Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales
En esta tesis se obtuvo un concentrado de monacita [fosfato de elementos de tierras raras (ETRs)] a partir de residuos de la minería aluvial de oro, el cual es uno de los minerales más críticos del mundo, por ser fuente de ETRs. Los ETRs son de gran importancia en el desarrollo de materiales tecnoló...
- Autores:
-
Echeverry Vargas, Luver de Jesús
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83360
- Palabra clave:
- 660 - Ingeniería química::669 - Metalurgia
Tierras raras
Preparación mecánica de minerales
Lixiviación
Dinámica molecular
Elementos de tierras raras
Monacita
Hidrometalurgia
Extracción con solventes
Solventes eutécticos profundos
Simulación dinámica molecular
Valorización de residuos
Valorización de residuos
Monazite
Hydrometallurgy
Solvent extraction
Deep eutectic solvents
Molecular dynamic simulation
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_18d91264470abbeed355f796b8d8ba3b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83360 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
dc.title.translated.eng.fl_str_mv |
Extraction of rare earth elements from monazite by deep eutectic solvents and comparison with conventional organic solvents |
title |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
spellingShingle |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales 660 - Ingeniería química::669 - Metalurgia Tierras raras Preparación mecánica de minerales Lixiviación Dinámica molecular Elementos de tierras raras Monacita Hidrometalurgia Extracción con solventes Solventes eutécticos profundos Simulación dinámica molecular Valorización de residuos Valorización de residuos Monazite Hydrometallurgy Solvent extraction Deep eutectic solvents Molecular dynamic simulation |
title_short |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
title_full |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
title_fullStr |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
title_full_unstemmed |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
title_sort |
Extracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionales |
dc.creator.fl_str_mv |
Echeverry Vargas, Luver de Jesús |
dc.contributor.advisor.none.fl_str_mv |
Ocampo Carmona, Luz Marina Rojas Reyes, Néstor Ricardo |
dc.contributor.author.none.fl_str_mv |
Echeverry Vargas, Luver de Jesús |
dc.contributor.researchgroup.spa.fl_str_mv |
Ciencia y Tecnología de Materiales |
dc.contributor.orcid.spa.fl_str_mv |
0000-0001-7365-4361 |
dc.subject.ddc.spa.fl_str_mv |
660 - Ingeniería química::669 - Metalurgia |
topic |
660 - Ingeniería química::669 - Metalurgia Tierras raras Preparación mecánica de minerales Lixiviación Dinámica molecular Elementos de tierras raras Monacita Hidrometalurgia Extracción con solventes Solventes eutécticos profundos Simulación dinámica molecular Valorización de residuos Valorización de residuos Monazite Hydrometallurgy Solvent extraction Deep eutectic solvents Molecular dynamic simulation |
dc.subject.lemb.none.fl_str_mv |
Tierras raras Preparación mecánica de minerales Lixiviación Dinámica molecular |
dc.subject.proposal.spa.fl_str_mv |
Elementos de tierras raras Monacita Hidrometalurgia Extracción con solventes Solventes eutécticos profundos Simulación dinámica molecular Valorización de residuos |
dc.subject.proposal.eng.fl_str_mv |
Valorización de residuos Monazite Hydrometallurgy Solvent extraction Deep eutectic solvents Molecular dynamic simulation |
description |
En esta tesis se obtuvo un concentrado de monacita [fosfato de elementos de tierras raras (ETRs)] a partir de residuos de la minería aluvial de oro, el cual es uno de los minerales más críticos del mundo, por ser fuente de ETRs. Los ETRs son de gran importancia en el desarrollo de materiales tecnológicos. En esta tesis, el concentrado de monacita fue sometido a un proceso de desfosforación con hidróxido de sodio e hidróxido de potasio. Se investigo diferentes condiciones de lixiviación con HCl y H2SO4, que permitirán la máxima extracción de cerio, lantano y neodimio, se determinó que la mayor extracción de estos elementos se logra con H2SO4. Se estableció que la adición de 10 % (v/v) de H2O2 aumenta la disolución de tierras raras hasta en un 93 %. Los ETRs se pueden recuperar hasta valores de 100 % aproximadamente, mediante precipitación con ácido oxálico. Se investigó la extracción de Ce, La y Nd utilizando D2EHP y Cyanex 572 diluidos en n-heptano como extractantes. En todas las condiciones experimentales evaluadas el D2EHP presentó mejores tasas de extracción de los ETRs. Además, se sintetizaron dieciocho solventes eutécticos profundos (DES) de los cuales ocho presentaron capacidad de extracción de Ce, La y Nd y uno de los DES alcanzó extracciones superiores al 90 % de estos elementos. Para tener un mayor entendimiento de la estructura del DES de mayor extracción y su interacción con una solución acuosa acida de lantano, se realizaron una serie de simulaciones de dinámica molecular de los sistemas involucrados y se comprobaron sus propiedades estructurales calculando las funciones de distribución radial de las interacciones principales. (tomado de la fuente) |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-11-21 |
dc.date.accessioned.none.fl_str_mv |
2023-02-07T17:58:24Z |
dc.date.available.none.fl_str_mv |
2023-02-07T17:58:24Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83360 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83360 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Abaka-Wood, G. B., Addai-Mensah, J., & Skinner, W. (2016). Review of Flotation and Physical Separation of Rare Earth Element Minerals. 4th UMaT Biennial International Mining and Mineral Conference , 4(August), 55–62. Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R., & Tambyrajah, V. (2002). International Patent WO 2002026381. Abbott, A. P., El Ttaib, K., Ryder, K. S., & Smith, E. L. (2008). Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 86(4), 234–240. https://doi.org/10.1179/174591908X327581 Abbott, Andrew P., Al-Barzinjy, A. A., Abbott, P. D., Frisch, G., Harris, R. C., Hartley, J., & Ryder, K. S. (2014). Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Physical Chemistry Chemical Physics, 16(19), 9047–9055. https://doi.org/10.1039/c4cp00057a Abbott, Andrew P., Barron, J. C., Frisch, G., Ryder, K. S., & Silva, A. F. (2011). The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 56(14), 5272–5279. https://doi.org/10.1016/j.electacta.2011.02.095 Abbott, Andrew P., Barron, J. C., Ryder, K. S., & Wilson, D. (2007). Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry - A European Journal, 13(22), 6495–6501. https://doi.org/10.1002/chem.200601738 Abbott, Andrew P., Bell, T. J., Handa, S., & Stoddart, B. (2006). Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chemistry, 8(9), 784–786. https://doi.org/10.1039/b605258d Abbott, Andrew P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142–9147. https://doi.org/10.1021/ja048266j Abbott, Andrew P., Capper, G., Davies, D. L., McKenzie, K. J., & Obi, S. U. (2006). Solubility of metal oxides in deep eutectic solvents based on choline chloride. Journal of Chemical and Engineering Data, 51(4), 1280–1282. https://doi.org/10.1021/je060038c Abbott, Andrew P., Capper, G., Davies, D. L., Munro, H. L., Rasheed, R. K., & Tambyrajah, V. (2001). Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 1(19), 2010–2011. https://doi.org/10.1039/b106357j Abbott, Andrew P., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Ionic liquid analogues formed from hydrated metal salts. Chemistry - A European Journal, 10(15), 3769–3774. https://doi.org/10.1002/chem.200400127 Abbott, Andrew P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2002). International Patent WO 2002026701. Abbott, Andrew P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 9(1), 70–71. https://doi.org/10.1039/b210714g Abbott, Andrew P., Collins, J., Dalrymple, I., Harris, R. C., Mistry, R., Qiu, F., Scheirer, J., & Wise, W. R. (2009). Processing of electric arc furnace dust using deep eutectic solvents. Australian Journal of Chemistry, 62(4), 341–347. https://doi.org/10.1071/CH08476 Abbott, Andrew P., Cullis, P. M., Gibson, M. J., Harris, R. C., & Raven, E. (2007). Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry, 9(8), 868–872. https://doi.org/10.1039/b702833d Abbott, Andrew P., Harris, R. C., Holyoak, F., Frisch, G., Hartley, J., & Jenkin, G. R. T. (2015). Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chemistry, 17(4), 2172–2179. https://doi.org/10.1039/c4gc02246g Abbott, Andrew P., Ttaib, K. El, Frisch, G., Ryder, K. S., & Weston, D. (2012). The electrodeposition of silver composites using deep eutectic solvents. Physical Chemistry Chemical Physics, 14(7), 2443–2449. https://doi.org/10.1039/c2cp23712a Abeidu, A. M. (1972). The separation of monazite from zircon by flotation. Journal of The Less-Common Metals, 29(2), 113–119. https://doi.org/10.1016/0022-5088(72)90181-6 Abood, H. M. A., Abbott, A. P., Ballantyne, A. D., & Ryder, K. S. (2011). Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4- and comparison with imidazolium based systems. Chemical Communications, 47(12), 3523–3525. https://doi.org/10.1039/c0cc04989a Acharya, S., Mishra, S., & Misra, P. K. (2015). Studies on extraction and separation of La(III) with DEHPA and PC88A in petrofin. Hydrometallurgy, 156, 12–16. https://doi.org/10.1016/j.hydromet.2015.05.005 Ajiz, M. A., & Jennings, A. (1984). A robust incomplete choleski-conjugate. International Journal for Numerical Methods in Engineering, 20, 949–966. Alder, B. J., Hoover, W. G., & Young, D. A. (1968). Studies in molecular dynamics. V. High-density equation of state and entropy for hard disks and spheres. In The Journal of Chemical Physics (Vol. 49, Issue 8, pp. 3688–3696). https://doi.org/10.1063/1.1670653 Alguacil, F. J. (2017). Non-dispersive extraction of gold(III) with ionic liquid Cyphos IL101. Separation and Purification Technology, 179, 72–76. https://doi.org/10.1016/j.seppur.2017.01.065 Ali, A. M. I., El-Nadi, Y. A., Daoud, J. A., & Aly, H. F. (2007). Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. International Journal of Mineral Processing, 81(4), 217–223. https://doi.org/10.1016/j.minpro.2006.06.006 Alizadeh, S., Abdollahy, M., Khodadadi Darban, A., & Mohseni, M. (2022). Theoretical and experimental comparison of rare earths extraction by [P6,6,6,1,4][Decanoate] bifunctional ionic liquid and D2EHPA acidic extractant. Minerals Engineering, 180(February), 107473. https://doi.org/10.1016/j.mineng.2022.107473 Allouche, A. (2012). Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc Alomar, M. K., Hayyan, M., Alsaadi, M. A., Akib, S., Hayyan, A., & Hashim, M. A. (2016). Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 215, 98–103. https://doi.org/10.1016/j.molliq.2015.11.032 Auhl, R., Everaers, R., Grest, G. S., Kremer, K., & Plimpton, S. J. (2003). Equilibration of long chain polymer melts in computer simulations. Journal of Chemical Physics, 119(24), 12718–12728. https://doi.org/10.1063/1.1628670 Barghusen, J. J., & Smutz, M. (1957). Processing of monazite sands. Industrial and Engineering Chemistry Research, 50, 1754–1755. Bautista, R.G. (1988). Industrial Extraction and Purification Techniques for Rare Earths. Rare Earths in Alaska - Proceedings of Office of the Governor’s Alaska Science and Engineering Advisory Commission Symposium, Held Aug. 17-18, 1988, in Fairbanks, Alaska, 47–58. Becker, O. M., Mackerel, A. D., Roux, B., & Watanabe, M. (2001). Computational methods. In Computational Biochemistry and Biophysics (pp. 7–38). http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037 Boyd, G. E., Schubert, J., & Adamson, A. W. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. I. Ion-exchange Equilibria. Journal of the American Chemical Society, 69(11), 281–2819. Chang, J., Yao, Y., Xia, Y., Liu, L., & Zhang, Y. (2022). Preparation of 5-methyl-3,5-dipropyl-2-pyrazoline catalyzed by chloroaluminate ionic liquids. Journal of Molecular Structure, 1256, 132539. https://doi.org/10.1016/j.molstruc.2022.132539 Cheng, Jianjun, & Deming, T. J. (2011). synthesis of polypeptides by ROP of NCAs. Peptide-Based Materials, 310(June 2011), 1–26. https://doi.org/10.1007/128 Cheng, T. W. (2000). Point of zero charge of monazite and xenotime. Minerals Engineering, 13(1), 105–109. https://doi.org/10.1016/S0892-6875(99)00153-3 Chiu, S. W., Jakobsson, E., Subramaniam, S., & Scott, H. L. (1999). Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophysical Journal, 77(5), 2462–2469. https://doi.org/10.1016/S0006-3495(99)77082-7 Chu, L., Hou, X., Song, X., & Zhao, X. (2022). Toxicological effects of different ionic liquids on growth, photosynthetic pigments, oxidative stress, and ultrastructure of Nostoc punctiforme and the combined toxicity with heavy metals. Chemosphere, 298(February), 134273. https://doi.org/10.1016/j.chemosphere.2022.134273 Ciro, E., Alzate, A., López, E., Serna, C., & Gonzalez, O. (2019). Neodymium recovery from scrap magnet using ammonium persulfate. Hydrometallurgy, 186(March), 226–234. https://doi.org/10.1016/j.hydromet.2019.04.016 Costis, S., Mueller, K. K., Coudert, L., Neculita, C. M., Reynier, N., & Blais, J. F. (2021). Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. Journal of Geochemical Exploration, 221(November 2020), 106699. https://doi.org/10.1016/j.gexplo.2020.106699 Dai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether. J. Chem. Soc.Dalt. Trans, 8(3), 1201. Dai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether. J. Chem. Soc.Dalt. Trans, 8(3), 1201. Davis, S. (2015). Deep Eutectic Solvents Derived From Inorganic Salts (Issue December). University of Leicester. Demol, J., Ho, E., Soldenhoff, K., & Senanayake, G. (2019). The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: A review. Hydrometallurgy, 188(December 2018), 123–139. https://doi.org/10.1016/j.hydromet.2019.05.015 Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J., & Jorgensen, W. L. (2017). 1.14∗CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. Journal of Physical Chemistry B, 121(15), 3864–3870. https://doi.org/10.1021/acs.jpcb.7b00272 Dong, Q., Muzny, C. D., Kazakov, A., Diky, V., Magee, J. W., Widegren, J. A., Chirico, R. D., Marsh, K. N., & Frenkel, M. (2007). ILThermo: A free-access web database for thermodynamic properties of ionic liquids. In Journal of Chemical and Engineering Data (Vol. 52, Issue 4, pp. 1151–1159). https://doi.org/10.1021/je700171f Duan, Y., Zhan, G., Chang, F., Shi, S., Zeng, S., Dong, H., Abildskov, J., Kjøbsted Huusom, J., & Zhang, X. (2022). Process simulation and evaluation for NH3/CO2 separation from melamine tail gas with protic ionic liquids. Separation and Purification Technology, 288(February), 120680. https://doi.org/10.1016/j.seppur.2022.120680 El-Nadi, Y. A., Daoud, J. A., & Aly, H. F. (2005). Modified leaching and extraction of uranium from hydrous oxide cake of Egyptian monazite. International Journal of Mineral Processing, 76(1–2), 101–110. https://doi.org/10.1016/j.minpro.2004.12.005 Ferron, C. J., Bulatovic, S. M., & Salter, R. S. (1991). Beneficiation of Rare Earth Oxide Minerals. Materials Science Forum, 70–72, 251–270. https://doi.org/10.4028/www.scientific.net/msf.70-72.251 Fuerstenau, M.C.; Jameson, G.; Yoon, R. (2007). Froth Flotation: A Century of Innovation. http://books.google.com/books?hl=pt-BR&lr=&id=8zpjAhBViC0C&pgis=1 Gómez, E., Cojocaru, P., Magagnin, L., & Valles, E. (2011). Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry, 658(1–2), 18–24. https://doi.org/10.1016/j.jelechem.2011.04.015 Gupta, Bina, Malik, P., & Deep, A. (2003). Solvent extraction and separation of tervalent Lanthanides and Yttrium using Cyanex 923. Solvent Extraction and Ion Exchange, 21(2), 239–258. https://doi.org/10.1081/SEI-120018948 Han, X., & Armstrong, D. W. (2005). Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Organic Letters, 7(19), 4205–4208. https://doi.org/10.1021/ol051637w Hasegawa, Y., Yamamuro, M., Wada, Y., Kanehisa, N., & Kai, Y. (2003). Luminescent Polymer Containing the Eu ( III ) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency. 3(Iii), 1697–1702. Hefiny, N. E., & Daoud, J. A. (2004). Extraction and separation of thorium(IV) and praseodymium (III) with CYANEX 301 and CYANEX 302 from nitrate medium. Journal of Radioanalytical and Nuclear Chemistry, 261, 357–363. https://doi.org/10.1023/B Hoover, W. G. (1986). Constant-pressure equations of motion. Physical Review A, 34(3), 2499–2500. https://doi.org/10.1103/PhysRevA.34.2499 Huang, J., Chen, M., Chen, H., Chen, S., & Sun, Q. (2014). Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Management, 34(2), 483–488. https://doi.org/10.1016/j.wasman.2013.10.027 Inakollu, V. S., Geerke, D. P., Rowley, C. N., & Yu, H. (2020). Polarisable force fields: what do they add in biomolecular simulations? Current Opinion in Structural Biology, 61, 182–190. https://doi.org/10.1016/j.sbi.2019.12.012 Jordens, A., Cheng, Y. P., & Waters, K. E. (2013a). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017 Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760 Jorjani, E., Bagherieh, A. H., & Chelgani, S. C. (2011). Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions. Korean Journal of Chemical Engineering, 28(2), 557–562. https://doi.org/10.1007/s11814-010-0383-4 Ketelle, B. H., & Boyd, G. E. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. IV. The Separation of the Yttrium Group Rare Earths. Journal of the American Chemical Society, 69(11), 2800–2812. Kim, E., & Osseo-Asare, K. (2012). Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh-pH diagrams for the systems Th-, Ce-, La-, Nd- (PO 4)-(SO 4)-H 2O at 25 °c. Hydrometallurgy, 113–114, 67–78. https://doi.org/10.1016/j.hydromet.2011.12.007 Kleman, M., & Lavrentovich, O. D. (2004). Soft Matter Physics: An Introduction. In Soft Matter Physics: An Introduction. https://doi.org/10.1007/b97416 Kuzmin, V. I., Pashkov, G. L., Lomaev, V. G., Voskresenskaya, E. N., & Kuzmina, V. N. (2012a). Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129–130, 1–6. https://doi.org/10.1016/j.hydromet.2012.06.011 Li, D., Zuo, Y., & Meng, S. (2004). Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. Journal of Alloys and Compounds, 374(1–2), 431–433. https://doi.org/10.1016/j.jallcom.2003.11.055 Luo, H., Dai, S., Bonnesen, P. V., Buchanan, A. C., Holbrey, J. D., Bridges, N. J., & Rogers, R. D. (2004). Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert.octylbenzo-crown-6) in ionic liquids. Analytical Chemistry, 76(11), 3078–3083. https://doi.org/10.1021/ac049949k McNeice, J., Kim, R., & Ghahreman, A. (2019). Oxidative precipitation of cerium in acidic chloride solutions: part I – Fundamentals and thermodynamics. Hydrometallurgy, 184(December 2018), 140–150. https://doi.org/10.1016/j.hydromet.2018.12.018 Narajanan, N. S., Thulasidoss, S., Ramachandran, T. V., Swaminathan, T. V., & Prasad, K. R. (1991). Processing of Monazite at the Rare Earths Division, Udyogamandal. Rare Earths-Applications and Technology, 30, 45–56. https://doi.org/10.4028/www.scientific.net/msf.30.45 Orris, G. J., & Grauch, R. I. (2002). Rare earth element mines, deposits, and occurrences. In Geological Survey Open-File Report 2002–0189 (Issue January 2002). Pan, X., Li, L., Huang, H. H., Wu, J., Zhou, X., Yan, X., Jia, J., Yue, T., Chu, Y. H., & Yan, B. (2022). Biosafety-inspired structural optimization of triazolium ionic liquids based on structure-toxicity relationships. Journal of Hazardous Materials, 424(PC), 127521. https://doi.org/10.1016/j.jhazmat.2021.127521 Parks, M. L., Lehoucq, R. B., Plimpton, S. J., & Silling, S. A. (2008). Implementing peridynamics within a molecular dynamics code. Computer Physics Communications, 179(11), 777–783. https://doi.org/10.1016/j.cpc.2008.06.011 Plimpton, S. (1993). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(6), 1–31. https://doi.org/10.1006/jcph.1995.1039 Preston, J. S., Cole, P. M., Du Preez, A. C., Fox, M. H., & Fleming, A. M. (1996). The recovery of rare earth oxides from a phosphoric acid by-product. Part 2: The preparation of high-purity cerium dioxide and recovery of a heavy rare earth oxide concentrate. Hydrometallurgy, 41(1), 21–44. https://doi.org/10.1016/0304-386X(95)00067-Q Shahbaz, K., Mjalli, F. S., Hashim, M. A., & AlNashef, I. M. (2011). Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy and Fuels, 25(6), 2671–2678. https://doi.org/10.1021/ef2004943 Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162p Sun, X. Q., Peng, B., Chen, J., Li, D. Q., & Luo, F. (2008). An effective method for enhancing metal-ions’ selectivity of ionic liquid-based extraction system: Adding water-soluble complexing agent. Talanta, 74(4), 1071–1074. https://doi.org/10.1016/j.talanta.2007.07.031 Tait, B. K. (1992). The extraction of some base metal ions by cyanex 301, cyanex 302 and their binary extractant mixtures with aliquat 336. Solvent Extraction and Ion Exchange, 10(5), 799–809. https://doi.org/10.1080/07366299208918136 Tunsu, C., Menard, Y., Eriksen, D. Ø., Ekberg, C., & Petranikova, M. (2019). Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. Journal of Cleaner Production, 218, 425–437. https://doi.org/10.1016/j.jclepro.2019.01.312 Xu, Y., Liu, H., Meng, Z., Cui, J., Zhao, W., & Li, L. (2012). Decomposition of bastnasite and monazite mixed rare earth minerals calcined by alkali liquid. Journal of Rare Earths, 30(2), 155–158. https://doi.org/10.1016/S1002-0721(12)60014-3 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 210 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Bagre (Antioquia) |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83360/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83360/4/71361814.2022pdf.pdf https://repositorio.unal.edu.co/bitstream/unal/83360/5/71361814.2022pdf.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a a95c49f91840b0e95ed8ea85eda1e381 5788333e8a0de215169168599616a505 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089695862194176 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ocampo Carmona, Luz Marina2814d5b689cd61103eab38d6b7ac6721Rojas Reyes, Néstor Ricardo8b92cc66f06f7490f48736bf02b9e353600Echeverry Vargas, Luver de Jesús939c915bb86b2077f5b1267f0ff99f11Ciencia y Tecnología de Materiales0000-0001-7365-43612023-02-07T17:58:24Z2023-02-07T17:58:24Z2022-11-21https://repositorio.unal.edu.co/handle/unal/83360Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/En esta tesis se obtuvo un concentrado de monacita [fosfato de elementos de tierras raras (ETRs)] a partir de residuos de la minería aluvial de oro, el cual es uno de los minerales más críticos del mundo, por ser fuente de ETRs. Los ETRs son de gran importancia en el desarrollo de materiales tecnológicos. En esta tesis, el concentrado de monacita fue sometido a un proceso de desfosforación con hidróxido de sodio e hidróxido de potasio. Se investigo diferentes condiciones de lixiviación con HCl y H2SO4, que permitirán la máxima extracción de cerio, lantano y neodimio, se determinó que la mayor extracción de estos elementos se logra con H2SO4. Se estableció que la adición de 10 % (v/v) de H2O2 aumenta la disolución de tierras raras hasta en un 93 %. Los ETRs se pueden recuperar hasta valores de 100 % aproximadamente, mediante precipitación con ácido oxálico. Se investigó la extracción de Ce, La y Nd utilizando D2EHP y Cyanex 572 diluidos en n-heptano como extractantes. En todas las condiciones experimentales evaluadas el D2EHP presentó mejores tasas de extracción de los ETRs. Además, se sintetizaron dieciocho solventes eutécticos profundos (DES) de los cuales ocho presentaron capacidad de extracción de Ce, La y Nd y uno de los DES alcanzó extracciones superiores al 90 % de estos elementos. Para tener un mayor entendimiento de la estructura del DES de mayor extracción y su interacción con una solución acuosa acida de lantano, se realizaron una serie de simulaciones de dinámica molecular de los sistemas involucrados y se comprobaron sus propiedades estructurales calculando las funciones de distribución radial de las interacciones principales. (tomado de la fuente)Monazite is a rare earth element phosphate (REE) and is one of the most critical minerals in the world as it serves as a major source of REE. In this thesis, a monazite concentrate was obtained from alluvial gold mining tailings. Subsequently, the monazite concentrate was subjected to a dephosphorization process. Different leaching conditions were investigated with HCl and H2SO4, which will allow the maximum extraction of cerium, lanthanum, and neodymium, it was found that the highest extraction of these elements is achieved with H2SO4. The addition of 10 % (v/v) H2O2 was found to increase rare earth dissolution by up to 93 %. ETRs can be recovered up to ~ 100 % by precipitation with oxalic acid. The extraction of Ce, La and Nd was investigated using D2EHP and Cyanex 572 diluted in nheptane as extractants, in all experimental conditions evaluated D2EHP presented better extraction rates of the ETRs. In addition, eighteen deep eutectic solvents (DES) were synthesized of which eight presented extraction capacity of Ce, La and Nd and one reaching extractions higher than 90 % of these elements. To have a better understanding of the structure of the most extractable DES and their interaction with an acidic aqueous lanthanum solution, a series of molecular dynamics simulations of the systems involved were performed and their structural properties were tested by calculating the radial distribution functions of the main interactions.DoctoradoDoctor en Ingeniería – Ciencia y Tecnología de MaterialesMetalurgia extractivaValorización de residuosQuímica verdeÁrea Curricular de Materiales y Nanotecnologíaxx, 210 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería química::669 - MetalurgiaTierras rarasPreparación mecánica de mineralesLixiviaciónDinámica molecularElementos de tierras rarasMonacitaHidrometalurgiaExtracción con solventesSolventes eutécticos profundosSimulación dinámica molecularValorización de residuosValorización de residuosMonaziteHydrometallurgySolvent extractionDeep eutectic solventsMolecular dynamic simulationExtracción de elementos de tierras raras a partir de monacita mediante solventes eutécticos profundos y su comparación con solventes orgánicos convencionalesExtraction of rare earth elements from monazite by deep eutectic solvents and comparison with conventional organic solventsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBagre (Antioquia)LaReferenciaAbaka-Wood, G. B., Addai-Mensah, J., & Skinner, W. (2016). Review of Flotation and Physical Separation of Rare Earth Element Minerals. 4th UMaT Biennial International Mining and Mineral Conference , 4(August), 55–62.Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R., & Tambyrajah, V. (2002). International Patent WO 2002026381.Abbott, A. P., El Ttaib, K., Ryder, K. S., & Smith, E. L. (2008). Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 86(4), 234–240. https://doi.org/10.1179/174591908X327581Abbott, Andrew P., Al-Barzinjy, A. A., Abbott, P. D., Frisch, G., Harris, R. C., Hartley, J., & Ryder, K. S. (2014). Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Physical Chemistry Chemical Physics, 16(19), 9047–9055. https://doi.org/10.1039/c4cp00057aAbbott, Andrew P., Barron, J. C., Frisch, G., Ryder, K. S., & Silva, A. F. (2011). The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 56(14), 5272–5279. https://doi.org/10.1016/j.electacta.2011.02.095Abbott, Andrew P., Barron, J. C., Ryder, K. S., & Wilson, D. (2007). Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry - A European Journal, 13(22), 6495–6501. https://doi.org/10.1002/chem.200601738Abbott, Andrew P., Bell, T. J., Handa, S., & Stoddart, B. (2006). Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chemistry, 8(9), 784–786. https://doi.org/10.1039/b605258dAbbott, Andrew P., Boothby, D., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Deep Eutectic Solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. Journal of the American Chemical Society, 126(29), 9142–9147. https://doi.org/10.1021/ja048266jAbbott, Andrew P., Capper, G., Davies, D. L., McKenzie, K. J., & Obi, S. U. (2006). Solubility of metal oxides in deep eutectic solvents based on choline chloride. Journal of Chemical and Engineering Data, 51(4), 1280–1282. https://doi.org/10.1021/je060038cAbbott, Andrew P., Capper, G., Davies, D. L., Munro, H. L., Rasheed, R. K., & Tambyrajah, V. (2001). Preparation of novel, moisture-stable, lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 1(19), 2010–2011. https://doi.org/10.1039/b106357jAbbott, Andrew P., Capper, G., Davies, D. L., & Rasheed, R. K. (2004). Ionic liquid analogues formed from hydrated metal salts. Chemistry - A European Journal, 10(15), 3769–3774. https://doi.org/10.1002/chem.200400127Abbott, Andrew P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2002). International Patent WO 2002026701.Abbott, Andrew P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2003). Novel solvent properties of choline chloride/urea mixtures. Chemical Communications, 9(1), 70–71. https://doi.org/10.1039/b210714gAbbott, Andrew P., Collins, J., Dalrymple, I., Harris, R. C., Mistry, R., Qiu, F., Scheirer, J., & Wise, W. R. (2009). Processing of electric arc furnace dust using deep eutectic solvents. Australian Journal of Chemistry, 62(4), 341–347. https://doi.org/10.1071/CH08476Abbott, Andrew P., Cullis, P. M., Gibson, M. J., Harris, R. C., & Raven, E. (2007). Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry, 9(8), 868–872. https://doi.org/10.1039/b702833dAbbott, Andrew P., Harris, R. C., Holyoak, F., Frisch, G., Hartley, J., & Jenkin, G. R. T. (2015). Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chemistry, 17(4), 2172–2179. https://doi.org/10.1039/c4gc02246gAbbott, Andrew P., Ttaib, K. El, Frisch, G., Ryder, K. S., & Weston, D. (2012). The electrodeposition of silver composites using deep eutectic solvents. Physical Chemistry Chemical Physics, 14(7), 2443–2449. https://doi.org/10.1039/c2cp23712aAbeidu, A. M. (1972). The separation of monazite from zircon by flotation. Journal of The Less-Common Metals, 29(2), 113–119. https://doi.org/10.1016/0022-5088(72)90181-6Abood, H. M. A., Abbott, A. P., Ballantyne, A. D., & Ryder, K. S. (2011). Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4- and comparison with imidazolium based systems. Chemical Communications, 47(12), 3523–3525. https://doi.org/10.1039/c0cc04989aAcharya, S., Mishra, S., & Misra, P. K. (2015). Studies on extraction and separation of La(III) with DEHPA and PC88A in petrofin. Hydrometallurgy, 156, 12–16. https://doi.org/10.1016/j.hydromet.2015.05.005Ajiz, M. A., & Jennings, A. (1984). A robust incomplete choleski-conjugate. International Journal for Numerical Methods in Engineering, 20, 949–966.Alder, B. J., Hoover, W. G., & Young, D. A. (1968). Studies in molecular dynamics. V. High-density equation of state and entropy for hard disks and spheres. In The Journal of Chemical Physics (Vol. 49, Issue 8, pp. 3688–3696). https://doi.org/10.1063/1.1670653Alguacil, F. J. (2017). Non-dispersive extraction of gold(III) with ionic liquid Cyphos IL101. Separation and Purification Technology, 179, 72–76. https://doi.org/10.1016/j.seppur.2017.01.065Ali, A. M. I., El-Nadi, Y. A., Daoud, J. A., & Aly, H. F. (2007). Recovery of thorium (IV) from leached monazite solutions using counter-current extraction. International Journal of Mineral Processing, 81(4), 217–223. https://doi.org/10.1016/j.minpro.2006.06.006Alizadeh, S., Abdollahy, M., Khodadadi Darban, A., & Mohseni, M. (2022). Theoretical and experimental comparison of rare earths extraction by [P6,6,6,1,4][Decanoate] bifunctional ionic liquid and D2EHPA acidic extractant. Minerals Engineering, 180(February), 107473. https://doi.org/10.1016/j.mineng.2022.107473Allouche, A. (2012). Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jccAlomar, M. K., Hayyan, M., Alsaadi, M. A., Akib, S., Hayyan, A., & Hashim, M. A. (2016). Glycerol-based deep eutectic solvents: Physical properties. Journal of Molecular Liquids, 215, 98–103. https://doi.org/10.1016/j.molliq.2015.11.032Auhl, R., Everaers, R., Grest, G. S., Kremer, K., & Plimpton, S. J. (2003). Equilibration of long chain polymer melts in computer simulations. Journal of Chemical Physics, 119(24), 12718–12728. https://doi.org/10.1063/1.1628670Barghusen, J. J., & Smutz, M. (1957). Processing of monazite sands. Industrial and Engineering Chemistry Research, 50, 1754–1755.Bautista, R.G. (1988). Industrial Extraction and Purification Techniques for Rare Earths. Rare Earths in Alaska - Proceedings of Office of the Governor’s Alaska Science and Engineering Advisory Commission Symposium, Held Aug. 17-18, 1988, in Fairbanks, Alaska, 47–58.Becker, O. M., Mackerel, A. D., Roux, B., & Watanabe, M. (2001). Computational methods. In Computational Biochemistry and Biophysics (pp. 7–38). http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdfBinnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51, 1–22. https://doi.org/10.1016/j.jclepro.2012.12.037Boyd, G. E., Schubert, J., & Adamson, A. W. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. I. Ion-exchange Equilibria. Journal of the American Chemical Society, 69(11), 281–2819.Chang, J., Yao, Y., Xia, Y., Liu, L., & Zhang, Y. (2022). Preparation of 5-methyl-3,5-dipropyl-2-pyrazoline catalyzed by chloroaluminate ionic liquids. Journal of Molecular Structure, 1256, 132539. https://doi.org/10.1016/j.molstruc.2022.132539Cheng, Jianjun, & Deming, T. J. (2011). synthesis of polypeptides by ROP of NCAs. Peptide-Based Materials, 310(June 2011), 1–26. https://doi.org/10.1007/128Cheng, T. W. (2000). Point of zero charge of monazite and xenotime. Minerals Engineering, 13(1), 105–109. https://doi.org/10.1016/S0892-6875(99)00153-3Chiu, S. W., Jakobsson, E., Subramaniam, S., & Scott, H. L. (1999). Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. Biophysical Journal, 77(5), 2462–2469. https://doi.org/10.1016/S0006-3495(99)77082-7Chu, L., Hou, X., Song, X., & Zhao, X. (2022). Toxicological effects of different ionic liquids on growth, photosynthetic pigments, oxidative stress, and ultrastructure of Nostoc punctiforme and the combined toxicity with heavy metals. Chemosphere, 298(February), 134273. https://doi.org/10.1016/j.chemosphere.2022.134273Ciro, E., Alzate, A., López, E., Serna, C., & Gonzalez, O. (2019). Neodymium recovery from scrap magnet using ammonium persulfate. Hydrometallurgy, 186(March), 226–234. https://doi.org/10.1016/j.hydromet.2019.04.016Costis, S., Mueller, K. K., Coudert, L., Neculita, C. M., Reynier, N., & Blais, J. F. (2021). Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. Journal of Geochemical Exploration, 221(November 2020), 106699. https://doi.org/10.1016/j.gexplo.2020.106699Dai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether. J. Chem. Soc.Dalt. Trans, 8(3), 1201.Dai, S., Ju, Y. H., & Barnes, C. E. (1999). Solvent extraction of strontium nitrate by a crown ether. J. Chem. Soc.Dalt. Trans, 8(3), 1201.Davis, S. (2015). Deep Eutectic Solvents Derived From Inorganic Salts (Issue December). University of Leicester.Demol, J., Ho, E., Soldenhoff, K., & Senanayake, G. (2019). The sulfuric acid bake and leach route for processing of rare earth ores and concentrates: A review. Hydrometallurgy, 188(December 2018), 123–139. https://doi.org/10.1016/j.hydromet.2019.05.015Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J., & Jorgensen, W. L. (2017). 1.14∗CM1A-LBCC: Localized Bond-Charge Corrected CM1A Charges for Condensed-Phase Simulations. Journal of Physical Chemistry B, 121(15), 3864–3870. https://doi.org/10.1021/acs.jpcb.7b00272Dong, Q., Muzny, C. D., Kazakov, A., Diky, V., Magee, J. W., Widegren, J. A., Chirico, R. D., Marsh, K. N., & Frenkel, M. (2007). ILThermo: A free-access web database for thermodynamic properties of ionic liquids. In Journal of Chemical and Engineering Data (Vol. 52, Issue 4, pp. 1151–1159). https://doi.org/10.1021/je700171fDuan, Y., Zhan, G., Chang, F., Shi, S., Zeng, S., Dong, H., Abildskov, J., Kjøbsted Huusom, J., & Zhang, X. (2022). Process simulation and evaluation for NH3/CO2 separation from melamine tail gas with protic ionic liquids. Separation and Purification Technology, 288(February), 120680. https://doi.org/10.1016/j.seppur.2022.120680El-Nadi, Y. A., Daoud, J. A., & Aly, H. F. (2005). Modified leaching and extraction of uranium from hydrous oxide cake of Egyptian monazite. International Journal of Mineral Processing, 76(1–2), 101–110. https://doi.org/10.1016/j.minpro.2004.12.005Ferron, C. J., Bulatovic, S. M., & Salter, R. S. (1991). Beneficiation of Rare Earth Oxide Minerals. Materials Science Forum, 70–72, 251–270. https://doi.org/10.4028/www.scientific.net/msf.70-72.251Fuerstenau, M.C.; Jameson, G.; Yoon, R. (2007). Froth Flotation: A Century of Innovation. http://books.google.com/books?hl=pt-BR&lr=&id=8zpjAhBViC0C&pgis=1Gómez, E., Cojocaru, P., Magagnin, L., & Valles, E. (2011). Electrodeposition of Co, Sm and SmCo from a Deep Eutectic Solvent. Journal of Electroanalytical Chemistry, 658(1–2), 18–24. https://doi.org/10.1016/j.jelechem.2011.04.015Gupta, Bina, Malik, P., & Deep, A. (2003). Solvent extraction and separation of tervalent Lanthanides and Yttrium using Cyanex 923. Solvent Extraction and Ion Exchange, 21(2), 239–258. https://doi.org/10.1081/SEI-120018948Han, X., & Armstrong, D. W. (2005). Using geminal dicationic ionic liquids as solvents for high-temperature organic reactions. Organic Letters, 7(19), 4205–4208. https://doi.org/10.1021/ol051637wHasegawa, Y., Yamamuro, M., Wada, Y., Kanehisa, N., & Kai, Y. (2003). Luminescent Polymer Containing the Eu ( III ) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency. 3(Iii), 1697–1702.Hefiny, N. E., & Daoud, J. A. (2004). Extraction and separation of thorium(IV) and praseodymium (III) with CYANEX 301 and CYANEX 302 from nitrate medium. Journal of Radioanalytical and Nuclear Chemistry, 261, 357–363. https://doi.org/10.1023/BHoover, W. G. (1986). Constant-pressure equations of motion. Physical Review A, 34(3), 2499–2500. https://doi.org/10.1103/PhysRevA.34.2499Huang, J., Chen, M., Chen, H., Chen, S., & Sun, Q. (2014). Leaching behavior of copper from waste printed circuit boards with Brønsted acidic ionic liquid. Waste Management, 34(2), 483–488. https://doi.org/10.1016/j.wasman.2013.10.027Inakollu, V. S., Geerke, D. P., Rowley, C. N., & Yu, H. (2020). Polarisable force fields: what do they add in biomolecular simulations? Current Opinion in Structural Biology, 61, 182–190. https://doi.org/10.1016/j.sbi.2019.12.012Jordens, A., Cheng, Y. P., & Waters, K. E. (2013a). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. https://doi.org/10.1016/j.mineng.2012.10.017Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760Jorjani, E., Bagherieh, A. H., & Chelgani, S. C. (2011). Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions. Korean Journal of Chemical Engineering, 28(2), 557–562. https://doi.org/10.1007/s11814-010-0383-4Ketelle, B. H., & Boyd, G. E. (1947). The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. IV. The Separation of the Yttrium Group Rare Earths. Journal of the American Chemical Society, 69(11), 2800–2812.Kim, E., & Osseo-Asare, K. (2012). Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh-pH diagrams for the systems Th-, Ce-, La-, Nd- (PO 4)-(SO 4)-H 2O at 25 °c. Hydrometallurgy, 113–114, 67–78. https://doi.org/10.1016/j.hydromet.2011.12.007Kleman, M., & Lavrentovich, O. D. (2004). Soft Matter Physics: An Introduction. In Soft Matter Physics: An Introduction. https://doi.org/10.1007/b97416Kuzmin, V. I., Pashkov, G. L., Lomaev, V. G., Voskresenskaya, E. N., & Kuzmina, V. N. (2012a). Combined approaches for comprehensive processing of rare earth metal ores. Hydrometallurgy, 129–130, 1–6. https://doi.org/10.1016/j.hydromet.2012.06.011Li, D., Zuo, Y., & Meng, S. (2004). Separation of thorium(IV) and extracting rare earths from sulfuric and phosphoric acid solutions by solvent extraction method. Journal of Alloys and Compounds, 374(1–2), 431–433. https://doi.org/10.1016/j.jallcom.2003.11.055Luo, H., Dai, S., Bonnesen, P. V., Buchanan, A. C., Holbrey, J. D., Bridges, N. J., & Rogers, R. D. (2004). Extraction of cesium ions from aqueous solutions using calix[4]arene-bis(tert.octylbenzo-crown-6) in ionic liquids. Analytical Chemistry, 76(11), 3078–3083. https://doi.org/10.1021/ac049949kMcNeice, J., Kim, R., & Ghahreman, A. (2019). Oxidative precipitation of cerium in acidic chloride solutions: part I – Fundamentals and thermodynamics. Hydrometallurgy, 184(December 2018), 140–150. https://doi.org/10.1016/j.hydromet.2018.12.018Narajanan, N. S., Thulasidoss, S., Ramachandran, T. V., Swaminathan, T. V., & Prasad, K. R. (1991). Processing of Monazite at the Rare Earths Division, Udyogamandal. Rare Earths-Applications and Technology, 30, 45–56. https://doi.org/10.4028/www.scientific.net/msf.30.45Orris, G. J., & Grauch, R. I. (2002). Rare earth element mines, deposits, and occurrences. In Geological Survey Open-File Report 2002–0189 (Issue January 2002).Pan, X., Li, L., Huang, H. H., Wu, J., Zhou, X., Yan, X., Jia, J., Yue, T., Chu, Y. H., & Yan, B. (2022). Biosafety-inspired structural optimization of triazolium ionic liquids based on structure-toxicity relationships. Journal of Hazardous Materials, 424(PC), 127521. https://doi.org/10.1016/j.jhazmat.2021.127521Parks, M. L., Lehoucq, R. B., Plimpton, S. J., & Silling, S. A. (2008). Implementing peridynamics within a molecular dynamics code. Computer Physics Communications, 179(11), 777–783. https://doi.org/10.1016/j.cpc.2008.06.011Plimpton, S. (1993). Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117(6), 1–31. https://doi.org/10.1006/jcph.1995.1039Preston, J. S., Cole, P. M., Du Preez, A. C., Fox, M. H., & Fleming, A. M. (1996). The recovery of rare earth oxides from a phosphoric acid by-product. Part 2: The preparation of high-purity cerium dioxide and recovery of a heavy rare earth oxide concentrate. Hydrometallurgy, 41(1), 21–44. https://doi.org/10.1016/0304-386X(95)00067-QShahbaz, K., Mjalli, F. S., Hashim, M. A., & AlNashef, I. M. (2011). Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy and Fuels, 25(6), 2671–2678. https://doi.org/10.1021/ef2004943Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060–11082. https://doi.org/10.1021/cr300162pSun, X. Q., Peng, B., Chen, J., Li, D. Q., & Luo, F. (2008). An effective method for enhancing metal-ions’ selectivity of ionic liquid-based extraction system: Adding water-soluble complexing agent. Talanta, 74(4), 1071–1074. https://doi.org/10.1016/j.talanta.2007.07.031Tait, B. K. (1992). The extraction of some base metal ions by cyanex 301, cyanex 302 and their binary extractant mixtures with aliquat 336. Solvent Extraction and Ion Exchange, 10(5), 799–809. https://doi.org/10.1080/07366299208918136Tunsu, C., Menard, Y., Eriksen, D. Ø., Ekberg, C., & Petranikova, M. (2019). Recovery of critical materials from mine tailings: A comparative study of the solvent extraction of rare earths using acidic, solvating and mixed extractant systems. Journal of Cleaner Production, 218, 425–437. https://doi.org/10.1016/j.jclepro.2019.01.312Xu, Y., Liu, H., Meng, Z., Cui, J., Zhao, W., & Li, L. (2012). Decomposition of bastnasite and monazite mixed rare earth minerals calcined by alkali liquid. Journal of Rare Earths, 30(2), 155–158. https://doi.org/10.1016/S1002-0721(12)60014-3Recuperación de elementos de tierras raras a partir de minerales presentes en arenas negras, residuos de minería de oro aluvial en El Bagre-AntioquiaMinisterio de Ciencia de ColombiaPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83360/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL71361814.2022pdf.pdf71361814.2022pdf.pdfTesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materialesapplication/pdf7313206https://repositorio.unal.edu.co/bitstream/unal/83360/4/71361814.2022pdf.pdfa95c49f91840b0e95ed8ea85eda1e381MD54THUMBNAIL71361814.2022pdf.pdf.jpg71361814.2022pdf.pdf.jpgGenerated Thumbnailimage/jpeg4911https://repositorio.unal.edu.co/bitstream/unal/83360/5/71361814.2022pdf.pdf.jpg5788333e8a0de215169168599616a505MD55unal/83360oai:repositorio.unal.edu.co:unal/833602024-08-12 23:12:09.875Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |