Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana
ilustraciones, diagramas, mapas
- Autores:
-
Castillo Rodríguez, Nicolás
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84327
- Palabra clave:
- 576 - Genética y evolución
597 - Vertebrados de sangre fría
Crocodylus intermedius
Conservación genética
Neotrópico
Microsatélites
Región control de la mitocondria
Conservation genetics
Neotropics
Microsatellites
Mitochondrial control region
Genética animal
Evolución
Animal genetics
Evolution
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_188dcb6636db445a69160cba0461a8c8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84327 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
dc.title.translated.eng.fl_str_mv |
Preliminary genetic evaluation of in situ populations of the Orinoco Crocodile (Crocodylus intermedius) in the Colombian Orinoquía |
title |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
spellingShingle |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana 576 - Genética y evolución 597 - Vertebrados de sangre fría Crocodylus intermedius Conservación genética Neotrópico Microsatélites Región control de la mitocondria Conservation genetics Neotropics Microsatellites Mitochondrial control region Genética animal Evolución Animal genetics Evolution |
title_short |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
title_full |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
title_fullStr |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
title_full_unstemmed |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
title_sort |
Evaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombiana |
dc.creator.fl_str_mv |
Castillo Rodríguez, Nicolás |
dc.contributor.advisor.none.fl_str_mv |
Vargas Ramírez, Mario |
dc.contributor.author.none.fl_str_mv |
Castillo Rodríguez, Nicolás |
dc.contributor.researchgroup.spa.fl_str_mv |
Biodiversidad y Conservación Genética |
dc.contributor.orcid.spa.fl_str_mv |
Nicolás Castillo-Rodríguez [0000000346711687] |
dc.subject.ddc.spa.fl_str_mv |
576 - Genética y evolución 597 - Vertebrados de sangre fría |
topic |
576 - Genética y evolución 597 - Vertebrados de sangre fría Crocodylus intermedius Conservación genética Neotrópico Microsatélites Región control de la mitocondria Conservation genetics Neotropics Microsatellites Mitochondrial control region Genética animal Evolución Animal genetics Evolution |
dc.subject.agrovoc.none.fl_str_mv |
Crocodylus intermedius |
dc.subject.proposal.spa.fl_str_mv |
Conservación genética Neotrópico Microsatélites Región control de la mitocondria |
dc.subject.proposal.eng.fl_str_mv |
Conservation genetics Neotropics Microsatellites Mitochondrial control region |
dc.subject.unesco.spa.fl_str_mv |
Genética animal Evolución |
dc.subject.unesco.eng.fl_str_mv |
Animal genetics Evolution |
description |
ilustraciones, diagramas, mapas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-27T19:19:08Z |
dc.date.available.none.fl_str_mv |
2023-07-27T19:19:08Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84327 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84327 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Allendorf, F. W., Luikart, G. H., & Aitken, S. N. (2012). Conservation and the Genetics of Populations. Wiley. https://books.google.com.co/books?id=VVploytG8jYC Amavet, P. S., Barban Zucoloto, R., Hrbek, T., & Farias Pires, I. (2021). Genetic diversity of new world crocodilians. In R. Barban Zucoloto, P. S. Amavet, L. Martins Verdade, & I. Farias Pires (Eds.), Conservation Genetics of New World Crocodilians (pp. 123–152). Springer. https://doi.org/10.1007/978-3-030-56383-7 Amavet, P. S., Rueda, E. C., Vilardi, J. C., Siroski, P., Larriera, A., & Saidman, B. O. (2017). The broad-snouted caiman population recovery in Argentina. A case of genetics conservation. Amphibia Reptilia, 38(4), 411–424. https://doi.org/10.1163/15685381-00003123 Antelo, R., Ayarzagüena, J., & Castroviejo, J. (2008). Biología del cocodrilo o caimán del Orinoco (Crocodylus intermedius) en la Estación Biológica El Frío, Estado Apure. Lozania, 336. Antelo, R., Vargas-Ramírez, M., Preciado, G., Saavedra-Rodríguez, C. A., & Forero-Medina, G. (2022). Plan de acción interinstitucional para la conservación del caimán llanero (Crocodylus intermedius) en Colombia. Wildlife Conservation Society, Estación de Biología Tropical Roberto Franco, Gobernación de Casanare y Universidad Nacional. Anzola, L. F. (2017). Abundancia poblacional , aspectos reproductivos y percepción de los habitantes locales, del Caimán LLanero (Crocodylus intermedius, Graves, 1819) en los ríos Lipa, Ele y Cravo Norte del Departamento de Arauca. Bol. Acad. C. Fís., Mat. y Nat., LXXVII(2–3), 147–158. Anzola, L. F., & Antelo, R. (2015). First data of natural recovery of any Orinoco crocodile Crocodylus intermedius population: Evidence from nesting. Herpetological Bulletin, 134, 10– 14. Ardila-Robayo, M. C., Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (2002). Monitoreo poblacional de Crocodylus intermedius (caimán llanero) en los ríos Guayabero y Duda (municipio de la Macarena - Meta). Ardila-Robayo, M. C., Barahona-Buitrago, S. L., Bonilla-Centeno, O. P., & Clavijo, B. J. (2002). Actualización del status poblaciones de Caimán del Orinoco (Crocodylus intermedius) en el Departamento de Arauca (Colombia). Memorias del Taller para la Conservación del Caimán del Orinoco (Crocodylus intermedius) en el Colombia y Venezuela. Ardila-Robayo, M. C., Martínez-Barreto, W., Suárez-Daza, R. M., & Moreno-Torres, C. A. (2010). La Estación Roberto Franco (EBTRF) y el cocodrilo del Orinoco en Colombia: contribución a su biología y conservación. Revista Latinoamericana de Conservación, 1(2), 120–130. http://lajoc.procat-conservation.org/ojs/index.php/procat/article/view/60 Avila-cervantes, J., & Larsson, H. C. E. (2023). Ice Age effects on genetic divergence of the American crocodile ( Crocodylus acutus ) in Panama : reconstructing limits of gene flow and environmental ranges : a reply to O ’ Dea et al . 77(December 2022), 329–334. Balaguera-Reina, S. A., Espinosa-Blanco, A., Antelo, R., Morales-Betancourt, M., & Seijas, A. (2018). Crocodylus intermedius (errata version published in 2020). The IUCN Red List of Threatened Species 2018: E.T5661A181089024. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018- 1.RLTS.T5661A181089024.en Balaguera-Reina, S. A., Espinosa-Blanco, A. S., Morales-Betancourt, M. A., Seijas, A. E., Lasso, C. A., Antelo, R., & Densmore, L. D. (2017). Conservation status and regional habitat priorities for the Orinoco crocodile: Past, present, and future. PLoS ONE, 12(2), 1–20. https://doi.org/10.1371/journal.pone.0172439 Balaguera-Reina, S. A., Moncada-Jimenez, J. F., Prada-Quiroga, C. F., Hernandez-Gonzalez, F., Bolaños-Cubillos, N. W., Farfán-Ardila, N., Garcia-Calderón, L. M., & Densmore, L. D. (2021). Tracking a voyager: Mitochondrial DNA analyses reveal mainland-to-island dispersal of an American crocodile (Crocodylus acutus) across the Caribbean. Biological Journal of the Linnean Society, 131(3), 647–655. https://doi.org/10.1093/BIOLINNEAN/BLAA121 Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (1999). Evaluación poblacional del Caimán Llanero (Crocodylus intermedius) en un subareal de distribución en el departamento de Arauca (Colombia). In Revista de la Academia Colombiana de Ciencias (Vol. 23, pp. 445–451). Behling, H., & Hooghiemstra, H. (2001). Chapter 18 - Neotropical Savanna Environments in Space and Time: Late Quaternary Interhemispheric Comparisons. In V. Markgraf (Ed.), Interhemispheric Climate Linkages (pp. 307–323). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012472670-3/50021-5 Bensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., & Pinheiro, R. T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 1583–1589. https://doi.org/10.1098/rspb.2000.1181 Bishop, J. M., Leslie, A. J., Bourquin, S. L., & O’Ryan, C. (2009). Reduced effective population size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biological Conservation, 142(10), 2335–2341. https://doi.org/https://doi.org/10.1016/j.biocon.2009.05.016 Bittencourt, P. S., Campos, Z., De Lima Muniz, F., Marioni, B., Souza, B. C., Silveira, R. Da, De Thoisy, B., Hrbek, T., & Farias, I. P. (2019). Evidence of cryptic lineages within a small South American crocodilian: The Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ, 2019(3), 1–26. https://doi.org/10.7717/peerj.6580 Blomqvist, D., Pauliny, A., Larsson, M., & Flodin, L. Å. (2010). Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evolutionary Biology, 10(1), 1–9. https://doi.org/10.1186/1471-2148-10-33 Bustamante, C. (Ed.). (2019). El Gran Libro de la Orinoquia Colombiana. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Deutsche Gessellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Campos, J. C., Mobaraki, A., Abtin, E., Godinho, R., & Brito, J. C. (2018). Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphibia Reptilia, 39(1), 126–131. https://doi.org/10.1163/15685381-16000173 Casal, A. C., Fornelino, M. M., Restrepo, M. F. G., Torres, M. A. C., & Velasco, F. G. (2013). Uso histórico y actual del caimán llanero (Crocodylus intermedius) en la Orinoquia (Colombia-Venezuela). Biota Colombiana, 14(1), 65–82. Castro, A., Merchán, M., Garcés, M., Cárdenas, M., & Gómez, F. (2012). New data on the Conservation Status of the Orinoco crocodile (Crocodylus intermedius) in Colombia. Proceedings of the 21th Working Meeting of the Crocodile Specialist Group, IUCN, January, 65–73. Castro, A., Merchán, M., Gómez, F., Garcés, M. F., & Cárdenas, M. A. (2011). Nuevos datos sobre la presencia de caimán llanero (Crocodylus intermedius) y notas sobre su comportamiento en el río Vichada, Orinoquia (Colombia). Biota Colombiana, 12(1), 137–144. https://doi.org/10.21068/bc.v12i1.244 Castro Casal, A. (2012). Generalidades sobre la biología y el comportamiento del Cocodrilo del Orinoco (Crocodylus intermedius) (pp. 17–56). Cedeño-Vázquez, J. R., Platt, S. G., & Thorbjarnarson, J. (2012). Crocodylus moreletii. The IUCN Red List of Threatened Species 2012: e.T5663A3045579. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T5663A3045579.en Choudhury, B. C., & de Silva, A. (2013). Crocodylus palustris. The IUCN Red List of Threatened Species 2013: e.T5667A3046723. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2013- 2.RLTS.T5667A3046723.en CITES. (2017). Appendices I, II and III valid from 4 October 2017. In CITES-UNEP. https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdf Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1660. Cohen, J. I., & Ruane, L. G. (2022). Conservation genetics of Phlox hirsuta, a serpentine endemic. Conservation Genetics, 0123456789. https://doi.org/10.1007/s10592-022-01478-y Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014. https://doi.org/10.1093/genetics/144.4.2001 Davis, L. M., Glenn, T. C., Strickland, D. C., Guillette, L. J., Elsey, R. M., Rhodes, W. E., Dessauer, H. C., & Sawyer, R. H. (2002). Microsatellite DNA analyses support an east-west phylogeographic split of American alligator populations. Journal of Experimental Zoology, 294(4), 352–372. https://doi.org/10.1002/jez.10189 de Thoisy, B., Hrbek, T., Farias, I. P., Vasconcelos, W. R., & Lavergne, A. (2006). Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biological Conservation, 133(4), 474–482. https://doi.org/10.1016/j.biocon.2006.07.009 Dever, J. A., & Densmore, L. D. (2001). Microsatellites in Morelet’s Crocodile (Crocodylus moreletii) and Their Utility in Addressing Crocodilian Population Genetics Questions. Journal of Herpetology, 35(3), 541–544. Dever, J. A., Strauss, R. E., Rainwater, T., & Densmore, L. D. (2002). Genetic Diversity, Population Subdivision, and Gene Flow in Morelet’s Crocodile (Crocodylus moreletii) from Belize, Central America. December 2002. https://doi.org/10.1643/0045-8511(2002)002 Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3166–3170. https://doi.org/10.1073/pnas.91.8.3166 Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214. https://doi.org/https://doi.org/10.1111/1755-0998.12157 Dominguez, M., Pizzarello, G., Atencio, M., Scardamaglia, R., & Mahler, B. (2019). Genetic assignment and monitoring of yellow cardinals. Journal of Wildlife Management, 83(6), 1336– 1344. https://doi.org/10.1002/jwmg.21718 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x Faubet, P., Waples, R. S., & Gaggiotti, O. E. (2007). Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Molecular Ecology, 16(6), 1149–1166. https://doi.org/10.1111/j.1365-294X.2007.03218.x Fitzsimmons, N. N., Tanksley, S., Forstner, M. R. J., Louis, E. E., Daglish, R., Gratten, J., & Davis, S. (2001). Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In Crocodilian Biology and Evolution (pp. 51–57). Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 66(2), 95–107. https://doi.org/10.1017/S0016672300034455 Frankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation Biology, 10(6), 1500–1508. http://dx.doi.org/10.1046/j.1523-1739.1996.10061500.x Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610–2618. https://doi.org/10.1111/mec.13139 Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology, 25(3), 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.x Frankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56–63. https://doi.org/https://doi.org/10.1016/j.biocon.2013.12.036 Franklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 135–150). Sinauer Associates. Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915–925. https://doi.org/10.1093/genetics/147.2.915 García-Dorado, A. (2015). On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity, 115(3), 185–187. https://doi.org/10.1038/hdy.2015.28 Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365- 294x.2001.01190.x Gillespie, J. H. (2004). Population Genetics: A Concise Guide. Johns Hopkins University Press. https://books.google.com.co/books?id=eslingEACAAJ Gilpin, M., & Soulé, M. E. (1986). Minimum viable populations : Processes of species extinction. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 19–34). Sinauer Associates. Glenn, T. C., Staton, J. L., Vu, A. T., Davis, L. M., Alvarado Bremer, J. R., Rhodes, W. E., Brisbin, I. L., & Sawyer, R. H. (2002). Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. Journal of Experimental Zoology, 294(4), 312– 324. https://doi.org/10.1002/jez.10206 Gottelli, D., Sillero-Zubiri, C., Marino, J., Funk, S. M., & Wang, J. (2013). Genetic structure and patterns of gene flow among populations of the endangered Ethiopian wolf. Animal Conservation, 16(2), 234–247. https://doi.org/10.1111/j.1469-1795.2012.00591.x Goudet, J. (2003). Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Updated from Goudet (1995). http://www.unil.ch/izea/softwares/fstat. html Guillot, G., Mortier, F., & Estoup, A. (2005). GENELAND: A computer package for landscape genetics. Molecular Ecology Notes, 5(3), 712–715. https://doi.org/10.1111/j.1471- 8286.2005.01031.x Gustafson, K. D., Gagne, R. B., Buchalski, M. R., Vickers, T. W., Riley, S. P. D., Sikich, J. A., Rudd, J. L., Dellinger, J. A., LaCava, M. E. F., & Ernest, H. B. (2022). Multi-population puma connectivity could restore genomic diversity to at-risk coastal populations in California. Evolutionary Applications, 15(2), 286–299. https://doi.org/10.1111/eva.13341 Hall, T. (2005). BioEdit: Biological sequence alignmet editor for Win95/98/NT/2K/XP (7.0.5). Ibis Therapeutics. Hartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates. https://books.google.com.co/books?id=4ypuQgAACAAJ Hekkala, E. R., Amato, G., DeSalle, R., & Blum, M. J. (2010). Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conservation Genetics, 11(4), 1435–1443. https://doi.org/10.1007/s10592-009-9970-5 Hernández-Camacho, J., Hurtado G., A., Ortiz Quijano, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. In G. Halffter (Ed.), La diversidad biológica de Iberoamérica (Vol. 1, pp. 105–152). Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetical Research, 38(3), 209–216. https://doi.org/10.1017/S0016672300020553 Hinlo, M. R. P., Tabora, J. A. G., Bailey, C. A., Trewick, S., Rebong, G., van Weerd, M., Pomares, C. C., Engberg, S. E., Brenneman, R. A., & Louis, Jr., E. E. (2014). Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). Journal of Threatened Taxa, 6(3), 5513–5533. https://doi.org/10.11609/jott.o3384.5513-33 Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information - HUBISZ - 2009 - Molecular Ecology Resources - Wiley Online Library. Molecular Ecology Resources, 9(5), 1322–1332. IDEAM. (2020). Presentación Deforestación 2020. http://www.ideam.gov.co/documents/10182/113437783/Presentacion_Deforestacion%0A202 0_SMByC-IDEAM.pdf/8ea7473e-3393-4942-8b75-88967ac12a19 Iriondo, M. (1999). Climatic changes in the South American plains: Records of a continent-scale oscillation. Quaternary International, 57–58, 93–112. https://doi.org/10.1016/S1040- 6182(98)00053-6 Isberg, S., Combrink, X., Lippai, C., & Balaguera-Reina, S. A. (2019). Crocodylus niloticus. The IUCN Red List of Threatened Species 2019: e.T45433088A3010181. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T45433088A3010181.en Jablonski, D., Ribeiro-Júnior, M. A., Meiri, S., Maza, E., Kukushkin, O. V., Chirikova, M., Pirosová, A., Jelic, D., Mikulícek, P., & Jandzik, D. (2021). Morphological and genetic differentiation in the anguid lizard Pseudopus apodus supports the existence of an endemic subspecies in the Levant. Vertebrate Zoology, 71, 175–200. https://doi.org/10.3897/VZ.71.E60800 Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 Jamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27(10), 578–584. https://doi.org/10.1016/j.tree.2012.07.001 Jamieson, I. G., Grueber, C. E., Waters, J. M., & Gleeson, D. M. (2008). Managing genetic diversity in threatened populations: a New Zealand perspective. New Zealand Journal of Ecology, 32(1), 130–137. http://www.jstor.org/stable/24058111 Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 Jones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.x Kalinowski, S. T. (2005). HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.x Li, Y. L., & Liu, J. X. (2018). StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176– 177. https://doi.org/10.1111/1755-0998.12719 Lugo-Rugeles, L. M., & Ardila-Robayo, M. C. (1998). Programa para la conservación del caiman del Orinoco (Crocodylus intermedius) en Colombia. Proyecto 290. Programa Research Fellowship NYZS. Wildlife Conservation Society. Proyecto 1101-13- 205-92 Colciencias. Luikart, G., & Cornuet, J.-M. (1998). Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data. Conservation Biology, 12(1), 228–237. https://doi.org/https://doi.org/10.1111/j.1523-1739.1998.96388.x Markert, J. A., Denise M. Champlin, Ruth Gutjahr-Gobell, Jason S. Grear, Anne Kuhn, Thomas J. McGreevy, Annette Roth, Mark J. Bagley, & Diane E. Nacci. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(205), 1–13. http://www.biomedcentral.com/1471-2148/10/205 Martin, S. (2008). Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia, 595(1), 587–591. https://doi.org/10.1007/s10750-007-9030-4 Mcvay, J. D., Rodriguez, D., Rainwater, T. R., Dever, J. A., Platt, S. G., Mcmurry, S. T., Forstner, M. R. J., & Densmore, L. D. (2008). Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 643–648. https://doi.org/10.1002/jez.500 Medem, F. (1981). Los Crocodylia de Sur America: Los Crocodylia de Colombia. Vol. 1. Ministerio de Educacion Nacional, Fondo Colombiano de Investigaciones Científicas y Proyectos Especiales “Francisco José de Caldas.” Meirmans, P. G. (2014). Nonconvergence in Bayesian estimation of migration rates. Molecular Ecology Resources, 14(4), 726–733. https://doi.org/10.1111/1755-0998.12216 Miles, L. G., Isberg, S. R., Moran, C., Hagen, C., & Glenn, T. C. (2009). 253 Novel polymorphic microsatellites for the saltwater crocodile (Crocodylus porosus). Conservation Genetics, 10(4), 963–980. https://doi.org/10.1007/s10592-008-9600-7 Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Sosa-Rodríguez, G., Guerra-Manchena, L., Alonso-Tabet, M., Espinosa-López, G., & Russello, M. A. (2015). Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation. Heredity, 114(3), 272–280. https://doi.org/10.1038/hdy.2014.96 Milián-García, Y., Russello, M. A., Castellanos-Labarcena, J., Cichon, M., Kumar, V., Espinosa, G., Rossi, N., Mazzotti, F., Hekkala, E., Amato, G., & Janke, A. (2018). Genetic evidence supports a distinct lineage of American crocodile (Crocodylus acutus) in the Greater Antilles. PeerJ, 2018(11), 1–16. https://doi.org/10.7717/peerj.5836 Ministerio de Ambiente. (2016). Visión Amazonía. https://www.minambiente.gov.co/index.php/component/content/article/2138plantilla%0Abosques-biodiversidad-y-servicios-ecosistematicos-62 MMA. (2002). Programa Nacional para la Conservación del Caimán Llanero. 31. Mora-Fernández, C., Peñuela-Recio, L., & Castro-Lima, F. (2015). Estado del conocimiento de los ecosistemas de las sabanas inundables en la Orinoquia Colombiana TT - State of the knowledge of the flooded savanna ecosystems of Orinoquia Colombiana TT - Estado do conhecimento sobre os ecossistemas das savanas inundadas. Orinoquia, 19(2), 253–271. Morales-Betancourt, M. A., Lasso, C. A., Gutiérrez, F. de P., Martínez-Barreto, W., Ardila-Robayo, M. C., Moreno-Arias, R. A., Suarez-Daza, R. M., Clavijo, J., Anzola, L. F., Antelo, R., Lugo, M., & Trujillo, F. (2019). Identificación de áreas y estrategias para la conservación del caimán llanero (Crocodylus intermedius) en la Orinoquia colombiana. In M. C. Ardila-Robayo & W. Martínez-Barreto (Eds.), Homenaje a Federico Medem, aportes a la herpetología colombiana (1st ed., pp. 13–28). Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales. Morales-Betancourt, M. A., Lasso, C. A., Martínez, W., Ardila-Robayo, M. C., & Bloor, P. (2015). Caimán llanero (Crocodylus intermedius). In M. A. Morales-Betancourt, C. A. Lasso, V. P. Páez, & B. C. Bock (Eds.), Libro rojo de reptiles de Colombia (p. 258). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia. Moreno-Arias, R. A., & Ardila-Robayo, M. C. (2020). Journeying to freedom: The spatial ecology of a reintroduced population of Orinoco crocodiles (Crocodylus intermedius) in Colombia. Animal Biotelemetry, 8(1), 1–13. https://doi.org/10.1186/s40317-020-00202-2 Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4 Muniz, F. L., Ximenes, A. M., Bittencourt, P. S., Hernández-Rangel, S. M., Campos, Z., Hrbek, T., & Farias, I. P. (2019). Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Molecular Biology Reports, 46(2), 2473–2484. https://doi.org/10.1007/s11033-019-04709-7 Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19(2), 153–170. https://doi.org/10.1007/BF02300753 Neuwald, J. L. (2010). Population isolation exacerbates conservation genetic concerns in the endangered Amargosa vole, Microtus californicus scirpensis. Biological Conservation, 143(9), 2028–2038. https://doi.org/10.1016/j.biocon.2010.05.007 Oaks, J. R. (2011). A time-calibrated species tree of crocodylia reveals a recent radiation of the true crocodiles. Evolution, 65(11), 3285–3297. https://doi.org/10.1111/j.1558-5646.2011.01373.x Pacheco-Sierra, G., Vázquez-Domínguez, E., Pérez-Alquicira, J., Suárez-Atilano, M., & Domínguez-Laso, J. (2018). Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Frontiers in Ecology and Evolution, 6(SEP). https://doi.org/10.3389/fevo.2018.00138 Paetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4(3), 347–354. https://doi.org/10.1111/j.1365-294x.1995.tb00227.x Paetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13(1), 55–65. https://doi.org/10.1046/j.1365-294x.2004.02008.x Palstra, F. P., & Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population size : what can they tell us about the importance of genetic stochasticity for wild population persistence ? Molecular Ecology, 17, 3428–3447. https://doi.org/10.1111/j.1365- 294X.2008.03842.x Peery, M. Z., Kirby, R., Reid, B. N., Stoelting, R., Doucet-Bëer, E., Robinson, S., Vásquez-Carrillo, C., Pauli, J. N., & Palsboll, P. J. (2012). Reliability of genetic bottleneck tests for detecting recent population declines. Molecular Ecology, 21(14), 3403–3418. https://doi.org/10.1111/j.1365-294X.2012.05635.x Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection. Journal of Heredity, 95(6), 536–539. https://doi.org/10.1093/jhered/esh074 Piry, S., Luikart, G., & Cornuet, J.-M. (1999). Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered, 90. https://doi.org/10.1093/jhered/90.4.502 Posso-Peláez, C., Ibáñezand, C., & Bloor, P. (2018). Low mitochondrial DNA variability in the captive breeding population of the critically endangered orinoco crocodile (Crocodylus intermedius) from Colombia. Herpetological Conservation and Biology, 13(2), 347–354. Preciado-Salas, B. A. (2018). Percepción, uso y conservación local del Caimán llanero (Crocodylus intermedius) en el complejo de ríos Cravo Norte, Ele y Lipa (Arauca, Colombia) Trabajo de grado para optar por el título de Magister en Conservación y Uso de la Biodiversidad. Modalidad d [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/bitstream/handle/10554/35678/Brigitte Preciado-Salas Percepcion%2C Uso y Conservacion Local del Caiman Llanero.pdf?sequence=2&isAllowed=y Pritchard, J., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 9197–9201. https://doi.org/10.1093/genetics/155.2.945 Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512 R Development Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/ Rainwater, T. R., Platt, S. G., Charruau, P., Balaguera-Reina, S. A., Sigler, L., Cedeño-Vázquez, J. R., & Thorbjarnarson, J. B. (2021). Crocodylus acutus (amended version of 2021 assessment). The IUCN Red List of Threatened Species 2022: e.T5659A212805700. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T5659A212805700.en Ramasamy, R. K., Ramasamy, S., Bindroo, B. B., & Naik, V. G. (2014). STRUCTURE PLOT: A program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus, 3(1), 1–3. https://doi.org/10.1186/2193-1801-3-431 Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19(12), 2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034 Rannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America, 94(17), 9197–9201. https://doi.org/10.1073/pnas.94.17.9197 Ray, D. A., & Densmore, L. (2002). The crocodilian mitochondrial control region: General structure, conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294(4), 334–345. https://doi.org/10.1002/jez.10198 Ray, D. A., & Densmore, L. D. (2003). Repetitive sequences in the crocodilian mitochondrial control region: Poly-A sequences and heteroplasmic tandem repeats. Molecular Biology and Evolution, 20(6), 1006–1013. https://doi.org/10.1093/molbev/msg117 Ray, D. A., Dever, J. A., Platt, S. G., Rainwater, T. R., Finger, A. G., McMurry, S. T., Batzer, M. A., Barr, B., Stafford, P. J., McKnight, J., & Densmore, L. D. (2004). Low levels of nucleotide diversity in Crocodylus moreletii and evidence of hybridization with C. acutus. Conservation Genetics, 5(4), 449–462. https://doi.org/10.1023/B:COGE.0000041024.96928.fe Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x Rhode, C., Maduna, S. N., Roodt-Wilding, R., & Bester-Van Der Merwe, A. E. (2014). Comparison of population genetic estimates amongst wild, F1 and F2 cultured abalone (Haliotis midae). Animal Genetics, 45(3), 456–459. https://doi.org/10.1111/age.12142 Rivera-Ortíz, F. A., Arizmendi, M. D. C., Juan-Espinosa, J., Solórzano, S., & Contreras-González, A. M. (2021). Genetic assignment tests to identify the probable geographic origin of a captive specimen of military macaw (Ara militaris) in mexico: Implications for conservation. Diversity, 13(6). https://doi.org/10.3390/d13060245 Roa, P. (1979). Estudio de los médanos de los Llanos Centrales de Venezuela: Evidencias de un clima desértico. Acta Biológica Venezolana, 10, 19–49. Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727 Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R., & Sherwin, W. B. (2009). Invasive species can’t cover their tracks: Using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Molecular Ecology, 18(8), 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.x Rossi Lafferriere, N. A., Antelo, R., Alda, F., Martensson, D., Hailer, F., Castroviejo-Fisher, S., Ayarzagöena, J., Ginsberg, J. R., Castroviejo, J., Doadrio, I., Vilá, C., & Amato, G. (2016). Multiple paternity in a reintroduced population of the orinoco crocodile (Crocodylus intermedius) at the El frío biological station, Venezuela. PLoS ONE, 11(3), 1–16. https://doi.org/10.1371/journal.pone.0150245 Rossi Lafferriere, N. A., Menchaca-Rodriguez, A., Antelo, R., Wilson, B., McLaren, K., Mazzotti, F., Crespo, R., Wasilewski, J., Alda, F., Doadrio, I., Barros, T. R., Hekkala, E., Alonso-Tabet, M., Alonso-Giménez, Y., Lopez, M., Espinosa-Lopez, G., Burgess, J., Thorbjarnarson, J. B., Ginsberg, J. R., … Amato, G. (2020). High levels of population genetic differentiation in the American crocodile (Crocodylus acutus). Plos One, 15(7), e0235288. https://doi.org/10.1371/journal.pone.0235288 Rousset, F. (2008). GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x Rousset, F., & Raymond, M. (1995). Testing heterozygote excess and deficiency. Genetics, 140(4), 1413–1419. https://doi.org/10.1093/genetics/140.4.1413 Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-García, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34, 3299–3302. Russello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J., & Caccone, A. (2007). Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conservation Genetics, 8(4), 777–787. https://doi.org/10.1007/s10592-006-9225-7 Ryberg, W. A., Fitzgerald, L. A., Honeycutt, R. L., & Cathey, J. C. (2002). Genetic relationships of American alligator populations distributed across different ecological and geographic scales. Journal of Experimental Zoology, 294(4), 325–333. https://doi.org/10.1002/jez.10207 Saldarriaga-Gómez, A. M. (2021). Conservation genetics of the largest captive population of the critically endangered Orinoco crocodile (Crocodylus intermedius): a contribution for its survival [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80488 Seijas, A. E., Antelo, R., & Hernández, O. (2015). Caimán del Orinoco, Crocodylus intermedius. In J. P. Rodríguez, A. García-Rawlns, & F. Rojas-Suárez (Eds.), Libro Rojo de la Fauna Venezolana (Forth). Provita y Fundación Empresas Polar. Seijas, A. E., Antelo, R., Thorbjarnarson, J. B., & Robayo, M. C. A. (2010). Orinoco Crocodile Crocodylus intermedius. Crocodiles: An Action Plan for Their Conservation., 59–65. Shaffer, M. L. (1981). Minimum Population Sizes for Species Conservation. BioScience, 31(2), 131– 134. https://doi.org/10.2307/1308256 Sharma, S. P., Ghazi, M. G., Katdare, S., Dasgupta, N., Mondol, S., Gupta, S. K., & Hussain, S. A. (2021). Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-85201-w Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585 Targarona, R. R., Soberón, R. R., Cotayo, L., Tabet, M. A., & Thorbjarnarson, J. (2008). Crocodylus rhombifer (errata version published in 2017). The IUCN Red List of Threatened Species 2008: e.T5670A112902585. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T5670A11516438.en Thorbjarnarson, J. B. (1987). Status, ecology and conservation of the Orinoco Crocodile. Preliminary Report. Thorbjarnarson, J. B. (1989). Ecology of the American crocodile, Crocodylus actus. In P. Hall & R. Bryant (Eds.), Crocodiles, their ecology, management and conservation a special publication of the crocodile specialist group (pp. 228–258). IUCN Publications. Thorbjarnarson, J. B. ., & Hernández, G. (1993). Reproductive Ecology of the Orinoco Crocodile (Crocodylus intermedius) in Venezuela . II . Reproductive and Social Behavior. Herpetological Journal, 27(4), 371–379. Turba, R., Richmond, J. Q., Fitz-Gibbon, S., Morselli, M., Fisher, R. N., Swift, C. C., Ruiz-Campos, G., Backlin, A. R., Dellith, C., & Jacobs, D. K. (2022). Genetic structure and historic demography of endangered unarmoured threespine stickleback at southern latitudes signals a potential new management approach. Molecular Ecology, March, 6515–6530. https://doi.org/10.1111/mec.16722 van Asch, B., Versfeld, W. F., Hull, K. L., Leslie, A. J., Matheus, T. I., Beytell, P. C., du Preez, P., Slabbert, R., & Rhode, C. (2019). Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE, 14(12), 1–21. https://doi.org/10.1371/journal.pone.0226505 van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/https://doi.org/10.1111/j.1471- 8286.2004.00684.x van Weerd, M., C. Pomaro, C., de Leon, J., Antolin, R., & Mercado, V. (2016). Crocodylus mindorensis. The IUCN Red List of Threatened Species 2016: e.T5672A3048281. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T5672A3048281.en Vandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6, 1–12. https://doi.org/10.1186/1741-7007-6-46 Vasconcelos, W. R., Hrbek, T., Da Silveira, R., De Thoisy, B., Dos Santos Ruffeil, L. A. A., & Farias, I. P. (2008). Phylogeographic and conservation genetic analysis of the Black Caiman (Melanosuchus niger). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 600–613. https://doi.org/10.1002/jez.452 Vashistha, G., Deepika, S., Dhakate, P. M., Khudsar, F. A., & Kothamasi, D. (2020). The effectiveness of microsatellite DNA as a genetic tool in crocodilian conservation. Conservation Genetics Resources, 12(4), 733–744. https://doi.org/10.1007/s12686-020-01164-6 Velo-Antón, G., Godinho, R., Campos, J. C., & Brito, J. C. (2014). Should i stay or should i go? Dispersal and population structure in small, isolated desert populations of west african crocodiles. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094626 Villamarín, F., Escobedo-Galván, A. H., Siroski, P., & Magnusson, W. E. (2021). Geographic Distribution, Habitat, Reproduction, and Conservation Status of Crocodilians in the Americas. In R. B. Zucoloto, P. S. Amavet, L. M. Verdade, & I. P. Farias (Eds.), Conservation Genetics of New World Crocodilians (pp. 1–30). Springer International Publishing. https://doi.org/10.1007/978-3-030-56383-7_1 von Humboldt, A. (1958). Vom Orinoko zum Amazonas: Reise in die Äquinoktial-Gegenden des neuen Kontinents (A. Plott (Ed.)). F. A. Brockhaus. https://books.google.com.co/books?id=Q%5C_GhugEACAAJ Wang, J. (2009). A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology, 18(10), 2148–2164. https://doi.org/10.1111/j.1365- 294X.2009.04175.x Waples, R. S. (2006). A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7(2), 167–184. https://doi.org/10.1007/s10592-005-9100-y Waples, R. S., & Do, C. (2010). Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3(3), 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x Weaver, S., McGaugh, S. E., Kono, T. J. Y., Macip-Rios, R., & Gluesenkamp, A. G. (2022). Assessing genomic and ecological differentiation among subspecies of the rough-footed mud turtle, Kinosternon hirtipes. Journal of Heredity, 113(5), 538–551. https://doi.org/10.1093/jhered/esac036 Webb, G. J. W., Manolis, C., Brien, M. L., Balaguera-Reina, S. A., & Isberg, S. (2021). Crocodylus porosus. The IUCN Red List of Threatened Species 2021: e.T5668A3047556. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T5668A3047556.en Weeks, A. R., Heinze, D., Perrin, L., Stoklosa, J., Hoffmann, A. A., Van Rooyen, A., Kelly, T., & Mansergh, I. (2017). Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nature Communications, 8(1), 1–6. https://doi.org/10.1038/s41467-017- 01182-3 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358–1370. https://doi.org/10.2307/2408641 Wijmstra, T. A., & van der Hammen, T. (1966). Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen, 38, 71–83. Willi, Y., Kristensen, T. N., Sgro, C. M., Weeks, A. R., Ørsted, M., & Hoffmann, A. A. (2022). Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 119(1), 1–10. https://doi.org/10.1073/pnas.2105076119 Willoughby, J. R., Sundaram, M., Wijayawardena, B. K., Kimble, S. J. A., Ji, Y., Fernandez, N. B., Antonides, J. D., Lamb, M. C., Marra, N. J., & DeWoody, J. A. (2015). The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biological Conservation, 191, 495–503. https://doi.org/10.1016/j.biocon.2015.07.025 Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191. https://doi.org/10.1093/genetics/163.3.1177 Wright, S. (1939). Size of population and breeding structure in relation to evolution. Science, 87, 430–431. Yang, J., & Jiang, Z. (2011). Genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle (Procapra przewalskii): Implications for conservation. Conservation Genetics, 12(6), 1457–1468. https://doi.org/10.1007/s10592-011-0244-7 Leigh, J. W., & Bryant, D. (2015). Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolutionl, 6: 1110-1116. https://doi.org/10.1111/2041-210X.12410 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 90 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84327/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84327/2/1019131808.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84327/3/1019131808.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 36db7625629d096d4e5f0403b0977b92 b33daaa039739150e0a57e5e3791ce54 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089267678281728 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Ramírez, Marioed5b1d0e018fc833079772b4f20c24d0Castillo Rodríguez, Nicolása5715b0887d14684d210d378e5049ff7Biodiversidad y Conservación GenéticaNicolás Castillo-Rodríguez [0000000346711687]2023-07-27T19:19:08Z2023-07-27T19:19:08Z2023https://repositorio.unal.edu.co/handle/unal/84327Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasEl Caimán Llanero o Cocodrilo del Orinoco (Crocodylus intermedius) se encuentra críticamente amenazado debido a la caza indiscriminada que sufrió durante el siglo pasado con el fin de satisfacer la empresa curtiembre estadounidense y europea. Por lo que hoy, la especie es representada por individuos aislados, pocas agrupaciones remanentes, y en gran medida, poblaciones ex situ establecidas con fines de conservación en Colombia y Venezuela. Se han desarrollado legislaciones y planes de conservación estatales, que, en el caso de Colombia, incluyen la importancia y urgente necesidad de evaluar su estado genético en vida silvestre, buscando conservar su potencial evolutivo. La presente investigación se desarrolló con el fin de empezar a llenar este vacío de información y proponer acciones concretas y efectivas para la conservación de la especie. En el primer capítulo, reevaluamos el planteamiento efectuado a partir de fragmentos de ADN mitocondrial que sugería el manejo de la especie como una única unidad genética. Para ello, usamos marcadores moleculares variables (microsatélites y la región control de la mitocondria). Como resultado, identificamos tres agrupaciones genéticas con correspondencia geográfica en la Orinoquía Colombiana: i) Cuenca Oriental del Río Meta, ii) Cuenca Occidental del Río Meta y Cuenca del Río Vichada, y iii) Cuenca del Río Guaviare. Estimamos aspectos sobre su flujo genético y planteamos hipótesis que puedan explicar esta estructuración. Así mismo, evaluamos la asignación de individuos decomisados y cuyo origen era desconocido. En el segundo capítulo, efectuamos la caracterización genética de la población que habita el sistema de ríos Cravo Norte-Ele-Lipa y del programa de rancheo de huevos que allí se desarrolla, con el objetivo de aportar herramientas para seguir con su conservación y manejo. Identificamos a la población como un valioso recurso para la conservación de la especie, e identificamos aspectos demográficos históricos y actuales, entre los que destaca su bajo tamaño efectivo poblacional. Finalmente, en cada capítulo se proponen acciones concretas para la conservación y manejo de esta especie en Colombia. (Texto tomado de la fuente)The Orinoco Crocodile (Crocodylus intermedius) is critically endangered due to the indiscriminate hunting it suffered during the last century to satisfy the American and European leather demand. Therefore, today it is represented by isolated individuals, few remaining groups, and to a large extent, ex situ populations established for conservation purposes in Colombia and Venezuela. Likewise, legislation and state conservation plans have been developed, which, in the case of Colombia, have suggested the evaluation of the in situ genetic status of the species, seeking to preserve its evolutionary potential. The present investigation was developed aiming baseline information to propose concrete and effective actions towards the species conservation. In the first chapter, we re-evaluated the approach made using mitochondrial DNA fragments that suggested managing the species as a single genetic unit. To do this, we used variable molecular markers (microsatellites and the control region of mitochondria). As a result, we identified three genetic groups with geographic correspondence in the Colombian Orinoquía: i) Eastern Meta River Basin, ii) Western Meta and Vichada River Basins, and iii) Guaviare River Basin. Furthermore, we estimated aspects such as gene flow, propose hypotheses that may explain its structure, and performed the assignment of seized individuals whose origin was unknown. In the second chapter, we achieved the genetic characterization of the population that inhabits the Cravo Norte-Ele-Lipa River System and the egg ranching program for conservation purposes that is being locally developed. We identified the population as a valuable resource for the conservation of the species and evaluated historical and present demographic aspects, among which its low effective population size stands out. Finally, in each chapter we propose concrete actions for the conservation and management of the species in Colombia.La Dirección de Investigación y Extensión Sede Bogotá por medio de la “Convocatoria nacional para el fomento de alianzas interdisciplinarias que articulen investigación, creación, extensión y formación en la Universidad Nacional de Colombia 2019-2021” financió el proyecto con código HERMES 47329 “Recuperación del caimán del Orinoco en Colombia. Evaluación genética de una población silvestres objeto de conservación del críticamente amenazado Caimán del Orinoco (Crocodylus intermedius): completando la historia para aumentar su supervivencia"MaestríaMagíster en Ciencias - BiologíaConservación genéticaxii, 90 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá576 - Genética y evolución597 - Vertebrados de sangre fríaCrocodylus intermediusConservación genéticaNeotrópicoMicrosatélitesRegión control de la mitocondriaConservation geneticsNeotropicsMicrosatellitesMitochondrial control regionGenética animalEvoluciónAnimal geneticsEvolutionEvaluación genética preliminar de poblaciones in situ del Caimán Llanero (Crocodylus intermedius) en la Orinoquía colombianaPreliminary genetic evaluation of in situ populations of the Orinoco Crocodile (Crocodylus intermedius) in the Colombian OrinoquíaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAllendorf, F. W., Luikart, G. H., & Aitken, S. N. (2012). Conservation and the Genetics of Populations. Wiley. https://books.google.com.co/books?id=VVploytG8jYCAmavet, P. S., Barban Zucoloto, R., Hrbek, T., & Farias Pires, I. (2021). Genetic diversity of new world crocodilians. In R. Barban Zucoloto, P. S. Amavet, L. Martins Verdade, & I. Farias Pires (Eds.), Conservation Genetics of New World Crocodilians (pp. 123–152). Springer. https://doi.org/10.1007/978-3-030-56383-7Amavet, P. S., Rueda, E. C., Vilardi, J. C., Siroski, P., Larriera, A., & Saidman, B. O. (2017). The broad-snouted caiman population recovery in Argentina. A case of genetics conservation. Amphibia Reptilia, 38(4), 411–424. https://doi.org/10.1163/15685381-00003123Antelo, R., Ayarzagüena, J., & Castroviejo, J. (2008). Biología del cocodrilo o caimán del Orinoco (Crocodylus intermedius) en la Estación Biológica El Frío, Estado Apure. Lozania, 336.Antelo, R., Vargas-Ramírez, M., Preciado, G., Saavedra-Rodríguez, C. A., & Forero-Medina, G. (2022). Plan de acción interinstitucional para la conservación del caimán llanero (Crocodylus intermedius) en Colombia. Wildlife Conservation Society, Estación de Biología Tropical Roberto Franco, Gobernación de Casanare y Universidad Nacional.Anzola, L. F. (2017). Abundancia poblacional , aspectos reproductivos y percepción de los habitantes locales, del Caimán LLanero (Crocodylus intermedius, Graves, 1819) en los ríos Lipa, Ele y Cravo Norte del Departamento de Arauca. Bol. Acad. C. Fís., Mat. y Nat., LXXVII(2–3), 147–158.Anzola, L. F., & Antelo, R. (2015). First data of natural recovery of any Orinoco crocodile Crocodylus intermedius population: Evidence from nesting. Herpetological Bulletin, 134, 10– 14.Ardila-Robayo, M. C., Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (2002). Monitoreo poblacional de Crocodylus intermedius (caimán llanero) en los ríos Guayabero y Duda (municipio de la Macarena - Meta).Ardila-Robayo, M. C., Barahona-Buitrago, S. L., Bonilla-Centeno, O. P., & Clavijo, B. J. (2002). Actualización del status poblaciones de Caimán del Orinoco (Crocodylus intermedius) en el Departamento de Arauca (Colombia). Memorias del Taller para la Conservación del Caimán del Orinoco (Crocodylus intermedius) en el Colombia y Venezuela.Ardila-Robayo, M. C., Martínez-Barreto, W., Suárez-Daza, R. M., & Moreno-Torres, C. A. (2010). La Estación Roberto Franco (EBTRF) y el cocodrilo del Orinoco en Colombia: contribución a su biología y conservación. Revista Latinoamericana de Conservación, 1(2), 120–130. http://lajoc.procat-conservation.org/ojs/index.php/procat/article/view/60Avila-cervantes, J., & Larsson, H. C. E. (2023). Ice Age effects on genetic divergence of the American crocodile ( Crocodylus acutus ) in Panama : reconstructing limits of gene flow and environmental ranges : a reply to O ’ Dea et al . 77(December 2022), 329–334.Balaguera-Reina, S. A., Espinosa-Blanco, A., Antelo, R., Morales-Betancourt, M., & Seijas, A. (2018). Crocodylus intermedius (errata version published in 2020). The IUCN Red List of Threatened Species 2018: E.T5661A181089024. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2018- 1.RLTS.T5661A181089024.enBalaguera-Reina, S. A., Espinosa-Blanco, A. S., Morales-Betancourt, M. A., Seijas, A. E., Lasso, C. A., Antelo, R., & Densmore, L. D. (2017). Conservation status and regional habitat priorities for the Orinoco crocodile: Past, present, and future. PLoS ONE, 12(2), 1–20. https://doi.org/10.1371/journal.pone.0172439Balaguera-Reina, S. A., Moncada-Jimenez, J. F., Prada-Quiroga, C. F., Hernandez-Gonzalez, F., Bolaños-Cubillos, N. W., Farfán-Ardila, N., Garcia-Calderón, L. M., & Densmore, L. D. (2021). Tracking a voyager: Mitochondrial DNA analyses reveal mainland-to-island dispersal of an American crocodile (Crocodylus acutus) across the Caribbean. Biological Journal of the Linnean Society, 131(3), 647–655. https://doi.org/10.1093/BIOLINNEAN/BLAA121Barahona-Buitrago, S. L., & Bonilla-Centeno, O. P. (1999). Evaluación poblacional del Caimán Llanero (Crocodylus intermedius) en un subareal de distribución en el departamento de Arauca (Colombia). In Revista de la Academia Colombiana de Ciencias (Vol. 23, pp. 445–451).Behling, H., & Hooghiemstra, H. (2001). Chapter 18 - Neotropical Savanna Environments in Space and Time: Late Quaternary Interhemispheric Comparisons. In V. Markgraf (Ed.), Interhemispheric Climate Linkages (pp. 307–323). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012472670-3/50021-5Bensch, S., Stjernman, M., Hasselquist, D., Örjan, Ö., Hannson, B., Westerdahl, H., & Pinheiro, R. T. (2000). Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1452), 1583–1589. https://doi.org/10.1098/rspb.2000.1181Bishop, J. M., Leslie, A. J., Bourquin, S. L., & O’Ryan, C. (2009). Reduced effective population size in an overexploited population of the Nile crocodile (Crocodylus niloticus). Biological Conservation, 142(10), 2335–2341. https://doi.org/https://doi.org/10.1016/j.biocon.2009.05.016Bittencourt, P. S., Campos, Z., De Lima Muniz, F., Marioni, B., Souza, B. C., Silveira, R. Da, De Thoisy, B., Hrbek, T., & Farias, I. P. (2019). Evidence of cryptic lineages within a small South American crocodilian: The Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ, 2019(3), 1–26. https://doi.org/10.7717/peerj.6580Blomqvist, D., Pauliny, A., Larsson, M., & Flodin, L. Å. (2010). Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evolutionary Biology, 10(1), 1–9. https://doi.org/10.1186/1471-2148-10-33Bustamante, C. (Ed.). (2019). El Gran Libro de la Orinoquia Colombiana. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Deutsche Gessellschaft für Internationale Zusammenarbeit (GIZ) GmbH.Campos, J. C., Mobaraki, A., Abtin, E., Godinho, R., & Brito, J. C. (2018). Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphibia Reptilia, 39(1), 126–131. https://doi.org/10.1163/15685381-16000173Casal, A. C., Fornelino, M. M., Restrepo, M. F. G., Torres, M. A. C., & Velasco, F. G. (2013). Uso histórico y actual del caimán llanero (Crocodylus intermedius) en la Orinoquia (Colombia-Venezuela). Biota Colombiana, 14(1), 65–82.Castro, A., Merchán, M., Garcés, M., Cárdenas, M., & Gómez, F. (2012). New data on the Conservation Status of the Orinoco crocodile (Crocodylus intermedius) in Colombia. Proceedings of the 21th Working Meeting of the Crocodile Specialist Group, IUCN, January, 65–73.Castro, A., Merchán, M., Gómez, F., Garcés, M. F., & Cárdenas, M. A. (2011). Nuevos datos sobre la presencia de caimán llanero (Crocodylus intermedius) y notas sobre su comportamiento en el río Vichada, Orinoquia (Colombia). Biota Colombiana, 12(1), 137–144. https://doi.org/10.21068/bc.v12i1.244Castro Casal, A. (2012). Generalidades sobre la biología y el comportamiento del Cocodrilo del Orinoco (Crocodylus intermedius) (pp. 17–56).Cedeño-Vázquez, J. R., Platt, S. G., & Thorbjarnarson, J. (2012). Crocodylus moreletii. The IUCN Red List of Threatened Species 2012: e.T5663A3045579. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T5663A3045579.enChoudhury, B. C., & de Silva, A. (2013). Crocodylus palustris. The IUCN Red List of Threatened Species 2013: e.T5667A3046723. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2013- 2.RLTS.T5667A3046723.enCITES. (2017). Appendices I, II and III valid from 4 October 2017. In CITES-UNEP. https://cites.org/sites/default/files/eng/app/2017/E-Appendices-2017-10-04.pdfClement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657-1660.Cohen, J. I., & Ruane, L. G. (2022). Conservation genetics of Phlox hirsuta, a serpentine endemic. Conservation Genetics, 0123456789. https://doi.org/10.1007/s10592-022-01478-yCornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014. https://doi.org/10.1093/genetics/144.4.2001Davis, L. M., Glenn, T. C., Strickland, D. C., Guillette, L. J., Elsey, R. M., Rhodes, W. E., Dessauer, H. C., & Sawyer, R. H. (2002). Microsatellite DNA analyses support an east-west phylogeographic split of American alligator populations. Journal of Experimental Zoology, 294(4), 352–372. https://doi.org/10.1002/jez.10189de Thoisy, B., Hrbek, T., Farias, I. P., Vasconcelos, W. R., & Lavergne, A. (2006). Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biological Conservation, 133(4), 474–482. https://doi.org/10.1016/j.biocon.2006.07.009Dever, J. A., & Densmore, L. D. (2001). Microsatellites in Morelet’s Crocodile (Crocodylus moreletii) and Their Utility in Addressing Crocodilian Population Genetics Questions. Journal of Herpetology, 35(3), 541–544.Dever, J. A., Strauss, R. E., Rainwater, T., & Densmore, L. D. (2002). Genetic Diversity, Population Subdivision, and Gene Flow in Morelet’s Crocodile (Crocodylus moreletii) from Belize, Central America. December 2002. https://doi.org/10.1643/0045-8511(2002)002Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., Slatkin, M., & Freimer, N. B. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91(8), 3166–3170. https://doi.org/10.1073/pnas.91.8.3166Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214. https://doi.org/https://doi.org/10.1111/1755-0998.12157Dominguez, M., Pizzarello, G., Atencio, M., Scardamaglia, R., & Mahler, B. (2019). Genetic assignment and monitoring of yellow cardinals. Journal of Wildlife Management, 83(6), 1336– 1344. https://doi.org/10.1002/jwmg.21718Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.xFaubet, P., Waples, R. S., & Gaggiotti, O. E. (2007). Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Molecular Ecology, 16(6), 1149–1166. https://doi.org/10.1111/j.1365-294X.2007.03218.xFitzsimmons, N. N., Tanksley, S., Forstner, M. R. J., Louis, E. E., Daglish, R., Gratten, J., & Davis, S. (2001). Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In Crocodilian Biology and Evolution (pp. 51–57).Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: a review. Genetical Research, 66(2), 95–107. https://doi.org/10.1017/S0016672300034455Frankham, R. (1996). Relationship of Genetic Variation to Population Size in Wildlife. Conservation Biology, 10(6), 1500–1508. http://dx.doi.org/10.1046/j.1523-1739.1996.10061500.xFrankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology, 24(11), 2610–2618. https://doi.org/10.1111/mec.13139Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., & Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology, 25(3), 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.xFrankham, R., Bradshaw, C. J. A., & Brook, B. W. (2014). Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biological Conservation, 170, 56–63. https://doi.org/https://doi.org/10.1016/j.biocon.2013.12.036Franklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 135–150). Sinauer Associates.Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147(2), 915–925. https://doi.org/10.1093/genetics/147.2.915García-Dorado, A. (2015). On the consequences of ignoring purging on genetic recommendations for minimum viable population rules. Heredity, 115(3), 185–187. https://doi.org/10.1038/hdy.2015.28Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318. https://doi.org/10.1046/j.1365- 294x.2001.01190.xGillespie, J. H. (2004). Population Genetics: A Concise Guide. Johns Hopkins University Press. https://books.google.com.co/books?id=eslingEACAAJGilpin, M., & Soulé, M. E. (1986). Minimum viable populations : Processes of species extinction. In M. E. Soulé & B. A. Wilcox (Eds.), Conservation biology: an evolutionary-ecological prospective (pp. 19–34). Sinauer Associates.Glenn, T. C., Staton, J. L., Vu, A. T., Davis, L. M., Alvarado Bremer, J. R., Rhodes, W. E., Brisbin, I. L., & Sawyer, R. H. (2002). Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians. Journal of Experimental Zoology, 294(4), 312– 324. https://doi.org/10.1002/jez.10206Gottelli, D., Sillero-Zubiri, C., Marino, J., Funk, S. M., & Wang, J. (2013). Genetic structure and patterns of gene flow among populations of the endangered Ethiopian wolf. Animal Conservation, 16(2), 234–247. https://doi.org/10.1111/j.1469-1795.2012.00591.xGoudet, J. (2003). Fstat (ver. 2.9.4), a program to estimate and test population genetics parameters. Updated from Goudet (1995). http://www.unil.ch/izea/softwares/fstat. htmlGuillot, G., Mortier, F., & Estoup, A. (2005). GENELAND: A computer package for landscape genetics. Molecular Ecology Notes, 5(3), 712–715. https://doi.org/10.1111/j.1471- 8286.2005.01031.xGustafson, K. D., Gagne, R. B., Buchalski, M. R., Vickers, T. W., Riley, S. P. D., Sikich, J. A., Rudd, J. L., Dellinger, J. A., LaCava, M. E. F., & Ernest, H. B. (2022). Multi-population puma connectivity could restore genomic diversity to at-risk coastal populations in California. Evolutionary Applications, 15(2), 286–299. https://doi.org/10.1111/eva.13341Hall, T. (2005). BioEdit: Biological sequence alignmet editor for Win95/98/NT/2K/XP (7.0.5). Ibis Therapeutics.Hartl, D. L., & Clark, A. G. (1997). Principles of Population Genetics. Sinauer Associates. https://books.google.com.co/books?id=4ypuQgAACAAJHekkala, E. R., Amato, G., DeSalle, R., & Blum, M. J. (2010). Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conservation Genetics, 11(4), 1435–1443. https://doi.org/10.1007/s10592-009-9970-5Hernández-Camacho, J., Hurtado G., A., Ortiz Quijano, R., & Walschburger, T. (1992). Unidades biogeográficas de Colombia. In G. Halffter (Ed.), La diversidad biológica de Iberoamérica (Vol. 1, pp. 105–152).Hill, W. G. (1981). Estimation of effective population size from data on linkage disequilibrium. Genetical Research, 38(3), 209–216. https://doi.org/10.1017/S0016672300020553Hinlo, M. R. P., Tabora, J. A. G., Bailey, C. A., Trewick, S., Rebong, G., van Weerd, M., Pomares, C. C., Engberg, S. E., Brenneman, R. A., & Louis, Jr., E. E. (2014). Population genetics implications for the conservation of the Philippine Crocodile Crocodylus mindorensis Schmidt, 1935 (Crocodylia: Crocodylidae). Journal of Threatened Taxa, 6(3), 5513–5533. https://doi.org/10.11609/jott.o3384.5513-33Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information - HUBISZ - 2009 - Molecular Ecology Resources - Wiley Online Library. Molecular Ecology Resources, 9(5), 1322–1332.IDEAM. (2020). Presentación Deforestación 2020. http://www.ideam.gov.co/documents/10182/113437783/Presentacion_Deforestacion%0A202 0_SMByC-IDEAM.pdf/8ea7473e-3393-4942-8b75-88967ac12a19Iriondo, M. (1999). Climatic changes in the South American plains: Records of a continent-scale oscillation. Quaternary International, 57–58, 93–112. https://doi.org/10.1016/S1040- 6182(98)00053-6Isberg, S., Combrink, X., Lippai, C., & Balaguera-Reina, S. A. (2019). Crocodylus niloticus. The IUCN Red List of Threatened Species 2019: e.T45433088A3010181. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2019-1.RLTS.T45433088A3010181.enJablonski, D., Ribeiro-Júnior, M. A., Meiri, S., Maza, E., Kukushkin, O. V., Chirikova, M., Pirosová, A., Jelic, D., Mikulícek, P., & Jandzik, D. (2021). Morphological and genetic differentiation in the anguid lizard Pseudopus apodus supports the existence of an endemic subspecies in the Levant. Vertebrate Zoology, 71, 175–200. https://doi.org/10.3897/VZ.71.E60800Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806. https://doi.org/10.1093/bioinformatics/btm233Jamieson, I. G., & Allendorf, F. W. (2012). How does the 50/500 rule apply to MVPs? Trends in Ecology and Evolution, 27(10), 578–584. https://doi.org/10.1016/j.tree.2012.07.001Jamieson, I. G., Grueber, C. E., Waters, J. M., & Gleeson, D. M. (2008). Managing genetic diversity in threatened populations: a New Zealand perspective. New Zealand Journal of Ecology, 32(1), 130–137. http://www.jstor.org/stable/24058111Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129Jones, O. R., & Wang, J. (2010). COLONY: A program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources, 10(3), 551–555. https://doi.org/10.1111/j.1755-0998.2009.02787.xKalinowski, S. T. (2005). HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189. https://doi.org/10.1111/j.1471-8286.2004.00845.xLi, Y. L., & Liu, J. X. (2018). StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources, 18(1), 176– 177. https://doi.org/10.1111/1755-0998.12719Lugo-Rugeles, L. M., & Ardila-Robayo, M. C. (1998). Programa para la conservación del caiman del Orinoco (Crocodylus intermedius) en Colombia. Proyecto 290. Programa Research Fellowship NYZS. Wildlife Conservation Society. Proyecto 1101-13- 205-92 Colciencias.Luikart, G., & Cornuet, J.-M. (1998). Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data. Conservation Biology, 12(1), 228–237. https://doi.org/https://doi.org/10.1111/j.1523-1739.1998.96388.xMarkert, J. A., Denise M. Champlin, Ruth Gutjahr-Gobell, Jason S. Grear, Anne Kuhn, Thomas J. McGreevy, Annette Roth, Mark J. Bagley, & Diane E. Nacci. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology, 10(205), 1–13. http://www.biomedcentral.com/1471-2148/10/205Martin, S. (2008). Global diversity of crocodiles (Crocodilia, Reptilia) in freshwater. Hydrobiologia, 595(1), 587–591. https://doi.org/10.1007/s10750-007-9030-4Mcvay, J. D., Rodriguez, D., Rainwater, T. R., Dever, J. A., Platt, S. G., Mcmurry, S. T., Forstner, M. R. J., & Densmore, L. D. (2008). Evidence of multiple paternity in Morelet’s Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 643–648. https://doi.org/10.1002/jez.500Medem, F. (1981). Los Crocodylia de Sur America: Los Crocodylia de Colombia. Vol. 1. Ministerio de Educacion Nacional, Fondo Colombiano de Investigaciones Científicas y Proyectos Especiales “Francisco José de Caldas.”Meirmans, P. G. (2014). Nonconvergence in Bayesian estimation of migration rates. Molecular Ecology Resources, 14(4), 726–733. https://doi.org/10.1111/1755-0998.12216Miles, L. G., Isberg, S. R., Moran, C., Hagen, C., & Glenn, T. C. (2009). 253 Novel polymorphic microsatellites for the saltwater crocodile (Crocodylus porosus). Conservation Genetics, 10(4), 963–980. https://doi.org/10.1007/s10592-008-9600-7Milián-García, Y., Ramos-Targarona, R., Pérez-Fleitas, E., Sosa-Rodríguez, G., Guerra-Manchena, L., Alonso-Tabet, M., Espinosa-López, G., & Russello, M. A. (2015). Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: implications for population history and in situ/ex situ conservation. Heredity, 114(3), 272–280. https://doi.org/10.1038/hdy.2014.96Milián-García, Y., Russello, M. A., Castellanos-Labarcena, J., Cichon, M., Kumar, V., Espinosa, G., Rossi, N., Mazzotti, F., Hekkala, E., Amato, G., & Janke, A. (2018). Genetic evidence supports a distinct lineage of American crocodile (Crocodylus acutus) in the Greater Antilles. PeerJ, 2018(11), 1–16. https://doi.org/10.7717/peerj.5836Ministerio de Ambiente. (2016). Visión Amazonía. https://www.minambiente.gov.co/index.php/component/content/article/2138plantilla%0Abosques-biodiversidad-y-servicios-ecosistematicos-62MMA. (2002). Programa Nacional para la Conservación del Caimán Llanero. 31.Mora-Fernández, C., Peñuela-Recio, L., & Castro-Lima, F. (2015). Estado del conocimiento de los ecosistemas de las sabanas inundables en la Orinoquia Colombiana TT - State of the knowledge of the flooded savanna ecosystems of Orinoquia Colombiana TT - Estado do conhecimento sobre os ecossistemas das savanas inundadas. Orinoquia, 19(2), 253–271.Morales-Betancourt, M. A., Lasso, C. A., Gutiérrez, F. de P., Martínez-Barreto, W., Ardila-Robayo, M. C., Moreno-Arias, R. A., Suarez-Daza, R. M., Clavijo, J., Anzola, L. F., Antelo, R., Lugo, M., & Trujillo, F. (2019). Identificación de áreas y estrategias para la conservación del caimán llanero (Crocodylus intermedius) en la Orinoquia colombiana. In M. C. Ardila-Robayo & W. Martínez-Barreto (Eds.), Homenaje a Federico Medem, aportes a la herpetología colombiana (1st ed., pp. 13–28). Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales.Morales-Betancourt, M. A., Lasso, C. A., Martínez, W., Ardila-Robayo, M. C., & Bloor, P. (2015). Caimán llanero (Crocodylus intermedius). In M. A. Morales-Betancourt, C. A. Lasso, V. P. Páez, & B. C. Bock (Eds.), Libro rojo de reptiles de Colombia (p. 258). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Universidad de Antioquia.Moreno-Arias, R. A., & Ardila-Robayo, M. C. (2020). Journeying to freedom: The spatial ecology of a reintroduced population of Orinoco crocodiles (Crocodylus intermedius) in Colombia. Animal Biotelemetry, 8(1), 1–13. https://doi.org/10.1186/s40317-020-00202-2Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9(10), 373–375. https://doi.org/10.1016/0169-5347(94)90057-4Muniz, F. L., Ximenes, A. M., Bittencourt, P. S., Hernández-Rangel, S. M., Campos, Z., Hrbek, T., & Farias, I. P. (2019). Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Molecular Biology Reports, 46(2), 2473–2484. https://doi.org/10.1007/s11033-019-04709-7Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. Journal of Molecular Evolution, 19(2), 153–170. https://doi.org/10.1007/BF02300753Neuwald, J. L. (2010). Population isolation exacerbates conservation genetic concerns in the endangered Amargosa vole, Microtus californicus scirpensis. Biological Conservation, 143(9), 2028–2038. https://doi.org/10.1016/j.biocon.2010.05.007Oaks, J. R. (2011). A time-calibrated species tree of crocodylia reveals a recent radiation of the true crocodiles. Evolution, 65(11), 3285–3297. https://doi.org/10.1111/j.1558-5646.2011.01373.xPacheco-Sierra, G., Vázquez-Domínguez, E., Pérez-Alquicira, J., Suárez-Atilano, M., & Domínguez-Laso, J. (2018). Ancestral hybridization yields evolutionary distinct hybrids lineages and species boundaries in crocodiles, posing unique conservation conundrums. Frontiers in Ecology and Evolution, 6(SEP). https://doi.org/10.3389/fevo.2018.00138Paetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4(3), 347–354. https://doi.org/10.1111/j.1365-294x.1995.tb00227.xPaetkau, D., Slade, R., Burden, M., & Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13(1), 55–65. https://doi.org/10.1046/j.1365-294x.2004.02008.xPalstra, F. P., & Ruzzante, D. E. (2008). Genetic estimates of contemporary effective population size : what can they tell us about the importance of genetic stochasticity for wild population persistence ? Molecular Ecology, 17, 3428–3447. https://doi.org/10.1111/j.1365- 294X.2008.03842.xPeery, M. Z., Kirby, R., Reid, B. N., Stoelting, R., Doucet-Bëer, E., Robinson, S., Vásquez-Carrillo, C., Pauli, J. N., & Palsboll, P. J. (2012). Reliability of genetic bottleneck tests for detecting recent population declines. Molecular Ecology, 21(14), 3403–3418. https://doi.org/10.1111/j.1365-294X.2012.05635.xPiry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., & Estoup, A. (2004). GENECLASS2: A Software for Genetic Assignment and First-Generation Migrant Detection. Journal of Heredity, 95(6), 536–539. https://doi.org/10.1093/jhered/esh074Piry, S., Luikart, G., & Cornuet, J.-M. (1999). Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered, 90. https://doi.org/10.1093/jhered/90.4.502Posso-Peláez, C., Ibáñezand, C., & Bloor, P. (2018). Low mitochondrial DNA variability in the captive breeding population of the critically endangered orinoco crocodile (Crocodylus intermedius) from Colombia. Herpetological Conservation and Biology, 13(2), 347–354.Preciado-Salas, B. A. (2018). Percepción, uso y conservación local del Caimán llanero (Crocodylus intermedius) en el complejo de ríos Cravo Norte, Ele y Lipa (Arauca, Colombia) Trabajo de grado para optar por el título de Magister en Conservación y Uso de la Biodiversidad. Modalidad d [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/bitstream/handle/10554/35678/Brigitte Preciado-Salas Percepcion%2C Uso y Conservacion Local del Caiman Llanero.pdf?sequence=2&isAllowed=yPritchard, J., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 9197–9201. https://doi.org/10.1093/genetics/155.2.945Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512R Development Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/Rainwater, T. R., Platt, S. G., Charruau, P., Balaguera-Reina, S. A., Sigler, L., Cedeño-Vázquez, J. R., & Thorbjarnarson, J. B. (2021). Crocodylus acutus (amended version of 2021 assessment). The IUCN Red List of Threatened Species 2022: e.T5659A212805700. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2022-1.RLTS.T5659A212805700.enRamasamy, R. K., Ramasamy, S., Bindroo, B. B., & Naik, V. G. (2014). STRUCTURE PLOT: A program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus, 3(1), 1–3. https://doi.org/10.1186/2193-1801-3-431Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19(12), 2092–2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034Rannala, B., & Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America, 94(17), 9197–9201. https://doi.org/10.1073/pnas.94.17.9197Ray, D. A., & Densmore, L. (2002). The crocodilian mitochondrial control region: General structure, conserved sequences, and evolutionary implications. Journal of Experimental Zoology, 294(4), 334–345. https://doi.org/10.1002/jez.10198Ray, D. A., & Densmore, L. D. (2003). Repetitive sequences in the crocodilian mitochondrial control region: Poly-A sequences and heteroplasmic tandem repeats. Molecular Biology and Evolution, 20(6), 1006–1013. https://doi.org/10.1093/molbev/msg117Ray, D. A., Dever, J. A., Platt, S. G., Rainwater, T. R., Finger, A. G., McMurry, S. T., Batzer, M. A., Barr, B., Stafford, P. J., McKnight, J., & Densmore, L. D. (2004). Low levels of nucleotide diversity in Crocodylus moreletii and evidence of hybridization with C. acutus. Conservation Genetics, 5(4), 449–462. https://doi.org/10.1023/B:COGE.0000041024.96928.feReed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.xRhode, C., Maduna, S. N., Roodt-Wilding, R., & Bester-Van Der Merwe, A. E. (2014). Comparison of population genetic estimates amongst wild, F1 and F2 cultured abalone (Haliotis midae). Animal Genetics, 45(3), 456–459. https://doi.org/10.1111/age.12142Rivera-Ortíz, F. A., Arizmendi, M. D. C., Juan-Espinosa, J., Solórzano, S., & Contreras-González, A. M. (2021). Genetic assignment tests to identify the probable geographic origin of a captive specimen of military macaw (Ara militaris) in mexico: Implications for conservation. Diversity, 13(6). https://doi.org/10.3390/d13060245Roa, P. (1979). Estudio de los médanos de los Llanos Centrales de Venezuela: Evidencias de un clima desértico. Acta Biológica Venezolana, 10, 19–49.Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9(3), 552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R., & Sherwin, W. B. (2009). Invasive species can’t cover their tracks: Using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Molecular Ecology, 18(8), 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.xRossi Lafferriere, N. A., Antelo, R., Alda, F., Martensson, D., Hailer, F., Castroviejo-Fisher, S., Ayarzagöena, J., Ginsberg, J. R., Castroviejo, J., Doadrio, I., Vilá, C., & Amato, G. (2016). Multiple paternity in a reintroduced population of the orinoco crocodile (Crocodylus intermedius) at the El frío biological station, Venezuela. PLoS ONE, 11(3), 1–16. https://doi.org/10.1371/journal.pone.0150245Rossi Lafferriere, N. A., Menchaca-Rodriguez, A., Antelo, R., Wilson, B., McLaren, K., Mazzotti, F., Crespo, R., Wasilewski, J., Alda, F., Doadrio, I., Barros, T. R., Hekkala, E., Alonso-Tabet, M., Alonso-Giménez, Y., Lopez, M., Espinosa-Lopez, G., Burgess, J., Thorbjarnarson, J. B., Ginsberg, J. R., … Amato, G. (2020). High levels of population genetic differentiation in the American crocodile (Crocodylus acutus). Plos One, 15(7), e0235288. https://doi.org/10.1371/journal.pone.0235288Rousset, F. (2008). GENEPOP ’ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources, 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.xRousset, F., & Raymond, M. (1995). Testing heterozygote excess and deficiency. Genetics, 140(4), 1413–1419. https://doi.org/10.1093/genetics/140.4.1413Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-García, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution, 34, 3299–3302.Russello, M. A., Brazaitis, P., Gratten, J., Watkins-Colwell, G. J., & Caccone, A. (2007). Molecular assessment of the genetic integrity, distinctiveness and phylogeographic context of the Saltwater crocodile (Crocodylus porosus) on Palau. Conservation Genetics, 8(4), 777–787. https://doi.org/10.1007/s10592-006-9225-7Ryberg, W. A., Fitzgerald, L. A., Honeycutt, R. L., & Cathey, J. C. (2002). Genetic relationships of American alligator populations distributed across different ecological and geographic scales. Journal of Experimental Zoology, 294(4), 325–333. https://doi.org/10.1002/jez.10207Saldarriaga-Gómez, A. M. (2021). Conservation genetics of the largest captive population of the critically endangered Orinoco crocodile (Crocodylus intermedius): a contribution for its survival [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/80488Seijas, A. E., Antelo, R., & Hernández, O. (2015). Caimán del Orinoco, Crocodylus intermedius. In J. P. Rodríguez, A. García-Rawlns, & F. Rojas-Suárez (Eds.), Libro Rojo de la Fauna Venezolana (Forth). Provita y Fundación Empresas Polar.Seijas, A. E., Antelo, R., Thorbjarnarson, J. B., & Robayo, M. C. A. (2010). Orinoco Crocodile Crocodylus intermedius. Crocodiles: An Action Plan for Their Conservation., 59–65.Shaffer, M. L. (1981). Minimum Population Sizes for Species Conservation. BioScience, 31(2), 131– 134. https://doi.org/10.2307/1308256Sharma, S. P., Ghazi, M. G., Katdare, S., Dasgupta, N., Mondol, S., Gupta, S. K., & Hussain, S. A. (2021). Microsatellite analysis reveals low genetic diversity in managed populations of the critically endangered gharial (Gavialis gangeticus) in India. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-85201-wTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585–595. https://doi.org/10.1093/genetics/123.3.585Targarona, R. R., Soberón, R. R., Cotayo, L., Tabet, M. A., & Thorbjarnarson, J. (2008). Crocodylus rhombifer (errata version published in 2017). The IUCN Red List of Threatened Species 2008: e.T5670A112902585. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.1996.RLTS.T5670A11516438.enThorbjarnarson, J. B. (1987). Status, ecology and conservation of the Orinoco Crocodile. Preliminary Report.Thorbjarnarson, J. B. (1989). Ecology of the American crocodile, Crocodylus actus. In P. Hall & R. Bryant (Eds.), Crocodiles, their ecology, management and conservation a special publication of the crocodile specialist group (pp. 228–258). IUCN Publications.Thorbjarnarson, J. B. ., & Hernández, G. (1993). Reproductive Ecology of the Orinoco Crocodile (Crocodylus intermedius) in Venezuela . II . Reproductive and Social Behavior. Herpetological Journal, 27(4), 371–379.Turba, R., Richmond, J. Q., Fitz-Gibbon, S., Morselli, M., Fisher, R. N., Swift, C. C., Ruiz-Campos, G., Backlin, A. R., Dellith, C., & Jacobs, D. K. (2022). Genetic structure and historic demography of endangered unarmoured threespine stickleback at southern latitudes signals a potential new management approach. Molecular Ecology, March, 6515–6530. https://doi.org/10.1111/mec.16722van Asch, B., Versfeld, W. F., Hull, K. L., Leslie, A. J., Matheus, T. I., Beytell, P. C., du Preez, P., Slabbert, R., & Rhode, C. (2019). Phylogeography, genetic diversity, and population structure of Nile crocodile populations at the fringes of the southern African distribution. PLoS ONE, 14(12), 1–21. https://doi.org/10.1371/journal.pone.0226505van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., & Shipley, P. (2004). micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes, 4(3), 535–538. https://doi.org/https://doi.org/10.1111/j.1471- 8286.2004.00684.xvan Weerd, M., C. Pomaro, C., de Leon, J., Antolin, R., & Mercado, V. (2016). Crocodylus mindorensis. The IUCN Red List of Threatened Species 2016: e.T5672A3048281. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T5672A3048281.enVandewoestijne, S., Schtickzelle, N., & Baguette, M. (2008). Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biology, 6, 1–12. https://doi.org/10.1186/1741-7007-6-46Vasconcelos, W. R., Hrbek, T., Da Silveira, R., De Thoisy, B., Dos Santos Ruffeil, L. A. A., & Farias, I. P. (2008). Phylogeographic and conservation genetic analysis of the Black Caiman (Melanosuchus niger). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 309(10), 600–613. https://doi.org/10.1002/jez.452Vashistha, G., Deepika, S., Dhakate, P. M., Khudsar, F. A., & Kothamasi, D. (2020). The effectiveness of microsatellite DNA as a genetic tool in crocodilian conservation. Conservation Genetics Resources, 12(4), 733–744. https://doi.org/10.1007/s12686-020-01164-6Velo-Antón, G., Godinho, R., Campos, J. C., & Brito, J. C. (2014). Should i stay or should i go? Dispersal and population structure in small, isolated desert populations of west african crocodiles. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094626Villamarín, F., Escobedo-Galván, A. H., Siroski, P., & Magnusson, W. E. (2021). Geographic Distribution, Habitat, Reproduction, and Conservation Status of Crocodilians in the Americas. In R. B. Zucoloto, P. S. Amavet, L. M. Verdade, & I. P. Farias (Eds.), Conservation Genetics of New World Crocodilians (pp. 1–30). Springer International Publishing. https://doi.org/10.1007/978-3-030-56383-7_1von Humboldt, A. (1958). Vom Orinoko zum Amazonas: Reise in die Äquinoktial-Gegenden des neuen Kontinents (A. Plott (Ed.)). F. A. Brockhaus. https://books.google.com.co/books?id=Q%5C_GhugEACAAJWang, J. (2009). A new method for estimating effective population sizes from a single sample of multilocus genotypes. Molecular Ecology, 18(10), 2148–2164. https://doi.org/10.1111/j.1365- 294X.2009.04175.xWaples, R. S. (2006). A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conservation Genetics, 7(2), 167–184. https://doi.org/10.1007/s10592-005-9100-yWaples, R. S., & Do, C. (2010). Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evolutionary Applications, 3(3), 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.xWeaver, S., McGaugh, S. E., Kono, T. J. Y., Macip-Rios, R., & Gluesenkamp, A. G. (2022). Assessing genomic and ecological differentiation among subspecies of the rough-footed mud turtle, Kinosternon hirtipes. Journal of Heredity, 113(5), 538–551. https://doi.org/10.1093/jhered/esac036Webb, G. J. W., Manolis, C., Brien, M. L., Balaguera-Reina, S. A., & Isberg, S. (2021). Crocodylus porosus. The IUCN Red List of Threatened Species 2021: e.T5668A3047556. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T5668A3047556.enWeeks, A. R., Heinze, D., Perrin, L., Stoklosa, J., Hoffmann, A. A., Van Rooyen, A., Kelly, T., & Mansergh, I. (2017). Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nature Communications, 8(1), 1–6. https://doi.org/10.1038/s41467-017- 01182-3Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358–1370. https://doi.org/10.2307/2408641Wijmstra, T. A., & van der Hammen, T. (1966). Palynological data on the history of tropical savannas in northern South America. Leidse Geologische Mededelingen, 38, 71–83.Willi, Y., Kristensen, T. N., Sgro, C. M., Weeks, A. R., Ørsted, M., & Hoffmann, A. A. (2022). Conservation genetics as a management tool: The five best-supported paradigms to assist the management of threatened species. Proceedings of the National Academy of Sciences of the United States of America, 119(1), 1–10. https://doi.org/10.1073/pnas.2105076119Willoughby, J. R., Sundaram, M., Wijayawardena, B. K., Kimble, S. J. A., Ji, Y., Fernandez, N. B., Antonides, J. D., Lamb, M. C., Marra, N. J., & DeWoody, J. A. (2015). The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biological Conservation, 191, 495–503. https://doi.org/10.1016/j.biocon.2015.07.025Wilson, G. A., & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191. https://doi.org/10.1093/genetics/163.3.1177Wright, S. (1939). Size of population and breeding structure in relation to evolution. Science, 87, 430–431.Yang, J., & Jiang, Z. (2011). Genetic diversity, population genetic structure and demographic history of Przewalski’s gazelle (Procapra przewalskii): Implications for conservation. Conservation Genetics, 12(6), 1457–1468. https://doi.org/10.1007/s10592-011-0244-7Leigh, J. W., & Bryant, D. (2015). Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolutionl, 6: 1110-1116. https://doi.org/10.1111/2041-210X.12410Dirección de Investigación y Extensión Sede Bogotá, Vicerrectoría de Investigación UNALConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84327/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1019131808.2023.pdf1019131808.2023.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf3201597https://repositorio.unal.edu.co/bitstream/unal/84327/2/1019131808.2023.pdf36db7625629d096d4e5f0403b0977b92MD52THUMBNAIL1019131808.2023.pdf.jpg1019131808.2023.pdf.jpgGenerated Thumbnailimage/jpeg4844https://repositorio.unal.edu.co/bitstream/unal/84327/3/1019131808.2023.pdf.jpgb33daaa039739150e0a57e5e3791ce54MD53unal/84327oai:repositorio.unal.edu.co:unal/843272023-08-13 23:03:56.311Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |