechnology, and Biochemistry, Volume 64, Issue 2, Pages 299–305, https://doi.org/10.1271/bbb.64.299
134. Yang, S. F., and Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155–189. doi: 10.1146/annurev.pp.35.060184.001103
135. Yedidia, I., Benhamou, N., Chet, I., (1999). Induction of defense responses in cucumber
136. Yildirim E, Ertan T, Metin D (2008). Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth: Promoting rhizobacteria. Romanian Biotechnological Letters. 13. 3933-3943.
137. Yin, J., Chen, J.-C., Wu, Q., Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33(7), 1433–1442. doi:10.1016/j.biotechadv.2014.1
138. Yoo, S.J.; Shin, D.J.; Won, H.Y.; Song, J.; Sang, M.K (2018) Aspergillus terreus JF27 Promotes the Growth of Tomato Plants and Induces Resistance
139. Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79–83. doi:10.1016/j.biocontrol.2008.09.
140. Zhao, G. Q., Ma, B. L., Ren, C. Z. (2007). Growth, Gas Exchange, Chlorophyll Fluorescence, and Ion Content of Naked Oat in Response to Salinity. Crop Science, 47(1), 123. doi:10.2135/cropsci2006.06.0371
141. Zushi, K., Kajiwara, S., Matsuzoe, (2012) Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. - Sci. Hort. 148: 39-46
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 121 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84071/4/1032497604.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84071/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84071/6/1032497604.2023.pdf.jpg
bitstream.checksum.fl_str_mv fbd9bb13af21befad6d80fca25143028
eb34b1cf90b7e1103fc9dfd26be24b4a
b50ca224287fd0aa11444ee6fede156b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089401940049920
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sánchez Nieves, Jimena41eea4bcfdec2c2b5187022219bdf37a600Melgarejo Muñoz, Luz Marina62dacf6e8c1c8d49455ba95631c2b4bc600Silva Velandia, Silvia Fernandad00ad7b488b87260e2e2985a59e47301Fisiología del Estrés y Biodiversidad en Plantas y Microorganismos2023-06-26T19:44:20Z2023-06-26T19:44:20Z2022https://repositorio.unal.edu.co/handle/unal/84071Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEl estrés abiótico por salinidad está asociado con detrimento del crecimiento vegetal, y por lo tanto con la productividad de los cultivos. Por lo que el uso de microorganismos que cuentan con mecanismos fitoestimuladores y de mejoramiento del estado nutricional de las plantas en condiciones de salinidad, surge como una posible solución ante el presente panorama de degradación de los suelos por salinización, debido al exceso de fertilizantes químicos y también como efecto del cambio climático. En la presente investigación se evaluó la potencial actividad de cuatro aislamientos fúngicos halotolerantes en la mitigación del estrés abiótico por salinidad y promoción de crecimiento vegetal en rábano (Raphanus sativus L.), a través de mecanismos como la producción de auxinas, solubilización de fosfatos y la actividad ACC desaminasa. Con base en las características morfológicas, y por medio del uso de claves taxonómicas, los hongos se identificaron preliminarmente como: Aspergillus terreus, Aspergillus fumigatus, Penicillium citrinum y Rhodotorula spp. El estudio constó de tres fases: 1) evaluación in vitro de algunos mecanismos de promoción del crecimiento vegetal, 2) evaluación del efecto de la inoculación de los hongos sobre la germinación In vitro de semillas de rábano; 3) evaluación del efecto de la inoculación sobre parámetros de crecimiento y fisiología de plantas de rábano bajo condiciones de invernadero, sometidas a salinidad en el agua de riego a 100 y 200 mM de NaCl. Las determinaciones de crecimiento, fluorescencia de la clorofila a, contenido de pigmentos y estado hídrico, se realizaron al final del bioensayo, en el tiempo de cosecha del rábano. Se encontró que, en general, la inoculación de los hongos tiene efectos positivos sobre el crecimiento y variables fisiológicas de las plantas de rábano sometidas a altas concentraciones de NaCl, siendo P. citrinum el que tuvo mayor efectividad en cuanto a su impacto positivo sobre las plantas. La mitigación del estrés registrada en plantas de rábano permite concluir que estos hongos o sus metabolitos podrían usarse en la formulación de biofertilizantes aplicables a cultivos sembrados en suelos salinos. (Texto tomado de la fuente).Abiotic stress due to salinity is associated with detriment of plant growth, and therefore with crop productivity. Therefore, the use of microorganisms that have phytostimulatory mechanisms and improve the nutritional status of plants under salinity conditions, emerges as a possible solution to the present scenario of soil degradation by salinization, due to the excess of chemical fertilizers and also as an effect of climate change. In the present investigation, the potential activity of four halotolerant fungal isolates in mitigating abiotic stress and promoting plant growth in radish (Raphanus sativus L.) was evaluated through mechanisms such as auxin production, phosphate and potassium solubilization, and ACC deaminase activity. Based on morphological characteristics, and through the use of taxonomic keys, the fungi were preliminarily identified as: Aspergillus terreus, Aspergillus fumigatus, Penicillium citrinum and Rhodotorula spp. The study consisted of three phases: 1) in vitro evaluation of some mechanisms of plant growth promotion; 2) evaluation of the effect of fungal inoculation on the in vitro germination of radish seeds; 3) evaluation of the effect of inoculation on growth and physiology parameters of radish plants under greenhouse conditions, subjected to salinity in irrigation water at 100 and 200 mM NaCl. Determinations of growth, chlorophyll a fluorescence, pigment content and water status were made at the end of the bioassay, at the time of radish harvest. It was found that, in general, fungal inoculation has positive effects on the growth and physiology of radish plants subjected to high NaCl concentrations, with P. citrinum being the most effective in terms of its positive impact on plants. The stress mitigation recorded in radish plants leads to the conclusion that these fungi or their metabolites could be used in the formulation of biofertilizers applicable to crops grown in saline soils.Incluye anexosMaestríaMagíster en Ciencias - Microbiología121 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesResistencia fisiológica al estrésSalinidadRaphanusphysiological stress resistancesalinityRaphanusACC desaminasaPenicilliumRhodotorulaFosfatoAspergillusACC deaminasePhosphateEvaluación de la mitigación de estrés por salinidad en rábano (Raphanus sativus l.) mediante la inoculación de hongos halotolerantesMitigation of salt stress in radish (Raphanus sativus) by halotolerant fungi inoculationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovoc1. Abdel A., Mohammad A. Abbas, Amal A. Abdel Wahid, W. Paul Quick, Gaber M. Abogadallah, (2003). Proline induces the expression of salt‐stress‐responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt‐stress, Journal of Experimental Botany, Volume 54, Issue 392. Pages 2553–2562, https://doi.org/10.1093/jxb/erg2772. Abdel T.M.; Alawlaqi, M.M. (2018) Molecular Identification of Rhizospheric Thermo-Halotolerant Aspergillus terreus and Its Correlation to Sustainable Agriculture. BioResources Doi: 1380128023.3. Africano K, Pinzón E. (2014). Comportamiento fisiológico de plantas de rábano (Raphanus sativus L.) sometidas a estrés por salinidad. Conexión agropecuaria JDC 4(2), p 13-24.4. Ahima, J., Zhang, X., Yang, Q., Zhao, L., Maurice Tibiru, A., Zhang, H. (2019). Biocontrol activity of Rhodotorula mucilaginosa combined with salicylic acid against Penicillium digitatum infection in oranges. Biological Control. doi: 10.1016/j.biocontrol.2019.05. Ali, I., Khaliq, S., Sajid, S., Akbar, A. (2019). Biotechnological Applications of Halophilic Fungi: Past, Present, and Future. Fungi in Extreme Environments: Ecological Role and Biotechnological Significance, 291–306. doi:10.1007/978-3-030-19030-9_16. Ali, R., Gul, H., Hamayun, M., Rauf, M., Iqbal, A., Shah, M., Hussain, A., Bibi, H., Lee, I.-J. (2021). Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chemical and Biological Technologies in Agriculture, 8(1). https://doi.org/10.1186/s40538-021-00208-97. Asaf, S.; Hamayun, M.; Khan, A.L.; Waqas, M.; Khan, M.A.; Jan, R.; Lee, I.J.; Hussain, A (2018). Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol. Biochem, 128, 13–23.8. Ashraf, M., Shahzad, S. M., Imtiaz, M., Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants-focusing on the activities of nitrogen metabolizing enzymes: A review. J. Plant Nutr. 41, 1065–1081. doi: 10.1016/ j. crvi.2009.03.0099. Asif M, Anwar H, Muhammad I, Naeem K, Muhammad H, Ismail Sahib Gul Afridi, In-Jung Lee (2018) IAA and flavonoids modulates the association between maize roots and phytostimulant endophytic Aspergillus fumigatus greenish, Journal of Plant Interactions, 13:1, 532-542, DOI: 10.1080/17429145.2018.154204110. Ayyub CM, Shaheen MR, Raza S, Yaqoob MS, Qadri RWK, Azam M, Ghani MA, Khan I, Akhtar N (2016). Evaluation of different radish (Raphanus sativus) genotypes under different saline regimes. American Journal of Plant Sciences 7(6):894-898. DOI: http://dx.doi.org/10.4236/ajps.2016.7608411. Badawy, A.A.; Alotaibi, M.O.; Abdelaziz, A.M.; Osman, M.S.; Khalil, A.M.A.; Saleh, A.M.; Mohammed, A.E.; Hashem, A.H (2021) Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites , 11, 428. https://doi.org/10.3390/metabo1107042812. Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222. doi:10.1016/j.chemosphere.201813. Beltagi, S., mohamed, A., Rashed, m. M. (2010). Response of Antioxidative Enzymes to Cadmium Stress in Leaves and Roots of Radish (Raphanus sativus L.). Notulae Scientia Biologicae, 2(4), 76-82. https://doi.org/10.15835/nsb24539514. Bernstein, N. (2019). Plants and salt: Plant response and adaptations to salinity. Model Ecosystems in Extreme Environments, 101–112. doi:10.1016/b978-0-12-812742-1.00005-215. Bibi, S., Hussain, A., Hamayun, M., Rahman, H., Iqbal, A., Shah, M., … Islam, B. (2018). Bioremediation of hexavalent chromium by endophytic fungi; safe and improved production of Lactuca sativa L. Chemosphere, 211, 653–663. doi:10.1016/j.chemosphere.2018.16. Bonilla M (2005). Estrategias adaptativas de plantas del páramo y del bosque altoandino en la Cordillera Oriental de Colombia. Colección Textos . Universidad Nacional de Colombia - Unibiblos, Bogotá. p 177-190.17. Boughalleb, N., Salem, I. B., M’Hamdi, M. (2018). Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egyptian Journal of Biological Pest Control, 28(1). doi:10.1186/s41938-017-0010-318. Brotman, Y., Landau, U., Cuadros-Inostroza, A., Tohge, T., Fernie, A. R., Chet, I., et al. (2013). Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog. 9:e1003221. doi: 10.1371/journal.ppat.100322119. Callejas, R., Kania, E., Contreras, A., Peppi, C., Morales, L. (2013). Evaluación de un método no destructivo para estimar las concentraciones de clorofila en hojas de variedades de uva de mesa. Idesia, 31(4), 19–26. https://doi.org/10.4067/S0718-3429201300040000320. Calvente, V., de Orellano, M. E., Sansone, G., Benuzzi, D., Sanz de Tosetti, M. I. (2001). Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. Journal of Industrial Microbiology and Biotechnology, 26(4), 226–229. doi:10.1038/sj.jim.700011721. Cao, W. H., Liu, J., He, X. J., Mu, R. L., Zhou, H. L., Chen, S. Y., et al. (2007). Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol. 143, 707–719. doi: 10.1104/pp.106.09429222. Casares. E. (1981). Producción de hortalizas. Tercera edición. San José Costa Rica. Pág. 272-27523. Chammoun N, Geller D, Das K (2013). Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel. Industrial Crops and Products, 45, 155–159. https://doi.org/10.1016/j.indcrop.2012.11.02924. Cheng, Z., Chi, M., Li, G., Chen, H., Sui, Y., Sun, H. Liu, J. (2016). Heat shock improves stress tolerance and biocontrol performance of Rhodotorula mucilaginosa. Biological Control, 95, 49–56. doi:10.1016/j.biocontrol.2016.01.00125. Dallas JE (2000) Metodos multivariados aplicados al analisis de datos.Mexico: Thomson Paraninfo S.A.26. Dassarma, Priya, Coker, James Huse, Valerie Dassarma, Shiladitya. (2010). Halophiles, Industrial Applications. 10.1002/9780470054581.eib439.27. De Lucca, A.J (2007). Harmful Fungi in Both Agriculture and Medicine. Rev. Iberoam. Micol. 24, 3–13.28. DIONISIO-SESE, M.L.; TOBITA, S (2000) Effect of salinity on sodium content and photosynthetic responses of rice seedling differing in salt tolerance. Journal of Plant Physiology, v.157, p.54- 58.29. Elgharably, A., Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere, 18, 100345. doi:10.1016/j.rhisph.2021.1003430. Esquivel R., Gavilanes-Ruiz, M., Cruz-Ortega, R. y Huante, P. (2013). Importancia agrobiotecnoló-gica de la enzima ACC desaminasa en rizobac-terias, una revisión. Revista Fitotecnia Mexicana, 36(3), 251-258.31. Etesami, H., Emami, S., Alikhani, H. A.. (2017). Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects ¬A review. Journal of soil science and plant nutrition, 17(4), 897-911. https://dx.doi.org/10.4067/S0718-9516201700040000532. Firrincieli, A., Otillar, R., Salamov, A., Schmutz, J., Khan, Z., Redman, R. S. Doty, S. L. (2015). Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.0097833. Gaballah M.S. , Gomaa A.M., (2004). Performance of Faba Bean Varieties Grown under Salinity Stress and Biofertilized with Yeast. Journal of Applied Sciences, 4: 93-99.DOI: 10.3923/jas.2004.93.9934. Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Corrêa, B. O., da Silva Brasil, M., Zanoelo, F. F. (2021). Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolândia region, Brazil. Rhizosphere, 18, 100332. https://doi.org/10.1016/j.rhisph.2021.10033235. García, Adriana, Rhoden, Sandro A, Rubin Filho, Celso J, Nakamura, Celso V, Pamphile, João A. (2012). Diversity of foliar endophytic fungi from the medicinal plant Sapindus saponaria L . and their localization by scanning electron microscopy. Biological Research, 45(2), 139-148. https://dx.doi.org/10.4067/S0716-9760201200020000636. Ghilardi, C., Sanmartin Negrete, P., Carelli, A. A., Borroni, V. (2020). Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing, 7(1). doi:10.1186/s40643-020-00341-737. Gomaa, A.M. Gaballah M. S., Hazaa M.M. (2005). Changes in Compatible Solutes of Some Maize Varieties Grown in Sandy Soil and Biofertilized with Rhodotorula glutinis under Saline Conditions. Journal of Applied Sciences Research 1(5): 347-351, 200538. Gómez L. (2011). Evaluación del cultivo de rábano (Raphanus sativus L.) bajo diferentes condiciones de fertilización orgánica e inorgánica. Universidad Autónoma Agraria Antonio Narro. México.39. Gopinath, S. C. B., Hilda, A., Anbu, P. (2005). Extracellular enzymatic activity profiles in fungi isolated from oil-rich environments. Mycoscience, 46(2), 119–126. doi:10.1007/s10267-004-0221-940. Gunde, N., Ramos, J., Plemenitaš, A. (2009). Halotolerant and halophilic fungi. Mycological Research, 113(11), 1231–1241. doi:10.1016/j.mycres.2009.09.00241. Hadas, A (1977). Water uptake and germination of leguminous seeds in soils of changing matrix and osmotic water potential. Journal of Experimental Botany, v.28, p.977-985.42. Hakim Safinah, and Tri W. Yuwati. (2020). "The Use of Fungal Endophyte Penicillium Citrinum On Tree Seedling: Applicability and Limitation." BIO web of conferences, v. 20 ,. pp. 03005. doi: 10.1051/bioconf/2020200300543. Hamedi, J., Mohammadipanah, F., Ventosa, A. (2012). Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles, 17(1), 1–13. doi:10.1007/s00792-012-0493-544. Hossain, M. M., Sultana, F., Islam, S. (2017). Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. Plant-Microbe Interactions in Agro-Ecological Perspectives, 135–191. doi:10.1007/978-981-10-6593-4_645. Hsieh, E. J., Cheng, M. C., and Lin, T. P. (2013). Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol. Biol. 82, 223–237. doi: 10.1007/s11103-013-0054-z46. Ibrar, M., Ullah, M. W., Manan, S., Farooq, U., Rafiq, M., Hasan, F. (2020). Fungi from the extremes of life: an untapped treasure for bioactive compounds. Applied Microbiology and Biotechnology. doi:10.1007/s00253-020-10399-047. IDEAM. (2017). Mapa Nacional de degradación de suelos por salinización. Recuperado de: http://www.ideam.gov.co/documents/24277/69989379/Lanzamiento+mapa+Salinizacion+FN+OPT.pdf/624515d0-799d-41ef-b1ef-bb7e868680f348. Isayenkov, S. V. (2012). Physiological and molecular aspects of salt stress in plants. Cytology and Genetics, 46(5), 302–318. doi:10.3103/s009545271205004049. Islam, N.F. Borthakur SK. (2012). Screening of mycota associated with Aijung rice seed and their effects on seed germination and seedling vigour. Plant Pathology Quarantine — Doi 10.5943/ppq/2/1/1150. Islam, S., Akanda, A. M., Sultana, F., Hossain, M. M. (2013). Chilli rhizosphere fungusAspergillusspp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Archives Of Phytopathology And Plant Protection, 47(10), 1231–1238. doi:10.1080/03235408.2013.8376351. Jafarinia, Mojtaba Shariati, Mahmoud. (2012). Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. Iranian Journal of Science and Technology, Transaction A: Science. 36. 73-76.53. Javed, A., Khan, S.A., Shah, A.H., Hussain, A., Shinwari, Z.K. (2020). Potential of endophytic fungus aspergillus terreus as potent plant growth promoter. Pakistan Journal of Botany, 52(3), 1083-1086.54. Kasim, W.A., K.M. Saad-Allah and M. Hamouda, (2016). Seed priming with extracts of two seaweeds alleviates the physiological and molecular impacts of salinity stress on radish (Raphanus sativus). Int. J. Agric. Biol., 18: 653‒66055. Khan MI, Ali N, Jan G, Hamayun M, Jan FG, Iqbal A, Hussain A, Lee IJ (2022). Salt Stress Alleviation in Triticum aestivum Through Primary and Secondary Metabolites Modulation by Aspergillus terreus BTK-1. Front Plant Sci. Mar 10;13:779623. doi: 10.3389/fpls.2022.779623. PMID: 35360328; PMCID: PMC8960994.56. Khan SA, Hamayun M, Hyeokjun Y, Kim H, Suh S, Hwang S, Kim J, Lee I, Choo Y,YoonU, et al. (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8:231.57. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, I.-J. (2011). Ameliorative symbiosis of endophyte (Penicillium funiculosum LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiology and Biochemistry, 49(8), 852–861. doi:10.1016/j.plaphy.2011.03.00558. Khan, A. L., Hamayun, M., Kim, Y.-H., Kang, S.-M., Lee, J.-H., Lee, I.-J. (2011). Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochemistry, 46(2), 440–447. doi:10.1016/j.procbio.2010.09.059. Khan, M. S., Zaidi, A., Ahmad, E. (2014). Mechanism of Phosphate Solubilization and Physiological Functions of Phosphate-Solubilizing Microorganisms. Phosphate Solubilizing Microorganisms, 31–62. doi:10.1007/978-3-319-08216-5_260. Khushdil, F., Jan, F. G., Jan, G., Hamayun, M., Iqbal, A., Hussain, A., Bibi, N. (2019). Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus L. Plant Physiology and Biochemistry, 144, 127–134. doi:10.1016/j.plaphy.2019.09.03861. KURAMATA, M., FUJIOKA, S., SHIMADA, A., KAWANO, T., KIMURA, Y. (2007). Citrinolactones A, B and C, and Sclerotinin C, Plant Growth Regulators fromPenicillium citrinum. Bioscience, Biotechnology, and Biochemistry, 71(2), 499–503. doi:10.1271/bbb.6053862. Kurjogi, K.N. Basavesha, V.P. Savalgi (2021) Impact of potassium solubilizing fungi as biopesticides and its role in crop improvement, Biocontrol Agents and Secondary Metabolites. https://doi.org/10.1016/B978-0-12-822919-4.00002-8.63. Kurtzman C.P., J.W. Fell, Teun Boekhout (2011). The Yeast A taxonomic study. Elsevier. P 1973-1906.64. Li X, Zhao C, Zhang T, Wang G,Amombo E, Xie Y and Fu J (2021)Exogenous Aspergillus aculeatusEnhances Drought and HeatTolerance of Perennial Ryegrass.Front. Microbiol. 12:593722.doi: 10.3389/fmicb.2021.59372265. Lian, B., Wang, B., Pan, M., Liu, C., Teng, H. H. (2008). Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72(1), 87–98. doi:10.1016/j.gca.2007.10.00566. Liu, Z.; Cheng, R.; Xiao, W.; Guo, Q.; Wang, N. (2014) Effect of off-season flooding on growth, photosynthesis, carbohydrate partitioning, and nutrient uptake in Distylium chinense. PLoS ONE 9, 1–9.67. Lubna, Asaf, S., Hamayun, M., Khan, A. L., Waqas, M., Khan, M. A., … Hussain, A. (2018). Salt tolerance of Glycine max .L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiology and Biochemistry, 128, 13–23. doi:10.1016/j.plaphy.2018.05.0068. Lugtenberg B, Kamilova F. (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol.;63:541-56. doi: 10.1146/annurev.micro.62.081307.162918. PMID: 19575558.Ma Y. , Erwin A. Galinski , William D. Grant , Aharon Oren , and Antonio Ventosa (2010) Halophiles 2010: Life in Saline Environments. ASM journals. Doi: https://doi.org/10.1128/AEM.01868-1070. Machuca, A., Milagres, A. M. F. (2003). Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Letters in Applied Microbiology, 36(3), 177–181. doi:10.1046/j.1472-765x.2003.01271. Maheshwari, D. K., Saraf, M. (2015). Halophiles. Sustainable Development and Biodiversity. doi:10.1007/978-3-319-14595-272. Marcelis, L., Van Hooijdonk, J. (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant and Soil 215, 57–64. https://doi.org/10.1023/A:1004742713538.73. Mathur, P., Chaturvedi, P., Sharma, C. (2022). Improved seed germination and plant growth mediated by compounds synthesized by endophytic Aspergillus niger (isolate 29) isolated from Albizia lebbeck (L.) Benth. 3 Biotech 12, 271. https://doi.org/10.1007/s13205-022-03332-x74. Maxwell, K.; Johnson, G (2000). Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–66875. Melgarejo L. (2010) Libro de experimentos en fisiología vegetal. Universidad Nacional de Colombia. 1ra ed. Bogotá, Colombia.76. Membrillera, José (1950). Clave determinativa de las especies del género penicillium. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/640777. Membrillera, José (1951). Clave determinativa de las especies del género aspergillus. Murcia: Universidad de Murcia, Servicio de Publicaciones. Tomado de: http://hdl.handle.net/10201/640778. Mendes, G.O.; Galvez, A.; Vassileva, M.; Vassilev, N (2017). Fermentation Liquid Containing Microbially Solubilized P Significantly Improved Plant Growth and P Uptake in Both Soil and Soilless Experiments. Appl. Soil Ecol. 2017, 117, 208–21179. Mittal, V., Singh, O., Nayyar, H., Kaur, J., Tewari, R. (2008). Stimulatory effect of phosphate-solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicer arietinum L. cv. GPF2). Soil Biology and Biochemistry, 40(3), 718–727. doi:10.1016/j.soilbio.2007.10.080. Mohamed, H. M., El-Homosy, R. F., Abd-Ellatef, A.-E. H., Salh, F. M., Hussein, M. Y. (2016). Identification of Yeast Strains Isolated from Agricultural Soils for Releasing Potassium-bearing Minerals. Geomicrobiology Journal, 34(3), 261–266. doi:10.1080/01490451.2016.1186781. Monica Boscaiu, Cristina Lull, Josep Llinares, Oscar Vicente, Herminio Boira (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species, Journal of Plant Ecology, Volume 6, Issue 2, Pages 177–186, https://doi.org/10.1093/jpe/rts01782. Moreno-C, Lina Margarita, López-Casallas, Marcela, Cruz Barrera, Fredy Mauricio. (2021). Phosphate solubilization by Burkholderia species isolated from Oxisols from the Colombian high plains. Ciencia y Tecnología Agropecuaria, 22(2), Epub May 01, 2021.https://doi.org/10.21930/rcta.vol22_num2_art:189783. Moukhtari, A., Cabassa-Hourton, C., Farissi, M., Savouré, A. (2020). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development? Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.0112784. Moukhtari, A., Farissi, M., Savouré, A. (2019). How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.0112785. Mrudula S, Murugammal R. (2011) Production of cellulose by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol. Jul;42(3):1119-27. doi: 10.1590/S1517-838220110003000033. Epub 2011 Sep 1. PMID: 24031730; PMCID: PMC3768773.86. Mujica Y, Sales J. (2013). Funcionamiento de la inoculación líquida con hongos micorrízicos arbusculares (HMA) en plantas de tomate (Solanum lycopersicum L.). Cultivos Tropicales, 34(4), 5-8. Recuperado en 16 de noviembre de 2020, de http://scielo.sld.cu/scielo.php?script=sci_arttext pid=S0258-59362013000400001 lng=es tlng=es.87. Mundra, S., Arora, R., Stobdan, T. (2011). Solubilization of insoluble inorganic phosphates by a novel temperature-, pH-, and salt-tolerant yeast, Rhodotorula sp. PS4, isolated from seabuckthorn rhizosphere, growing in cold desert of Ladakh, India. World Journal of Microbiology and Biotechnology, 27(10), 2387–2396. doi:10.1007/s11274-011-0708-488. Murali, M., Sudisha, J., Amruthesh, K. N., Ito, S.-I., Shetty, H. S. (2012). Rhizosphere fungusPenicillium chrysogenumpromotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology, 15(1), 111–118. doi:10.1111/j.1438-8677.2012.00617.x89. Muthukumarasamy, M., Gupta, S.D. Panneerselvam, R. (2000) Influence of Triadimefon on the Metabolism of NaCl Stressed Radish. Biologia Plantarum 43, 67–72. https://doi.org/10.1023/A:102650301344590. Netondo, G. W., Onyango, J. C., Beck, E. (2004). Sorghum and Salinity. Crop Science, 44(3), 806. doi:10.2135/cropsci2004.806091. Niehus, R., Picot, A., Oliveira, N. M., Mitri, S., Foster, K. R. (2017). The evolution of siderophore production as a competitive trait. Evolution, 71(6), 1443–1455. doi:10.1111/evo.1323092. Okabe, M.; Lies, D.; Kanamasa, S.; Park, E.Y. (2009) Biotechnological Production of Itaconic Acid and Its Biosynthesis in Aspergillus terreus. App. Microbiol. Biotechnol. 84, 597–606.93. Olivera Viciedo, D., Mello Prado, R., Lizcano Toledo, R., Salas Aguilar, D., Claudio Nascimento dos Santos, L., Calero Hurtado, A., … Betancourt Aguilar, C. (2020). Physiological role of silicon in radish seedlings under ammonium toxicity. Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.1058794. Oren A (2002) Diversity of halophilic microorganisms: enviroments,phylogeny, physiology and application. J Ind Microbiol Biotechnol 28:56–6395. Oren, A. (2010). Industrial and environmental applications of halophilic microorganisms. Environmental Technology, 31(8-9), 825–834. doi:10.1080/0959333090337002696. Pandey, A., Das, N., Kumar, B., Rinu, K., Trivedi, P. (2007). Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World Journal of Microbiology and Biotechnology, 24(1), 97–102. doi:10.1007/s11274-007-9444-197. Parihar, P., Singh, S., Singh, R., Singh, V. P., Prasad, S. M. (2014). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science and Pollution Research, 22(6), 4056–4075. doi:10.1007/s11356-014-3739-198. Parmar, S., Gharat, S. A., Tagirasa, R., Chandra, T., Behera, L., Dash, S. K., Shaw, B. P. (2020). Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLOS ONE, 15(4), e0230958. doi:10.1371/journal.pone.023095899. Patil, R.H.; Patil, M.P.; Maheshwari, V.L. (2016) Bioactive Secondary Metabolites From Endophytic Fungi: A Review of Biotechnological Production and Their Potential Applications. Stud. Nat. Prod. Chem. 49, 189–205.100. Pazouki, M. & Felse, PA & Sinha, Jayashy & Panda, Tapobrata. (2000). Comparative studies on citric acid production by Aspergillus niger and Candida lipolytica using molasses and glucose. Bioprocess Engineering. 22. 353-361. 10.1007/PL00009115.101. Penrose, D. M., Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15. doi:10.1034/j.1399-3054.2003.00086.x102. Perrone, G., Gallo, A. (2016). Aspergillus Species and Their Associated Mycotoxins. Mycotoxigenic Fungi, 33–49. doi:10.1007/978-1-4939-6707-0_3103. Pi, HW., Anandharaj, M., Kao, YY. (2018). Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production. Sci Rep 8, 10850 https://doi.org/10.1038/s41598-018-29194-z104. Pikovskaya, R.I., (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17,362–370.105. Putti, F.F., J.F. Silva Junior, R. Ludwig, L.R.A. Gabriel Filho, C.P.Cremasco, and A.E. Klar. (2014). Avaliacao da cultura do rabanete ao longo do ciclo submetido em diferentes niveis de salinidade. J. Agron. Sci. 3(2), p. 80-90.106. Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38(4):282–295107. Ramos-G, J., Bustamante-Brito, R., Ángeles de Paz, G., Medina-Canales, M. G., Vásquez-Murrieta, M. S., Wang, E. T., Rodríguez-Tovar, A. V. (2016). Isolation and characterization of yeasts associated with plants growing in heavy-metal- and arsenic-contaminated soils. Canadian Journal of Microbiology, 62(4), 307–319. doi:10.1139/cjm-2015-0226108. Romero A. (2020). Caracterización de microorganismos halófilos y halotolerantes con potencial actividad promotora de crecimiento vegetal de la mina de sal de Zipaquirá (Colombia). Tesis de pregrado. Universidad INCCA, Bogotá, Colombia.109. Sah, Stuti, Singh, Rajni. (2015) "Siderophore: Structural And Functional Characterisation – A Comprehensive Review" Agriculture (vol.61, no.3, 2015, pp.97-114. https://doi.org/10.1515/agri-2015-0015110. Salazar-Garcia G, Balaguera-Lopez HE, Hernandez JP.(2022). Effect of Plant Growth-Promoting Bacteria Azospirillum brasilense on the Physiology of Radish (Raphanus sativus L.) under Waterlogging Stress. Agronomy. 12(3):726. https://doi.org/10.3390/agronomy12030726111. Sattar, A., Naveed, M., Ali, M., Zahir, Z. A., Nadeem, S. M., Yaseen, M., Meena, H. N. (2018). Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology. doi:10.1016/j.apsoil.2018.09.012112. Shahid, S. A., Zaman, M., Heng, L. (2018). Soil Salinity: Historical Perspectives and a World Overview of the Problem. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 43–53. doi:10.1007/978-3-319-96190-3113. Sharma, P.K., and D.O. Hall. (1991). Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J. Plant Physiol. 138:614–619.114. Shilev, S., Sancho, E. D., Benlloch-González, M. (2012). Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 95, S37–S41. doi:10.1016/j.jenvman.2010.07.019115. Shirinbayan, S., Khosravi, H., Malakouti, M. J. (2019). Alleviation of drought stress in maize (Zea mays) by inoculation with Azotobacter strains isolated from semi-arid regions. Applied Soil Ecology, 133, 138-145. https://doi.org/10.1016/j.apsoil.2018.09.015116. Sidari M, Carmelo Mallamaci, Adele Muscolo (2008) Drought, salinity and heat differently affect seed germination of Pinus pinea, Journal of Forest Research, 13:5, 326-330, DOI: 10.1007/s10310-008-0086-4117. Signorelli, S. (2016). The fermentation analogy: a point of view for understanding the intriguing role of proline accumulation in stressed plants. Front.PlantSci.7:1339. doi: 10.3389/fpls.2016.01339118. Silambarasan S, Logeswari P, Vangnai AS, Cornejo P. (2022). Rhodotorula mucilaginosa CAM4 improved selenium uptake in Spinacia oleracea L. and soil enzymatic activities under abiotic stresses. Environ Sci Pollut Res Int. . doi: 10.1007/s11356-022-21935-y. Epub ahead of print. PMID: 35859235.119. Silambarasan, S., Logeswari, P., Cornejo, P., Kannan, V. R. (2018). Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2018.10.016120. Sousa L, Basílio A, Da Silva T, De Moura J, Gonçalves A, De Melo J, Dias T. (2018). Radish (Raphanus sativus L.) morphophysiology under salinity stress and ascorbic acid treatments. Agronomía Colombiana, 36(3), 257–265. doi: 10.15446/agron.colomb.v36n3.74149121. Sreevidya, M., Gopalakrishnan, S., Melø, T. M., Simic, N., Bruheim, P., Sharma, M., … Alekhya, G. (2015). Biological control ofBotrytis cinereaand plant growth promotion potential byPenicillium citrinumin chickpea (Cicer arietinumL.). Biocontrol Science and Technology, 25(7), 739–755. doi:10.1080/09583157.2015.10104122. Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. - In: Papageorgiou(2004): Chlorophyll a Fluorescence. Pp. 321-362. Springer, Berlin.123. Taiz L, Zeiger E (2015) Plant physiology. 6th ed. Sinauer Associates, Sunderland, Massachusetts, 764 pp.124. Tanaka M, Taniguchi M, Morinaga T, Matsuno R, Kamikubo T (1980) Cellulase productivity of Eupenicillium javanicum. J Ferment Technol 58:149–154125. Tapia-Vázquez, I., Sánchez-Cruz, R., Arroyo-Domínguez, M., Lira-Ruan, V., Sánchez-Reyes, A., del Rayo Sánchez-Carbente, M., Padilla-Chacón, D., Batista-García, R. A., Folch-Mallol, J. L. (2020). Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano126. Teather, R., & Wood, P. (1982). Use of Congo redpolysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied Environmental Microbiology, 43(4), 777–780.127. Ting, A. S. Y., Mah, S. W., Tee, C. S. (2012). Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biological Control, 61(2), 155–159. doi:10.1016/j.biocontrol.2012.01.010128. Vashisth A., S. Nagarajan. (2010) Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology ;167:149–156.129. Vassileva, M.; Malusá, E.; Eichler-Löbermann, B.; Vassilev, N. (2020) Aspegillus terreus: From Soil to Industry and Back. Microorganisms, 8, 1655. https://doi.org/10.3390/microorganisms8111655130. Venkatesh, J., Upadhyaya, C.P., Yu, J.W., Hemavathi, A., Kim, D.H., Strasser, R.J., Park, S.W. (2012) Chlorophyll a fluorescence transient analysis of transgenic potato overexpressing D- galacturonic acid reductase gene for salinity stress tolerance. -Hort. Environ. Biotechnol. 53: 320-328.131. Verslues, P. E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book, Vol. 8. (American Society of Plant Biologists), e0140. doi: 10.1199/tab.0140132. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.-M., Kim, J.-G., Lee, I.-J. (2015). Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example ofPenicillium citrinumandAspergillus terreus. Journal of Plant Interactions, 10(1), 280–287. doi:10.1080/17429145.2015.107974133. Yan J, Hiroyuki ITO, Hirokazu MATSUI, Mamoru HONMA (2000). 1-Aminocyclopropane-1-carboxylate (ACC) Deaminase Induced by ACC Synthesized and Accumulated in Penicillium citrinum Intracellular Spaces, Bioscience, Biotechnology, and Biochemistry, Volume 64, Issue 2, Pages 299–305, https://doi.org/10.1271/bbb.64.299134. Yang, S. F., and Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35, 155–189. doi: 10.1146/annurev.pp.35.060184.001103135. Yedidia, I., Benhamou, N., Chet, I., (1999). Induction of defense responses in cucumber136. Yildirim E, Ertan T, Metin D (2008). Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth: Promoting rhizobacteria. Romanian Biotechnological Letters. 13. 3933-3943.137. Yin, J., Chen, J.-C., Wu, Q., Chen, G.-Q. (2015). Halophiles, coming stars for industrial biotechnology. Biotechnology Advances, 33(7), 1433–1442. doi:10.1016/j.biotechadv.2014.1138. Yoo, S.J.; Shin, D.J.; Won, H.Y.; Song, J.; Sang, M.K (2018) Aspergillus terreus JF27 Promotes the Growth of Tomato Plants and Induces Resistance139. Zhang, H., Wang, L., Ma, L., Dong, Y., Jiang, S., Xu, B., Zheng, X. (2009). Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biological Control, 48(1), 79–83. doi:10.1016/j.biocontrol.2008.09.140. Zhao, G. Q., Ma, B. L., Ren, C. Z. (2007). Growth, Gas Exchange, Chlorophyll Fluorescence, and Ion Content of Naked Oat in Response to Salinity. Crop Science, 47(1), 123. doi:10.2135/cropsci2006.06.0371141. Zushi, K., Kajiwara, S., Matsuzoe, (2012) Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. - Sci. Hort. 148: 39-46Público generalORIGINAL1032497604.2023.pdf1032497604.2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3827007https://repositorio.unal.edu.co/bitstream/unal/84071/4/1032497604.2023.pdffbd9bb13af21befad6d80fca25143028MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84071/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1032497604.2023.pdf.jpg1032497604.2023.pdf.jpgGenerated Thumbnailimage/jpeg4321https://repositorio.unal.edu.co/bitstream/unal/84071/6/1032497604.2023.pdf.jpgb50ca224287fd0aa11444ee6fede156bMD56unal/84071oai:repositorio.unal.edu.co:unal/840712024-08-08 23:11:02.225Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=