Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca
Ilustraciones, tablas
- Autores:
-
Parra Campos, Amanda
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79561
- Palabra clave:
- Celulosa
Hidrólisis
Extrusión
residuo lignocelulósico
hidrólisis
celulosa
extrusión
material compuesto
Material compuesto
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_187f18d3720f5a2b2c0e4c3f42fc184b |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79561 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
dc.title.translated.eng.fl_str_mv |
Extraction and incorporation of fique bagasse microparticles in a foamed material obtained from cassava starch |
title |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
spellingShingle |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca Celulosa Hidrólisis Extrusión residuo lignocelulósico hidrólisis celulosa extrusión material compuesto Material compuesto |
title_short |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
title_full |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
title_fullStr |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
title_full_unstemmed |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
title_sort |
Extracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yuca |
dc.creator.fl_str_mv |
Parra Campos, Amanda |
dc.contributor.advisor.none.fl_str_mv |
Serna Cock, Liliana Solanilla Duque, José Fernando |
dc.contributor.author.none.fl_str_mv |
Parra Campos, Amanda |
dc.subject.agrovocuri.none.fl_str_mv |
Celulosa Hidrólisis Extrusión |
topic |
Celulosa Hidrólisis Extrusión residuo lignocelulósico hidrólisis celulosa extrusión material compuesto Material compuesto |
dc.subject.proposal.spa.fl_str_mv |
residuo lignocelulósico hidrólisis celulosa extrusión material compuesto |
dc.subject.unesco.none.fl_str_mv |
Material compuesto |
description |
Ilustraciones, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-25T21:40:20Z |
dc.date.available.none.fl_str_mv |
2021-05-25T21:40:20Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79561 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co |
url |
https://repositorio.unal.edu.co/handle/unal/79561 https://repositorio.unal.edu.co |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.references.spa.fl_str_mv |
Abinader, G., Lacoste, C., Baillif, M. Le, Erre, D., & Copinet, A. (2015). Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. Journal of Cellular Plastics, 51(1), 31-44. https://doi.org/10.1177/0021955X14527979 Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83(2), 676-687. https://doi.org/10.1016/j.carbpol.2010.08.039 Alban, P., Delgado, K., Ceron, A., & Villada, H. (2016). Efecto del plastificante y agente espumante en espumas termoplásticas de almidón. Agronomia Colombiana, 1, 86-88. STM D695-15. Standar Test Method for Compressive Properties of Rigid Plastics- D695-15, Annual Book of ASTM Standards § (2015). Bano, S., & Negi, Y. S. (2017). Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers, 157, 1041-1049. https://doi.org/10.1016/j.carbpol.2016.10.069 Bénézet, J. C., Stanojlovic-Davidovic, A., Bergeret, A., Ferry, L., & Crespy, A. (2012). Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, 37(1), 435-440. https://doi.org/10.1016/j.indcrop.2011.07.001 Bergel, B. F., Dias Osorio, S., da Luz, L. M., & Santana, R. M. C. (2018). Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 200, 106-114. https://doi.org/10.1016/j.carbpol.2018.07.047 Cabanes, A., Valdés, F. J., & Fullana, A. (2020). A review on VOCs from recycled plastics. Sustainable Materials and Technologies, 25, e00179. https://doi.org/10.1016/j.susmat.2020.e00179 Carrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229-2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003 Carrillo, I., Mendonça, R. T., Ago, M., & Rojas, O. J. (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25(2), 1011-1029. https://doi.org/10.1007/s10570-018-1653-2 Castro, L., Escalante, H., Quintero, M., Ortiz, C., & Guzman, C. (2009). Producción de Biogas a partir de Bagazo generado durante el Beneficio de Fique. (Vol. 1). Recuperado de https://docplayer.es/34673055-Produccion-de-biogas-a-partir-del-bagazo-generado-durante-el-beneficio-de-fique.html Chandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175-182. https://doi.org/10.1016/j.foodhyd.2015.06.024 Ciolacu, D., Kovac, J., & Kokol, V. (2010). The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydrate Research, 345(5), 621-630. https://doi.org/10.1016/j.carres.2009.12.023 Combrzy, M., Mo, L., Kwa, A., Oniszczuk, T., & Wójtowicz, A. (2018). Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams. Polimeros, 5169, 1-8. https://doi.org/10.1590/0104-1428.02617 Combrzyński, M., Mościcki, L., Kwaśniewska, A., Oniszczuk, T., Wójtowicz, A., Solowiej, B., … Muszyński, S. (2017). Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams. International Agrophysics, 31(4), 457-463. https://doi.org/10.1515/intag-2016-0071 Contreras, L. K. (2015). Investigación de mercados aplicada a la gestión de poliestireno expandido en la ciudad de Pereira, año 2015. Universidad Tecnológica de Pereira. Contreras, M. F., Hormaza, W. A., & Marañón, A. (2009). Fractografía de la fibra natural extraída del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliester. Revista Latinoamericana de Metalurgia y Materiales, 1(1), 57-67. Corgié, S. C., Smith, H. M., & Walker, L. P. (2011). Enzymatic transformations of cellulose assessed by quantitative high-throughput fourier transform infrared spectroscopy (QHT-FTIR). Biotechnology and Bioengineering, 108(7), 1509-1520. https://doi.org/10.1002/bit.23098 Cruz-Tirado, J. P., Siche, R., Cabanillas, A., Díaz-Sánchez, L., Vejarano, R., & Tapia-Blácido, D. R. (2017). Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Engineering, 200, 178-185. https://doi.org/10.1016/j.proeng.2017.07.026 Cruz-Tirado, J. P., Tapia-Blácido, D. R., & Siche, R. (2017). Influence of proportion and size of sugarcane bagasse fiber on the properties of sweet potato starch foams. IOP Conference Series: Materials Science and Engineering, 225(1), 1-8. https://doi.org/10.1088/1757-899X/225/1/012180 Cruz, R. A., Martínez, A. M. M., Chávez, M. Y., Armenta, J. L. R., & Gómez, M. J. C. (2011). Aprovechamiento del bagazo de piña para obtener celulosa y bioetanol. Afinidad LXVIII, 551(1), 38-43. Das, K., Ray, D., Bandyopadhyay, N. R., & Sengupta, S. (2010). Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 18(3), 355-363. https://doi.org/10.1007/s10924-010-0167-2 Dayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., & Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, 94(1), 12-16. https://doi.org/10.1016/j.carbpol.2013.01.018 de Carvalho, F. A., Bilck, A. P., Yamashita, F., & Mali, S. (2018). Baked Foams Based on Cassava Starch Coated with Polyvinyl Alcohol with a Higher Degree of Hydrolysis. Journal of Polymers and the Environment, 26(4), 1445-1452. https://doi.org/10.1007/s10924-017-1046-x Debabrata, D., Hussain, S., Ghosh, A. K., & Pal, A. K. (2018). Studies on cellulose nanocrystals extracted from Musa sapientum: Structural and bonding aspects. Cellulose Chemistry and Technology, 52(9-10), 729-739. Debiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2011). Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Brazilian Archives of Biology and Technology, 54(5), 1043-1052. https://doi.org/10.1590/S1516-89132011000500023 Delgado, K., Alban, P., Montilla, C., Ceron, A., & Villada, H. (2016). Evaluación de la densidad aparente e índice de expansión radial en espumas de almidón termoplástico. Agronomia Colombiana, 1, 104-106. Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130-139. https://doi.org/10.1016/j.compositesa.2015.10.003 Echeverri, O. V., Carmona, M. R., Salazar, Y. V., & Ramírez, M. G. (2014). Producción de bioetanol empleando fermentación tradicional y extractiva a partir de jugo de fique. Hechos Microbiológicos, 4(2), 91-97. Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852-859. https://doi.org/10.1016/j.carbpol.2009.12.043 Engel, Juliana B., Ambrosi, A., & Tessaro, I. C. (2019). Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 225(May), 115234. https://doi.org/10.1016/j.carbpol.2019.115234 Engel, Juliana Both, Ambrosi, A., & Tessaro, I. C. (2019). Development of a Cassava Starch-Based Foam Incorporated with Grape Stalks Using an Experimental Design. Journal of Polymers and the Environment, 27(12), 2853-2866. https://doi.org/10.1007/s10924-019-01566-0 Escalante, H., Guzmán, C., & Castro, L. (2014). Anaerobic Digestion of Fique Bagasse: an Energy Alternative. Dyna, 81(183), 74. https://doi.org/10.15446/dyna.v81n183.34382 Fan, M., Dai, D., & Huang, B. (2012). Fourier Transform Infrared Spectroscopy for Natural Fibres. Fourier Transform - Materials Analysis. https://doi.org/10.5772/35482 Ferrer, A., Salas, C., & Rojas, O. J. (2016). Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products, 84, 337-343. https://doi.org/10.1016/j.indcrop.2016.02.014 Frone, A. N., Panaitescu, D. M., & Donescu, D. (2011). Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 73(2), 133-152. Gallego-Schmid, A., Mendoza, J. M. F., & Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211(2019), 417-427. https://doi.org/10.1016/j.jclepro.2018.11.220 Georges, A., Lacoste, C., & Damien, E. (2018). Effect of formulation and process on the extrudability of starch-based foam cushions. Industrial Crops and Products, 115(January), 306-314. https://doi.org/10.1016/j.indcrop.2018.02.001 Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197(June), 305-311. https://doi.org/10.1016/j.carbpol.2018.06.017 Gómez, C., Alvarez, V. A., Rojo, P. G., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632-640. https://doi.org/10.1007/s12221-012-0632-8 Gutiérrez-Estupiñán, C., Gutiérrez-Gallego, J., & Sánchez-Soledad, M. (2020). Preparation of a Composite Material from Palm Oil Fiber and an Ecological Emulsion of Expanded Polystyrene Post-Consumption. Revista Facultad de Ingeniería, 29(54), e10489. https://doi.org/10.19053/01211129.v29.n54.2020.10489 Guzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. IOP Conference Series: Materials Science and Engineering, 437(1). https://doi.org/10.1088/1757-899X/437/1/012015 Hamdi, M., Nasri, R., Li, S., & Nasri, M. (2019). Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocolloids, 89(July 2018), 802-812. https://doi.org/10.1016/j.foodhyd.2018.11.062 Haro, E. E., Szpunar, J. A., & Odeshi, A. G. (2018). Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Defence Technology, 14(3), 238-249. https://doi.org/10.1016/j.dt.2018.03.005 Hemmati, F., Jafari, S. M., Kashaninejad, M., & Barani Motlagh, M. (2018). Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. International Journal of Biological Macromolecules, 120, 1216-1224. https://doi.org/10.1016/j.ijbiomac.2018.09.012 Hidalgo-Salazar, M. A., & Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results in Physics, 8, 461-467. https://doi.org/10.1016/j.rinp.2017.12.025 Hidayat, Y. A., Kiranamahsa, S., & Zamal, M. A. (2019). A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy, 7(3), 350-370. https://doi.org/10.3934/ENERGY.2019.3.350 Hoyos, C. G., Zuluaga, R., Gañán, P., Pique, T. M., & Vazquez, A. (2019). Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. Journal of Cleaner Production, 235, 1540-1548. https://doi.org/10.1016/j.jclepro.2019.06.292 Hu, A., Zhang, W., You, Q., Men, B., Liao, G., & Wang, D. (2019). A green and low-cost strategy to synthesis of tunable pore sizes porous organic polymers derived from waste-expanded polystyrene for highly efficient removal of organic contaminants. Chemical Engineering Journal, 370(February), 251-261. https://doi.org/10.1016/j.cej.2019.03.207 Jang, Y. C., Lee, G., Kwon, Y., Lim, J. hong, & Jeong, J. hyun. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158(February), 104798. https://doi.org/10.1016/j.resconrec.2020.104798 Jayamani, E., Loong, T. G., & Bakri, M. K. Bin. (2020). Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polymer Bulletin, 77(4), 1605-1629. https://doi.org/10.1007/s00289-019-02824-w Kaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542-546. https://doi.org/10.1016/j.indcrop.2011.07.034 Kaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77. https://doi.org/10.1016/j.carbpol.2014.03.067 Kaisangsri, N., Kowalski, R. J., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2019). Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Industrial Crops and Products, 142(September), 111810. https://doi.org/10.1016/j.indcrop.2019.111810 Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer (United Kingdom), 132, 368-393. https://doi.org/10.1016/j.polymer.2017.09.043 Kasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., & Chindaprasirt, P. (2017). Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2), 378-390. https://doi.org/10.1007/s10924-016-0818-z Katakojwala, R., & Mohan, S. V. (2020). Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. Journal of Cleaner Production, 249, 119342. Khai, D. M., Nhan, P. D., & Hoanh, T. D. (2017). an Investigation of the Structural Characteristics of Modified Cellulose From Acacia Pulp. Vietnam Journal of Science and Technology, 55(4), 452-460. https://doi.org/10.15625/2525-2518/55/4/9216 Kian, L. K., Saba, N., Jawaid, M., & Fouad, H. (2020). Characterization of microcrystalline cellulose extracted from olive fiber. International Journal of Biological Macromolecules, 156, 347-353. https://doi.org/10.1016/j.ijbiomac.2020.04.015 Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., … Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today, 21(7), 720-748. https://doi.org/10.1016/j.mattod.2018.02.001 Kruer-Zerhusen, N., Cantero-Tubilla, B., & Wilson, D. B. (2018). Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose, 25(1), 37-48. https://doi.org/10.1007/s10570-017-1542-0 Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 1-8. https://doi.org/10.12691/jmpc-2-1-1 Leal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M., & Voronova, V. (2019). An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 214, 550-558. https://doi.org/10.1016/j.jclepro.2018.12.256 Lee, S. Y., Eskridge, K. M., Koh, W. Y., & Hanna, M. A. (2009). Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, 29(2-3), 427-436. https://doi.org/10.1016/j.indcrop.2008.08.003 Leite, A. L. M. P., Zanon, C. D., & Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate Polymers, 157, 962-970. https://doi.org/10.1016/j.carbpol.2016.10.048 Li, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237-244. https://doi.org/10.1016/j.foodhyd.2014.03.012 Liu, D., Zhong, T., Chang, P. R., Li, K., & Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 101(7), 2529-2536. https://doi.org/10.1016/j.biortech.2009.11.058 Liu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules, 111, 717-721. https://doi.org/10.1016/j.ijbiomac.2018.01.098 Lopez-Gil, A., Silva-Bellucci, F., Velasco, D., Ardanuy, M., & Rodriguez-Perez, M. A. (2015). Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products, 66, 194-205. https://doi.org/10.1016/j.indcrop.2014.12.025 López M., M. A., Bolio-López, G. I., Veleva, L., López-Martínez, A., Salgado G., S., & Córdova S., S. (2016). Obtención de celulosa a partir de residuos agroindustriales de caña de azucar. Agroproducitividad, 9(7), 41-45. Lucio-Idrobo, Y., Arboleda-Muñoz, G.-A., Delgado-Muñoz, K.-L., & Villada-Castillo, H.-S. (2021). Development of expanded matrix elaborated from starch and cassava flour by extrusion. Biotecnologia en el sector agropecuario y agroindustrial, 19(1), 139-152. Recuperado de http://dx.doi.org/10.18684 Machado, C. M., Benelli, P., & Tessaro, I. C. (2017). Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 102, 115-121. https://doi.org/10.1016/j.indcrop.2017.03.007 Machado, C. M., Benelli, P., & Tessaro, I. C. (2019). Constrained Mixture Design to Optimize Formulation and Performance of Foams Based on Cassava Starch and Peanut Skin. Journal of Polymers and the Environment, 27(10), 2224-2238. https://doi.org/10.1007/s10924-019-01518-8 Machado, C. M., Benelli, P., & Tessaro, I. C. (2020). Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 147, 1343-1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098 Mali, S. (2018). Biodegradable foams in the development of food packaging. En Polymers for Food Applications (pp. 329-345). https://doi.org/10.1007/978-3-319-94625-2_12 Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: A mixture design approach. Industrial Crops and Products, 32(3), 353-359. https://doi.org/10.1016/j.indcrop.2010.05.014 Mello, L. R. P. F., & Mali, S. (2014). Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products, 55, 187-193. https://doi.org/10.1016/j.indcrop.2014.02.015 Mishra, K. R., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 1(1), 1-30. https://doi.org/10.1016/j.jscs.2018.02.005 Mitrus, M., Combrzyński, M., Kupryaniuk, K., Wójtowicz, A., Oniszczuk, T., Krecisz, M., … Mościcki, L. (2016). A study of the solubility of biodegradable foams of thermoplastic starch. Journal of Ecological Engineering, 17(4), 184-189. https://doi.org/10.12911/22998993/64554 Mitrus, M., & Moscicki, L. (2014). Extrusion-cooking of starch protective loose-fill foams. Chemical Engineering Research and Design, 92(4), 778-783. https://doi.org/10.1016/j.cherd.2013.10.027 Moo-Tun, N. M., Iñiguez-Covarrubias, G., & Valadez-Gonzalez, A. (2020). Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polymer Testing, 86(February). https://doi.org/10.1016/j.polymertesting.2020.106482 Muños-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2014). Fique Fiber an Alternative for Reinforced Plastics. Influence of Surface Modification. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2), 60-70. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200007&lng=en&nrm=iso&tlng=es Muñoz-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers, 10(10), 1-14. https://doi.org/10.3390/polym10101050 Najafi, N., Heuzey, M., Carreau, P. J., Therriault, D., & Park, C. B. (2015). Mechanical and morphological properties of injection molded linear and branched-polylactide ( PLA ) nanocomposite foams. EUROPEAN POLYMER JOURNAL, 73, 455-465. https://doi.org/10.1016/j.eurpolymj.2015.11.003 Nakasone, K., Ikematsu, S., & Kobayashi, T. (2016). Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugar Cane Bagasse Waste and Its in Vivo Behavior in Mice. Industrial and Engineering Chemistry Research, 55(1), 30-37. https://doi.org/10.1021/acs.iecr.5b03926 Nansu, W., Ross, S., Ross, G., & Mahasaranon, S. (2019). Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Materials Today: Proceedings, 17, 2010-2019. https://doi.org/10.1016/j.matpr.2019.06.249 Orue, A., Jauregi, A., Peña-Rodriguez, C., Labidi, J., Eceiza, A., & Arbelaiz, A. (2015). The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering, 73, 132-138. https://doi.org/10.1016/j.compositesb.2014.12.022 Ovalle-Serrano, S. A., Gómez, F. N., Blanco-Tirado, C., & Combariza, M. Y. (2018). Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydrate Polymers, 189(November 2017), 169-177. https://doi.org/10.1016/j.carbpol.2018.02.031 Ovalle-Serrano, Sergio A., Blanco-Tirado, C., & Combariza, M. Y. (2018). Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 25(1), 151-165. https://doi.org/10.1007/s10570-017-1599-9 Parida, C., Dash, S. K., & Pradhan, C. (2015). FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open Journal of Composite Materials, 5(01), 5-10. https://doi.org/10.4236/ojcm.2015.51002 Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9 Polat, S., Uslu, M. K., Aygün, A., & Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267-276. https://doi.org/10.1016/j.jfoodeng.2012.12.017 Poletto, M., Ornaghi Júnior, H. L., & Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7(9), 6105-6119. https://doi.org/10.3390/ma7096105 Pornsuksomboon, K., Holló, B. B., Szécsényi, K. M., & Kaewtatip, K. (2016). Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydrate Polymers, 136, 107-112. https://doi.org/10.1016/j.carbpol.2015.09.019 Pushpadass, H. A., Babu, G. S., Weber, R. W., & Hanna, M. A. (2008). Extrusion of Starch-based Loose-fill Packaging Foams # : Effects of Temperature , Moisture and Talc on Physical Properties. Packaging technology and science, 21(February), 171-183. https://doi.org/10.1002/pts Quiévy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation and Stability, 95(3), 306-314. https://doi.org/10.1016/j.polymdegradstab.2009.11.020 Quintero, M., Castro, L., Ortiz, C., Guzmán, C., & Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresource Technology, 108, 8-13. https://doi.org/10.1016/j.biortech.2011.12.052 Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., & Khan, A. (2020). Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. International Journal of Biological Macromolecules, 160, 183-191. https://doi.org/10.1016/j.ijbiomac.2020.05.170 Rivera, D., Plata, L., Castro, L., Guzmán, C., & Escalante, H. (2012). Aprovechamiento del subproducto sólido de la digestión anaerobia del bagazo de fique (furcraea macrophylla) para el acondicionamiento de suelos. Red de Revistas Cientificas de America Latina y el Caribe, España y Portugal, 25(1), 25-34. https://doi.org/10.1002/jccs.201300477 Rudin, A., & Choi, P. (2013). Biopolymers. En The Elements of Polymer Science & Engineering (pp. 521-535). https://doi.org/10.1016/B978-0-12-382178-2.00013-4 Saeed, S. E. S., El-Molla, M. M., Hassan, M. L., Bakir, E., Abdel-Mottaleb, M. M. S., & Abdel-Mottaleb, M. S. A. (2014). Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydrate Polymers, 99, 817-824. https://doi.org/10.1016/j.carbpol.2013.08.096 Shaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842. https://doi.org/10.1039/c7ra11157f Shao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob. Industrial Crops and Products, 151(September 2019), 1-6. https://doi.org/10.1016/j.indcrop.2020.112457 Shekar, H. S. S., & Ramachandra, M. (2018). Green Composites: A Review. Materials Today: Proceedings, 5(1), 2518-2526. https://doi.org/10.1016/j.matpr.2017.11.034 hi, J., Shi, S. Q., Barnes, H. M., & Pittman, C. U. (2011). A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 6(1), 879-890. https://doi.org/10.15376/biores.6.1.879-890 Souza, V. G. L., Fernando, A. L., Pires, J. R. A., Rodrigues, P. F., Lopes, A. A. S., & Fernandes, F. M. B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107(April), 565-572. https://doi.org/10.1016/j.indcrop.2017.04.056 Soykeabkaew, N., Thanomsilp, C., & Suwantong, O. (2015). A review: Starch-based composite foams. Composites Part A: Applied Science and Manufacturing, 78, 246-263. https://doi.org/10.1016/j.compositesa.2015.08.014 Tarchoun, A. F., Trache, D., Klapötke, T. M., Derradji, M., & Bessa, W. (2019). Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose, 26(13-14), 7635-7651. https://doi.org/10.1007/s10570-019-02672-x Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. https://doi.org/10.1016/j.indcrop.2011.11.036 Tibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192-201. https://doi.org/10.1016/j.foodhyd.2017.08.027 Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., … Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056 Trisia, F., & Ian, S. (2017). Polystyrene as Hazardous Household Waste. En D. Mmereki (Ed.), Design, Control and Applications of Mechatronic Systems in Engineering (1.a ed., pp. 135-152). InTech. https://doi.org/10.5772/65865 Venero, M. (2019). Análisis comparativo del impacto ambiental entre un embalaje de espuma de poliestireno expandido y un embalaje biodegradable mediante espumas matriciales. Universidad Catolica San Pablo. Recuperado de http://repositorio.ucsp.edu.pe/handle/UCSP/16126 Wagner, T. P. (2020). Policy Instruments To Reduce Consumption of Expanded Polystyrene Food Service Ware in the Usa. Detritus, 09(9), 11-26. https://doi.org/10.31025/2611-4135/2020.13903 Wicaksono, R., Syamsu, K., Yuliasih, I., & Nasir, M. (2013). Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-Film. Chemistry and Materials Research, 313(13), 2225-2956. Wulandari, W. . T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Material Science and Engineeting, 107(1), 1-7. https://doi.org/10.1088/1757-899X/107/1/012045 Xie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., … Chen, S. (2018). A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate Polymers, 189(January), 56-64. https://doi.org/10.1016/j.carbpol.2018.01.063 Yin, L., Liu, H., Cui, H., Chen, B., Li, L., & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials, 380(July), 120861. https://doi.org/10.1016/j.jhazmat.2019.120861 Yudanto, Y. A., & Diponegoro, U. (2020). Characterization of physical and mechanical properties of Biodegradable foam from maizena flour and paper waste for Sustainable packaging material. International Journal of Engineering Applied Sciences and Technology, 5(8), 1-8. Zafar, M. T., Zarrinbakhsh, N., Mohanty, A. K., Misra, M., & Ghosh, A. K. (2016). Biocomposites based on poly(Lactic acid)/willow-fiber and their injection moulded microcellular foams. Express Polymer Letters, 10(2), 176-186. https://doi.org/10.3144/expresspolymlett.2016.16 Zhang, C. wei, Li, F. yi, Li, J. feng, Wang, L. ming, Xie, Q., Xu, J., & Chen, S. (2017). A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials and Design, 120, 222-229. https://doi.org/10.1016/j.matdes.2017.02.027 Zhao, H., Zhao, G., Turng, L. S., & Peng, X. (2015). Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites. Industrial and Engineering Chemistry Research, 54(28), 7122-7130. https://doi.org/10.1021/acs.iecr.5b01130 Zhu, Z., Hao, M., & Zhang, N. (2018). Influence of contents of chemical compositions on the mechanical property of sisal fibers and sisal fibers reinforced PLA composites. Journal of Natural Fibers, 17(1), 101-112. https://doi.org/10.1080/15440478.2018.1469452 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia, 2021 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
115 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia Universidad Nacional de Colombia - Sede Palmira |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial |
dc.publisher.department.spa.fl_str_mv |
Maestría en Ingeniería Agroindustrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.place.spa.fl_str_mv |
Palmira Valle del Cauca |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79561/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79561/2/1004418510.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/79561/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79561/4/1004418510.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 35c565bb9bdafa5412700a03bb6b7075 4460e5956bc1d1639be9ae6146a50347 001fe0aed3e9687147c045c1201b7034 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089320998371328 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombia, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Serna Cock, Liliana8df21e71eaf6c9df76be7ba1cc8224adSolanilla Duque, José Fernandod153b1096e7e8e80331a4cf8229d7374Parra Campos, Amanda1b15a0600cda0e0a536950233f90a6042021-05-25T21:40:20Z2021-05-25T21:40:20Z2021https://repositorio.unal.edu.co/handle/unal/79561Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.coIlustraciones, tablasLa acumulación indiscriminada de materiales de desecho de origen petroquímico, ha impulsado investigaciones que conllevan a obtener materiales amigables con el ambiente empleando materias primas renovables. La presente tesis tuvo como objetivo el establecimiento de las condiciones de proceso para la extracción de micropartículas de bagazo de fique y la evaluación del efecto de su incorporación en un material espumado obtenido a partir de almidón de yuca. La extracción de las micropartículas se realizó mediante un proceso de hidrólisis con ácido sulfúrico empleando bagazo de fique previamente acondicionado. Para determinar las condiciones del proceso, se corrió un diseño factorial 33 en el que se evaluó la concentración de ácido (5, 10 y 15%), la temperatura (70, 80 y 90°C) y el tiempo (3, 5 y 7h) de hidrólisis, obteniéndose efecto significativo sobre las propiedades morfológicas, químicas y térmicas destacándose grupos funcionales, morfología, color y temperaturas de degradación y fusión característicos de la celulosa, siendo 10%, 70°C y 7h las condiciones que permitieron obtener el menor tamaño de partícula. Para determinar el efecto de la incorporación de las micropartículas sobre las propiedades de las espumas, se evaluó un diseño unifactorial con cinco niveles de concentración de micropartículas (0,0; 0,5; 0,75; 1,0 y 1,25%) en la mezcla de obtención de espuma, encontrando efecto significativo en las propiedades de índice de expansión, densidad, compresibilidad y absorción de agua, siendo el tratamiento 0,75% el que presentó destacadas propiedades con respecto a los demás tratamientos. Lo cual indica que el bagazo de fique en concentraciones adecuadas tiene potencial de aprovechamiento en la producción y mejora de las propiedades de espumas a base de almidón.The indiscriminate accumulation of waste materials of petrochemical origin has prompted research that leads to obtaining environmentally friendly materials using renewable raw materials. The objective of this thesis was to establish the process conditions for the extraction of microparticles of fique bagasse and the evaluation of the effect of their incorporation in a foamed material obtained from cassava starch. The extraction of the microparticles was carried out by means of a hydrolysis process with sulfuric acid using previously conditioned fique bagasse. To determine the process conditions, a 33 factorial design was run in which the acid concentration (5, 10 and 15%), temperature (70, 80 and 90 ° C) and time (3, 5 and 7h) of hydrolysis, obtaining a significant effect on the morphological, chemical and thermal properties, highlighting functional groups, morphology, color and degradation and melting temperatures characteristic of cellulose, with 10%, 70 ° C and 7h being the conditions that allowed obtaining the smallest size of particle. To determine the effect of the incorporation of the microparticles on the properties of the foams, a unifactorial design was evaluated with five levels of concentration of microparticles (0.0, 0.5, 0.75, 1.0 and 1.25%) in the mixture for obtaining foam, finding a significant effect on the properties of expansion index, density, compressibility and water absorption, being the 0.75% treatment the one that presented outstanding properties with respect to the other treatments. This indicates that fique bagasse in adequate concentrations has potential for use in the production and improvement of the properties of starch-based foams.Resumen, lista de figuras, lista de tablas, introducción, planteamiento del problema, justificación, marco teórico, espuma termoplástica, polímeros naturales o de base biológica, almidón, almidón de yuca (Manihot esculenta), almidón termoplástico (TPS), fique, celulosa, estado del arte, extracción de celulosa a partir de diferentes residuos lignocelulósicos mediante hidrólisis ácida, obtención de espuma a partir de almidón con la incorporación de material lignocelulósico, obtención de espuma a base de almidón mediante extrusión, objetivos, objetivo general, objetivos específicos, hipótesis, materiales y métodos, determinación del efecto de la concentración de ácido, temperatura y tiempo de hidrólisis sobre las propiedades morfológicas, químicas y térmicas de micropartículas de bagazo de fique, adecuación del bagazo de fique, deslignificación y blanqueamiento, hidrólisis ácida del bagazo de fique, caracterización de las partículas de bagazo de fique, microscopia óptica de alta resolución (MOAR), espectroscopia infrarroja por transformada de Fourier (FTIR), estimación del color, análisis termogravimétrico - TGA, calorimetría de Barrido Diferencial – DSC, diseño de experimentos, análisis estadístico, evaluación del efecto de la incorporación de micropartículas de bagazo de fique sobre las propiedades físicas, térmicas y químicas de un material espumado obtenido mediante proceso de extrusión a partir de almidón de yuca, obtención del material espumado, caracterización física y mecánica del material espumado, índice de expansión radial, densidad aparente, resistencia a la compresión e índice de amortiguación, absorción de agua, adsorción de agua, análisis termogravimétrico - TGA., calorimetría de Barrido Diferencial – DSC, diseño de experimentos, análisis estadístico, resultados y discusión, determinación del efecto de la concentración de ácido, temperatura y tiempo de hidrólisis sobre las propiedades morfológicas, químicas y térmicas de micropartículas de bagazo de fique, tamaños de partícula, espectroscopia FTIR, color, análisis térmico TGA y DSC, evaluación del efecto de la incorporación de micropartículas de bagazo de fique sobre las propiedades físicas, térmicas y químicas de material espumado obtenido mediante proceso de extrusión a partir de almidón de yuca, índice de expansión, densidad, índice de amortiguación y compresibilidad, adsorción de agua, absorción de agua, análisis temogravimétrico (TGA), calorimetría de Barrido Diferencial – DSC, espectroscopia FTIR, conclusiones y recomendaciones, conclusiones, recomendaciones, anexos.MaestríaMaestría en ingeniería AgroindustrialLas metodologías para la obtención de espumas biodegradables con la incorporación de otros componentes que se utilizaron son: metodología desarrollada por Nakasone, Ikematsu y Kobayashi, Índice de expansión radial, densidad aparente, resistencia a la compresión e índice de amortiguación, absorción de agua, adsorción de agua.Desarrollo de empaques biodegradables a partir de biomoléculas de interés agroindustrial115 p.application/pdfspaUniversidad Nacional de ColombiaUniversidad Nacional de Colombia - Sede PalmiraPalmira - Ingeniería y Administración - Maestría en Ingeniería AgroindustrialMaestría en Ingeniería AgroindustrialFacultad de Ingeniería y AdministraciónPalmira Valle del CaucaUniversidad Nacional de Colombia - Sede PalmiraExtracción e incorporación de micropartículas de bagazo de fique en un material espumado obtenido a partir de almidón de yucaExtraction and incorporation of fique bagasse microparticles in a foamed material obtained from cassava starchTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMN/AAbinader, G., Lacoste, C., Baillif, M. Le, Erre, D., & Copinet, A. (2015). Effect of the formulation of starch-based foam cushions on the morphology and mechanical properties. Journal of Cellular Plastics, 51(1), 31-44. https://doi.org/10.1177/0021955X14527979Adel, A. M., Abd El-Wahab, Z. H., Ibrahim, A. A., & Al-Shemy, M. T. (2011). Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: Physicochemical properties. Carbohydrate Polymers, 83(2), 676-687. https://doi.org/10.1016/j.carbpol.2010.08.039Alban, P., Delgado, K., Ceron, A., & Villada, H. (2016). Efecto del plastificante y agente espumante en espumas termoplásticas de almidón. Agronomia Colombiana, 1, 86-88.STM D695-15. Standar Test Method for Compressive Properties of Rigid Plastics- D695-15, Annual Book of ASTM Standards § (2015).Bano, S., & Negi, Y. S. (2017). Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydrate Polymers, 157, 1041-1049. https://doi.org/10.1016/j.carbpol.2016.10.069Bénézet, J. C., Stanojlovic-Davidovic, A., Bergeret, A., Ferry, L., & Crespy, A. (2012). Mechanical and physical properties of expanded starch, reinforced by natural fibres. Industrial Crops and Products, 37(1), 435-440. https://doi.org/10.1016/j.indcrop.2011.07.001Bergel, B. F., Dias Osorio, S., da Luz, L. M., & Santana, R. M. C. (2018). Effects of hydrophobized starches on thermoplastic starch foams made from potato starch. Carbohydrate Polymers, 200, 106-114. https://doi.org/10.1016/j.carbpol.2018.07.047Cabanes, A., Valdés, F. J., & Fullana, A. (2020). A review on VOCs from recycled plastics. Sustainable Materials and Technologies, 25, e00179. https://doi.org/10.1016/j.susmat.2020.e00179Carrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004). Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229-2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003Carrillo, I., Mendonça, R. T., Ago, M., & Rojas, O. J. (2018). Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose, 25(2), 1011-1029. https://doi.org/10.1007/s10570-018-1653-2Castro, L., Escalante, H., Quintero, M., Ortiz, C., & Guzman, C. (2009). Producción de Biogas a partir de Bagazo generado durante el Beneficio de Fique. (Vol. 1). Recuperado de https://docplayer.es/34673055-Produccion-de-biogas-a-partir-del-bagazo-generado-durante-el-beneficio-de-fique.htmlChandanasree, D., Gul, K., & Riar, C. S. (2016). Effect of hydrocolloids and dry heat modification on physicochemical, thermal, pasting and morphological characteristics of cassava (Manihot esculenta) starch. Food Hydrocolloids, 52, 175-182. https://doi.org/10.1016/j.foodhyd.2015.06.024Ciolacu, D., Kovac, J., & Kokol, V. (2010). The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydrate Research, 345(5), 621-630. https://doi.org/10.1016/j.carres.2009.12.023Combrzy, M., Mo, L., Kwa, A., Oniszczuk, T., & Wójtowicz, A. (2018). Effect of PVA and PDE on selected structural characteristics of extrusion-cooked starch foams. Polimeros, 5169, 1-8. https://doi.org/10.1590/0104-1428.02617Combrzyński, M., Mościcki, L., Kwaśniewska, A., Oniszczuk, T., Wójtowicz, A., Solowiej, B., … Muszyński, S. (2017). Moisture sorption characteristics of extrusion-cooked starch protective loose-fill cushioning foams. International Agrophysics, 31(4), 457-463. https://doi.org/10.1515/intag-2016-0071Contreras, L. K. (2015). Investigación de mercados aplicada a la gestión de poliestireno expandido en la ciudad de Pereira, año 2015. Universidad Tecnológica de Pereira.Contreras, M. F., Hormaza, W. A., & Marañón, A. (2009). Fractografía de la fibra natural extraída del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliester. Revista Latinoamericana de Metalurgia y Materiales, 1(1), 57-67.Corgié, S. C., Smith, H. M., & Walker, L. P. (2011). Enzymatic transformations of cellulose assessed by quantitative high-throughput fourier transform infrared spectroscopy (QHT-FTIR). Biotechnology and Bioengineering, 108(7), 1509-1520. https://doi.org/10.1002/bit.23098Cruz-Tirado, J. P., Siche, R., Cabanillas, A., Díaz-Sánchez, L., Vejarano, R., & Tapia-Blácido, D. R. (2017). Properties of baked foams from oca (Oxalis tuberosa) starch reinforced with sugarcane bagasse and asparagus peel fiber. Procedia Engineering, 200, 178-185. https://doi.org/10.1016/j.proeng.2017.07.026Cruz-Tirado, J. P., Tapia-Blácido, D. R., & Siche, R. (2017). Influence of proportion and size of sugarcane bagasse fiber on the properties of sweet potato starch foams. IOP Conference Series: Materials Science and Engineering, 225(1), 1-8. https://doi.org/10.1088/1757-899X/225/1/012180Cruz, R. A., Martínez, A. M. M., Chávez, M. Y., Armenta, J. L. R., & Gómez, M. J. C. (2011). Aprovechamiento del bagazo de piña para obtener celulosa y bioetanol. Afinidad LXVIII, 551(1), 38-43.Das, K., Ray, D., Bandyopadhyay, N. R., & Sengupta, S. (2010). Study of the Properties of Microcrystalline Cellulose Particles from Different Renewable Resources by XRD, FTIR, Nanoindentation, TGA and SEM. Journal of Polymers and the Environment, 18(3), 355-363. https://doi.org/10.1007/s10924-010-0167-2Dayal, M. S., Goswami, N., Sahai, A., Jain, V., Mathur, G., & Mathur, A. (2013). Effect of media components on cell growth and bacterial cellulose production from Acetobacter aceti MTCC 2623. Carbohydrate Polymers, 94(1), 12-16. https://doi.org/10.1016/j.carbpol.2013.01.018de Carvalho, F. A., Bilck, A. P., Yamashita, F., & Mali, S. (2018). Baked Foams Based on Cassava Starch Coated with Polyvinyl Alcohol with a Higher Degree of Hydrolysis. Journal of Polymers and the Environment, 26(4), 1445-1452. https://doi.org/10.1007/s10924-017-1046-xDebabrata, D., Hussain, S., Ghosh, A. K., & Pal, A. K. (2018). Studies on cellulose nanocrystals extracted from Musa sapientum: Structural and bonding aspects. Cellulose Chemistry and Technology, 52(9-10), 729-739.Debiagi, F., Mali, S., Grossmann, M. V. E., & Yamashita, F. (2011). Biodegradable foams based on starch, polyvinyl alcohol, chitosan and sugarcane fibers obtained by extrusion. Brazilian Archives of Biology and Technology, 54(5), 1043-1052. https://doi.org/10.1590/S1516-89132011000500023Delgado, K., Alban, P., Montilla, C., Ceron, A., & Villada, H. (2016). Evaluación de la densidad aparente e índice de expansión radial en espumas de almidón termoplástico. Agronomia Colombiana, 1, 104-106.Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130-139. https://doi.org/10.1016/j.compositesa.2015.10.003Echeverri, O. V., Carmona, M. R., Salazar, Y. V., & Ramírez, M. G. (2014). Producción de bioetanol empleando fermentación tradicional y extractiva a partir de jugo de fique. Hechos Microbiológicos, 4(2), 91-97.Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., & Guthrie, J. T. (2010). Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852-859. https://doi.org/10.1016/j.carbpol.2009.12.043Engel, Juliana B., Ambrosi, A., & Tessaro, I. C. (2019). Development of biodegradable starch-based foams incorporated with grape stalks for food packaging. Carbohydrate Polymers, 225(May), 115234. https://doi.org/10.1016/j.carbpol.2019.115234Engel, Juliana Both, Ambrosi, A., & Tessaro, I. C. (2019). Development of a Cassava Starch-Based Foam Incorporated with Grape Stalks Using an Experimental Design. Journal of Polymers and the Environment, 27(12), 2853-2866. https://doi.org/10.1007/s10924-019-01566-0Escalante, H., Guzmán, C., & Castro, L. (2014). Anaerobic Digestion of Fique Bagasse: an Energy Alternative. Dyna, 81(183), 74. https://doi.org/10.15446/dyna.v81n183.34382Fan, M., Dai, D., & Huang, B. (2012). Fourier Transform Infrared Spectroscopy for Natural Fibres. Fourier Transform - Materials Analysis. https://doi.org/10.5772/35482Ferrer, A., Salas, C., & Rojas, O. J. (2016). Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Industrial Crops and Products, 84, 337-343. https://doi.org/10.1016/j.indcrop.2016.02.014Frone, A. N., Panaitescu, D. M., & Donescu, D. (2011). Some aspects concerning the isolation of cellulose micro- and nano-fibers. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 73(2), 133-152.Gallego-Schmid, A., Mendoza, J. M. F., & Azapagic, A. (2019). Environmental impacts of takeaway food containers. Journal of Cleaner Production, 211(2019), 417-427. https://doi.org/10.1016/j.jclepro.2018.11.220Georges, A., Lacoste, C., & Damien, E. (2018). Effect of formulation and process on the extrudability of starch-based foam cushions. Industrial Crops and Products, 115(January), 306-314. https://doi.org/10.1016/j.indcrop.2018.02.001Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 197(June), 305-311. https://doi.org/10.1016/j.carbpol.2018.06.017Gómez, C., Alvarez, V. A., Rojo, P. G., & Vázquez, A. (2012). Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application. Fibers and Polymers, 13(5), 632-640. https://doi.org/10.1007/s12221-012-0632-8Gutiérrez-Estupiñán, C., Gutiérrez-Gallego, J., & Sánchez-Soledad, M. (2020). Preparation of a Composite Material from Palm Oil Fiber and an Ecological Emulsion of Expanded Polystyrene Post-Consumption. Revista Facultad de Ingeniería, 29(54), e10489. https://doi.org/10.19053/01211129.v29.n54.2020.10489Guzmán, R. E., Gómez, S., Amelines, O., & Aparicio, G. M. (2018). Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf. IOP Conference Series: Materials Science and Engineering, 437(1). https://doi.org/10.1088/1757-899X/437/1/012015Hamdi, M., Nasri, R., Li, S., & Nasri, M. (2019). Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocolloids, 89(July 2018), 802-812. https://doi.org/10.1016/j.foodhyd.2018.11.062Haro, E. E., Szpunar, J. A., & Odeshi, A. G. (2018). Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Defence Technology, 14(3), 238-249. https://doi.org/10.1016/j.dt.2018.03.005Hemmati, F., Jafari, S. M., Kashaninejad, M., & Barani Motlagh, M. (2018). Synthesis and characterization of cellulose nanocrystals derived from walnut shell agricultural residues. International Journal of Biological Macromolecules, 120, 1216-1224. https://doi.org/10.1016/j.ijbiomac.2018.09.012Hidalgo-Salazar, M. A., & Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene. Results in Physics, 8, 461-467. https://doi.org/10.1016/j.rinp.2017.12.025Hidayat, Y. A., Kiranamahsa, S., & Zamal, M. A. (2019). A study of plastic waste management effectiveness in Indonesia industries. AIMS Energy, 7(3), 350-370. https://doi.org/10.3934/ENERGY.2019.3.350Hoyos, C. G., Zuluaga, R., Gañán, P., Pique, T. M., & Vazquez, A. (2019). Cellulose nanofibrils extracted from fique fibers as bio-based cement additive. Journal of Cleaner Production, 235, 1540-1548. https://doi.org/10.1016/j.jclepro.2019.06.292Hu, A., Zhang, W., You, Q., Men, B., Liao, G., & Wang, D. (2019). A green and low-cost strategy to synthesis of tunable pore sizes porous organic polymers derived from waste-expanded polystyrene for highly efficient removal of organic contaminants. Chemical Engineering Journal, 370(February), 251-261. https://doi.org/10.1016/j.cej.2019.03.207Jang, Y. C., Lee, G., Kwon, Y., Lim, J. hong, & Jeong, J. hyun. (2020). Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158(February), 104798. https://doi.org/10.1016/j.resconrec.2020.104798Jayamani, E., Loong, T. G., & Bakri, M. K. Bin. (2020). Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polymer Bulletin, 77(4), 1605-1629. https://doi.org/10.1007/s00289-019-02824-wKaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2012). Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Industrial Crops and Products, 37(1), 542-546. https://doi.org/10.1016/j.indcrop.2011.07.034Kaisangsri, N., Kerdchoechuen, O., & Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77. https://doi.org/10.1016/j.carbpol.2014.03.067Kaisangsri, N., Kowalski, R. J., Kerdchoechuen, O., Laohakunjit, N., & Ganjyal, G. M. (2019). Cellulose fiber enhances the physical characteristics of extruded biodegradable cassava starch foams. Industrial Crops and Products, 142(September), 111810. https://doi.org/10.1016/j.indcrop.2019.111810Kargarzadeh, H., Mariano, M., Huang, J., Lin, N., Ahmad, I., Dufresne, A., & Thomas, S. (2017). Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer (United Kingdom), 132, 368-393. https://doi.org/10.1016/j.polymer.2017.09.043Kasemsiri, P., Dulsang, N., Pongsa, U., Hiziroglu, S., & Chindaprasirt, P. (2017). Optimization of Biodegradable Foam Composites from Cassava Starch, Oil Palm Fiber, Chitosan and Palm Oil Using Taguchi Method and Grey Relational Analysis. Journal of Polymers and the Environment, 25(2), 378-390. https://doi.org/10.1007/s10924-016-0818-zKatakojwala, R., & Mohan, S. V. (2020). Microcrystalline cellulose production from sugarcane bagasse: Sustainable process development and life cycle assessment. Journal of Cleaner Production, 249, 119342.Khai, D. M., Nhan, P. D., & Hoanh, T. D. (2017). an Investigation of the Structural Characteristics of Modified Cellulose From Acacia Pulp. Vietnam Journal of Science and Technology, 55(4), 452-460. https://doi.org/10.15625/2525-2518/55/4/9216Kian, L. K., Saba, N., Jawaid, M., & Fouad, H. (2020). Characterization of microcrystalline cellulose extracted from olive fiber. International Journal of Biological Macromolecules, 156, 347-353. https://doi.org/10.1016/j.ijbiomac.2020.04.015Klemm, D., Cranston, E. D., Fischer, D., Gama, M., Kedzior, S. A., Kralisch, D., … Rauchfuß, F. (2018). Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Materials Today, 21(7), 720-748. https://doi.org/10.1016/j.mattod.2018.02.001Kruer-Zerhusen, N., Cantero-Tubilla, B., & Wilson, D. B. (2018). Characterization of cellulose crystallinity after enzymatic treatment using Fourier transform infrared spectroscopy (FTIR). Cellulose, 25(1), 37-48. https://doi.org/10.1007/s10570-017-1542-0Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2(1), 1-8. https://doi.org/10.12691/jmpc-2-1-1Leal Filho, W., Saari, U., Fedoruk, M., Iital, A., Moora, H., Klöga, M., & Voronova, V. (2019). An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe. Journal of Cleaner Production, 214, 550-558. https://doi.org/10.1016/j.jclepro.2018.12.256Lee, S. Y., Eskridge, K. M., Koh, W. Y., & Hanna, M. A. (2009). Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Industrial Crops and Products, 29(2-3), 427-436. https://doi.org/10.1016/j.indcrop.2008.08.003Leite, A. L. M. P., Zanon, C. D., & Menegalli, F. C. (2017). Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydrate Polymers, 157, 962-970. https://doi.org/10.1016/j.carbpol.2016.10.048Li, W., Cao, F., Fan, J., Ouyang, S., Luo, Q., Zheng, J., & Zhang, G. (2014). Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocolloids, 40, 237-244. https://doi.org/10.1016/j.foodhyd.2014.03.012Liu, D., Zhong, T., Chang, P. R., Li, K., & Wu, Q. (2010). Starch composites reinforced by bamboo cellulosic crystals. Bioresource Technology, 101(7), 2529-2536. https://doi.org/10.1016/j.biortech.2009.11.058Liu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules, 111, 717-721. https://doi.org/10.1016/j.ijbiomac.2018.01.098Lopez-Gil, A., Silva-Bellucci, F., Velasco, D., Ardanuy, M., & Rodriguez-Perez, M. A. (2015). Cellular structure and mechanical properties of starch-based foamed blocks reinforced with natural fibers and produced by microwave heating. Industrial Crops and Products, 66, 194-205. https://doi.org/10.1016/j.indcrop.2014.12.025López M., M. A., Bolio-López, G. I., Veleva, L., López-Martínez, A., Salgado G., S., & Córdova S., S. (2016). Obtención de celulosa a partir de residuos agroindustriales de caña de azucar. Agroproducitividad, 9(7), 41-45.Lucio-Idrobo, Y., Arboleda-Muñoz, G.-A., Delgado-Muñoz, K.-L., & Villada-Castillo, H.-S. (2021). Development of expanded matrix elaborated from starch and cassava flour by extrusion. Biotecnologia en el sector agropecuario y agroindustrial, 19(1), 139-152. Recuperado de http://dx.doi.org/10.18684Machado, C. M., Benelli, P., & Tessaro, I. C. (2017). Sesame cake incorporation on cassava starch foams for packaging use. Industrial Crops and Products, 102, 115-121. https://doi.org/10.1016/j.indcrop.2017.03.007Machado, C. M., Benelli, P., & Tessaro, I. C. (2019). Constrained Mixture Design to Optimize Formulation and Performance of Foams Based on Cassava Starch and Peanut Skin. Journal of Polymers and the Environment, 27(10), 2224-2238. https://doi.org/10.1007/s10924-019-01518-8Machado, C. M., Benelli, P., & Tessaro, I. C. (2020). Study of interactions between cassava starch and peanut skin on biodegradable foams. International Journal of Biological Macromolecules, 147, 1343-1353. https://doi.org/10.1016/j.ijbiomac.2019.10.098Mali, S. (2018). Biodegradable foams in the development of food packaging. En Polymers for Food Applications (pp. 329-345). https://doi.org/10.1007/978-3-319-94625-2_12Mali, S., Debiagi, F., Grossmann, M. V. E., & Yamashita, F. (2010). Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: A mixture design approach. Industrial Crops and Products, 32(3), 353-359. https://doi.org/10.1016/j.indcrop.2010.05.014Mello, L. R. P. F., & Mali, S. (2014). Use of malt bagasse to produce biodegradable baked foams made from cassava starch. Industrial Crops and Products, 55, 187-193. https://doi.org/10.1016/j.indcrop.2014.02.015Mishra, K. R., Sabu, A., & Tiwari, S. K. (2018). Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 1(1), 1-30. https://doi.org/10.1016/j.jscs.2018.02.005Mitrus, M., Combrzyński, M., Kupryaniuk, K., Wójtowicz, A., Oniszczuk, T., Krecisz, M., … Mościcki, L. (2016). A study of the solubility of biodegradable foams of thermoplastic starch. Journal of Ecological Engineering, 17(4), 184-189. https://doi.org/10.12911/22998993/64554Mitrus, M., & Moscicki, L. (2014). Extrusion-cooking of starch protective loose-fill foams. Chemical Engineering Research and Design, 92(4), 778-783. https://doi.org/10.1016/j.cherd.2013.10.027Moo-Tun, N. M., Iñiguez-Covarrubias, G., & Valadez-Gonzalez, A. (2020). Assessing the effect of PLA, cellulose microfibers and CaCO3 on the properties of starch-based foams using a factorial design. Polymer Testing, 86(February). https://doi.org/10.1016/j.polymertesting.2020.106482Muños-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2014). Fique Fiber an Alternative for Reinforced Plastics. Influence of Surface Modification. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2), 60-70. Recuperado de http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200007&lng=en&nrm=iso&tlng=esMuñoz-Vélez, M. F., Hidalgo-Salazar, M. A., & Mina-Hernández, J. H. (2018). Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers, 10(10), 1-14. https://doi.org/10.3390/polym10101050Najafi, N., Heuzey, M., Carreau, P. J., Therriault, D., & Park, C. B. (2015). Mechanical and morphological properties of injection molded linear and branched-polylactide ( PLA ) nanocomposite foams. EUROPEAN POLYMER JOURNAL, 73, 455-465. https://doi.org/10.1016/j.eurpolymj.2015.11.003Nakasone, K., Ikematsu, S., & Kobayashi, T. (2016). Biocompatibility Evaluation of Cellulose Hydrogel Film Regenerated from Sugar Cane Bagasse Waste and Its in Vivo Behavior in Mice. Industrial and Engineering Chemistry Research, 55(1), 30-37. https://doi.org/10.1021/acs.iecr.5b03926Nansu, W., Ross, S., Ross, G., & Mahasaranon, S. (2019). Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Materials Today: Proceedings, 17, 2010-2019. https://doi.org/10.1016/j.matpr.2019.06.249Orue, A., Jauregi, A., Peña-Rodriguez, C., Labidi, J., Eceiza, A., & Arbelaiz, A. (2015). The effect of surface modifications on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Composites Part B: Engineering, 73, 132-138. https://doi.org/10.1016/j.compositesb.2014.12.022Ovalle-Serrano, S. A., Gómez, F. N., Blanco-Tirado, C., & Combariza, M. Y. (2018). Isolation and characterization of cellulose nanofibrils from Colombian Fique decortication by-products. Carbohydrate Polymers, 189(November 2017), 169-177. https://doi.org/10.1016/j.carbpol.2018.02.031Ovalle-Serrano, Sergio A., Blanco-Tirado, C., & Combariza, M. Y. (2018). Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp. Cellulose, 25(1), 151-165. https://doi.org/10.1007/s10570-017-1599-9Parida, C., Dash, S. K., & Pradhan, C. (2015). FTIR and Raman Studies of Cellulose Fibers of Luffa cylindrica. Open Journal of Composite Materials, 5(01), 5-10. https://doi.org/10.4236/ojcm.2015.51002Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food and Bioprocess Technology, 6(1), 36-60. https://doi.org/10.1007/s11947-012-0867-9Polat, S., Uslu, M. K., Aygün, A., & Certel, M. (2013). The effects of the addition of corn husk fibre, kaolin and beeswax on cross-linked corn starch foam. Journal of Food Engineering, 116(2), 267-276. https://doi.org/10.1016/j.jfoodeng.2012.12.017Poletto, M., Ornaghi Júnior, H. L., & Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7(9), 6105-6119. https://doi.org/10.3390/ma7096105Pornsuksomboon, K., Holló, B. B., Szécsényi, K. M., & Kaewtatip, K. (2016). Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydrate Polymers, 136, 107-112. https://doi.org/10.1016/j.carbpol.2015.09.019Pushpadass, H. A., Babu, G. S., Weber, R. W., & Hanna, M. A. (2008). Extrusion of Starch-based Loose-fill Packaging Foams # : Effects of Temperature , Moisture and Talc on Physical Properties. Packaging technology and science, 21(February), 171-183. https://doi.org/10.1002/ptsQuiévy, N., Jacquet, N., Sclavons, M., Deroanne, C., Paquot, M., & Devaux, J. (2010). Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polymer Degradation and Stability, 95(3), 306-314. https://doi.org/10.1016/j.polymdegradstab.2009.11.020Quintero, M., Castro, L., Ortiz, C., Guzmán, C., & Escalante, H. (2012). Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresource Technology, 108, 8-13. https://doi.org/10.1016/j.biortech.2011.12.052Rasheed, M., Jawaid, M., Parveez, B., Zuriyati, A., & Khan, A. (2020). Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre. International Journal of Biological Macromolecules, 160, 183-191. https://doi.org/10.1016/j.ijbiomac.2020.05.170Rivera, D., Plata, L., Castro, L., Guzmán, C., & Escalante, H. (2012). Aprovechamiento del subproducto sólido de la digestión anaerobia del bagazo de fique (furcraea macrophylla) para el acondicionamiento de suelos. Red de Revistas Cientificas de America Latina y el Caribe, España y Portugal, 25(1), 25-34. https://doi.org/10.1002/jccs.201300477Rudin, A., & Choi, P. (2013). Biopolymers. En The Elements of Polymer Science & Engineering (pp. 521-535). https://doi.org/10.1016/B978-0-12-382178-2.00013-4Saeed, S. E. S., El-Molla, M. M., Hassan, M. L., Bakir, E., Abdel-Mottaleb, M. M. S., & Abdel-Mottaleb, M. S. A. (2014). Novel chitosan-ZnO based nanocomposites as luminescent tags for cellulosic materials. Carbohydrate Polymers, 99, 817-824. https://doi.org/10.1016/j.carbpol.2013.08.096Shaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825-842. https://doi.org/10.1039/c7ra11157fShao, X., Wang, J., Liu, Z., Hu, N., Liu, M., & Xu, Y. (2020). Preparation and Characterization of Porous Microcrystalline Cellulose from Corncob. Industrial Crops and Products, 151(September 2019), 1-6. https://doi.org/10.1016/j.indcrop.2020.112457Shekar, H. S. S., & Ramachandra, M. (2018). Green Composites: A Review. Materials Today: Proceedings, 5(1), 2518-2526. https://doi.org/10.1016/j.matpr.2017.11.034hi, J., Shi, S. Q., Barnes, H. M., & Pittman, C. U. (2011). A chemical process for preparing cellulosic fibers hierarchically from kenaf bast fibers. BioResources, 6(1), 879-890. https://doi.org/10.15376/biores.6.1.879-890Souza, V. G. L., Fernando, A. L., Pires, J. R. A., Rodrigues, P. F., Lopes, A. A. S., & Fernandes, F. M. B. (2017). Physical properties of chitosan films incorporated with natural antioxidants. Industrial Crops and Products, 107(April), 565-572. https://doi.org/10.1016/j.indcrop.2017.04.056Soykeabkaew, N., Thanomsilp, C., & Suwantong, O. (2015). A review: Starch-based composite foams. Composites Part A: Applied Science and Manufacturing, 78, 246-263. https://doi.org/10.1016/j.compositesa.2015.08.014Tarchoun, A. F., Trache, D., Klapötke, T. M., Derradji, M., & Bessa, W. (2019). Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose, 26(13-14), 7635-7651. https://doi.org/10.1007/s10570-019-02672-xTeixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. https://doi.org/10.1016/j.indcrop.2011.11.036Tibolla, H., Pelissari, F. M., Martins, J. T., Vicente, A. A., & Menegalli, F. C. (2018). Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 75, 192-201. https://doi.org/10.1016/j.foodhyd.2017.08.027Trache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., … Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056Trisia, F., & Ian, S. (2017). Polystyrene as Hazardous Household Waste. En D. Mmereki (Ed.), Design, Control and Applications of Mechatronic Systems in Engineering (1.a ed., pp. 135-152). InTech. https://doi.org/10.5772/65865Venero, M. (2019). Análisis comparativo del impacto ambiental entre un embalaje de espuma de poliestireno expandido y un embalaje biodegradable mediante espumas matriciales. Universidad Catolica San Pablo. Recuperado de http://repositorio.ucsp.edu.pe/handle/UCSP/16126Wagner, T. P. (2020). Policy Instruments To Reduce Consumption of Expanded Polystyrene Food Service Ware in the Usa. Detritus, 09(9), 11-26. https://doi.org/10.31025/2611-4135/2020.13903Wicaksono, R., Syamsu, K., Yuliasih, I., & Nasir, M. (2013). Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-Film. Chemistry and Materials Research, 313(13), 2225-2956.Wulandari, W. . T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. Material Science and Engineeting, 107(1), 1-7. https://doi.org/10.1088/1757-899X/107/1/012045Xie, Q., Li, F., Li, J., Wang, L., Li, Y., Zhang, C., … Chen, S. (2018). A new biodegradable sisal fiber–starch packing composite with nest structure. Carbohydrate Polymers, 189(January), 56-64. https://doi.org/10.1016/j.carbpol.2018.01.063Yin, L., Liu, H., Cui, H., Chen, B., Li, L., & Wu, F. (2019). Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). Journal of Hazardous Materials, 380(July), 120861. https://doi.org/10.1016/j.jhazmat.2019.120861Yudanto, Y. A., & Diponegoro, U. (2020). Characterization of physical and mechanical properties of Biodegradable foam from maizena flour and paper waste for Sustainable packaging material. International Journal of Engineering Applied Sciences and Technology, 5(8), 1-8.Zafar, M. T., Zarrinbakhsh, N., Mohanty, A. K., Misra, M., & Ghosh, A. K. (2016). Biocomposites based on poly(Lactic acid)/willow-fiber and their injection moulded microcellular foams. Express Polymer Letters, 10(2), 176-186. https://doi.org/10.3144/expresspolymlett.2016.16Zhang, C. wei, Li, F. yi, Li, J. feng, Wang, L. ming, Xie, Q., Xu, J., & Chen, S. (2017). A new biodegradable composite with open cell by combining modified starch and plant fibers. Materials and Design, 120, 222-229. https://doi.org/10.1016/j.matdes.2017.02.027Zhao, H., Zhao, G., Turng, L. S., & Peng, X. (2015). Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites. Industrial and Engineering Chemistry Research, 54(28), 7122-7130. https://doi.org/10.1021/acs.iecr.5b01130Zhu, Z., Hao, M., & Zhang, N. (2018). Influence of contents of chemical compositions on the mechanical property of sisal fibers and sisal fibers reinforced PLA composites. Journal of Natural Fibers, 17(1), 101-112. https://doi.org/10.1080/15440478.2018.1469452CelulosaHidrólisisExtrusiónresiduo lignocelulósicohidrólisiscelulosaextrusiónmaterial compuestoMaterial compuestoProyecto INNOVACION CaucaUniversidad del CaucaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79561/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1004418510.2021.pdf1004418510.2021.pdfapplication/pdf4879720https://repositorio.unal.edu.co/bitstream/unal/79561/2/1004418510.2021.pdf35c565bb9bdafa5412700a03bb6b7075MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79561/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1004418510.2021.pdf.jpg1004418510.2021.pdf.jpgGenerated Thumbnailimage/jpeg5304https://repositorio.unal.edu.co/bitstream/unal/79561/4/1004418510.2021.pdf.jpg001fe0aed3e9687147c045c1201b7034MD54unal/79561oai:repositorio.unal.edu.co:unal/795612024-07-19 23:32:07.803Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |