Beta Regression Models: Joint Mean and Variance Modeling

In this paper joint mean and variance beta regression models are proposed. The proposed models are fitted applying Bayesian methodology and assuming normal prior distribution for the regression parameters. An analysis of structural and real data is included, assuming the proposed model, together wit...

Full description

Autores:
Cepeda Cuervo, Edilberto
Tipo de recurso:
Work document
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/9323
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/9323
http://bdigital.unal.edu.co/6207/
Palabra clave:
31 Colecciones de estadística general / Statistics
Beta regression
Bayesian methodology
mean and variance modeling
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this paper joint mean and variance beta regression models are proposed. The proposed models are fitted applying Bayesian methodology and assuming normal prior distribution for the regression parameters. An analysis of structural and real data is included, assuming the proposed model, together with a comparison of the result obtained assuming joint modeling of the mean and precision parameters.