Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
ilustraciones (algunas a color), diagramas, fotografías
- Autores:
-
García Suárez, Angélica Tatiana
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85527
- Palabra clave:
- 540 - Química y ciencias afines::546 - Química inorgánica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Metal nanoparticles
Nanopartículas metálicas
Ralstonia solanacearum
Bactericidas
Bactericides
Marchitez bacteriana del plátano
Enfermedades bacterianas de las plantas
Bacterias fitopatógenas
Bacterial blight (Plantain banana)
Bacterial diseases of plants
Bacteria, Phytopathogenic
Nanopartículas
Agente antibacteriano
Marchitez bacteriana
Ralstonia solanacearum
Fitopatógeno
Nanoparticles
Antibacterial agent
Bacterial wilt
Phytopathogen
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_18f0304a46f2ae55287978910ac3147a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85527 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
dc.title.translated.eng.fl_str_mv |
Synthesis, characterization and evaluation of the antibacterial activity of copper and silver nanoparticles against the phytopathogen Ralstonia solanacearum |
title |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
spellingShingle |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum 540 - Química y ciencias afines::546 - Química inorgánica 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales Metal nanoparticles Nanopartículas metálicas Ralstonia solanacearum Bactericidas Bactericides Marchitez bacteriana del plátano Enfermedades bacterianas de las plantas Bacterias fitopatógenas Bacterial blight (Plantain banana) Bacterial diseases of plants Bacteria, Phytopathogenic Nanopartículas Agente antibacteriano Marchitez bacteriana Ralstonia solanacearum Fitopatógeno Nanoparticles Antibacterial agent Bacterial wilt Phytopathogen |
title_short |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
title_full |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
title_fullStr |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
title_full_unstemmed |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
title_sort |
Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum |
dc.creator.fl_str_mv |
García Suárez, Angélica Tatiana |
dc.contributor.advisor.spa.fl_str_mv |
González Almario, Adriana Duarte Ruiz, Álvaro |
dc.contributor.author.spa.fl_str_mv |
García Suárez, Angélica Tatiana |
dc.contributor.researchgroup.spa.fl_str_mv |
Nuevos Materiales Nano y Supramoleculares |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::546 - Química inorgánica 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales |
topic |
540 - Química y ciencias afines::546 - Química inorgánica 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales Metal nanoparticles Nanopartículas metálicas Ralstonia solanacearum Bactericidas Bactericides Marchitez bacteriana del plátano Enfermedades bacterianas de las plantas Bacterias fitopatógenas Bacterial blight (Plantain banana) Bacterial diseases of plants Bacteria, Phytopathogenic Nanopartículas Agente antibacteriano Marchitez bacteriana Ralstonia solanacearum Fitopatógeno Nanoparticles Antibacterial agent Bacterial wilt Phytopathogen |
dc.subject.lcc.eng.fl_str_mv |
Metal nanoparticles |
dc.subject.lcc.spa.fl_str_mv |
Nanopartículas metálicas |
dc.subject.agrovoc.spa.fl_str_mv |
Ralstonia solanacearum Bactericidas |
dc.subject.agrovoc.eng.fl_str_mv |
Bactericides |
dc.subject.lemb.spa.fl_str_mv |
Marchitez bacteriana del plátano Enfermedades bacterianas de las plantas Bacterias fitopatógenas |
dc.subject.lemb.eng.fl_str_mv |
Bacterial blight (Plantain banana) Bacterial diseases of plants Bacteria, Phytopathogenic |
dc.subject.proposal.spa.fl_str_mv |
Nanopartículas Agente antibacteriano Marchitez bacteriana Ralstonia solanacearum Fitopatógeno |
dc.subject.proposal.eng.fl_str_mv |
Nanoparticles Antibacterial agent Bacterial wilt Phytopathogen |
description |
ilustraciones (algunas a color), diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-11-17 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T16:44:43Z |
dc.date.available.none.fl_str_mv |
2024-01-30T16:44:43Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85527 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85527 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Paudel, S.; Dobhal, S.; Alvarez, A. M.; Arif, M. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020, 9, 1–26. https://doi.org/10.3390/pathogens9110886 Singh, B. Nanotechnology in Agri-Food Production. Nanotechnol. Sci. Appl. 2014, 7, 31–53. Nion, Y.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum. Microbes Environ. 2015, 30 (1), 1–11. https://doi.org/10.1264/jsme2.ME14144 Rupa, V.; Dutta, A.; Kumar, A.; Maurya, S. Effectiveness of Combination of Antibiotics on Different Isolates of ‘Ralstonia Solanacearum’—A Dreaded Soil Born Phytopathogen and A Causative Agent of Bacterial Wil; India, 2017. https://doi.org/10.1007/978-981-10-5538-6 Datta, T.; Singh, M.; Thapa, M.; Dutta, M. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas Oryzae Pv . Oryzae – A Synthetic and Mechanistic Approach. Colloid Interface Sci. Commun. 2019, 32, 1–10. https://doi.org/10.1016/j.colcom.2019.100190 Naranjo, E.; Martinez, Y. Avances En El Diagnositico de La Marchitez Bacteriana ( Ralstonia Solanacearum) Situación Actual y Perspectivas En Cuba. Rev. Protección Veg 2013, 28 (3), 160–170 Moncayo, A. La Resistencia a Los Antibioticos y La Falta de Interes de La Industria Farmaceutica. Infect. Asoc. Colomb. Infectol. 2014, 18 (2), 35–36. https://doi.org/10.1016/j.infect.2014.02.003 Shaikh, S.; Nazam, N.; Rizvi, S.; Ahmad, K.; Baig, M.; Lee, E.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 1–15. https://doi.org/10.3390/ijms20102468. Xu, L.; Wang, Y.; Huang, J.; Chen, C.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. https://doi.org/10.7150/thno.45413 Gianluigi, F.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. https://doi.org/10.3390/molecules20058856 Vikas, S.; Krishan, K. S.; Manjit, K. S. Nanosilver: Potent Antimicrobial Agent and Its Biosynthesis. African J. Biotechnol. 2014, 13, 546–554. https://doi.org/10.5897/ajb2013.1314 Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study. J. Nanomater. 2015, 1–8 Singh, M.; Singh, S.; Prasad, S.; Gambhir, I. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. biostructures 2008, 3, 115–122 Parveen, F.; Sannakki, B.; Mandke, M.; Pathan, H. Copper Nanoparticles: Synthesis Methods and Its Light Harvesting Performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. https://doi.org/10.1016/j.solmat.2015.08.03 Na, I.; Kennedy, D. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 2021, 22, 2–11. https://doi.org/10.3390/ ijms22041548 Lu, H.; Tang, S.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis. Biosensors 2020, 10, 1–34. https://doi.org/10.3390/BIOS10110165 Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1–34. https://doi.org/10.3390/ijms17091534 Diaz, E. Nanopartículas de Plata : Síntesis y Funcionalizacion . Una Breve Revisión. Mundo Nano 2019, 12, 1–11 Song, X.; Sun, S.; Zhang, W.; Yin, Z. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase. J. Colloid Interface Sci. 2004, 273, 464–470. https://doi.org/10.1016/j.jcis.2004.01.01 Arunachalam, D.; Kannappan, G. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. Sci. 2013, 3, 16–21. https://doi.org/10.7324/JAPS.2013.3504 McCafferty, E. Introduction to Corrosion Science. Thermodynamics of Corrosion: Pourbaix Diagrams. Springer Sci. Bus. Media 2010, 95–117. https://doi.org/10.1007/978-1-4419-0455-3 Thanh, N.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Am. Chem. Soc. 2014, 3 (1), 7610–7630. https://doi.org/10.1021/cr400544s. Polte, J. Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. CrystEngComm 2015, 17, 1–17. https://doi.org/10.1039/c5ce01014d. Chouhan, N. Silver Nanoparticles- Fabrication, Characterization and Applications, intechOpen.; 2018. Deshpande, J.; Chakrabarty, S.; Kulkarni, A. Heterogeneous Nucleation in Citrate Synthesis of AgNPs : Effect of Mixing and Solvation Dynamics. Chem. Eng. J. 2021, 1–11. https://doi.org/10.1016/j.cej.2020.127753. Trefry, J.; Monahan, J.; Weaver, K.; Meyerhoefer, A.; Markopolous, M. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. 2010, 10970–10972. https://doi.org/10.1021/ja103809c. Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and Characterization of Silver Colloidal Nanoparticles with Different Coatings for SERS Application. J. Nanoparticle Res. 2014, 16 (12), 1–13. https://doi.org/10.1007/s11051-014-2748-9 Baalousha, M.; Nam, J.; Lead, J. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems. Nat. colloids 2014, 1–41. Monge, M. Nanoparticulas de Plata: Metodos de Sintesis En Disolucion y Propiedades Bactericidas. Acad. Journals 2009, 105 (1), 33–41. Demirci, U. About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds. Energy Technol. 2018, 6, 470–486. https://doi.org/10.1002/ente.201700486 Dung, T.; Tuyet, T.; Fribourg-blanc, E.; Chien, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 1–7. https://doi.org/10.1088/2043-6262/2/2/025004 Tamilvanan, A.; Kulendran, B. Copper Nanoparticles : Synthetic Strategies , Properties and Multifunctional Application. Int. J. Nanosci. 2014, 13 (May), 1–22. https://doi.org/10.1142/S0219581X14300016. Gawande, M.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Am. Chem. Soc. Chem. Rev. 2016, No. 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482 Shen, J.; Griffiths, P.; Campbell, S.; Utinger, B.; Kalberer, M. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development and Derivation of Key Rate Constants. Sci. Reports Nat. 2021, 11, 1–14. https://doi.org/10.1038/s41598-021-86477-8 Rucker, R.; Suttie, J.; Donald, M.; Johnston, C. Handbok of Vitamins: Ascorbic Acid. Marcel Dakker 2001, 529–54 Njus, D.; Kelley, P.; Tu, Y.; Schlegel, H. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. https://doi.org/10.1016/j.freeradbiomed.2020.07.01 DiLabio, G.; Wright, J. Hemiketal Formation of Dehydroascorbic Acid Drives Ascorbyl Radical Anion Disproportionation. Free Radic. Biol. Med. 2000, 29, 480–485. https://doi.org/10.1016/S0891-5849(00)00357-9 Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. https://doi.org/10.1039/C0GC00772B Pokropivny, V.; Skorokhod, V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. 2007, 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023 Harish, V.; Tewari, D.; Manish, G.; Yadav, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 1–32. https://doi.org/10.3390/nano12183226 Gonzalez, A.; Noguez, C.; Berànek, J.; Barnard, A. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. 2014, 118, 9128–9136. https://doi.org/10.1021/jp5018168 Gonzalez, E.; Puntes, V.; Casals, E. Nanomateriales - Nanoparticulas Coloidales; Series de nanociencia y nanotecnología: Bogotá- Colombia, 2015 Capeding, M.; Alberto, E.; Guerrero, J. The Effectiveness and Safety of 1 % Silver Sulfadiazine ( Flammazine ) Cream in Preventing Infection in Potentially Contaminated Traumatic Wounds among Pediatric Patients. J. trauma Treat. 2017, 6 (2167), 2–6. https://doi.org/10.4172/2167-1222.1000395. Yin, X.; Zhang, J.; Shuping, I.; Lei, M.; Li, Q.; Chu, H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764. Babatunde, D.; Denwigwe, I.; Babatunde, O.; Gbadamosi, S.; Babalola, I.; Agboola, O. Environmental and Societal Impact of Nanotechnology. IEEE Access 2019, 8, 4640–4667. https://doi.org/10.1109/ACCESS.2019.2961513 Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, Third Edit.; Joe Hayton: Amsterdam, 2018. Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 1–23. https://doi.org/10.1155/2021/6687290. Singh, A.; Yaqoob, M.; Joshi, B.; Sharma, B. Phytofabrication of Silver Nanoparticles : Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Reports 2018, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013. Cheng, H.; Wang, H.; Zhang, J. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Ralstonia Solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11 (September). https://doi.org/10.3389/fmicb.2020.02110. Chand, K.; Cao, D.; Eldin, D.; Hussain, A.; Qadeer, A.; Zhu, K.; Nazim, M.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13, 8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009. Chen, J.; Li, S.; Lou, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia Solanacearum by Stabilization. J. Nanomater. 2016, 1–15. https://doi.org/10.1155/2016/7135852 Sathiya, R.; Geetha, D.; Ramesh, P.; Aroulmoji, V. Synthesis and Characterization of Nano Silver for Different Temperatures and Their Antimicrobial Activity. Int. J. Adv. Sci. Eng. 2017, 4, 547–553. https://doi.org/10.29294/IJASE.4.2.2017.547-553. ezza, F.; Tichapondwa, S.; Chirwa, E. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 1–18. https://doi.org/10.1038/s41598-020-73497-z. Agudelo, W.; Montoya, Y.; Bustamante, J. Using a Non-Reducing Sugar in the Green Synthesis of Gold and Silver Nanoparticles by the Chemical Reduction Method. DYNA 2018, 85 (206), 69–78. https://doi.org/10.15446/dyna.v85n206.72136. Obregon, M.; Rodriguez, P.; Molares, J.; Salazar, M. Hospedantes de Ralstonia Solanacearumm En Plantaciones de Banano Platano En Colombia. Rev.Fac.Nal.Agr. Medellin 2008, 61, 4518–4526. Tans, J.; Huang, H.; Allen, C. Ralstonia Solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 2001, 183, 3597–3605. https://doi.org/10.1128/JB.183.12.359 Prior, P.; Ailloud, F.; Dalsing, B. L.; Remenant, B. Genomic and Proteomic Evidence Supporting the Division of the Plant Pathogen Ralstonia Solanacearum into Three Species. BioMed Cent. Genomics 2016, 17, 1–11. https://doi.org/10.1186/s12864-016-2413-z Safni, I.; Subandiyah, S.; Fegan, M. Ecology , Epidemiology and Disease Management of Ralstonia Syzygii in Indonesia. Front. Microbiol. 2018, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00419 Alvarez, E.; Pantoja, A.; Gañan, L.; Ceballos, G. Estado Del Arte y Opciones de Manejo de Moko y La Sigatoka Negra En America Latina y El Caribe. Centro Internacional de Agricultura Tropical CIAT. Cali - Colombia 2019, pp 1–40 Bautista, L.; García, S.; Bolaños, M. Relationship between Soil Fertility and Plantain Nutrition in Cundinamarca (Colombia) with the Incidence of Two Bacterial Diseases. Rev. Colomb. ciencias hortícolas 2020, 14, 50–62 Bareño, F. Cadena de Plátano: Dirección de Cadenas Agricolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. 2021, pp 1–10 Poueymiro, M.; Genin, S. Secreted Proteins from Ralstonia Solanacearum: A Hundred Tricks to Kill a Plant. Curr. Opin. Microbiol. 2009, 12, 44–52. https://doi.org/10.1016/j.mib.2008.11.008 García, R.; Kerns, J.; Thiessen, L. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Heal. Prog. 2019, 20, 7–13. https://doi.org/10.1094/PHP-04-18-0015-DG López, M.; Morán, S.; Sagovia, J. Manejo Fitosanitario de La Marchitez Bacteriana ( Ralstonia Solanacearum E . F . Smith ) Del Tomate Lycopersicon Esculentum Mill, Universidad de el salvador, 2016 Villalobos, V. Moko Del Plátano - Ficha Técnica/RSR2 /CNRF. Secr. Agric. - SENASICA 2023, 1, 1–8 Instituto Colombiano Agropecuario (ICA). Resolución 3330 de 2013; Colombia, 2013; pp 1–5. https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3330_2013.htm Silva, G.; Figueiredo, L.; Faveri, M.; Cortelli, S.; Duarte, P. Mechanisms of Action of Systemic Antibiotics in Periodntal Tretament and Mechanisms of Bacterial Resistence to These Drugs. J Appl Oral Sci 2012, 20, 295–309 Mikhailova, E. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11 (84), 1–26. https://doi.org/10.3390/jfb11040084 Rahman, S.; Rahman, L.; Khalil, T.; Ali, N.; Zia, D.; Ali, M. Endophyte-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. Microbiol. Biotechnol. 2019, 103, 2551–2569. https://doi.org/10.1007/s00253-019-09661-x Rawat, M.; Kumar, N.; Yadukrishnan, P. Mechanisms of Action of Nanoparticles in Living Systems. 2018, 220–236. https://doi.org/10.4018/978-1-5225-3126-5.ch014 Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19 (2), 1–17. https://doi.org/10.3390/ijms19020444 Din, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles : Catalytic , Antibacterial , Cytotoxicity , and Antioxidant Activities. 2017. https://doi.org/10.1186/s11671-017-2399-8 Venis, R.; Basu, O. Silver and Zinc Oxide Nanoparticle Disinfection in Water Treatment Applications : Synergy and Water Quality Influences. H2Open J. 2021, 4, 114–128. https://doi.org/10.2166/h2oj.2021.098 Xu, L.; Zhu, Z.; Sun, D. Bioinspired Nanomodification Strategies :Moving from Chemical Based Agrosynthems to Sustainable Agriculture. Am. Chem. Soc. - Nano 2021, 15, 12655–12686. https://doi.org/10.1021/acsnano.1c0394 Reddy, J.; Kumar, S.; Bhamore, J. R.; Kim, K.; Dutta, T.; Vellingiri, K. Phytochemical-Assisted Synthetic Approaches for Silver Nanoparticles Antimicrobial Applications : A Review. Adv. Colloid Interface Sci. 2018, 256, 326–339. https://doi.org/10.1016/j.cis.2018.03.001 Chandra, S.; Kumar, A. Recyclable Copper Nanoparticles: Efficient Catalyst for Selective Cyclization of Schiff Bases. J. Saudi Chem. Soc. 2016, 20, 367–372. https://doi.org/10.1016/j.jscs.2012.07.00 Jamkhande, P.; Ghule, N.; Bamer, A.; Kalaskar, M. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 1–6. https://doi.org/10.1016/j.jddst.2019.101174. Sharma, P.; Goyal, D.; Baranwal, M.; Chudasama, B. ROS-Induced Cytotoxicity of Colloidal Copper Nanoparticles in MCF-7 Human Breast Cancer Cell Line: An in Vitro Study. J. Nanoparticle Res. 2020, 22, 1–11. https://doi.org/10.1007/s11051-020-04976-7 Nakamoto, K. Infrared and Raman Spectral of Inorganic and Coordination Compounds. Theory and Aplication in Inorganic Chemistry, Sixth.; Wiley: New Jersey, 2009 Larkin, P. Infrared and Raman Spectroscopy. Pinciples and Spectral Interpretation; Amsterdam, 2011. https://doi.org/10.3390/rel9100297 Agarwal, U.; Atalla, R. Raman Spectroscopy; CRC Press: Wisconsin, 1995. https://doi.org/10.1007/978-3-642-74065-7 Ohue, K.; Ohtake, K. Zetasizer Nano Series ZS DLS User Manual 0317- Malvern; United Kingdom, 2013; Vol. 67 Dorofeev, G.; Streletskii, A.; Povstugar, I.; Protasov, A.; Elsukov, E. Determination of Nanoparticle Sizes by the X- Ray Diffraction Method. Colloid J. 2012, 74, 710–720. https://doi.org/10.1134/S1061933X12060051 Farrukh, M. Atomic Absorption Spectroscopy. 2011, 50–10 Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm the Same Protocol and Their Antibacterial Efficacy. Rsc Adv. 2014, 3974–3983. https://doi.org/10.1039/c3ra44507k Mavani, K. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2014, 2 (3), 1–5. https://doi.org/10.13140/2.1.3116.8648 Frank, A.; Cathcart, N.; Maly, K.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. J. Chem. Educ. 2010, 87, 1098–1101. https://doi.org/10.1021/ed100166g Contreras, B.; Diaz, V.; Guzman, E.; Sanhueza, I.; Godoy, S.; Torres, S.; Oyarzún, P. Slight PH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. J. Sensors 2018, 18, 2–9. https://doi.org/10.3390/s18072246 Zabiszak, M.; Nowak, M.; Taras, K.; Kaczmarek, M. Carboxyl Groups of Citric Acid in the Process of Complex Formation with Bivalent and Trivalent Metal Ions in Biological Systems. J. Inorg. Biochem. 2018, 182, 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.01 Yaguo, C.; Xianqing, P.; Wei, G.; Zhejuan, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. https://doi.org/10.1039/C7RA05125E Mendoza, M.; Avalos, M. Nanoestructuras y Su Caracterización Por Medio de Microscopía Electrónica de Transmisión. Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología 2020, 13, 61–78. https://doi.org/10.22201/ceiich.24485691e.2020.25.69630 Wu, S. Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC. Mater. Lett. 2007, 61, 1125–1129. https://doi.org/10.1016/j.matlet.2006.06.068 Macan, A.; Gazivoda, T.; Raić-malić, S. Therapeutic Perspective of Vitamin C and Its Derivatives. J. Antioxidants 2019, 8, 7–36. https://doi.org/10.3390/antiox8080247 Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. R. Soc. Chem. 2015, 5, 12293–12299. https://doi.org/10.1039/c4ra12163e Barriere, C.; Piettre, K.; Latour, V.; Margeat, O.; Chaudret, B.; Fau, P. Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis. J. Mater. Chem. 2012, 22, 2279–2285. https://doi.org/10.1039/c2jm14963j. Granata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A. Study of the Synthesis of Copper Nanoparticles : The Role of Capping and Kinetic towards Control of Particle Size and Stability. J. Nanoparticle Res. 2016, 18, 3–12. https://doi.org/10.1007/s11051-016-3438-6. Corrales, L.; Caycedo, L. Physicochemical Principles of Dyes Used in Microbiology. Nova 2019, 18, 73–100. https://doi.org/10.22490/24629448.370 Suslow, T.; Schroth, M.; Isaka, M. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Phytopathology. 1982, p 917. https://doi.org/10.1094/phyto-77-917 Bhumbla, U. Identification of Bacteria by Biochemical Reactions. In Workbook for Practical Microbiology; 2018; pp 73–81. https://doi.org/10.5005/jp/books/14206 Franklin, C.; Wikler, M.; Alder, J.; Dudley, M.; Ferraro, M.; Hardy, D. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. Clin. Lab. Stand. Inst. 2012, 32, 1–58. https://doi.org/M02-A11 Weinstein, M.; Pate, J.; Burnham, C.; Campeau, S.; Conville, P.; Doern, C. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin. Lab. Stand. Inst. 2022, 11–61. https://doi.org/M07,11Thed Perea, J.; García, R.; Allade, R.; Carrillo, J.; León, J. Identificación de Razas y Biovares de Ralstonia Solanacearum Aisladas de Plantas de Tomate. Rev. Mex. Fitopatol. 2011, 29, 98–108 Thomas, E.; Torres, J. Gelatin Hydrolysis Test Protocol. Am. Soc. Microbiol. 2016, 1–10 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xviii, 133 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85527/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85527/2/1022349067.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85527/3/1022349067.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 5feedae4a6596fb6c480ab2beb46fc97 491ba3f5030d3276c9779a6255affda7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090231422386176 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Almario, Adriana830a04311a4cbfb2ec2c69bc62a73252Duarte Ruiz, Álvaro784d4857833b3916559551e9f6d84631600García Suárez, Angélica Tatianaa8d09ce3a7538c9041fccfde156232dbNuevos Materiales Nano y Supramoleculares2024-01-30T16:44:43Z2024-01-30T16:44:43Z2023-11-17https://repositorio.unal.edu.co/handle/unal/85527Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (algunas a color), diagramas, fotografíasRalstonia solanacearum es una bacteria fitopatógena que afecta a un amplio rango de hospedantes de importancia agronómica entre los que se encuentra el plátano (Musa x paradisiaca), causando la enfermedad denominada Moko o Maduraviche que afecta un amplio rango de musáceas a nivel mundial, siendo este un producto hortícola de importancia en la alimentación humana y en la economía colombiana. Para el control de esta enfermedad se han utilizado diferentes pesticidas y antibióticos, pero la aplicación de estos productos no muestra resultados satisfactorios. En este estudio se sintetizaron dos tamaños diferentes de nanopartículas de plata [1-AgNPs] y [2-AgNPs] mediante reducción química empleando nitrato de plata, borohidruro de sodio y citrato de sodio, y para la síntesis de nanopartículas de cobre [1-CuNPs] y [2-CuNPs], cloruro de cobre y ácido L-ascórbico. Para la caracterización se emplearon técnicas como: Dispersión Dinámica de Luz (DLS), Espectroscopia Ultravioleta Visible (Uv-Vis), Espectroscopia Infrarroja (IR), Espectroscopia Raman, Difracción de Rayos X (DRX), Absorción Atómica de Llama (FAAS), Microscopia Electrónica de Barrido (SEM) y Microscopia Electrónica de Transmisión del Alta Resolución (HRTEM), con el fin de identificar la composición, distribución de tamaño y morfología. Posteriormente, a partir de un pseudotallo de plátano proveniente de un cultivo de Norte de Santander - Colombia, que presentaba síntomas de necrosis de haces vasculares y exudado bacteriano, se aisló e identificó R. solanacearum y se evaluó in vitro la actividad antibacteriana de las nanopartículas contra este fitopatógeno por el método de difusión en pozo y se determinó la concentración mínima inhibitoria (CMI). Como resultado se evidenció una mayor actividad antibacteriana para las nanopartículas de cobre demostrando su potencial para abordar los desafíos en el tratamiento de esta enfermedad. (Texto tomado de la fuente)Ralstonia solanacearum is a phytopathogenic bacterium that affects a wide range of hosts of agronomic importance, among which is the plantain (Musa x paradisiaca), causing the disease called Moko or Maduraviche that affects a wide range of musaceae worldwide, this being an important horticultural product in human nutrition and in the Colombian economy. For the control of this disease, different pesticides and antibiotics have been used, but the application of these products not show satisfactory results. Therefore, in this study, two different sizes of silver nanoparticles [1-AgNPs] and [2-AgNPs] were synthesized by chemical reduction using silver nitrate, sodium borohydride and sodium citrate, and for the synthesis of copper nanoparticles [1- CuNPs] and [2-CuNPs], copper chloride and L-ascorbic acid. For the characterization, techniques such as: Dynamic Light Scattering (DLS), Ultraviolet Visible Spectroscopy (Uv-Vis), Infrared Spectroscopy (IR), Raman Spectroscopy, X-ray Diffraction (XRD), Flame Atomic Absorption (FAAS), were used. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), in order to identify the composition, size distribution and morphology. Subsequently, from a plantain pseudostem from a crop in Norte de Santander - Colombia, which presented symptoms of necrosis of vascular bundles and bacterial exudate, R. solanacearum was isolated and identified and evaluated in vitro the antibacterial activity of the nanoparticles against this phytopathogen by the well diffusion method and the minimum inhibitory concentration (MIC) was determined. As a result, a greater antibacterial activity was evidenced for copper nanoparticles, demonstrating their potential to address the challenges in the treatment of this disease.MaestríaMagíster en Ciencias- Químicaxviii, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::546 - Química inorgánica630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesMetal nanoparticlesNanopartículas metálicasRalstonia solanacearumBactericidasBactericidesMarchitez bacteriana del plátanoEnfermedades bacterianas de las plantasBacterias fitopatógenasBacterial blight (Plantain banana)Bacterial diseases of plantsBacteria, PhytopathogenicNanopartículasAgente antibacterianoMarchitez bacterianaRalstonia solanacearumFitopatógenoNanoparticlesAntibacterial agentBacterial wiltPhytopathogenSíntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearumSynthesis, characterization and evaluation of the antibacterial activity of copper and silver nanoparticles against the phytopathogen Ralstonia solanacearumTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPaudel, S.; Dobhal, S.; Alvarez, A. M.; Arif, M. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020, 9, 1–26. https://doi.org/10.3390/pathogens9110886Singh, B. Nanotechnology in Agri-Food Production. Nanotechnol. Sci. Appl. 2014, 7, 31–53.Nion, Y.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum. Microbes Environ. 2015, 30 (1), 1–11. https://doi.org/10.1264/jsme2.ME14144Rupa, V.; Dutta, A.; Kumar, A.; Maurya, S. Effectiveness of Combination of Antibiotics on Different Isolates of ‘Ralstonia Solanacearum’—A Dreaded Soil Born Phytopathogen and A Causative Agent of Bacterial Wil; India, 2017. https://doi.org/10.1007/978-981-10-5538-6Datta, T.; Singh, M.; Thapa, M.; Dutta, M. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas Oryzae Pv . Oryzae – A Synthetic and Mechanistic Approach. Colloid Interface Sci. Commun. 2019, 32, 1–10. https://doi.org/10.1016/j.colcom.2019.100190Naranjo, E.; Martinez, Y. Avances En El Diagnositico de La Marchitez Bacteriana ( Ralstonia Solanacearum) Situación Actual y Perspectivas En Cuba. Rev. Protección Veg 2013, 28 (3), 160–170Moncayo, A. La Resistencia a Los Antibioticos y La Falta de Interes de La Industria Farmaceutica. Infect. Asoc. Colomb. Infectol. 2014, 18 (2), 35–36. https://doi.org/10.1016/j.infect.2014.02.003Shaikh, S.; Nazam, N.; Rizvi, S.; Ahmad, K.; Baig, M.; Lee, E.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 1–15. https://doi.org/10.3390/ijms20102468.Xu, L.; Wang, Y.; Huang, J.; Chen, C.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. https://doi.org/10.7150/thno.45413Gianluigi, F.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. https://doi.org/10.3390/molecules20058856Vikas, S.; Krishan, K. S.; Manjit, K. S. Nanosilver: Potent Antimicrobial Agent and Its Biosynthesis. African J. Biotechnol. 2014, 13, 546–554. https://doi.org/10.5897/ajb2013.1314Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study. J. Nanomater. 2015, 1–8Singh, M.; Singh, S.; Prasad, S.; Gambhir, I. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. biostructures 2008, 3, 115–122Parveen, F.; Sannakki, B.; Mandke, M.; Pathan, H. Copper Nanoparticles: Synthesis Methods and Its Light Harvesting Performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. https://doi.org/10.1016/j.solmat.2015.08.03Na, I.; Kennedy, D. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 2021, 22, 2–11. https://doi.org/10.3390/ ijms22041548Lu, H.; Tang, S.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis. Biosensors 2020, 10, 1–34. https://doi.org/10.3390/BIOS10110165Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1–34. https://doi.org/10.3390/ijms17091534Diaz, E. Nanopartículas de Plata : Síntesis y Funcionalizacion . Una Breve Revisión. Mundo Nano 2019, 12, 1–11Song, X.; Sun, S.; Zhang, W.; Yin, Z. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase. J. Colloid Interface Sci. 2004, 273, 464–470. https://doi.org/10.1016/j.jcis.2004.01.01Arunachalam, D.; Kannappan, G. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. Sci. 2013, 3, 16–21. https://doi.org/10.7324/JAPS.2013.3504McCafferty, E. Introduction to Corrosion Science. Thermodynamics of Corrosion: Pourbaix Diagrams. Springer Sci. Bus. Media 2010, 95–117. https://doi.org/10.1007/978-1-4419-0455-3Thanh, N.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Am. Chem. Soc. 2014, 3 (1), 7610–7630. https://doi.org/10.1021/cr400544s.Polte, J. Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. CrystEngComm 2015, 17, 1–17. https://doi.org/10.1039/c5ce01014d.Chouhan, N. Silver Nanoparticles- Fabrication, Characterization and Applications, intechOpen.; 2018.Deshpande, J.; Chakrabarty, S.; Kulkarni, A. Heterogeneous Nucleation in Citrate Synthesis of AgNPs : Effect of Mixing and Solvation Dynamics. Chem. Eng. J. 2021, 1–11. https://doi.org/10.1016/j.cej.2020.127753.Trefry, J.; Monahan, J.; Weaver, K.; Meyerhoefer, A.; Markopolous, M. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. 2010, 10970–10972. https://doi.org/10.1021/ja103809c.Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and Characterization of Silver Colloidal Nanoparticles with Different Coatings for SERS Application. J. Nanoparticle Res. 2014, 16 (12), 1–13. https://doi.org/10.1007/s11051-014-2748-9Baalousha, M.; Nam, J.; Lead, J. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems. Nat. colloids 2014, 1–41.Monge, M. Nanoparticulas de Plata: Metodos de Sintesis En Disolucion y Propiedades Bactericidas. Acad. Journals 2009, 105 (1), 33–41.Demirci, U. About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds. Energy Technol. 2018, 6, 470–486. https://doi.org/10.1002/ente.201700486Dung, T.; Tuyet, T.; Fribourg-blanc, E.; Chien, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 1–7. https://doi.org/10.1088/2043-6262/2/2/025004Tamilvanan, A.; Kulendran, B. Copper Nanoparticles : Synthetic Strategies , Properties and Multifunctional Application. Int. J. Nanosci. 2014, 13 (May), 1–22. https://doi.org/10.1142/S0219581X14300016.Gawande, M.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Am. Chem. Soc. Chem. Rev. 2016, No. 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482Shen, J.; Griffiths, P.; Campbell, S.; Utinger, B.; Kalberer, M. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development and Derivation of Key Rate Constants. Sci. Reports Nat. 2021, 11, 1–14. https://doi.org/10.1038/s41598-021-86477-8Rucker, R.; Suttie, J.; Donald, M.; Johnston, C. Handbok of Vitamins: Ascorbic Acid. Marcel Dakker 2001, 529–54Njus, D.; Kelley, P.; Tu, Y.; Schlegel, H. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. https://doi.org/10.1016/j.freeradbiomed.2020.07.01DiLabio, G.; Wright, J. Hemiketal Formation of Dehydroascorbic Acid Drives Ascorbyl Radical Anion Disproportionation. Free Radic. Biol. Med. 2000, 29, 480–485. https://doi.org/10.1016/S0891-5849(00)00357-9Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. https://doi.org/10.1039/C0GC00772BPokropivny, V.; Skorokhod, V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. 2007, 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023Harish, V.; Tewari, D.; Manish, G.; Yadav, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 1–32. https://doi.org/10.3390/nano12183226Gonzalez, A.; Noguez, C.; Berànek, J.; Barnard, A. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. 2014, 118, 9128–9136. https://doi.org/10.1021/jp5018168Gonzalez, E.; Puntes, V.; Casals, E. Nanomateriales - Nanoparticulas Coloidales; Series de nanociencia y nanotecnología: Bogotá- Colombia, 2015Capeding, M.; Alberto, E.; Guerrero, J. The Effectiveness and Safety of 1 % Silver Sulfadiazine ( Flammazine ) Cream in Preventing Infection in Potentially Contaminated Traumatic Wounds among Pediatric Patients. J. trauma Treat. 2017, 6 (2167), 2–6. https://doi.org/10.4172/2167-1222.1000395.Yin, X.; Zhang, J.; Shuping, I.; Lei, M.; Li, Q.; Chu, H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.Babatunde, D.; Denwigwe, I.; Babatunde, O.; Gbadamosi, S.; Babalola, I.; Agboola, O. Environmental and Societal Impact of Nanotechnology. IEEE Access 2019, 8, 4640–4667. https://doi.org/10.1109/ACCESS.2019.2961513Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, Third Edit.; Joe Hayton: Amsterdam, 2018.Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 1–23. https://doi.org/10.1155/2021/6687290.Singh, A.; Yaqoob, M.; Joshi, B.; Sharma, B. Phytofabrication of Silver Nanoparticles : Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Reports 2018, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013.Cheng, H.; Wang, H.; Zhang, J. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Ralstonia Solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11 (September). https://doi.org/10.3389/fmicb.2020.02110.Chand, K.; Cao, D.; Eldin, D.; Hussain, A.; Qadeer, A.; Zhu, K.; Nazim, M.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13, 8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009.Chen, J.; Li, S.; Lou, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia Solanacearum by Stabilization. J. Nanomater. 2016, 1–15. https://doi.org/10.1155/2016/7135852Sathiya, R.; Geetha, D.; Ramesh, P.; Aroulmoji, V. Synthesis and Characterization of Nano Silver for Different Temperatures and Their Antimicrobial Activity. Int. J. Adv. Sci. Eng. 2017, 4, 547–553. https://doi.org/10.29294/IJASE.4.2.2017.547-553.ezza, F.; Tichapondwa, S.; Chirwa, E. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 1–18. https://doi.org/10.1038/s41598-020-73497-z.Agudelo, W.; Montoya, Y.; Bustamante, J. Using a Non-Reducing Sugar in the Green Synthesis of Gold and Silver Nanoparticles by the Chemical Reduction Method. DYNA 2018, 85 (206), 69–78. https://doi.org/10.15446/dyna.v85n206.72136.Obregon, M.; Rodriguez, P.; Molares, J.; Salazar, M. Hospedantes de Ralstonia Solanacearumm En Plantaciones de Banano Platano En Colombia. Rev.Fac.Nal.Agr. Medellin 2008, 61, 4518–4526.Tans, J.; Huang, H.; Allen, C. Ralstonia Solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 2001, 183, 3597–3605. https://doi.org/10.1128/JB.183.12.359Prior, P.; Ailloud, F.; Dalsing, B. L.; Remenant, B. Genomic and Proteomic Evidence Supporting the Division of the Plant Pathogen Ralstonia Solanacearum into Three Species. BioMed Cent. Genomics 2016, 17, 1–11. https://doi.org/10.1186/s12864-016-2413-zSafni, I.; Subandiyah, S.; Fegan, M. Ecology , Epidemiology and Disease Management of Ralstonia Syzygii in Indonesia. Front. Microbiol. 2018, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00419Alvarez, E.; Pantoja, A.; Gañan, L.; Ceballos, G. Estado Del Arte y Opciones de Manejo de Moko y La Sigatoka Negra En America Latina y El Caribe. Centro Internacional de Agricultura Tropical CIAT. Cali - Colombia 2019, pp 1–40Bautista, L.; García, S.; Bolaños, M. Relationship between Soil Fertility and Plantain Nutrition in Cundinamarca (Colombia) with the Incidence of Two Bacterial Diseases. Rev. Colomb. ciencias hortícolas 2020, 14, 50–62Bareño, F. Cadena de Plátano: Dirección de Cadenas Agricolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. 2021, pp 1–10Poueymiro, M.; Genin, S. Secreted Proteins from Ralstonia Solanacearum: A Hundred Tricks to Kill a Plant. Curr. Opin. Microbiol. 2009, 12, 44–52. https://doi.org/10.1016/j.mib.2008.11.008García, R.; Kerns, J.; Thiessen, L. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Heal. Prog. 2019, 20, 7–13. https://doi.org/10.1094/PHP-04-18-0015-DGLópez, M.; Morán, S.; Sagovia, J. Manejo Fitosanitario de La Marchitez Bacteriana ( Ralstonia Solanacearum E . F . Smith ) Del Tomate Lycopersicon Esculentum Mill, Universidad de el salvador, 2016Villalobos, V. Moko Del Plátano - Ficha Técnica/RSR2 /CNRF. Secr. Agric. - SENASICA 2023, 1, 1–8Instituto Colombiano Agropecuario (ICA). Resolución 3330 de 2013; Colombia, 2013; pp 1–5. https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3330_2013.htmSilva, G.; Figueiredo, L.; Faveri, M.; Cortelli, S.; Duarte, P. Mechanisms of Action of Systemic Antibiotics in Periodntal Tretament and Mechanisms of Bacterial Resistence to These Drugs. J Appl Oral Sci 2012, 20, 295–309Mikhailova, E. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11 (84), 1–26. https://doi.org/10.3390/jfb11040084Rahman, S.; Rahman, L.; Khalil, T.; Ali, N.; Zia, D.; Ali, M. Endophyte-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. Microbiol. Biotechnol. 2019, 103, 2551–2569. https://doi.org/10.1007/s00253-019-09661-xRawat, M.; Kumar, N.; Yadukrishnan, P. Mechanisms of Action of Nanoparticles in Living Systems. 2018, 220–236. https://doi.org/10.4018/978-1-5225-3126-5.ch014Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19 (2), 1–17. https://doi.org/10.3390/ijms19020444Din, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles : Catalytic , Antibacterial , Cytotoxicity , and Antioxidant Activities. 2017. https://doi.org/10.1186/s11671-017-2399-8Venis, R.; Basu, O. Silver and Zinc Oxide Nanoparticle Disinfection in Water Treatment Applications : Synergy and Water Quality Influences. H2Open J. 2021, 4, 114–128. https://doi.org/10.2166/h2oj.2021.098Xu, L.; Zhu, Z.; Sun, D. Bioinspired Nanomodification Strategies :Moving from Chemical Based Agrosynthems to Sustainable Agriculture. Am. Chem. Soc. - Nano 2021, 15, 12655–12686. https://doi.org/10.1021/acsnano.1c0394Reddy, J.; Kumar, S.; Bhamore, J. R.; Kim, K.; Dutta, T.; Vellingiri, K. Phytochemical-Assisted Synthetic Approaches for Silver Nanoparticles Antimicrobial Applications : A Review. Adv. Colloid Interface Sci. 2018, 256, 326–339. https://doi.org/10.1016/j.cis.2018.03.001Chandra, S.; Kumar, A. Recyclable Copper Nanoparticles: Efficient Catalyst for Selective Cyclization of Schiff Bases. J. Saudi Chem. Soc. 2016, 20, 367–372. https://doi.org/10.1016/j.jscs.2012.07.00Jamkhande, P.; Ghule, N.; Bamer, A.; Kalaskar, M. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 1–6. https://doi.org/10.1016/j.jddst.2019.101174.Sharma, P.; Goyal, D.; Baranwal, M.; Chudasama, B. ROS-Induced Cytotoxicity of Colloidal Copper Nanoparticles in MCF-7 Human Breast Cancer Cell Line: An in Vitro Study. J. Nanoparticle Res. 2020, 22, 1–11. https://doi.org/10.1007/s11051-020-04976-7Nakamoto, K. Infrared and Raman Spectral of Inorganic and Coordination Compounds. Theory and Aplication in Inorganic Chemistry, Sixth.; Wiley: New Jersey, 2009Larkin, P. Infrared and Raman Spectroscopy. Pinciples and Spectral Interpretation; Amsterdam, 2011. https://doi.org/10.3390/rel9100297Agarwal, U.; Atalla, R. Raman Spectroscopy; CRC Press: Wisconsin, 1995. https://doi.org/10.1007/978-3-642-74065-7Ohue, K.; Ohtake, K. Zetasizer Nano Series ZS DLS User Manual 0317- Malvern; United Kingdom, 2013; Vol. 67Dorofeev, G.; Streletskii, A.; Povstugar, I.; Protasov, A.; Elsukov, E. Determination of Nanoparticle Sizes by the X- Ray Diffraction Method. Colloid J. 2012, 74, 710–720. https://doi.org/10.1134/S1061933X12060051Farrukh, M. Atomic Absorption Spectroscopy. 2011, 50–10Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm the Same Protocol and Their Antibacterial Efficacy. Rsc Adv. 2014, 3974–3983. https://doi.org/10.1039/c3ra44507kMavani, K. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2014, 2 (3), 1–5. https://doi.org/10.13140/2.1.3116.8648Frank, A.; Cathcart, N.; Maly, K.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. J. Chem. Educ. 2010, 87, 1098–1101. https://doi.org/10.1021/ed100166gContreras, B.; Diaz, V.; Guzman, E.; Sanhueza, I.; Godoy, S.; Torres, S.; Oyarzún, P. Slight PH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. J. Sensors 2018, 18, 2–9. https://doi.org/10.3390/s18072246Zabiszak, M.; Nowak, M.; Taras, K.; Kaczmarek, M. Carboxyl Groups of Citric Acid in the Process of Complex Formation with Bivalent and Trivalent Metal Ions in Biological Systems. J. Inorg. Biochem. 2018, 182, 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.01Yaguo, C.; Xianqing, P.; Wei, G.; Zhejuan, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. https://doi.org/10.1039/C7RA05125EMendoza, M.; Avalos, M. Nanoestructuras y Su Caracterización Por Medio de Microscopía Electrónica de Transmisión. Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología 2020, 13, 61–78. https://doi.org/10.22201/ceiich.24485691e.2020.25.69630Wu, S. Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC. Mater. Lett. 2007, 61, 1125–1129. https://doi.org/10.1016/j.matlet.2006.06.068Macan, A.; Gazivoda, T.; Raić-malić, S. Therapeutic Perspective of Vitamin C and Its Derivatives. J. Antioxidants 2019, 8, 7–36. https://doi.org/10.3390/antiox8080247Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. R. Soc. Chem. 2015, 5, 12293–12299. https://doi.org/10.1039/c4ra12163eBarriere, C.; Piettre, K.; Latour, V.; Margeat, O.; Chaudret, B.; Fau, P. Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis. J. Mater. Chem. 2012, 22, 2279–2285. https://doi.org/10.1039/c2jm14963j.Granata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A. Study of the Synthesis of Copper Nanoparticles : The Role of Capping and Kinetic towards Control of Particle Size and Stability. J. Nanoparticle Res. 2016, 18, 3–12. https://doi.org/10.1007/s11051-016-3438-6.Corrales, L.; Caycedo, L. Physicochemical Principles of Dyes Used in Microbiology. Nova 2019, 18, 73–100. https://doi.org/10.22490/24629448.370Suslow, T.; Schroth, M.; Isaka, M. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Phytopathology. 1982, p 917. https://doi.org/10.1094/phyto-77-917Bhumbla, U. Identification of Bacteria by Biochemical Reactions. In Workbook for Practical Microbiology; 2018; pp 73–81. https://doi.org/10.5005/jp/books/14206Franklin, C.; Wikler, M.; Alder, J.; Dudley, M.; Ferraro, M.; Hardy, D. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. Clin. Lab. Stand. Inst. 2012, 32, 1–58. https://doi.org/M02-A11Weinstein, M.; Pate, J.; Burnham, C.; Campeau, S.; Conville, P.; Doern, C. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin. Lab. Stand. Inst. 2022, 11–61. https://doi.org/M07,11ThedPerea, J.; García, R.; Allade, R.; Carrillo, J.; León, J. Identificación de Razas y Biovares de Ralstonia Solanacearum Aisladas de Plantas de Tomate. Rev. Mex. Fitopatol. 2011, 29, 98–108Thomas, E.; Torres, J. Gelatin Hydrolysis Test Protocol. Am. Soc. Microbiol. 2016, 1–10Proyecto aprobado No. 45667, registrado en HERMESUniversidad Nacional de Colombia - Resolución de la UGI Facultad de Ciencias - Sede BogotáBibliotecariosConsejerosEstudiantesInvestigadoresMaestrosMedios de comunicaciónPersonal de apoyo escolarPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85527/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022349067.2023.pdf1022349067.2023.pdfMaestría en Ciencias - Químicaapplication/pdf6407701https://repositorio.unal.edu.co/bitstream/unal/85527/2/1022349067.2023.pdf5feedae4a6596fb6c480ab2beb46fc97MD52THUMBNAIL1022349067.2023.pdf.jpg1022349067.2023.pdf.jpgGenerated Thumbnailimage/jpeg4386https://repositorio.unal.edu.co/bitstream/unal/85527/3/1022349067.2023.pdf.jpg491ba3f5030d3276c9779a6255affda7MD53unal/85527oai:repositorio.unal.edu.co:unal/855272024-08-22 23:10:09.129Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |