Gait characterizations in Parkinson's disease
ilustraciones, graficas
- Autores:
-
Ricaurte, David Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83080
- Palabra clave:
- 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Aprendizaje Profundo
Ganglios Basales
Trastornos Motores
Deep Learning
Basal Ganglia
Motor Disorders
Parkinson's disease
Chaos
Lyapunov exponent
Dynamical system
Gait
Motor control
Enfermedad de Parkinson
Caos
Exponente de Lyapunov
Sistema dinámico
Marcha
Control Motor
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_1886150ccb2f439fccc677e064107f9b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83080 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Gait characterizations in Parkinson's disease |
dc.title.translated.spa.fl_str_mv |
Caracterizaciones de la marcha en la enfermedad de Parkinson |
title |
Gait characterizations in Parkinson's disease |
spellingShingle |
Gait characterizations in Parkinson's disease 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Aprendizaje Profundo Ganglios Basales Trastornos Motores Deep Learning Basal Ganglia Motor Disorders Parkinson's disease Chaos Lyapunov exponent Dynamical system Gait Motor control Enfermedad de Parkinson Caos Exponente de Lyapunov Sistema dinámico Marcha Control Motor |
title_short |
Gait characterizations in Parkinson's disease |
title_full |
Gait characterizations in Parkinson's disease |
title_fullStr |
Gait characterizations in Parkinson's disease |
title_full_unstemmed |
Gait characterizations in Parkinson's disease |
title_sort |
Gait characterizations in Parkinson's disease |
dc.creator.fl_str_mv |
Ricaurte, David Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Romero Castro, Edgar Eduardo |
dc.contributor.author.none.fl_str_mv |
Ricaurte, David Leonardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Cim@Lab |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas 000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Aprendizaje Profundo Ganglios Basales Trastornos Motores Deep Learning Basal Ganglia Motor Disorders Parkinson's disease Chaos Lyapunov exponent Dynamical system Gait Motor control Enfermedad de Parkinson Caos Exponente de Lyapunov Sistema dinámico Marcha Control Motor |
dc.subject.other.spa.fl_str_mv |
Aprendizaje Profundo Ganglios Basales Trastornos Motores |
dc.subject.other.eng.fl_str_mv |
Deep Learning Basal Ganglia Motor Disorders |
dc.subject.proposal.eng.fl_str_mv |
Parkinson's disease Chaos Lyapunov exponent Dynamical system Gait Motor control |
dc.subject.proposal.spa.fl_str_mv |
Enfermedad de Parkinson Caos Exponente de Lyapunov Sistema dinámico Marcha Control Motor |
description |
ilustraciones, graficas |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-24T13:11:55Z |
dc.date.available.none.fl_str_mv |
2023-01-24T13:11:55Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
DataPaper Image Model Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83080 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83080 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] G. DeMaagd and A. Philip, “Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis,” Pharmacy and therapeutics, vol. 40, no. 8, p. 504, 2015 [2] K. McFarthing, G. Rafaloff, M. A. Baptista, R. K. Wyse, and S. R. Stott, “Parkinson’s disease drug therapies in the clinical trial pipeline: 2021 update,” Journal of Parkinson’s Disease, vol. 11, no. 3, p. 891, 2021 [3] E. Dorsey, T. Sherer, M. S. Okun, and B. R. Bloem, “The emerging evidence of the parkinson pandemic,” Journal of Parkinson’s disease, vol. 8, no. s1, pp. S3–S8, 2018. [4] C. Váradi, “Clinical features of parkinson’s disease: the evolution of critical symptoms,” Biology, vol. 9, no. 5, p. 103, 2020. [5] C. G. Goetz, “The history of parkinson’s disease: early clinical descriptions and neurolo- gical therapies,” Cold Spring Harbor perspectives in medicine, vol. 1, no. 1, p. a008862, 2011. [6] P. C. Poortvliet, A. Gluch, P. A. Silburn, and G. D. Mellick, “The queensland parkin- son’s project: an overview of 20 years of mortality from parkinson’s disease,” Journal of Movement Disorders, vol. 14, no. 1, p. 34, 2021. [7] S. Rong, G. Xu, B. Liu, Y. Sun, L. G. Snetselaar, R. B. Wallace, B. Li, J. Liao, and W. Bao, “Trends in mortality from parkinson disease in the united states, 1999–2019,” Neurology, vol. 97, no. 20, pp. e1986–e1993, 2021. [8] F. Yang, A. L. Johansson, N. L. Pedersen, F. Fang, M. Gatz, and K. Wirdefeldt, “Socio- economic status in relation to parkinson’s disease risk and mortality: A population-based prospective study,” Medicine, vol. 95, no. 30, 2016 [9] J. Jankovic and E. K. Tan, “Parkinson’s disease: Etiopathogenesis and treatment,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 91, no. 8, pp. 795–808, 2020. [10] P. Martinez-Martin, M. Skorvanek, J. M. Rojo-Abuin, Z. Gregova, G. T. Stebbins, C. G. Goetz, and Q. S. Group, “Validation study of the hoehn and yahr scale included in the mds-updrs,” Movement Disorders, vol. 33, no. 4, pp. 651–652, 2018. [11] N. I. of Health et al., “Parkinson’s disease: challenges, progress, and promise,” 2009. [12] K. A. Al Mamun, M. Alhussein, K. Sailunaz, and M. S. Islam, “Cloud based frame- work for parkinson’s disease diagnosis and monitoring system for remote healthcare applications,” Future Generation Computer Systems, vol. 66, pp. 36–47, 2017. [13] A. Tekriwal, D. S. Kern, J. Tsai, N. F. Ince, J. Wu, J. A. Thompson, and A. Abosch, “Rem sleep behaviour disorder: prodromal and mechanistic insights for parkinson’s di- sease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 88, no. 5, pp. 445–451, 2017. [14] M. Gerlach, W. Maetzler, K. Broich, H. Hampel, L. Rems, T. Reum, P. Riederer, A. St ̈offler, J. Streffer, and D. Berg, “Biomarker candidates of neurodegeneration in parkinson’s disease for the evaluation of disease-modifying therapeutics,” Journal of neural transmission, vol. 119, no. 1, pp. 39–52, 2012. [15] P. P. Michel, E. C. Hirsch, and S. Hunot, “Understanding dopaminergic cell death pathways in parkinson disease,” Neuron, vol. 90, no. 4, pp. 675–691, 2016. [16] A. Iarkov, G. Barreto, J. Grizzell, and V. Echeverria, “Strategies for the treatment of parkinson’s disease: beyond dopamine. front. aging neurosci. 2020; 12: 4,” 2020. [17] D. A. Winter, Biomechanics and motor control of human movement. John Wiley & Sons, 2009. [18] D. Grabli, C. Karachi, M.-L. Welter, B. Lau, E. C. Hirsch, M. Vidailhet, and C. Fran ̧cois, “Normal and pathological gait: what we learn from parkinson’s disease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 83, no. 10, pp. 979–985, 2012. [19] A. Alamdari and V. N. Krovi, “A review of computational musculoskeletal analysis of human lower extremities,” Human Modelling for Bio-Inspired Robotics, pp. 37–73, 2017. [20] L. M. Silva and N. Stergiou, “The basics of gait analysis,” Biomechanics and Gait Analysis, vol. 164, p. 231, 2020. [21] J. Kawalec, “Mechanical testing of foot and ankle implants,” in Mechanical Testing of Orthopaedic Implants, pp. 231–253, Elsevier, 2017. [22] C. Price, T. Schmeltzpfenning, C. J. Nester, and T. Brauner, “Foot and footwear bio- mechanics and gait,” in Handbook of Footwear Design and Manufacture, pp. 79–103, Elsevier, 2021. [23] C. W. Hess and M. Hallett, “The phenomenology of parkinson’s disease,” in Seminars in neurology, vol. 37, pp. 109–117, Thieme Medical Publishers, 2017. [24] L. di Biase, A. Di Santo, M. L. Caminiti, A. De Liso, S. A. Shah, L. Ricci, and V. Di Laz- zaro, “Gait analysis in parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring,” Sensors, vol. 20, no. 12, p. 3529, 2020. [25] S. Iqbal, X. Zang, Y. Zhu, H. M. A. A. Saad, and J. Zhao, “Nonlinear time-series analysis of different human walking gaits,” in 2015 IEEE International Conference on Electro/Information Technology (EIT), pp. 025–030, IEEE, 2015. [26] R. T. Lazaro, S. G. Reina-Guerra, and M. Quiben, Umphred’s Neurological Rehabilitation-E-Book. Elsevier Health Sciences, 2019. [27] D. Umphred and C. Carlson, Neurorehabilitation for the physical therapist assistant. Slack Incorporated, 2006. [28] D. F. Dale Purves, George J. Augustine, Neuroscience. Oxford University Press, 2018. [29] N. Stergiou, Nonlinear analysis for human movement variability. CRC press, 2018. [30] H. Kantz and T. Schreiber, Nonlinear time series analysis, vol. 7. Cambridge university press, 2004. [31] R. E. van Emmerik, S. W. Ducharme, A. C. Amado, and J. Hamill, “Comparing dy- namical systems concepts and techniques for biomechanical analysis,” Journal of Sport and Health Science, vol. 5, no. 1, pp. 3–13, 2016. [32] Y. Sarbaz, F. Towhidkhah, A. Jafari, and S. Gharibzadeh, “Do the chaotic features of gait change in parkinson’s disease?,” Journal of theoretical biology, vol. 307, pp. 160–167, 2012. [33] L. M. Decker, F. Cignetti, and N. Stergiou, “Complexity and human gait,” Revista Andaluza de Medicina del Deporte, vol. 3, no. 1, pp. 2–12, 2010. [34] M. Galatzer-Levy, Robert, “Understanding nonlinear dynamics.: D. kaplan and l. glass. new york: Springer-verlag, 1995,” Psychoanalytic Quarterly, vol. 66, pp. 737–737, 1997. [35] R. C. Hilborn et al., Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand, 2000. [36] P. Berge, Y. Pomeau, and C. Vidal, “Order within chaos: towards a deterministic ap- proach to turbulence,” 1986. [37] N. Stergiou, U. Buzzi, M. Kurz, and J. Heidel, “Nonlinear tools in human movement,” Innovative analyses of human movement, pp. 63–90, 2004. [38] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems and turbulence, Warwick 1980, pp. 366–381, Springer, 1981. [39] D. Ricaurte, G. Pineda, and E. Romero, “Characterizing the gait dynamic by estima- ting lyapunov exponents on gait kinematic trajectories in parkinson’s disease,” in 15th International Symposium on Medical Information Processing and Analysis, vol. 11330, p. 1133010, International Society for Optics and Photonics, 2020. [40] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest lyapunov exponents from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1-2, pp. 117–134, 1993. [41] S. Wallot and D. Mønster, “Calculation of average mutual information (ami) and false- nearest neighbors (fnn) for the estimation of embedding parameters of multidimensional time series in matlab,” Frontiers in psychology, p. 1679, 2018. [42] P. Xu, “Differential phase space reconstructed for chaotic time series,” Applied Mathe- matical Modelling, vol. 33, no. 2, pp. 999–1013, 2009. [43] J. Lekscha and R. V. Donner, “Phase space reconstruction for non-uniformly sampled noisy time series,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 8, p. 085702, 2018. [44] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining lyapunov expo- nents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985. [45] L. S. McCue and A. W. Troesch, “Use of lyapunov exponents to predict chaotic vessel motions,” in Contemporary Ideas on Ship Stability and Capsizing in Waves, pp. 415– 432, Springer, 2011. [46] J. M. Hausdorff, C. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, “Is walking a random walk? evidence for long-range correlations in stride interval of human gait,” Journal of Applied Physiology, vol. 78, no. 1, pp. 349–358, 1995. [47] S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991. [48] L. M. De Lau and M. M. Breteler, “Epidemiology of parkinson’s disease,” The Lancet Neurology, vol. 5, no. 6, pp. 525–535, 2006. [49] R. Mart ́ınez-Fern ́andez, C. Gasca-Salas, ́A. S ́anchez-Ferro, and J. ́A. Obeso, “Actua- lizaci ́on en la enfermedad de parkinson,” Revista M ́edica Cl ́ınica Las Condes, vol. 27, no. 3, pp. 363–379, 2016. [50] M. Ferrarin, L. Lopiano, M. Rizzone, M. Lanotte, B. Bergamasco, M. Recalcati, and A. Pedotti, “Quantitative analysis of gait in parkinson’s disease: a pilot study on effects of bilateral sub-thalamic stimulation,” Gait & posture, vol. 16, no. 2, pp. 135–148, 2002. [51] J. M. Hausdorff, “Gait dynamics in parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling,” Chaos: An Interdiscipli- nary Journal of Nonlinear Science, vol. 19, no. 2, p. 026113, 2009. [52] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” Journal of neurology, neurosurgery & psychiatry, vol. 79, no. 4, pp. 368–376, 2008. [53] J. B. Dingwell and L. C. Marin, “Kinematic variability and local dynamic stability of upper body motions when walking at different speeds,” Journal of biomechanics, vol. 39, no. 3, pp. 444–452, 2006. [54] V. S. Anishchenko, T. Vadivasova, and G. Strelkova, “Deterministic nonlinear systems,” A Short Course. Switzerland: Springer International Publishing, vol. 294, 2014. [55] L. Tang, H. Lv, F. Yang, and L. Yu, “Complexity testing techniques for time series data: A comprehensive literature review,” Chaos, Solitons & Fractals, vol. 81, pp. 117–135, 2015. [56] D. Lasagna, “Sensitivity analysis of chaotic systems using unstable periodic orbits,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 547–580, 2018. [57] S. Mehdizadeh, “The largest lyapunov exponent of gait in young and elderly individuals: a systematic review,” Gait & posture, vol. 60, pp. 241–250, 2018. [58] C. A ̧stef ̆anoaei, E. Pretegiani, L. Optican, D. Creang ̆a, and A. Rufa, “Eye movement recording and nonlinear dynamics analysis–the case of saccades,” Romanian journal of biophysics, vol. 23, no. 1-2, p. 81, 2013. [59] B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L. Rochester, “Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease,” Gait & posture, vol. 39, no. 4, pp. 1062–1068, 2014. [60] E. D. ̈Ubeyli, “Lyapunov exponents/probabilistic neural networks for analysis of eeg signals,” Expert Systems with Applications, vol. 37, no. 2, pp. 985 – 992, 2010. [61] D. Yılmaz and N. F. G ̈uler, “Analysis of the doppler signals using largest lyapunov exponent and correlation dimension in healthy and stenosed internal carotid artery patients,” Digital Signal Processing, vol. 20, no. 2, pp. 401 – 409, 2010. [62] K. Harezlak and P. Kasprowski, “Searching for chaos evidence in eye movement signals,” Entropy, vol. 20, no. 1, p. 32, 2018. [63] S. Bruijn, O. Meijer, P. Beek, and J. Van Die ̈en, “Assessing the stability of human loco- motion: a review of current measures,” Journal of the Royal Society Interface, vol. 10, no. 83, p. 20120999, 2013. [64] S. M. Bruijn, D. J. Bregman, O. G. Meijer, P. J. Beek, and J. H. van Die ̈en, “Maximum lyapunov exponents as predictors of global gait stability: a modelling approach,” Medical engineering and physics, vol. 34, no. 4, pp. 428–436, 2012. [65] C. Rhodes and M. Morari, “The false nearest neighbors algorithm: An overview,” Com- puters & Chemical Engineering, vol. 21, pp. S1149–S1154, 1997. [66] Y. Sarbaz and H. Pourakbari, “A review of presented mathematical models in parkin- son’s disease: Black-and gray-box models,” Medical & biological engineering & compu- ting, vol. 54, no. 6, pp. 855–868, 2016. [67] W. Caesarendra, B. Kosasih, K. Tieu, and C. A. Moodie, “An application of nonli- near feature extraction-a case study for low speed slewing bearing condition monitoring and prognosis,” in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1713–1718, IEEE, 2013. [68] J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points,” Physical review A, vol. 36, no. 9, p. 4456, 1987. [69] F. Magrinelli, A. Picelli, P. Tocco, A. Federico, L. Roncari, N. Smania, G. Zanette, and S. Tamburin, “Pathophysiology of motor dysfunction in parkinson’s disease as the rationale for drug treatment and rehabilitation. parkinsons dis. 2016,” 2016. [70] T. R. Mhyre, J. T. Boyd, and R. W. Hamill, “and kathleen a. maguire-zeiss,” Pro- tein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, vol. 65, p. 389, 2012. [71] P. Chand and I. Litvan, “Parkinson’s disease,” in Encyclopedia of Gerontology (Second Edition) (J. E. Birren, ed.), pp. 322–333, New York: Elsevier, second edition ed., 2007. [72] J. Perry and J. Burnfield, “Gait analysis: normal and pathological function. slack,” Inc., Thorofare, NJ, 1992. [73] M. Pistacchi, M. Gioulis, F. Sanson, E. De Giovannini, G. Filippi, F. Rossetto, and S. Z. Marsala, “Gait analysis and clinical correlations in early parkinson’s disease,” Functional neurology, vol. 32, no. 1, p. 28, 2017. [74] P. P ́erez-Toro, J. V ́asquez-Correa, T. Arias-Vergara, E. N ̈oth, and J. Orozco-Arroyave, “Nonlinear dynamics and poincar ́e sections to model gait impairments in different stages of parkinson’s disease,” Nonlinear Dynamics, vol. 100, pp. 3253–3276, 2020. [75] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7291–7299, 2017. [76] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll ́ar, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference on computer vision, pp. 740–755, Springer, 2014. [77] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation: New benchmark and state of the art analysis,” in Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693, 2014. [78] J. Stenum, C. Rossi, and R. T. Roemmich, “Two-dimensional video-based analysis of hu- man gait using pose estimation,” PLoS computational biology, vol. 17, no. 4, p. e1008935, 2021. [79] D. H. Wolaver and D. H. Wolaver, Phase-locked loop circuit design, vol. 1. Prentice Hall USA, 1991. [80] R. W. Schafer, “What is a savitzky-golay filter?[lecture notes],” IEEE Signal processing magazine, vol. 28, no. 4, pp. 111–117, 2011. [81] J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou, “The appropriate use of approximate entropy and sample entropy with short data sets,” Annals of biomedical engineering, vol. 41, no. 2, pp. 349–365, 2013. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 48 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Ingeniería Biomédica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83080/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/83080/4/80927859.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/83080/5/80927859.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 0a93566ec7514b0f67ec2b4be2d19be6 835793dd7e83de46b62fcbf87edeef26 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090187866636288 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Castro, Edgar Eduardod49b2499bdf2c07e42f8b4dc9715ef18Ricaurte, David Leonardo9a0abc947cdfe0d09f7dbace27ea5e11Cim@Lab2023-01-24T13:11:55Z2023-01-24T13:11:55Z2022https://repositorio.unal.edu.co/handle/unal/83080Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasLa enfermedad de Parkinson (EP) es una enfermedad neurodegenerativa que afecta el sistema de control motor encargado de los movimientos voluntarios del cuerpo humano y las funciones cognitivas. EP es la segunda enfermedad neurodegenerativa m mas común después de la enfermedad de Alzhaimer con una población mundial aproximada de 6 millones y con un estimado de 18 millones de personas para el año 2040. Se caracteriza por la muerte de las neuronas dopaminérgicas en un área conocida como substancia nigra pars compacta, que afecta directamente la función de los ganglios basales, afectando el sistema de control motor. Las principales manifestaciones motoras que se presentan debido a EP son bradicinesia, hipocinesia, alteración del equilibrio y de la marcha. Además, la EP afecta la capacidad de aprendizaje movimientos y de tareas repetitivas. Debido a las limitaciones funcionales de los movimientos que se presentan durante la progresión de la enfermedad, se han diseñado tratamientos invasivos (quirúrgicos) y no invasivos (medicamentos) para mejorar la calidad de vida de los pacientes. Los trastornos motores en la EP muestran una alta variabilidad interindividual que desafía las estrategias actuales basadas en la observación en el entorno clínico para determinar la evolución real de la enfermedad y monitorear la respuesta a la terapia. Diferentes investigaciones han intentado analizar cuantitativamente los patrones de marcha por métodos lineales enfrentando varias limitaciones debido a la naturaleza no estacionaria de los patrones de marcha. Sin embargo, esa variabilidad contiene patrones ocultos que no son fácilmente cuantificables en una rutina clínica por su alta complejidad. Debido a que el patrón de marcha podría abordarse como un sistema caótico determinista, es posible asociar a individuos sanos con un alto comportamiento caótico (complejidad) y las anormalidades de la marcha presentes en pacientes con EP, se puede asociar con uno menor (menor complejidad). En el presente trabajo se desarrolló en dos partes. La primera parte consistió en la caracterización no lineal de la marcha de la EP mediante un análisis caótico determinista que representa la dinámica temporal de la marcha con un conjunto mínimo de parámetros. Específicamente, se obtuvieron parámetros retardo (delay) y dimensión embebida para reconstruir el espacio de fase y sus coeficientes característicos, a saber, exponente de Lyapunov, dimensión de correlacion y entropía aproximada. Se encontraron diferencias estadísticas (p < 0.05, prueba de Mann-Whitney) para el exponente de Lyapunov y la entropía aproximada al describir los patrones de marcha de los grupos control y EP. La segunda parte de este trabajo tuvo como objetivo representar de forma no lineal la cinemateca de las extremidades inferiores, destacando las diferencias entre los estadios de la EP. Para ello, se incluyó pose estimation basado en aprendizaje profundo para obtener los puntos de referencia del cuerpo y sus series temporales y, posteriormente, construir el espacio de fase basado en sus derivadas. Luego se calculó el mayor exponente de Lyapunov, la dimensión de correlación y la entropía aproximada, dando como resultado diferencias estadísticamente significativas (Prueba de rango Kruskal-Wallis, p < 0.05), particularmente entre los controles sanos y las etapas 3, la etapa más avanzada, y al comparar el estadio 1 frente al estadio 3. Estos hallazgos brindan información sobre como los patrones complejos pueden estar relacionados con la progresión de la enfermedad en la EP y pueden implementarse fácilmente utilizando dispositivos de video RGB asequibles (Texto tomado de la fuente)Parkinson’s disease (PD) is a neurodegenerative disease that affects the motor control system responsible for the voluntary movements of the human body and cognitive functions. PD is the second most common neurodegenerative disease after Alzheimer’s disease with a world population of approximately 6 million and an estimated 18 million people by 2040. It is characterized by the death of dopaminergic neurons in an area known as substantia nigra pars compacta, which directly affects the function of the basal ganglia, affecting the motor control system. Motor manifestations include bradykinesia, hypokinesia, balance and gait disturbance. In addition, PD affects the ability to learn movements and repetitive tasks. Due to the functional limitations of movements that occur during the progression of the disease, invasive (surgical) and non-invasive (medication) treatments have been designed to improve the quality of life of patients. Motor disorders in PD show high inter-individual variability that challenges current observation-based strategies in the clinical setting to determine the current course of the disease and monitor response to therapy. Several researchers have attempted to quantitatively analyze gait patterns by linear methods, facing several limitations due to the non-stationary nature of gait patterns. However, this variability contains hidden patterns that are not easily quantifiable in a clinical routine and are highly complex. Because of the gait pattern could be approached as a deterministic chaotic system, it is possible to associate healthy individuals with high chaotic behavior and the gait abnormalities present in PD patients can be associated with decreased chaotic behavior. This work is developed in two parts. The first part consisted in making a non-linear characterization of the PD gait by means of a deterministic chaotic analysis that represents the temporal gait dynamics with a minimum set of parameters. Specifically, embedding and delay dimension parameters were obtained to reconstruct the phase space and its characteristic coefficients, namely Lyapunov exponent, correlation dimension, and approximate entropy. Statistical differences (p < 0,05, Mann-Whitney test) were found for the Lyapunov exponent and the approximate entropy when describing two gait patterns, that is, the control and PD groups. The second part of this work aimed to represent the kinematics of the lower extremities in a non-linear way, highlighting the differences between the stages of PD. For this, a widely used deep learning framework was implemented to obtain the reference points of the body and its time series and subsequently build the phase space based on the first-order derivatives. The largest Lyapunov exponent, correlation dimension, and approximate entropy were then calculated, resulting in statistically significant differences (Kruskal-Wallis rank test, p < 0,05), particularly between the healthy controls and stage 3, the most advanced stage, and compare stage 1 versus stage 3. These findings provide insight into how complex patterns may be related to disease progression in PD and can be easily implemented using imaging devices like RGB video capture.MaestríaMagíster en Ingeniería BiomédicaMotion and Biosignal Analysisxiv, 48 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Ingeniería BiomédicaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaAprendizaje ProfundoGanglios BasalesTrastornos MotoresDeep LearningBasal GangliaMotor DisordersParkinson's diseaseChaosLyapunov exponentDynamical systemGaitMotor controlEnfermedad de ParkinsonCaosExponente de LyapunovSistema dinámicoMarchaControl MotorGait characterizations in Parkinson's diseaseCaracterizaciones de la marcha en la enfermedad de ParkinsonTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageModelTexthttp://purl.org/redcol/resource_type/TM[1] G. DeMaagd and A. Philip, “Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis,” Pharmacy and therapeutics, vol. 40, no. 8, p. 504, 2015[2] K. McFarthing, G. Rafaloff, M. A. Baptista, R. K. Wyse, and S. R. Stott, “Parkinson’s disease drug therapies in the clinical trial pipeline: 2021 update,” Journal of Parkinson’s Disease, vol. 11, no. 3, p. 891, 2021[3] E. Dorsey, T. Sherer, M. S. Okun, and B. R. Bloem, “The emerging evidence of the parkinson pandemic,” Journal of Parkinson’s disease, vol. 8, no. s1, pp. S3–S8, 2018.[4] C. Váradi, “Clinical features of parkinson’s disease: the evolution of critical symptoms,” Biology, vol. 9, no. 5, p. 103, 2020.[5] C. G. Goetz, “The history of parkinson’s disease: early clinical descriptions and neurolo- gical therapies,” Cold Spring Harbor perspectives in medicine, vol. 1, no. 1, p. a008862, 2011.[6] P. C. Poortvliet, A. Gluch, P. A. Silburn, and G. D. Mellick, “The queensland parkin- son’s project: an overview of 20 years of mortality from parkinson’s disease,” Journal of Movement Disorders, vol. 14, no. 1, p. 34, 2021.[7] S. Rong, G. Xu, B. Liu, Y. Sun, L. G. Snetselaar, R. B. Wallace, B. Li, J. Liao, and W. Bao, “Trends in mortality from parkinson disease in the united states, 1999–2019,” Neurology, vol. 97, no. 20, pp. e1986–e1993, 2021.[8] F. Yang, A. L. Johansson, N. L. Pedersen, F. Fang, M. Gatz, and K. Wirdefeldt, “Socio- economic status in relation to parkinson’s disease risk and mortality: A population-based prospective study,” Medicine, vol. 95, no. 30, 2016[9] J. Jankovic and E. K. Tan, “Parkinson’s disease: Etiopathogenesis and treatment,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 91, no. 8, pp. 795–808, 2020.[10] P. Martinez-Martin, M. Skorvanek, J. M. Rojo-Abuin, Z. Gregova, G. T. Stebbins, C. G. Goetz, and Q. S. Group, “Validation study of the hoehn and yahr scale included in the mds-updrs,” Movement Disorders, vol. 33, no. 4, pp. 651–652, 2018.[11] N. I. of Health et al., “Parkinson’s disease: challenges, progress, and promise,” 2009.[12] K. A. Al Mamun, M. Alhussein, K. Sailunaz, and M. S. Islam, “Cloud based frame- work for parkinson’s disease diagnosis and monitoring system for remote healthcare applications,” Future Generation Computer Systems, vol. 66, pp. 36–47, 2017.[13] A. Tekriwal, D. S. Kern, J. Tsai, N. F. Ince, J. Wu, J. A. Thompson, and A. Abosch, “Rem sleep behaviour disorder: prodromal and mechanistic insights for parkinson’s di- sease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 88, no. 5, pp. 445–451, 2017.[14] M. Gerlach, W. Maetzler, K. Broich, H. Hampel, L. Rems, T. Reum, P. Riederer, A. St ̈offler, J. Streffer, and D. Berg, “Biomarker candidates of neurodegeneration in parkinson’s disease for the evaluation of disease-modifying therapeutics,” Journal of neural transmission, vol. 119, no. 1, pp. 39–52, 2012.[15] P. P. Michel, E. C. Hirsch, and S. Hunot, “Understanding dopaminergic cell death pathways in parkinson disease,” Neuron, vol. 90, no. 4, pp. 675–691, 2016.[16] A. Iarkov, G. Barreto, J. Grizzell, and V. Echeverria, “Strategies for the treatment of parkinson’s disease: beyond dopamine. front. aging neurosci. 2020; 12: 4,” 2020.[17] D. A. Winter, Biomechanics and motor control of human movement. John Wiley & Sons, 2009.[18] D. Grabli, C. Karachi, M.-L. Welter, B. Lau, E. C. Hirsch, M. Vidailhet, and C. Fran ̧cois, “Normal and pathological gait: what we learn from parkinson’s disease,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 83, no. 10, pp. 979–985, 2012.[19] A. Alamdari and V. N. Krovi, “A review of computational musculoskeletal analysis of human lower extremities,” Human Modelling for Bio-Inspired Robotics, pp. 37–73, 2017.[20] L. M. Silva and N. Stergiou, “The basics of gait analysis,” Biomechanics and Gait Analysis, vol. 164, p. 231, 2020.[21] J. Kawalec, “Mechanical testing of foot and ankle implants,” in Mechanical Testing of Orthopaedic Implants, pp. 231–253, Elsevier, 2017.[22] C. Price, T. Schmeltzpfenning, C. J. Nester, and T. Brauner, “Foot and footwear bio- mechanics and gait,” in Handbook of Footwear Design and Manufacture, pp. 79–103, Elsevier, 2021.[23] C. W. Hess and M. Hallett, “The phenomenology of parkinson’s disease,” in Seminars in neurology, vol. 37, pp. 109–117, Thieme Medical Publishers, 2017.[24] L. di Biase, A. Di Santo, M. L. Caminiti, A. De Liso, S. A. Shah, L. Ricci, and V. Di Laz- zaro, “Gait analysis in parkinson’s disease: An overview of the most accurate markers for diagnosis and symptoms monitoring,” Sensors, vol. 20, no. 12, p. 3529, 2020.[25] S. Iqbal, X. Zang, Y. Zhu, H. M. A. A. Saad, and J. Zhao, “Nonlinear time-series analysis of different human walking gaits,” in 2015 IEEE International Conference on Electro/Information Technology (EIT), pp. 025–030, IEEE, 2015.[26] R. T. Lazaro, S. G. Reina-Guerra, and M. Quiben, Umphred’s Neurological Rehabilitation-E-Book. Elsevier Health Sciences, 2019.[27] D. Umphred and C. Carlson, Neurorehabilitation for the physical therapist assistant. Slack Incorporated, 2006.[28] D. F. Dale Purves, George J. Augustine, Neuroscience. Oxford University Press, 2018.[29] N. Stergiou, Nonlinear analysis for human movement variability. CRC press, 2018.[30] H. Kantz and T. Schreiber, Nonlinear time series analysis, vol. 7. Cambridge university press, 2004.[31] R. E. van Emmerik, S. W. Ducharme, A. C. Amado, and J. Hamill, “Comparing dy- namical systems concepts and techniques for biomechanical analysis,” Journal of Sport and Health Science, vol. 5, no. 1, pp. 3–13, 2016.[32] Y. Sarbaz, F. Towhidkhah, A. Jafari, and S. Gharibzadeh, “Do the chaotic features of gait change in parkinson’s disease?,” Journal of theoretical biology, vol. 307, pp. 160–167, 2012.[33] L. M. Decker, F. Cignetti, and N. Stergiou, “Complexity and human gait,” Revista Andaluza de Medicina del Deporte, vol. 3, no. 1, pp. 2–12, 2010.[34] M. Galatzer-Levy, Robert, “Understanding nonlinear dynamics.: D. kaplan and l. glass. new york: Springer-verlag, 1995,” Psychoanalytic Quarterly, vol. 66, pp. 737–737, 1997.[35] R. C. Hilborn et al., Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand, 2000.[36] P. Berge, Y. Pomeau, and C. Vidal, “Order within chaos: towards a deterministic ap- proach to turbulence,” 1986.[37] N. Stergiou, U. Buzzi, M. Kurz, and J. Heidel, “Nonlinear tools in human movement,” Innovative analyses of human movement, pp. 63–90, 2004.[38] F. Takens, “Detecting strange attractors in turbulence,” in Dynamical systems and turbulence, Warwick 1980, pp. 366–381, Springer, 1981.[39] D. Ricaurte, G. Pineda, and E. Romero, “Characterizing the gait dynamic by estima- ting lyapunov exponents on gait kinematic trajectories in parkinson’s disease,” in 15th International Symposium on Medical Information Processing and Analysis, vol. 11330, p. 1133010, International Society for Optics and Photonics, 2020.[40] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, “A practical method for calculating largest lyapunov exponents from small data sets,” Physica D: Nonlinear Phenomena, vol. 65, no. 1-2, pp. 117–134, 1993.[41] S. Wallot and D. Mønster, “Calculation of average mutual information (ami) and false- nearest neighbors (fnn) for the estimation of embedding parameters of multidimensional time series in matlab,” Frontiers in psychology, p. 1679, 2018.[42] P. Xu, “Differential phase space reconstructed for chaotic time series,” Applied Mathe- matical Modelling, vol. 33, no. 2, pp. 999–1013, 2009.[43] J. Lekscha and R. V. Donner, “Phase space reconstruction for non-uniformly sampled noisy time series,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 8, p. 085702, 2018.[44] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining lyapunov expo- nents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285–317, 1985.[45] L. S. McCue and A. W. Troesch, “Use of lyapunov exponents to predict chaotic vessel motions,” in Contemporary Ideas on Ship Stability and Capsizing in Waves, pp. 415– 432, Springer, 2011.[46] J. M. Hausdorff, C. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger, “Is walking a random walk? evidence for long-range correlations in stride interval of human gait,” Journal of Applied Physiology, vol. 78, no. 1, pp. 349–358, 1995.[47] S. M. Pincus, “Approximate entropy as a measure of system complexity.,” Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp. 2297–2301, 1991.[48] L. M. De Lau and M. M. Breteler, “Epidemiology of parkinson’s disease,” The Lancet Neurology, vol. 5, no. 6, pp. 525–535, 2006.[49] R. Mart ́ınez-Fern ́andez, C. Gasca-Salas, ́A. S ́anchez-Ferro, and J. ́A. Obeso, “Actua- lizaci ́on en la enfermedad de parkinson,” Revista M ́edica Cl ́ınica Las Condes, vol. 27, no. 3, pp. 363–379, 2016.[50] M. Ferrarin, L. Lopiano, M. Rizzone, M. Lanotte, B. Bergamasco, M. Recalcati, and A. Pedotti, “Quantitative analysis of gait in parkinson’s disease: a pilot study on effects of bilateral sub-thalamic stimulation,” Gait & posture, vol. 16, no. 2, pp. 135–148, 2002.[51] J. M. Hausdorff, “Gait dynamics in parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling,” Chaos: An Interdiscipli- nary Journal of Nonlinear Science, vol. 19, no. 2, p. 026113, 2009.[52] J. Jankovic, “Parkinson’s disease: clinical features and diagnosis,” Journal of neurology, neurosurgery & psychiatry, vol. 79, no. 4, pp. 368–376, 2008.[53] J. B. Dingwell and L. C. Marin, “Kinematic variability and local dynamic stability of upper body motions when walking at different speeds,” Journal of biomechanics, vol. 39, no. 3, pp. 444–452, 2006.[54] V. S. Anishchenko, T. Vadivasova, and G. Strelkova, “Deterministic nonlinear systems,” A Short Course. Switzerland: Springer International Publishing, vol. 294, 2014.[55] L. Tang, H. Lv, F. Yang, and L. Yu, “Complexity testing techniques for time series data: A comprehensive literature review,” Chaos, Solitons & Fractals, vol. 81, pp. 117–135, 2015.[56] D. Lasagna, “Sensitivity analysis of chaotic systems using unstable periodic orbits,” SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 547–580, 2018.[57] S. Mehdizadeh, “The largest lyapunov exponent of gait in young and elderly individuals: a systematic review,” Gait & posture, vol. 60, pp. 241–250, 2018.[58] C. A ̧stef ̆anoaei, E. Pretegiani, L. Optican, D. Creang ̆a, and A. Rufa, “Eye movement recording and nonlinear dynamics analysis–the case of saccades,” Romanian journal of biophysics, vol. 23, no. 1-2, p. 81, 2013.[59] B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, and L. Rochester, “Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease,” Gait & posture, vol. 39, no. 4, pp. 1062–1068, 2014.[60] E. D. ̈Ubeyli, “Lyapunov exponents/probabilistic neural networks for analysis of eeg signals,” Expert Systems with Applications, vol. 37, no. 2, pp. 985 – 992, 2010.[61] D. Yılmaz and N. F. G ̈uler, “Analysis of the doppler signals using largest lyapunov exponent and correlation dimension in healthy and stenosed internal carotid artery patients,” Digital Signal Processing, vol. 20, no. 2, pp. 401 – 409, 2010.[62] K. Harezlak and P. Kasprowski, “Searching for chaos evidence in eye movement signals,” Entropy, vol. 20, no. 1, p. 32, 2018.[63] S. Bruijn, O. Meijer, P. Beek, and J. Van Die ̈en, “Assessing the stability of human loco- motion: a review of current measures,” Journal of the Royal Society Interface, vol. 10, no. 83, p. 20120999, 2013.[64] S. M. Bruijn, D. J. Bregman, O. G. Meijer, P. J. Beek, and J. H. van Die ̈en, “Maximum lyapunov exponents as predictors of global gait stability: a modelling approach,” Medical engineering and physics, vol. 34, no. 4, pp. 428–436, 2012.[65] C. Rhodes and M. Morari, “The false nearest neighbors algorithm: An overview,” Com- puters & Chemical Engineering, vol. 21, pp. S1149–S1154, 1997.[66] Y. Sarbaz and H. Pourakbari, “A review of presented mathematical models in parkin- son’s disease: Black-and gray-box models,” Medical & biological engineering & compu- ting, vol. 54, no. 6, pp. 855–868, 2016.[67] W. Caesarendra, B. Kosasih, K. Tieu, and C. A. Moodie, “An application of nonli- near feature extraction-a case study for low speed slewing bearing condition monitoring and prognosis,” in 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1713–1718, IEEE, 2013.[68] J. Theiler, “Efficient algorithm for estimating the correlation dimension from a set of discrete points,” Physical review A, vol. 36, no. 9, p. 4456, 1987.[69] F. Magrinelli, A. Picelli, P. Tocco, A. Federico, L. Roncari, N. Smania, G. Zanette, and S. Tamburin, “Pathophysiology of motor dysfunction in parkinson’s disease as the rationale for drug treatment and rehabilitation. parkinsons dis. 2016,” 2016.[70] T. R. Mhyre, J. T. Boyd, and R. W. Hamill, “and kathleen a. maguire-zeiss,” Pro- tein Aggregation and Fibrillogenesis in Cerebral and Systemic Amyloid Disease, vol. 65, p. 389, 2012.[71] P. Chand and I. Litvan, “Parkinson’s disease,” in Encyclopedia of Gerontology (Second Edition) (J. E. Birren, ed.), pp. 322–333, New York: Elsevier, second edition ed., 2007.[72] J. Perry and J. Burnfield, “Gait analysis: normal and pathological function. slack,” Inc., Thorofare, NJ, 1992.[73] M. Pistacchi, M. Gioulis, F. Sanson, E. De Giovannini, G. Filippi, F. Rossetto, and S. Z. Marsala, “Gait analysis and clinical correlations in early parkinson’s disease,” Functional neurology, vol. 32, no. 1, p. 28, 2017.[74] P. P ́erez-Toro, J. V ́asquez-Correa, T. Arias-Vergara, E. N ̈oth, and J. Orozco-Arroyave, “Nonlinear dynamics and poincar ́e sections to model gait impairments in different stages of parkinson’s disease,” Nonlinear Dynamics, vol. 100, pp. 3253–3276, 2020.[75] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7291–7299, 2017.[76] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll ́ar, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European conference on computer vision, pp. 740–755, Springer, 2014.[77] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human pose estimation: New benchmark and state of the art analysis,” in Proceedings of the IEEE Conference on computer Vision and Pattern Recognition, pp. 3686–3693, 2014.[78] J. Stenum, C. Rossi, and R. T. Roemmich, “Two-dimensional video-based analysis of hu- man gait using pose estimation,” PLoS computational biology, vol. 17, no. 4, p. e1008935, 2021.[79] D. H. Wolaver and D. H. Wolaver, Phase-locked loop circuit design, vol. 1. Prentice Hall USA, 1991.[80] R. W. Schafer, “What is a savitzky-golay filter?[lecture notes],” IEEE Signal processing magazine, vol. 28, no. 4, pp. 111–117, 2011.[81] J. M. Yentes, N. Hunt, K. K. Schmid, J. P. Kaipust, D. McGrath, and N. Stergiou, “The appropriate use of approximate entropy and sample entropy with short data sets,” Annals of biomedical engineering, vol. 41, no. 2, pp. 349–365, 2013.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83080/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL80927859.2022.pdf80927859.2022.pdfTesis de Maestría en Ingeniería Biomédicaapplication/pdf2872570https://repositorio.unal.edu.co/bitstream/unal/83080/4/80927859.2022.pdf0a93566ec7514b0f67ec2b4be2d19be6MD54THUMBNAIL80927859.2022.pdf.jpg80927859.2022.pdf.jpgGenerated Thumbnailimage/jpeg3993https://repositorio.unal.edu.co/bitstream/unal/83080/5/80927859.2022.pdf.jpg835793dd7e83de46b62fcbf87edeef26MD55unal/83080oai:repositorio.unal.edu.co:unal/830802024-08-15 23:15:05.337Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |