Partial least squares regression on symmetric positive-definite matrices

Recently there has been an increased interest in the analysis of differenttypes of manifold-valued data, which include data from symmetric positivedefinitematrices. In many studies of medical cerebral image analysis, amajor concern is establishing the association among a set of covariates andthe man...

Full description

Autores:
Pérez, Raúl Alberto
González-Farias, Graciela
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73214
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73214
http://bdigital.unal.edu.co/37689/
Palabra clave:
Matrix theory
Multicollinearity
Regression
Riemann manifold
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_18ae88e93f08e0c380eb9ddb63eb40b6
oai_identifier_str oai:repositorio.unal.edu.co:unal/73214
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pérez, Raúl Alberto300f0ebc-e223-46a3-8a8c-c5d0b6f9f941300González-Farias, Graciela26824120-30fe-461a-907e-2fabfad601953002019-07-03T16:02:10Z2019-07-03T16:02:10Z2013https://repositorio.unal.edu.co/handle/unal/73214http://bdigital.unal.edu.co/37689/Recently there has been an increased interest in the analysis of differenttypes of manifold-valued data, which include data from symmetric positivedefinitematrices. In many studies of medical cerebral image analysis, amajor concern is establishing the association among a set of covariates andthe manifold-valued data, which are considered as responses for characterizingthe shapes of certain subcortical structures and the differences betweenthem.The manifold-valued data do not form a vector space, and thus, it is notadequate to apply classical statistical techniques directly, as certain operationson vector spaces are not defined in a general Riemannian manifold. Inthis article, an application of the partial least squares regression methodologyis performed for a setting with a large number of covariates in a euclideanspace and one or more responses in a curved manifold, called a Riemanniansymmetric space. To apply such a technique, the Riemannian exponentialmap and the Riemannian logarithmic map are used on a set of symmetricpositive-definite matrices, by which the data are transformed into a vectorspace, where classic statistical techniques can be applied. The methodologyis evaluated using a set of simulated data, and the behavior of the techniqueis analyzed with respect to the principal component regression.application/pdfspaUniversidad Nacional de Colombiahttp://revistas.unal.edu.co/index.php/estad/article/view/39616Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de EstadísticaRevista Colombiana de EstadísticaRevista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 0120-1751Pérez, Raúl Alberto and González-Farias, Graciela (2013) Partial least squares regression on symmetric positive-definite matrices. Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 0120-1751 .Partial least squares regression on symmetric positive-definite matricesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTMatrix theoryMulticollinearityRegressionRiemann manifoldORIGINAL39616-176835-1-PB.pdfapplication/pdf1214695https://repositorio.unal.edu.co/bitstream/unal/73214/1/39616-176835-1-PB.pdf0af119dfc7073418d516a8d78308f12fMD51THUMBNAIL39616-176835-1-PB.pdf.jpg39616-176835-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5364https://repositorio.unal.edu.co/bitstream/unal/73214/2/39616-176835-1-PB.pdf.jpg2d8f8a622f78624a1487f90957197059MD52unal/73214oai:repositorio.unal.edu.co:unal/732142024-06-20 23:27:25.06Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Partial least squares regression on symmetric positive-definite matrices
title Partial least squares regression on symmetric positive-definite matrices
spellingShingle Partial least squares regression on symmetric positive-definite matrices
Matrix theory
Multicollinearity
Regression
Riemann manifold
title_short Partial least squares regression on symmetric positive-definite matrices
title_full Partial least squares regression on symmetric positive-definite matrices
title_fullStr Partial least squares regression on symmetric positive-definite matrices
title_full_unstemmed Partial least squares regression on symmetric positive-definite matrices
title_sort Partial least squares regression on symmetric positive-definite matrices
dc.creator.fl_str_mv Pérez, Raúl Alberto
González-Farias, Graciela
dc.contributor.author.spa.fl_str_mv Pérez, Raúl Alberto
González-Farias, Graciela
dc.subject.proposal.spa.fl_str_mv Matrix theory
Multicollinearity
Regression
Riemann manifold
topic Matrix theory
Multicollinearity
Regression
Riemann manifold
description Recently there has been an increased interest in the analysis of differenttypes of manifold-valued data, which include data from symmetric positivedefinitematrices. In many studies of medical cerebral image analysis, amajor concern is establishing the association among a set of covariates andthe manifold-valued data, which are considered as responses for characterizingthe shapes of certain subcortical structures and the differences betweenthem.The manifold-valued data do not form a vector space, and thus, it is notadequate to apply classical statistical techniques directly, as certain operationson vector spaces are not defined in a general Riemannian manifold. Inthis article, an application of the partial least squares regression methodologyis performed for a setting with a large number of covariates in a euclideanspace and one or more responses in a curved manifold, called a Riemanniansymmetric space. To apply such a technique, the Riemannian exponentialmap and the Riemannian logarithmic map are used on a set of symmetricpositive-definite matrices, by which the data are transformed into a vectorspace, where classic statistical techniques can be applied. The methodologyis evaluated using a set of simulated data, and the behavior of the techniqueis analyzed with respect to the principal component regression.
publishDate 2013
dc.date.issued.spa.fl_str_mv 2013
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:02:10Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:02:10Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73214
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/37689/
url https://repositorio.unal.edu.co/handle/unal/73214
http://bdigital.unal.edu.co/37689/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/estad/article/view/39616
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Estadística
Revista Colombiana de Estadística
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 0120-1751
dc.relation.references.spa.fl_str_mv Pérez, Raúl Alberto and González-Farias, Graciela (2013) Partial least squares regression on symmetric positive-definite matrices. Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 Revista Colombiana de Estadística; Vol. 36, núm. 1 (2013); 177-192 0120-1751 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73214/1/39616-176835-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73214/2/39616-176835-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 0af119dfc7073418d516a8d78308f12f
2d8f8a622f78624a1487f90957197059
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089242253459456