Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum

ilustraciones (algunas a color), diagramas, fotografías

Autores:
García Suárez, Angélica Tatiana
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85527
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85527
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Metal nanoparticles
Nanopartículas metálicas
Ralstonia solanacearum
Bactericidas
Bactericides
Marchitez bacteriana del plátano
Enfermedades bacterianas de las plantas
Bacterias fitopatógenas
Bacterial blight (Plantain banana)
Bacterial diseases of plants
Bacteria, Phytopathogenic
Nanopartículas
Agente antibacteriano
Marchitez bacteriana
Ralstonia solanacearum
Fitopatógeno
Nanoparticles
Antibacterial agent
Bacterial wilt
Phytopathogen
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_18f0304a46f2ae55287978910ac3147a
oai_identifier_str oai:repositorio.unal.edu.co:unal/85527
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
dc.title.translated.eng.fl_str_mv Synthesis, characterization and evaluation of the antibacterial activity of copper and silver nanoparticles against the phytopathogen Ralstonia solanacearum
title Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
spellingShingle Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
540 - Química y ciencias afines::546 - Química inorgánica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Metal nanoparticles
Nanopartículas metálicas
Ralstonia solanacearum
Bactericidas
Bactericides
Marchitez bacteriana del plátano
Enfermedades bacterianas de las plantas
Bacterias fitopatógenas
Bacterial blight (Plantain banana)
Bacterial diseases of plants
Bacteria, Phytopathogenic
Nanopartículas
Agente antibacteriano
Marchitez bacteriana
Ralstonia solanacearum
Fitopatógeno
Nanoparticles
Antibacterial agent
Bacterial wilt
Phytopathogen
title_short Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
title_full Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
title_fullStr Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
title_full_unstemmed Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
title_sort Síntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearum
dc.creator.fl_str_mv García Suárez, Angélica Tatiana
dc.contributor.advisor.spa.fl_str_mv González Almario, Adriana
Duarte Ruiz, Álvaro
dc.contributor.author.spa.fl_str_mv García Suárez, Angélica Tatiana
dc.contributor.researchgroup.spa.fl_str_mv Nuevos Materiales Nano y Supramoleculares
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
topic 540 - Química y ciencias afines::546 - Química inorgánica
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Metal nanoparticles
Nanopartículas metálicas
Ralstonia solanacearum
Bactericidas
Bactericides
Marchitez bacteriana del plátano
Enfermedades bacterianas de las plantas
Bacterias fitopatógenas
Bacterial blight (Plantain banana)
Bacterial diseases of plants
Bacteria, Phytopathogenic
Nanopartículas
Agente antibacteriano
Marchitez bacteriana
Ralstonia solanacearum
Fitopatógeno
Nanoparticles
Antibacterial agent
Bacterial wilt
Phytopathogen
dc.subject.lcc.eng.fl_str_mv Metal nanoparticles
dc.subject.lcc.spa.fl_str_mv Nanopartículas metálicas
dc.subject.agrovoc.spa.fl_str_mv Ralstonia solanacearum
Bactericidas
dc.subject.agrovoc.eng.fl_str_mv Bactericides
dc.subject.lemb.spa.fl_str_mv Marchitez bacteriana del plátano
Enfermedades bacterianas de las plantas
Bacterias fitopatógenas
dc.subject.lemb.eng.fl_str_mv Bacterial blight (Plantain banana)
Bacterial diseases of plants
Bacteria, Phytopathogenic
dc.subject.proposal.spa.fl_str_mv Nanopartículas
Agente antibacteriano
Marchitez bacteriana
Ralstonia solanacearum
Fitopatógeno
dc.subject.proposal.eng.fl_str_mv Nanoparticles
Antibacterial agent
Bacterial wilt
Phytopathogen
description ilustraciones (algunas a color), diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-17
dc.date.accessioned.none.fl_str_mv 2024-01-30T16:44:43Z
dc.date.available.none.fl_str_mv 2024-01-30T16:44:43Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85527
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85527
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Paudel, S.; Dobhal, S.; Alvarez, A. M.; Arif, M. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020, 9, 1–26. https://doi.org/10.3390/pathogens9110886
Singh, B. Nanotechnology in Agri-Food Production. Nanotechnol. Sci. Appl. 2014, 7, 31–53.
Nion, Y.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum. Microbes Environ. 2015, 30 (1), 1–11. https://doi.org/10.1264/jsme2.ME14144
Rupa, V.; Dutta, A.; Kumar, A.; Maurya, S. Effectiveness of Combination of Antibiotics on Different Isolates of ‘Ralstonia Solanacearum’—A Dreaded Soil Born Phytopathogen and A Causative Agent of Bacterial Wil; India, 2017. https://doi.org/10.1007/978-981-10-5538-6
Datta, T.; Singh, M.; Thapa, M.; Dutta, M. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas Oryzae Pv . Oryzae – A Synthetic and Mechanistic Approach. Colloid Interface Sci. Commun. 2019, 32, 1–10. https://doi.org/10.1016/j.colcom.2019.100190
Naranjo, E.; Martinez, Y. Avances En El Diagnositico de La Marchitez Bacteriana ( Ralstonia Solanacearum) Situación Actual y Perspectivas En Cuba. Rev. Protección Veg 2013, 28 (3), 160–170
Moncayo, A. La Resistencia a Los Antibioticos y La Falta de Interes de La Industria Farmaceutica. Infect. Asoc. Colomb. Infectol. 2014, 18 (2), 35–36. https://doi.org/10.1016/j.infect.2014.02.003
Shaikh, S.; Nazam, N.; Rizvi, S.; Ahmad, K.; Baig, M.; Lee, E.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 1–15. https://doi.org/10.3390/ijms20102468.
Xu, L.; Wang, Y.; Huang, J.; Chen, C.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. https://doi.org/10.7150/thno.45413
Gianluigi, F.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. https://doi.org/10.3390/molecules20058856
Vikas, S.; Krishan, K. S.; Manjit, K. S. Nanosilver: Potent Antimicrobial Agent and Its Biosynthesis. African J. Biotechnol. 2014, 13, 546–554. https://doi.org/10.5897/ajb2013.1314
Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study. J. Nanomater. 2015, 1–8
Singh, M.; Singh, S.; Prasad, S.; Gambhir, I. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. biostructures 2008, 3, 115–122
Parveen, F.; Sannakki, B.; Mandke, M.; Pathan, H. Copper Nanoparticles: Synthesis Methods and Its Light Harvesting Performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. https://doi.org/10.1016/j.solmat.2015.08.03
Na, I.; Kennedy, D. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 2021, 22, 2–11. https://doi.org/10.3390/ ijms22041548
Lu, H.; Tang, S.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis. Biosensors 2020, 10, 1–34. https://doi.org/10.3390/BIOS10110165
Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1–34. https://doi.org/10.3390/ijms17091534
Diaz, E. Nanopartículas de Plata : Síntesis y Funcionalizacion . Una Breve Revisión. Mundo Nano 2019, 12, 1–11
Song, X.; Sun, S.; Zhang, W.; Yin, Z. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase. J. Colloid Interface Sci. 2004, 273, 464–470. https://doi.org/10.1016/j.jcis.2004.01.01
Arunachalam, D.; Kannappan, G. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. Sci. 2013, 3, 16–21. https://doi.org/10.7324/JAPS.2013.3504
McCafferty, E. Introduction to Corrosion Science. Thermodynamics of Corrosion: Pourbaix Diagrams. Springer Sci. Bus. Media 2010, 95–117. https://doi.org/10.1007/978-1-4419-0455-3
Thanh, N.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Am. Chem. Soc. 2014, 3 (1), 7610–7630. https://doi.org/10.1021/cr400544s.
Polte, J. Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. CrystEngComm 2015, 17, 1–17. https://doi.org/10.1039/c5ce01014d.
Chouhan, N. Silver Nanoparticles- Fabrication, Characterization and Applications, intechOpen.; 2018.
Deshpande, J.; Chakrabarty, S.; Kulkarni, A. Heterogeneous Nucleation in Citrate Synthesis of AgNPs : Effect of Mixing and Solvation Dynamics. Chem. Eng. J. 2021, 1–11. https://doi.org/10.1016/j.cej.2020.127753.
Trefry, J.; Monahan, J.; Weaver, K.; Meyerhoefer, A.; Markopolous, M. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. 2010, 10970–10972. https://doi.org/10.1021/ja103809c.
Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and Characterization of Silver Colloidal Nanoparticles with Different Coatings for SERS Application. J. Nanoparticle Res. 2014, 16 (12), 1–13. https://doi.org/10.1007/s11051-014-2748-9
Baalousha, M.; Nam, J.; Lead, J. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems. Nat. colloids 2014, 1–41.
Monge, M. Nanoparticulas de Plata: Metodos de Sintesis En Disolucion y Propiedades Bactericidas. Acad. Journals 2009, 105 (1), 33–41.
Demirci, U. About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds. Energy Technol. 2018, 6, 470–486. https://doi.org/10.1002/ente.201700486
Dung, T.; Tuyet, T.; Fribourg-blanc, E.; Chien, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 1–7. https://doi.org/10.1088/2043-6262/2/2/025004
Tamilvanan, A.; Kulendran, B. Copper Nanoparticles : Synthetic Strategies , Properties and Multifunctional Application. Int. J. Nanosci. 2014, 13 (May), 1–22. https://doi.org/10.1142/S0219581X14300016.
Gawande, M.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Am. Chem. Soc. Chem. Rev. 2016, No. 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482
Shen, J.; Griffiths, P.; Campbell, S.; Utinger, B.; Kalberer, M. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development and Derivation of Key Rate Constants. Sci. Reports Nat. 2021, 11, 1–14. https://doi.org/10.1038/s41598-021-86477-8
Rucker, R.; Suttie, J.; Donald, M.; Johnston, C. Handbok of Vitamins: Ascorbic Acid. Marcel Dakker 2001, 529–54
Njus, D.; Kelley, P.; Tu, Y.; Schlegel, H. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. https://doi.org/10.1016/j.freeradbiomed.2020.07.01
DiLabio, G.; Wright, J. Hemiketal Formation of Dehydroascorbic Acid Drives Ascorbyl Radical Anion Disproportionation. Free Radic. Biol. Med. 2000, 29, 480–485. https://doi.org/10.1016/S0891-5849(00)00357-9
Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. https://doi.org/10.1039/C0GC00772B
Pokropivny, V.; Skorokhod, V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. 2007, 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023
Harish, V.; Tewari, D.; Manish, G.; Yadav, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 1–32. https://doi.org/10.3390/nano12183226
Gonzalez, A.; Noguez, C.; Berànek, J.; Barnard, A. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. 2014, 118, 9128–9136. https://doi.org/10.1021/jp5018168
Gonzalez, E.; Puntes, V.; Casals, E. Nanomateriales - Nanoparticulas Coloidales; Series de nanociencia y nanotecnología: Bogotá- Colombia, 2015
Capeding, M.; Alberto, E.; Guerrero, J. The Effectiveness and Safety of 1 % Silver Sulfadiazine ( Flammazine ) Cream in Preventing Infection in Potentially Contaminated Traumatic Wounds among Pediatric Patients. J. trauma Treat. 2017, 6 (2167), 2–6. https://doi.org/10.4172/2167-1222.1000395.
Yin, X.; Zhang, J.; Shuping, I.; Lei, M.; Li, Q.; Chu, H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.
Babatunde, D.; Denwigwe, I.; Babatunde, O.; Gbadamosi, S.; Babalola, I.; Agboola, O. Environmental and Societal Impact of Nanotechnology. IEEE Access 2019, 8, 4640–4667. https://doi.org/10.1109/ACCESS.2019.2961513
Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, Third Edit.; Joe Hayton: Amsterdam, 2018.
Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 1–23. https://doi.org/10.1155/2021/6687290.
Singh, A.; Yaqoob, M.; Joshi, B.; Sharma, B. Phytofabrication of Silver Nanoparticles : Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Reports 2018, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013.
Cheng, H.; Wang, H.; Zhang, J. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Ralstonia Solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11 (September). https://doi.org/10.3389/fmicb.2020.02110.
Chand, K.; Cao, D.; Eldin, D.; Hussain, A.; Qadeer, A.; Zhu, K.; Nazim, M.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13, 8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009.
Chen, J.; Li, S.; Lou, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia Solanacearum by Stabilization. J. Nanomater. 2016, 1–15. https://doi.org/10.1155/2016/7135852
Sathiya, R.; Geetha, D.; Ramesh, P.; Aroulmoji, V. Synthesis and Characterization of Nano Silver for Different Temperatures and Their Antimicrobial Activity. Int. J. Adv. Sci. Eng. 2017, 4, 547–553. https://doi.org/10.29294/IJASE.4.2.2017.547-553.
ezza, F.; Tichapondwa, S.; Chirwa, E. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 1–18. https://doi.org/10.1038/s41598-020-73497-z.
Agudelo, W.; Montoya, Y.; Bustamante, J. Using a Non-Reducing Sugar in the Green Synthesis of Gold and Silver Nanoparticles by the Chemical Reduction Method. DYNA 2018, 85 (206), 69–78. https://doi.org/10.15446/dyna.v85n206.72136.
Obregon, M.; Rodriguez, P.; Molares, J.; Salazar, M. Hospedantes de Ralstonia Solanacearumm En Plantaciones de Banano Platano En Colombia. Rev.Fac.Nal.Agr. Medellin 2008, 61, 4518–4526.
Tans, J.; Huang, H.; Allen, C. Ralstonia Solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 2001, 183, 3597–3605. https://doi.org/10.1128/JB.183.12.359
Prior, P.; Ailloud, F.; Dalsing, B. L.; Remenant, B. Genomic and Proteomic Evidence Supporting the Division of the Plant Pathogen Ralstonia Solanacearum into Three Species. BioMed Cent. Genomics 2016, 17, 1–11. https://doi.org/10.1186/s12864-016-2413-z
Safni, I.; Subandiyah, S.; Fegan, M. Ecology , Epidemiology and Disease Management of Ralstonia Syzygii in Indonesia. Front. Microbiol. 2018, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00419
Alvarez, E.; Pantoja, A.; Gañan, L.; Ceballos, G. Estado Del Arte y Opciones de Manejo de Moko y La Sigatoka Negra En America Latina y El Caribe. Centro Internacional de Agricultura Tropical CIAT. Cali - Colombia 2019, pp 1–40
Bautista, L.; García, S.; Bolaños, M. Relationship between Soil Fertility and Plantain Nutrition in Cundinamarca (Colombia) with the Incidence of Two Bacterial Diseases. Rev. Colomb. ciencias hortícolas 2020, 14, 50–62
Bareño, F. Cadena de Plátano: Dirección de Cadenas Agricolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. 2021, pp 1–10
Poueymiro, M.; Genin, S. Secreted Proteins from Ralstonia Solanacearum: A Hundred Tricks to Kill a Plant. Curr. Opin. Microbiol. 2009, 12, 44–52. https://doi.org/10.1016/j.mib.2008.11.008
García, R.; Kerns, J.; Thiessen, L. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Heal. Prog. 2019, 20, 7–13. https://doi.org/10.1094/PHP-04-18-0015-DG
López, M.; Morán, S.; Sagovia, J. Manejo Fitosanitario de La Marchitez Bacteriana ( Ralstonia Solanacearum E . F . Smith ) Del Tomate Lycopersicon Esculentum Mill, Universidad de el salvador, 2016
Villalobos, V. Moko Del Plátano - Ficha Técnica/RSR2 /CNRF. Secr. Agric. - SENASICA 2023, 1, 1–8
Instituto Colombiano Agropecuario (ICA). Resolución 3330 de 2013; Colombia, 2013; pp 1–5. https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3330_2013.htm
Silva, G.; Figueiredo, L.; Faveri, M.; Cortelli, S.; Duarte, P. Mechanisms of Action of Systemic Antibiotics in Periodntal Tretament and Mechanisms of Bacterial Resistence to These Drugs. J Appl Oral Sci 2012, 20, 295–309
Mikhailova, E. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11 (84), 1–26. https://doi.org/10.3390/jfb11040084
Rahman, S.; Rahman, L.; Khalil, T.; Ali, N.; Zia, D.; Ali, M. Endophyte-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. Microbiol. Biotechnol. 2019, 103, 2551–2569. https://doi.org/10.1007/s00253-019-09661-x
Rawat, M.; Kumar, N.; Yadukrishnan, P. Mechanisms of Action of Nanoparticles in Living Systems. 2018, 220–236. https://doi.org/10.4018/978-1-5225-3126-5.ch014
Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19 (2), 1–17. https://doi.org/10.3390/ijms19020444
Din, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles : Catalytic , Antibacterial , Cytotoxicity , and Antioxidant Activities. 2017. https://doi.org/10.1186/s11671-017-2399-8
Venis, R.; Basu, O. Silver and Zinc Oxide Nanoparticle Disinfection in Water Treatment Applications : Synergy and Water Quality Influences. H2Open J. 2021, 4, 114–128. https://doi.org/10.2166/h2oj.2021.098
Xu, L.; Zhu, Z.; Sun, D. Bioinspired Nanomodification Strategies :Moving from Chemical Based Agrosynthems to Sustainable Agriculture. Am. Chem. Soc. - Nano 2021, 15, 12655–12686. https://doi.org/10.1021/acsnano.1c0394
Reddy, J.; Kumar, S.; Bhamore, J. R.; Kim, K.; Dutta, T.; Vellingiri, K. Phytochemical-Assisted Synthetic Approaches for Silver Nanoparticles Antimicrobial Applications : A Review. Adv. Colloid Interface Sci. 2018, 256, 326–339. https://doi.org/10.1016/j.cis.2018.03.001
Chandra, S.; Kumar, A. Recyclable Copper Nanoparticles: Efficient Catalyst for Selective Cyclization of Schiff Bases. J. Saudi Chem. Soc. 2016, 20, 367–372. https://doi.org/10.1016/j.jscs.2012.07.00
Jamkhande, P.; Ghule, N.; Bamer, A.; Kalaskar, M. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 1–6. https://doi.org/10.1016/j.jddst.2019.101174.
Sharma, P.; Goyal, D.; Baranwal, M.; Chudasama, B. ROS-Induced Cytotoxicity of Colloidal Copper Nanoparticles in MCF-7 Human Breast Cancer Cell Line: An in Vitro Study. J. Nanoparticle Res. 2020, 22, 1–11. https://doi.org/10.1007/s11051-020-04976-7
Nakamoto, K. Infrared and Raman Spectral of Inorganic and Coordination Compounds. Theory and Aplication in Inorganic Chemistry, Sixth.; Wiley: New Jersey, 2009
Larkin, P. Infrared and Raman Spectroscopy. Pinciples and Spectral Interpretation; Amsterdam, 2011. https://doi.org/10.3390/rel9100297
Agarwal, U.; Atalla, R. Raman Spectroscopy; CRC Press: Wisconsin, 1995. https://doi.org/10.1007/978-3-642-74065-7
Ohue, K.; Ohtake, K. Zetasizer Nano Series ZS DLS User Manual 0317- Malvern; United Kingdom, 2013; Vol. 67
Dorofeev, G.; Streletskii, A.; Povstugar, I.; Protasov, A.; Elsukov, E. Determination of Nanoparticle Sizes by the X- Ray Diffraction Method. Colloid J. 2012, 74, 710–720. https://doi.org/10.1134/S1061933X12060051
Farrukh, M. Atomic Absorption Spectroscopy. 2011, 50–10
Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm the Same Protocol and Their Antibacterial Efficacy. Rsc Adv. 2014, 3974–3983. https://doi.org/10.1039/c3ra44507k
Mavani, K. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2014, 2 (3), 1–5. https://doi.org/10.13140/2.1.3116.8648
Frank, A.; Cathcart, N.; Maly, K.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. J. Chem. Educ. 2010, 87, 1098–1101. https://doi.org/10.1021/ed100166g
Contreras, B.; Diaz, V.; Guzman, E.; Sanhueza, I.; Godoy, S.; Torres, S.; Oyarzún, P. Slight PH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. J. Sensors 2018, 18, 2–9. https://doi.org/10.3390/s18072246
Zabiszak, M.; Nowak, M.; Taras, K.; Kaczmarek, M. Carboxyl Groups of Citric Acid in the Process of Complex Formation with Bivalent and Trivalent Metal Ions in Biological Systems. J. Inorg. Biochem. 2018, 182, 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.01
Yaguo, C.; Xianqing, P.; Wei, G.; Zhejuan, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. https://doi.org/10.1039/C7RA05125E
Mendoza, M.; Avalos, M. Nanoestructuras y Su Caracterización Por Medio de Microscopía Electrónica de Transmisión. Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología 2020, 13, 61–78. https://doi.org/10.22201/ceiich.24485691e.2020.25.69630
Wu, S. Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC. Mater. Lett. 2007, 61, 1125–1129. https://doi.org/10.1016/j.matlet.2006.06.068
Macan, A.; Gazivoda, T.; Raić-malić, S. Therapeutic Perspective of Vitamin C and Its Derivatives. J. Antioxidants 2019, 8, 7–36. https://doi.org/10.3390/antiox8080247
Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. R. Soc. Chem. 2015, 5, 12293–12299. https://doi.org/10.1039/c4ra12163e
Barriere, C.; Piettre, K.; Latour, V.; Margeat, O.; Chaudret, B.; Fau, P. Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis. J. Mater. Chem. 2012, 22, 2279–2285. https://doi.org/10.1039/c2jm14963j.
Granata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A. Study of the Synthesis of Copper Nanoparticles : The Role of Capping and Kinetic towards Control of Particle Size and Stability. J. Nanoparticle Res. 2016, 18, 3–12. https://doi.org/10.1007/s11051-016-3438-6.
Corrales, L.; Caycedo, L. Physicochemical Principles of Dyes Used in Microbiology. Nova 2019, 18, 73–100. https://doi.org/10.22490/24629448.370
Suslow, T.; Schroth, M.; Isaka, M. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Phytopathology. 1982, p 917. https://doi.org/10.1094/phyto-77-917
Bhumbla, U. Identification of Bacteria by Biochemical Reactions. In Workbook for Practical Microbiology; 2018; pp 73–81. https://doi.org/10.5005/jp/books/14206
Franklin, C.; Wikler, M.; Alder, J.; Dudley, M.; Ferraro, M.; Hardy, D. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. Clin. Lab. Stand. Inst. 2012, 32, 1–58. https://doi.org/M02-A11
Weinstein, M.; Pate, J.; Burnham, C.; Campeau, S.; Conville, P.; Doern, C. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin. Lab. Stand. Inst. 2022, 11–61. https://doi.org/M07,11Thed
Perea, J.; García, R.; Allade, R.; Carrillo, J.; León, J. Identificación de Razas y Biovares de Ralstonia Solanacearum Aisladas de Plantas de Tomate. Rev. Mex. Fitopatol. 2011, 29, 98–108
Thomas, E.; Torres, J. Gelatin Hydrolysis Test Protocol. Am. Soc. Microbiol. 2016, 1–10
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 133 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85527/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85527/2/1022349067.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85527/3/1022349067.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5feedae4a6596fb6c480ab2beb46fc97
491ba3f5030d3276c9779a6255affda7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090231422386176
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Almario, Adriana830a04311a4cbfb2ec2c69bc62a73252Duarte Ruiz, Álvaro784d4857833b3916559551e9f6d84631600García Suárez, Angélica Tatianaa8d09ce3a7538c9041fccfde156232dbNuevos Materiales Nano y Supramoleculares2024-01-30T16:44:43Z2024-01-30T16:44:43Z2023-11-17https://repositorio.unal.edu.co/handle/unal/85527Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (algunas a color), diagramas, fotografíasRalstonia solanacearum es una bacteria fitopatógena que afecta a un amplio rango de hospedantes de importancia agronómica entre los que se encuentra el plátano (Musa x paradisiaca), causando la enfermedad denominada Moko o Maduraviche que afecta un amplio rango de musáceas a nivel mundial, siendo este un producto hortícola de importancia en la alimentación humana y en la economía colombiana. Para el control de esta enfermedad se han utilizado diferentes pesticidas y antibióticos, pero la aplicación de estos productos no muestra resultados satisfactorios. En este estudio se sintetizaron dos tamaños diferentes de nanopartículas de plata [1-AgNPs] y [2-AgNPs] mediante reducción química empleando nitrato de plata, borohidruro de sodio y citrato de sodio, y para la síntesis de nanopartículas de cobre [1-CuNPs] y [2-CuNPs], cloruro de cobre y ácido L-ascórbico. Para la caracterización se emplearon técnicas como: Dispersión Dinámica de Luz (DLS), Espectroscopia Ultravioleta Visible (Uv-Vis), Espectroscopia Infrarroja (IR), Espectroscopia Raman, Difracción de Rayos X (DRX), Absorción Atómica de Llama (FAAS), Microscopia Electrónica de Barrido (SEM) y Microscopia Electrónica de Transmisión del Alta Resolución (HRTEM), con el fin de identificar la composición, distribución de tamaño y morfología. Posteriormente, a partir de un pseudotallo de plátano proveniente de un cultivo de Norte de Santander - Colombia, que presentaba síntomas de necrosis de haces vasculares y exudado bacteriano, se aisló e identificó R. solanacearum y se evaluó in vitro la actividad antibacteriana de las nanopartículas contra este fitopatógeno por el método de difusión en pozo y se determinó la concentración mínima inhibitoria (CMI). Como resultado se evidenció una mayor actividad antibacteriana para las nanopartículas de cobre demostrando su potencial para abordar los desafíos en el tratamiento de esta enfermedad. (Texto tomado de la fuente)Ralstonia solanacearum is a phytopathogenic bacterium that affects a wide range of hosts of agronomic importance, among which is the plantain (Musa x paradisiaca), causing the disease called Moko or Maduraviche that affects a wide range of musaceae worldwide, this being an important horticultural product in human nutrition and in the Colombian economy. For the control of this disease, different pesticides and antibiotics have been used, but the application of these products not show satisfactory results. Therefore, in this study, two different sizes of silver nanoparticles [1-AgNPs] and [2-AgNPs] were synthesized by chemical reduction using silver nitrate, sodium borohydride and sodium citrate, and for the synthesis of copper nanoparticles [1- CuNPs] and [2-CuNPs], copper chloride and L-ascorbic acid. For the characterization, techniques such as: Dynamic Light Scattering (DLS), Ultraviolet Visible Spectroscopy (Uv-Vis), Infrared Spectroscopy (IR), Raman Spectroscopy, X-ray Diffraction (XRD), Flame Atomic Absorption (FAAS), were used. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), in order to identify the composition, size distribution and morphology. Subsequently, from a plantain pseudostem from a crop in Norte de Santander - Colombia, which presented symptoms of necrosis of vascular bundles and bacterial exudate, R. solanacearum was isolated and identified and evaluated in vitro the antibacterial activity of the nanoparticles against this phytopathogen by the well diffusion method and the minimum inhibitory concentration (MIC) was determined. As a result, a greater antibacterial activity was evidenced for copper nanoparticles, demonstrating their potential to address the challenges in the treatment of this disease.MaestríaMagíster en Ciencias- Químicaxviii, 133 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::546 - Química inorgánica630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesMetal nanoparticlesNanopartículas metálicasRalstonia solanacearumBactericidasBactericidesMarchitez bacteriana del plátanoEnfermedades bacterianas de las plantasBacterias fitopatógenasBacterial blight (Plantain banana)Bacterial diseases of plantsBacteria, PhytopathogenicNanopartículasAgente antibacterianoMarchitez bacterianaRalstonia solanacearumFitopatógenoNanoparticlesAntibacterial agentBacterial wiltPhytopathogenSíntesis, caracterización y evaluación de la actividad antibacteriana de nanopartículas de cobre y plata contra el fitopatógeno Ralstonia solanacearumSynthesis, characterization and evaluation of the antibacterial activity of copper and silver nanoparticles against the phytopathogen Ralstonia solanacearumTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPaudel, S.; Dobhal, S.; Alvarez, A. M.; Arif, M. Taxonomy and Phylogenetic Research on Ralstonia Solanacearum Species Complex: A Complex Pathogen with Extraordinary Economic Consequences. Pathogens 2020, 9, 1–26. https://doi.org/10.3390/pathogens9110886Singh, B. Nanotechnology in Agri-Food Production. Nanotechnol. Sci. Appl. 2014, 7, 31–53.Nion, Y.; Toyota, K. Recent Trends in Control Methods for Bacterial Wilt Diseases Caused by Ralstonia Solanacearum. Microbes Environ. 2015, 30 (1), 1–11. https://doi.org/10.1264/jsme2.ME14144Rupa, V.; Dutta, A.; Kumar, A.; Maurya, S. Effectiveness of Combination of Antibiotics on Different Isolates of ‘Ralstonia Solanacearum’—A Dreaded Soil Born Phytopathogen and A Causative Agent of Bacterial Wil; India, 2017. https://doi.org/10.1007/978-981-10-5538-6Datta, T.; Singh, M.; Thapa, M.; Dutta, M. Size-Dependent Antibacterial Activity of Copper Nanoparticles against Xanthomonas Oryzae Pv . Oryzae – A Synthetic and Mechanistic Approach. Colloid Interface Sci. Commun. 2019, 32, 1–10. https://doi.org/10.1016/j.colcom.2019.100190Naranjo, E.; Martinez, Y. Avances En El Diagnositico de La Marchitez Bacteriana ( Ralstonia Solanacearum) Situación Actual y Perspectivas En Cuba. Rev. Protección Veg 2013, 28 (3), 160–170Moncayo, A. La Resistencia a Los Antibioticos y La Falta de Interes de La Industria Farmaceutica. Infect. Asoc. Colomb. Infectol. 2014, 18 (2), 35–36. https://doi.org/10.1016/j.infect.2014.02.003Shaikh, S.; Nazam, N.; Rizvi, S.; Ahmad, K.; Baig, M.; Lee, E.; Choi, I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019, 20, 1–15. https://doi.org/10.3390/ijms20102468.Xu, L.; Wang, Y.; Huang, J.; Chen, C.; Wang, Z.; Xie, H. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 2020, 10, 8996–9031. https://doi.org/10.7150/thno.45413Gianluigi, F.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. https://doi.org/10.3390/molecules20058856Vikas, S.; Krishan, K. S.; Manjit, K. S. Nanosilver: Potent Antimicrobial Agent and Its Biosynthesis. African J. Biotechnol. 2014, 13, 546–554. https://doi.org/10.5897/ajb2013.1314Abbaszadegan, A.; Ghahramani, Y.; Gholami, A.; Hemmateenejad, B.; Dorostkar, S.; Nabavizadeh, M.; Sharghi, H. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria : A Preliminary Study. J. Nanomater. 2015, 1–8Singh, M.; Singh, S.; Prasad, S.; Gambhir, I. Nanotechnology in Medicine and Antibacterial Effect of Silver Nanoparticles. Dig. J. Nanomater. biostructures 2008, 3, 115–122Parveen, F.; Sannakki, B.; Mandke, M.; Pathan, H. Copper Nanoparticles: Synthesis Methods and Its Light Harvesting Performance. Sol. Energy Mater. Sol. Cells 2016, 144, 371–382. https://doi.org/10.1016/j.solmat.2015.08.03Na, I.; Kennedy, D. Size-Specific Copper Nanoparticle Cytotoxicity Varies between Human Cell Lines. Int. J. Mol. Sci. 2021, 22, 2–11. https://doi.org/10.3390/ ijms22041548Lu, H.; Tang, S.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis. Biosensors 2020, 10, 1–34. https://doi.org/10.3390/BIOS10110165Zhang, X.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles : Synthesis , Characterization , Properties , Applications , and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1–34. https://doi.org/10.3390/ijms17091534Diaz, E. Nanopartículas de Plata : Síntesis y Funcionalizacion . Una Breve Revisión. Mundo Nano 2019, 12, 1–11Song, X.; Sun, S.; Zhang, W.; Yin, Z. A Method for the Synthesis of Spherical Copper Nanoparticles in the Organic Phase. J. Colloid Interface Sci. 2004, 273, 464–470. https://doi.org/10.1016/j.jcis.2004.01.01Arunachalam, D.; Kannappan, G. Synthesis of Copper Precursor, Copper and Its Oxide Nanoparticles by Green Chemical Reduction Method and Its Antimicrobial Activity. J. Appl. Pharm. Sci. Sci. 2013, 3, 16–21. https://doi.org/10.7324/JAPS.2013.3504McCafferty, E. Introduction to Corrosion Science. Thermodynamics of Corrosion: Pourbaix Diagrams. Springer Sci. Bus. Media 2010, 95–117. https://doi.org/10.1007/978-1-4419-0455-3Thanh, N.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Am. Chem. Soc. 2014, 3 (1), 7610–7630. https://doi.org/10.1021/cr400544s.Polte, J. Fundamental Growth Principles of Colloidal Metal Nanoparticles - a New Perspective. CrystEngComm 2015, 17, 1–17. https://doi.org/10.1039/c5ce01014d.Chouhan, N. Silver Nanoparticles- Fabrication, Characterization and Applications, intechOpen.; 2018.Deshpande, J.; Chakrabarty, S.; Kulkarni, A. Heterogeneous Nucleation in Citrate Synthesis of AgNPs : Effect of Mixing and Solvation Dynamics. Chem. Eng. J. 2021, 1–11. https://doi.org/10.1016/j.cej.2020.127753.Trefry, J.; Monahan, J.; Weaver, K.; Meyerhoefer, A.; Markopolous, M. Size Selection and Concentration of Silver Nanoparticles by Tangential Flow Ultrafiltration for SERS-Based Biosensors. 2010, 10970–10972. https://doi.org/10.1021/ja103809c.Mikac, L.; Ivanda, M.; Gotić, M.; Mihelj, T.; Horvat, L. Synthesis and Characterization of Silver Colloidal Nanoparticles with Different Coatings for SERS Application. J. Nanoparticle Res. 2014, 16 (12), 1–13. https://doi.org/10.1007/s11051-014-2748-9Baalousha, M.; Nam, J.; Lead, J. Natural Colloids and Manufactured Nanoparticles in Aquatic and Terrestrial Systems. Nat. colloids 2014, 1–41.Monge, M. Nanoparticulas de Plata: Metodos de Sintesis En Disolucion y Propiedades Bactericidas. Acad. Journals 2009, 105 (1), 33–41.Demirci, U. About the Technological Readiness of the H2 Generation by Hydrolysis of B(−N)−H Compounds. Energy Technol. 2018, 6, 470–486. https://doi.org/10.1002/ente.201700486Dung, T.; Tuyet, T.; Fribourg-blanc, E.; Chien, M. The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 1–7. https://doi.org/10.1088/2043-6262/2/2/025004Tamilvanan, A.; Kulendran, B. Copper Nanoparticles : Synthetic Strategies , Properties and Multifunctional Application. Int. J. Nanosci. 2014, 13 (May), 1–22. https://doi.org/10.1142/S0219581X14300016.Gawande, M.; Goswami, A.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R. Cu and Cu-Based Nanoparticles : Synthesis and Applications in Catalysis. Am. Chem. Soc. Chem. Rev. 2016, No. 116, 3722–3811. https://doi.org/10.1021/acs.chemrev.5b00482Shen, J.; Griffiths, P.; Campbell, S.; Utinger, B.; Kalberer, M. Ascorbate Oxidation by Iron, Copper and Reactive Oxygen Species: Review, Model Development and Derivation of Key Rate Constants. Sci. Reports Nat. 2021, 11, 1–14. https://doi.org/10.1038/s41598-021-86477-8Rucker, R.; Suttie, J.; Donald, M.; Johnston, C. Handbok of Vitamins: Ascorbic Acid. Marcel Dakker 2001, 529–54Njus, D.; Kelley, P.; Tu, Y.; Schlegel, H. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. https://doi.org/10.1016/j.freeradbiomed.2020.07.01DiLabio, G.; Wright, J. Hemiketal Formation of Dehydroascorbic Acid Drives Ascorbyl Radical Anion Disproportionation. Free Radic. Biol. Med. 2000, 29, 480–485. https://doi.org/10.1016/S0891-5849(00)00357-9Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using L-Ascorbic Acid. Green Chem. 2011, 13, 900–904. https://doi.org/10.1039/C0GC00772BPokropivny, V.; Skorokhod, V. Classification of Nanostructures by Dimensionality and Concept of Surface Forms Engineering in Nanomaterial Science. Mater. Sci. Eng. 2007, 27, 990–993. https://doi.org/10.1016/j.msec.2006.09.023Harish, V.; Tewari, D.; Manish, G.; Yadav, A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. Nanomaterials 2022, 12, 1–32. https://doi.org/10.3390/nano12183226Gonzalez, A.; Noguez, C.; Berànek, J.; Barnard, A. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. 2014, 118, 9128–9136. https://doi.org/10.1021/jp5018168Gonzalez, E.; Puntes, V.; Casals, E. Nanomateriales - Nanoparticulas Coloidales; Series de nanociencia y nanotecnología: Bogotá- Colombia, 2015Capeding, M.; Alberto, E.; Guerrero, J. The Effectiveness and Safety of 1 % Silver Sulfadiazine ( Flammazine ) Cream in Preventing Infection in Potentially Contaminated Traumatic Wounds among Pediatric Patients. J. trauma Treat. 2017, 6 (2167), 2–6. https://doi.org/10.4172/2167-1222.1000395.Yin, X.; Zhang, J.; Shuping, I.; Lei, M.; Li, Q.; Chu, H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomedicine 2020, 15, 2555–2562. https://doi.org/10.2147/IJN.S246764.Babatunde, D.; Denwigwe, I.; Babatunde, O.; Gbadamosi, S.; Babalola, I.; Agboola, O. Environmental and Societal Impact of Nanotechnology. IEEE Access 2019, 8, 4640–4667. https://doi.org/10.1109/ACCESS.2019.2961513Naito, M.; Yokoyama, T.; Hosokawa, K.; Nogi, K. Nanoparticle Technology Handbook, Third Edit.; Joe Hayton: Amsterdam, 2018.Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. J. Nanomater. 2021, 1–23. https://doi.org/10.1155/2021/6687290.Singh, A.; Yaqoob, M.; Joshi, B.; Sharma, B. Phytofabrication of Silver Nanoparticles : Novel Drug to Overcome Hepatocellular Ailments. Toxicol. Reports 2018, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013.Cheng, H.; Wang, H.; Zhang, J. Phytofabrication of Silver Nanoparticles Using Three Flower Extracts and Their Antibacterial Activities Against Pathogen Ralstonia Solanacearum Strain YY06 of Bacterial Wilt. Front. Microbiol. 2020, 11 (September). https://doi.org/10.3389/fmicb.2020.02110.Chand, K.; Cao, D.; Eldin, D.; Hussain, A.; Qadeer, A.; Zhu, K.; Nazim, M.; Mehdi, G.; Dong, S. Green Synthesis, Characterization and Photocatalytic Application of Silver Nanoparticles Synthesized by Various Plant Extracts. Arab. J. Chem. 2020, 13, 8248–8261. https://doi.org/10.1016/j.arabjc.2020.01.009.Chen, J.; Li, S.; Lou, J.; Wang, R.; Ding, W. Enhancement of the Antibacterial Activity of Silver Nanoparticles against Phytopathogenic Bacterium Ralstonia Solanacearum by Stabilization. J. Nanomater. 2016, 1–15. https://doi.org/10.1155/2016/7135852Sathiya, R.; Geetha, D.; Ramesh, P.; Aroulmoji, V. Synthesis and Characterization of Nano Silver for Different Temperatures and Their Antimicrobial Activity. Int. J. Adv. Sci. Eng. 2017, 4, 547–553. https://doi.org/10.29294/IJASE.4.2.2017.547-553.ezza, F.; Tichapondwa, S.; Chirwa, E. Fabrication of Monodispersed Copper Oxide Nanoparticles with Potential Application as Antimicrobial Agents. Sci. Rep. 2020, 10, 1–18. https://doi.org/10.1038/s41598-020-73497-z.Agudelo, W.; Montoya, Y.; Bustamante, J. Using a Non-Reducing Sugar in the Green Synthesis of Gold and Silver Nanoparticles by the Chemical Reduction Method. DYNA 2018, 85 (206), 69–78. https://doi.org/10.15446/dyna.v85n206.72136.Obregon, M.; Rodriguez, P.; Molares, J.; Salazar, M. Hospedantes de Ralstonia Solanacearumm En Plantaciones de Banano Platano En Colombia. Rev.Fac.Nal.Agr. Medellin 2008, 61, 4518–4526.Tans, J.; Huang, H.; Allen, C. Ralstonia Solanacearum Needs Motility for Invasive Virulence on Tomato. J. Bacteriol. 2001, 183, 3597–3605. https://doi.org/10.1128/JB.183.12.359Prior, P.; Ailloud, F.; Dalsing, B. L.; Remenant, B. Genomic and Proteomic Evidence Supporting the Division of the Plant Pathogen Ralstonia Solanacearum into Three Species. BioMed Cent. Genomics 2016, 17, 1–11. https://doi.org/10.1186/s12864-016-2413-zSafni, I.; Subandiyah, S.; Fegan, M. Ecology , Epidemiology and Disease Management of Ralstonia Syzygii in Indonesia. Front. Microbiol. 2018, 9, 1–11. https://doi.org/10.3389/fmicb.2018.00419Alvarez, E.; Pantoja, A.; Gañan, L.; Ceballos, G. Estado Del Arte y Opciones de Manejo de Moko y La Sigatoka Negra En America Latina y El Caribe. Centro Internacional de Agricultura Tropical CIAT. Cali - Colombia 2019, pp 1–40Bautista, L.; García, S.; Bolaños, M. Relationship between Soil Fertility and Plantain Nutrition in Cundinamarca (Colombia) with the Incidence of Two Bacterial Diseases. Rev. Colomb. ciencias hortícolas 2020, 14, 50–62Bareño, F. Cadena de Plátano: Dirección de Cadenas Agricolas y Forestales. Ministerio de Agricultura y Desarrollo Rural. 2021, pp 1–10Poueymiro, M.; Genin, S. Secreted Proteins from Ralstonia Solanacearum: A Hundred Tricks to Kill a Plant. Curr. Opin. Microbiol. 2009, 12, 44–52. https://doi.org/10.1016/j.mib.2008.11.008García, R.; Kerns, J.; Thiessen, L. Ralstonia Solanacearum Species Complex: A Quick Diagnostic Guide. Plant Heal. Prog. 2019, 20, 7–13. https://doi.org/10.1094/PHP-04-18-0015-DGLópez, M.; Morán, S.; Sagovia, J. Manejo Fitosanitario de La Marchitez Bacteriana ( Ralstonia Solanacearum E . F . Smith ) Del Tomate Lycopersicon Esculentum Mill, Universidad de el salvador, 2016Villalobos, V. Moko Del Plátano - Ficha Técnica/RSR2 /CNRF. Secr. Agric. - SENASICA 2023, 1, 1–8Instituto Colombiano Agropecuario (ICA). Resolución 3330 de 2013; Colombia, 2013; pp 1–5. https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3330_2013.htmSilva, G.; Figueiredo, L.; Faveri, M.; Cortelli, S.; Duarte, P. Mechanisms of Action of Systemic Antibiotics in Periodntal Tretament and Mechanisms of Bacterial Resistence to These Drugs. J Appl Oral Sci 2012, 20, 295–309Mikhailova, E. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11 (84), 1–26. https://doi.org/10.3390/jfb11040084Rahman, S.; Rahman, L.; Khalil, T.; Ali, N.; Zia, D.; Ali, M. Endophyte-Mediated Synthesis of Silver Nanoparticles and Their Biological Applications. Microbiol. Biotechnol. 2019, 103, 2551–2569. https://doi.org/10.1007/s00253-019-09661-xRawat, M.; Kumar, N.; Yadukrishnan, P. Mechanisms of Action of Nanoparticles in Living Systems. 2018, 220–236. https://doi.org/10.4018/978-1-5225-3126-5.ch014Kędziora, A.; Speruda, M.; Krzyżewska, E.; Rybka, J.; Łukowiak, A.; Bugla-Płoskońska, G. Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. Int. J. Mol. Sci. 2018, 19 (2), 1–17. https://doi.org/10.3390/ijms19020444Din, M. I.; Arshad, F.; Hussain, Z.; Mukhtar, M. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles : Catalytic , Antibacterial , Cytotoxicity , and Antioxidant Activities. 2017. https://doi.org/10.1186/s11671-017-2399-8Venis, R.; Basu, O. Silver and Zinc Oxide Nanoparticle Disinfection in Water Treatment Applications : Synergy and Water Quality Influences. H2Open J. 2021, 4, 114–128. https://doi.org/10.2166/h2oj.2021.098Xu, L.; Zhu, Z.; Sun, D. Bioinspired Nanomodification Strategies :Moving from Chemical Based Agrosynthems to Sustainable Agriculture. Am. Chem. Soc. - Nano 2021, 15, 12655–12686. https://doi.org/10.1021/acsnano.1c0394Reddy, J.; Kumar, S.; Bhamore, J. R.; Kim, K.; Dutta, T.; Vellingiri, K. Phytochemical-Assisted Synthetic Approaches for Silver Nanoparticles Antimicrobial Applications : A Review. Adv. Colloid Interface Sci. 2018, 256, 326–339. https://doi.org/10.1016/j.cis.2018.03.001Chandra, S.; Kumar, A. Recyclable Copper Nanoparticles: Efficient Catalyst for Selective Cyclization of Schiff Bases. J. Saudi Chem. Soc. 2016, 20, 367–372. https://doi.org/10.1016/j.jscs.2012.07.00Jamkhande, P.; Ghule, N.; Bamer, A.; Kalaskar, M. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 1–6. https://doi.org/10.1016/j.jddst.2019.101174.Sharma, P.; Goyal, D.; Baranwal, M.; Chudasama, B. ROS-Induced Cytotoxicity of Colloidal Copper Nanoparticles in MCF-7 Human Breast Cancer Cell Line: An in Vitro Study. J. Nanoparticle Res. 2020, 22, 1–11. https://doi.org/10.1007/s11051-020-04976-7Nakamoto, K. Infrared and Raman Spectral of Inorganic and Coordination Compounds. Theory and Aplication in Inorganic Chemistry, Sixth.; Wiley: New Jersey, 2009Larkin, P. Infrared and Raman Spectroscopy. Pinciples and Spectral Interpretation; Amsterdam, 2011. https://doi.org/10.3390/rel9100297Agarwal, U.; Atalla, R. Raman Spectroscopy; CRC Press: Wisconsin, 1995. https://doi.org/10.1007/978-3-642-74065-7Ohue, K.; Ohtake, K. Zetasizer Nano Series ZS DLS User Manual 0317- Malvern; United Kingdom, 2013; Vol. 67Dorofeev, G.; Streletskii, A.; Povstugar, I.; Protasov, A.; Elsukov, E. Determination of Nanoparticle Sizes by the X- Ray Diffraction Method. Colloid J. 2012, 74, 710–720. https://doi.org/10.1134/S1061933X12060051Farrukh, M. Atomic Absorption Spectroscopy. 2011, 50–10Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm the Same Protocol and Their Antibacterial Efficacy. Rsc Adv. 2014, 3974–3983. https://doi.org/10.1039/c3ra44507kMavani, K. Synthesis of Silver Nanoparticles by Using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2014, 2 (3), 1–5. https://doi.org/10.13140/2.1.3116.8648Frank, A.; Cathcart, N.; Maly, K.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. J. Chem. Educ. 2010, 87, 1098–1101. https://doi.org/10.1021/ed100166gContreras, B.; Diaz, V.; Guzman, E.; Sanhueza, I.; Godoy, S.; Torres, S.; Oyarzún, P. Slight PH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. J. Sensors 2018, 18, 2–9. https://doi.org/10.3390/s18072246Zabiszak, M.; Nowak, M.; Taras, K.; Kaczmarek, M. Carboxyl Groups of Citric Acid in the Process of Complex Formation with Bivalent and Trivalent Metal Ions in Biological Systems. J. Inorg. Biochem. 2018, 182, 37–47. https://doi.org/10.1016/j.jinorgbio.2018.01.01Yaguo, C.; Xianqing, P.; Wei, G.; Zhejuan, Z.; Nie, E.; Sun, Z. Large-Scale and Facile Synthesis of Silver Nanoparticles via a Microwave Method for a Conductive Pen. RSC Adv. 2017, 7, 34041–34048. https://doi.org/10.1039/C7RA05125EMendoza, M.; Avalos, M. Nanoestructuras y Su Caracterización Por Medio de Microscopía Electrónica de Transmisión. Mundo Nano. Rev. Interdiscip. en Nanociencias y Nanotecnología 2020, 13, 61–78. https://doi.org/10.22201/ceiich.24485691e.2020.25.69630Wu, S. Preparation of Fine Copper Powder Using Ascorbic Acid as Reducing Agent and Its Application in MLCC. Mater. Lett. 2007, 61, 1125–1129. https://doi.org/10.1016/j.matlet.2006.06.068Macan, A.; Gazivoda, T.; Raić-malić, S. Therapeutic Perspective of Vitamin C and Its Derivatives. J. Antioxidants 2019, 8, 7–36. https://doi.org/10.3390/antiox8080247Meghana, S.; Kabra, P.; Chakraborty, S.; Padmavathy, N. Understanding the Pathway of Antibacterial Activity of Copper Oxide Nanoparticles. R. Soc. Chem. 2015, 5, 12293–12299. https://doi.org/10.1039/c4ra12163eBarriere, C.; Piettre, K.; Latour, V.; Margeat, O.; Chaudret, B.; Fau, P. Ligand Effects on the Air Stability of Copper Nanoparticles Obtained from Organometallic Synthesis. J. Mater. Chem. 2012, 22, 2279–2285. https://doi.org/10.1039/c2jm14963j.Granata, G.; Yamaoka, T.; Pagnanelli, F.; Fuwa, A. Study of the Synthesis of Copper Nanoparticles : The Role of Capping and Kinetic towards Control of Particle Size and Stability. J. Nanoparticle Res. 2016, 18, 3–12. https://doi.org/10.1007/s11051-016-3438-6.Corrales, L.; Caycedo, L. Physicochemical Principles of Dyes Used in Microbiology. Nova 2019, 18, 73–100. https://doi.org/10.22490/24629448.370Suslow, T.; Schroth, M.; Isaka, M. Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. Phytopathology. 1982, p 917. https://doi.org/10.1094/phyto-77-917Bhumbla, U. Identification of Bacteria by Biochemical Reactions. In Workbook for Practical Microbiology; 2018; pp 73–81. https://doi.org/10.5005/jp/books/14206Franklin, C.; Wikler, M.; Alder, J.; Dudley, M.; Ferraro, M.; Hardy, D. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard. Clin. Lab. Stand. Inst. 2012, 32, 1–58. https://doi.org/M02-A11Weinstein, M.; Pate, J.; Burnham, C.; Campeau, S.; Conville, P.; Doern, C. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Clin. Lab. Stand. Inst. 2022, 11–61. https://doi.org/M07,11ThedPerea, J.; García, R.; Allade, R.; Carrillo, J.; León, J. Identificación de Razas y Biovares de Ralstonia Solanacearum Aisladas de Plantas de Tomate. Rev. Mex. Fitopatol. 2011, 29, 98–108Thomas, E.; Torres, J. Gelatin Hydrolysis Test Protocol. Am. Soc. Microbiol. 2016, 1–10Proyecto aprobado No. 45667, registrado en HERMESUniversidad Nacional de Colombia - Resolución de la UGI Facultad de Ciencias - Sede BogotáBibliotecariosConsejerosEstudiantesInvestigadoresMaestrosMedios de comunicaciónPersonal de apoyo escolarPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85527/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022349067.2023.pdf1022349067.2023.pdfMaestría en Ciencias - Químicaapplication/pdf6407701https://repositorio.unal.edu.co/bitstream/unal/85527/2/1022349067.2023.pdf5feedae4a6596fb6c480ab2beb46fc97MD52THUMBNAIL1022349067.2023.pdf.jpg1022349067.2023.pdf.jpgGenerated Thumbnailimage/jpeg4386https://repositorio.unal.edu.co/bitstream/unal/85527/3/1022349067.2023.pdf.jpg491ba3f5030d3276c9779a6255affda7MD53unal/85527oai:repositorio.unal.edu.co:unal/855272024-08-22 23:10:09.129Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=