Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
ilustraciones, gráficas, tablas
- Autores:
-
Sánchez Vásquez, José Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80940
- Palabra clave:
- 550 - Ciencias de la tierra
Ondas
Análisis espectral
Procesamiento de imágenes
Waves
Spectrum analysis
Image processing
Migration RTM
Acoustic
Visco-acoustic
Absorbing
Imaging
Migración RTM
Acústico
Visco acústico
Absorbente
Imagen
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_1826b4ecc13f65a932ab15a56b38951f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80940 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
dc.title.translated.eng.fl_str_mv |
Reverse migration in time for acoustic and viscoacoustic media, by pseudo spectral methods of the wave equation and the equation of fractional wave in two dimensions |
title |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
spellingShingle |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones 550 - Ciencias de la tierra Ondas Análisis espectral Procesamiento de imágenes Waves Spectrum analysis Image processing Migration RTM Acoustic Visco-acoustic Absorbing Imaging Migración RTM Acústico Visco acústico Absorbente Imagen |
title_short |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
title_full |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
title_fullStr |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
title_full_unstemmed |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
title_sort |
Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones |
dc.creator.fl_str_mv |
Sánchez Vásquez, José Leonardo |
dc.contributor.advisor.spa.fl_str_mv |
Montes Vides, Luis Alfredo |
dc.contributor.author.spa.fl_str_mv |
Sánchez Vásquez, José Leonardo |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra |
topic |
550 - Ciencias de la tierra Ondas Análisis espectral Procesamiento de imágenes Waves Spectrum analysis Image processing Migration RTM Acoustic Visco-acoustic Absorbing Imaging Migración RTM Acústico Visco acústico Absorbente Imagen |
dc.subject.lemb.spa.fl_str_mv |
Ondas Análisis espectral Procesamiento de imágenes |
dc.subject.lemb.eng.fl_str_mv |
Waves Spectrum analysis Image processing |
dc.subject.proposal.eng.fl_str_mv |
Migration RTM Acoustic Visco-acoustic Absorbing Imaging |
dc.subject.proposal.spa.fl_str_mv |
Migración RTM Acústico Visco acústico Absorbente Imagen |
description |
ilustraciones, gráficas, tablas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-12-08 |
dc.date.accessioned.none.fl_str_mv |
2022-02-10T22:00:47Z |
dc.date.available.none.fl_str_mv |
2022-02-10T22:00:47Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80940 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80940 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Amidror, I. (2014). Mastering the discrete Fourier transform in one, two or several dimensions: pitfalls and artifacts (T. N. MAX VIERGEVER Utrecht University, Utrecht & Series (eds.); 1st ed.). https://doi.org/10.5860/choice.51-5066 Basu, U. (2008). Perfectly Matched Layers for Acoustic and Elastic Waves. In Report DSO-07-02 (Issue October). Baysal, E., Kosloff, D. D., & Sherwood, J. W. C. (1983). Reverse time migration. Geophysics, 48(11), 1514–1524. https://doi.org/10.1190/1.1441434 Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200. https://doi.org/10.1006/jcph.1994.1159 Biondi, B., & Shan, G. (2002). Prestack imagingg of overturned reflections by reverse time migration SEG Int ’ l Exposition and 72nd Annual Meeting * Salt Lake City , Utah * October 6-11 , 2002. October, 171–174. http://sepwww.stanford.edu/sep/biondo/PDF/Abs/SEG2002/biondoreverse. pdf Carcione, J. M. (1999). Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 64(6), 1863–1866. https://doi.org/10.1190/1.1444692 Carcione, J. M. (2010). A generalization of the Fourier pseudospectral method. Geophysics, 75(6), 53–56. https://doi.org/10.1190/1.3509472 Carcione, M. (2009). Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. 74(1). http://dx.doi.org/10.1190/1.3008548 Chang W.F, McMechan, G. . (1989). 3d acoustic reverse-time migration’. Geophycal Prospecting, September 1988, 243–256. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1989.tb02205.x Chica, E. J. (2016). Reverse Time Migration) en zonas Obtención de imágenes RTM estructuralmente complejas [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56134 Clayton, R., & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of Americ, 67(6), 1529–1540. https://doi.org/10.1016/0096-3003(88)90130-0 Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6), 854–859. https://doi.org/10.1190/1.1441223 Guan, H., Kim Y., Yoon W, Wang, B, Xu, W., Li, Z. (2007). Multistep reverse time migration. SPECIAL SECTION: Off Shore Technology. https://doi.org/10.1190/1.3112762 Guddati, M. N. (2006). Arbitrarily wide-angle wave equations for complex media. Computer Methods in Applied Mechanics and Engineering, 195(1–3), 65–93. https://doi.org/10.1016/j.cma.2005.01.006 Hu, W., & Cummer, S. A. (2004). The nearly perfectly matched layer is a perfectly matched layer. IEEE Antennas and Wireless Propagation Letters, 3(1), 137– 140. https://doi.org/10.1109/LAWP.2004.831077 Jingyi Chen, G. M. (2012). Application of Nearly Perfectly Matched Layer with Second-order Acoustic Equations in Seismic Numerical Modeling. Journal of Geology & Geosciences, 02(02). https://doi.org/10.4172/2329-6755.1000120 Kaelin, B., & Guitton, A. (2006). Imagingg condition for reverse time migration. SEG Technical Program Expanded Abstracts, 25(1), 2594–2598. https://doi.org/10.1190/1.2370059 Kelly , K.R., et al. (1976). Synthetic Seismograms: A Finite-Difference Approach. Geophysics, 41(I), 2–27. https://doi.org/10.1190/1.1440605 Kjartansson, E. (1979). Constant Q-Wave Propagation and Attenuation The constant Q theory fits both sets of data. JOURNAL OF GEOPHYSICAL RESEARCH, 84. http://sep.stanford.edu/data/media/public/oldsep/einar/Einar1979.pdf Komatitsch, D., & Vilotte, J. P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392. https://www.researchgate.net/publication/232707622_The_Spectral_Element _method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3 D_geological_structures Kun, T., Zhen‐chun, L., & Jian‐ping, H. (2011). An improved perfectly matched layer absorbing boundary condition. 138 SPG/SEG Shenzhen 2011 International Geophysical Conference Technical Program Expanded Abstracts, 1997, 49– 49. https://doi.org/10.1190/1.4705034 Levin, A. (1984). Principle of reverse-time migration. Geophysics, 49(5), 581–583. https://doi.org/10.1190/1.1441693 Liu, F., Zhang, G., Morton, S. A., & Leveille, J. P. (2011). An effective imagingg condition for reverse-time migration using wavefield decomposition. Geophysics, 76(1). https://doi.org/10.1190/1.3533914 Liu, Q., & Tao, J. (1997). The perfectly matched layer for acoustic waves. Acoustical Society of America, 102(4), 2072–2082. https://www.researchgate.net/publication/243521262_The_perfectly_matched _layer_for_acoustic_waves_in_absorptive_media Liu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high-order finite-difference acoustic modeling. SEG San Antonio 2011 Annual Meeting 2952, 1, 2952–2956. https://doi.org/10.1190/1.3627807 Liu, Y., & Sen, M. K. (2010). A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics, 75(2). https://www.researchgate.net/publication/228978155_A_hybrid_scheme_for_ absorbing_edge_reflections_in_numerical_modeling_of_wave_propagation McGarry, R., & Moghaddam, P. (2009). NPML boundary conditions for secondorder wave equations. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 5, 3590–3594. https://doi.org/10.1190/1.3255611 Ospina, B. (2011). Propagación de ondas Ospina, B. (2011). Propagación de ondas sísmicas y migración [Universidad Nacional de Colombia]. In Tesis. https://repositorio.unal.edu.co/handle/unal/8575 Sava, P., & Vlad, I. (2011). Wide-azimuth angle gathers for wave-equation migration. Geophysics, 76(3). https://doi.org/10.1190/1.3560519 Tessmer, E. (2011). Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics, 76(4). https://doi.org/10.1190/1.3587217 Trefethen, L. N. (1996). Finite Difference And Spectal Methods for Ordinary and Partial Differential Equations. In Cornell University. https://people.maths.ox.ac.uk/trefethen/pdefront.pdf Whitmore, N. D. (1993). Iterative depth migration by backward time propagation. 1983 SEG Annual Meeting, SEG 1983, 382–385. https://doi.org/10.1190/1.1893867 Zhu, T., & Carcione, J. M. (2014). Theory and modelling of constant-q p- and swaves using fractional spatial derivatives. Geophysical Journal International, 196(3), 1787–1795. https://doi.org/10.1093/gji/ggt483 Zhu, T., & Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/GEO2013-0245.1 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 128 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Geofísica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Geociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80940/1/79792724.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80940/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/80940/3/79792724.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
23d052a66763cf3d94c95bc12760cc30 8153f7789df02f0a4c9e079953658ab2 b9df60e1e656a6f86018edd76a39bd2d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090247911243776 |
spelling |
Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montes Vides, Luis Alfredo2dc89542fb7c84b962cdbfa0e4b16181600Sánchez Vásquez, José Leonardo09ac2e1681d882ac112291ed7378360a2022-02-10T22:00:47Z2022-02-10T22:00:47Z2021-12-08https://repositorio.unal.edu.co/handle/unal/80940Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa Migración RTM o migración reversa en el tiempo es un método en el cual, se utiliza la ecuación de onda completa y no aproximaciones. En esta tesis se desarrolla un enfoque matemático unificado y se implementan los algoritmos numéricos para el correcto entendimiento del método pseudo espectral de Fourier generalizado, la simulación de fuentes y receptores para la onda acústica y visco acústica, la correcta implementación de la condición de imagen o “imaging”, además se implementan las fronteras absorbentes ABC hibrido, PML y NPML, donde la primera trabaja con una aproximación paraxial de la onda acústica y las dos siguientes con un “estreching” de las coordenadas. En el proceso de la migración RTM se utilizan dos condiciones de “imagin”, aplicándose a varios modelos sintéticos la migración, tanto para la onda acústica como visco acústico. Lo anterior permite contar con una herramienta de uso libre para migración RTM, dado que las herramientas comerciales son de costo elevado lo que dificulta el acceso a estudiantes de geociencias. (Texto tomado de la fuente).RTM migration or reverse time migration is a method in which the complete wave equation is used rather than approximations. In this thesis, a unified mathematical approach is developed and numerical algorithms are implemented for the correct understanding of the generalized pseudo-spectral Fourier method, simulation of sources and receivers for acoustic wave and visco-acoustic, the correct implementation of the image condition, in addition, the absorbent borders ABC hybrid, PML and NPML are implemented, where the first works with a paraxial approximation of the acoustic wave and the next two with a of the coordinates estreching. In the RTM migration process, two “image” conditions are used, applying migration to various synthetic models, both for the acoustic wave and viscoacoustic. This allows us to have a free-to-use tool for RTM migration, since commercial tools are expensive, which makes it difficult for geoscience students to access.Incluye anexosMaestríaMagíster en Ciencias - GeofísicaProspección sísmicaxix, 128 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeofísicaDepartamento de GeocienciasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraOndasAnálisis espectralProcesamiento de imágenesWavesSpectrum analysisImage processingMigration RTMAcousticVisco-acousticAbsorbingImagingMigración RTMAcústicoVisco acústicoAbsorbenteImagenMigración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensionesReverse migration in time for acoustic and viscoacoustic media, by pseudo spectral methods of the wave equation and the equation of fractional wave in two dimensionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmidror, I. (2014). Mastering the discrete Fourier transform in one, two or several dimensions: pitfalls and artifacts (T. N. MAX VIERGEVER Utrecht University, Utrecht & Series (eds.); 1st ed.). https://doi.org/10.5860/choice.51-5066Basu, U. (2008). Perfectly Matched Layers for Acoustic and Elastic Waves. In Report DSO-07-02 (Issue October).Baysal, E., Kosloff, D. D., & Sherwood, J. W. C. (1983). Reverse time migration. Geophysics, 48(11), 1514–1524. https://doi.org/10.1190/1.1441434Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200. https://doi.org/10.1006/jcph.1994.1159Biondi, B., & Shan, G. (2002). Prestack imagingg of overturned reflections by reverse time migration SEG Int ’ l Exposition and 72nd Annual Meeting * Salt Lake City , Utah * October 6-11 , 2002. October, 171–174. http://sepwww.stanford.edu/sep/biondo/PDF/Abs/SEG2002/biondoreverse. pdfCarcione, J. M. (1999). Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 64(6), 1863–1866. https://doi.org/10.1190/1.1444692Carcione, J. M. (2010). A generalization of the Fourier pseudospectral method. Geophysics, 75(6), 53–56. https://doi.org/10.1190/1.3509472Carcione, M. (2009). Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. 74(1). http://dx.doi.org/10.1190/1.3008548Chang W.F, McMechan, G. . (1989). 3d acoustic reverse-time migration’. Geophycal Prospecting, September 1988, 243–256. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1989.tb02205.xChica, E. J. (2016). Reverse Time Migration) en zonas Obtención de imágenes RTM estructuralmente complejas [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56134Clayton, R., & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of Americ, 67(6), 1529–1540. https://doi.org/10.1016/0096-3003(88)90130-0Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6), 854–859. https://doi.org/10.1190/1.1441223Guan, H., Kim Y., Yoon W, Wang, B, Xu, W., Li, Z. (2007). Multistep reverse time migration. SPECIAL SECTION: Off Shore Technology. https://doi.org/10.1190/1.3112762Guddati, M. N. (2006). Arbitrarily wide-angle wave equations for complex media. Computer Methods in Applied Mechanics and Engineering, 195(1–3), 65–93. https://doi.org/10.1016/j.cma.2005.01.006Hu, W., & Cummer, S. A. (2004). The nearly perfectly matched layer is a perfectly matched layer. IEEE Antennas and Wireless Propagation Letters, 3(1), 137– 140. https://doi.org/10.1109/LAWP.2004.831077Jingyi Chen, G. M. (2012). Application of Nearly Perfectly Matched Layer with Second-order Acoustic Equations in Seismic Numerical Modeling. Journal of Geology & Geosciences, 02(02). https://doi.org/10.4172/2329-6755.1000120Kaelin, B., & Guitton, A. (2006). Imagingg condition for reverse time migration. SEG Technical Program Expanded Abstracts, 25(1), 2594–2598. https://doi.org/10.1190/1.2370059Kelly , K.R., et al. (1976). Synthetic Seismograms: A Finite-Difference Approach. Geophysics, 41(I), 2–27. https://doi.org/10.1190/1.1440605Kjartansson, E. (1979). Constant Q-Wave Propagation and Attenuation The constant Q theory fits both sets of data. JOURNAL OF GEOPHYSICAL RESEARCH, 84. http://sep.stanford.edu/data/media/public/oldsep/einar/Einar1979.pdfKomatitsch, D., & Vilotte, J. P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392. https://www.researchgate.net/publication/232707622_The_Spectral_Element _method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3 D_geological_structuresKun, T., Zhen‐chun, L., & Jian‐ping, H. (2011). An improved perfectly matched layer absorbing boundary condition. 138 SPG/SEG Shenzhen 2011 International Geophysical Conference Technical Program Expanded Abstracts, 1997, 49– 49. https://doi.org/10.1190/1.4705034Levin, A. (1984). Principle of reverse-time migration. Geophysics, 49(5), 581–583. https://doi.org/10.1190/1.1441693Liu, F., Zhang, G., Morton, S. A., & Leveille, J. P. (2011). An effective imagingg condition for reverse-time migration using wavefield decomposition. Geophysics, 76(1). https://doi.org/10.1190/1.3533914Liu, Q., & Tao, J. (1997). The perfectly matched layer for acoustic waves. Acoustical Society of America, 102(4), 2072–2082. https://www.researchgate.net/publication/243521262_The_perfectly_matched _layer_for_acoustic_waves_in_absorptive_mediaLiu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high-order finite-difference acoustic modeling. SEG San Antonio 2011 Annual Meeting 2952, 1, 2952–2956. https://doi.org/10.1190/1.3627807Liu, Y., & Sen, M. K. (2010). A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics, 75(2). https://www.researchgate.net/publication/228978155_A_hybrid_scheme_for_ absorbing_edge_reflections_in_numerical_modeling_of_wave_propagationMcGarry, R., & Moghaddam, P. (2009). NPML boundary conditions for secondorder wave equations. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 5, 3590–3594. https://doi.org/10.1190/1.3255611 Ospina, B. (2011). Propagación de ondasOspina, B. (2011). Propagación de ondas sísmicas y migración [Universidad Nacional de Colombia]. In Tesis. https://repositorio.unal.edu.co/handle/unal/8575Sava, P., & Vlad, I. (2011). Wide-azimuth angle gathers for wave-equation migration. Geophysics, 76(3). https://doi.org/10.1190/1.3560519 Tessmer, E. (2011). Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics, 76(4). https://doi.org/10.1190/1.3587217Trefethen, L. N. (1996). Finite Difference And Spectal Methods for Ordinary and Partial Differential Equations. In Cornell University. https://people.maths.ox.ac.uk/trefethen/pdefront.pdfWhitmore, N. D. (1993). Iterative depth migration by backward time propagation. 1983 SEG Annual Meeting, SEG 1983, 382–385. https://doi.org/10.1190/1.1893867Zhu, T., & Carcione, J. M. (2014). Theory and modelling of constant-q p- and swaves using fractional spatial derivatives. Geophysical Journal International, 196(3), 1787–1795. https://doi.org/10.1093/gji/ggt483Zhu, T., & Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/GEO2013-0245.1EstudiantesInvestigadoresORIGINAL79792724.2021.pdf79792724.2021.pdfTesis de Maestría en Ciencias - Geofísicaapplication/pdf25620967https://repositorio.unal.edu.co/bitstream/unal/80940/1/79792724.2021.pdf23d052a66763cf3d94c95bc12760cc30MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80940/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL79792724.2021.pdf.jpg79792724.2021.pdf.jpgGenerated Thumbnailimage/jpeg6309https://repositorio.unal.edu.co/bitstream/unal/80940/3/79792724.2021.pdf.jpgb9df60e1e656a6f86018edd76a39bd2dMD53unal/80940oai:repositorio.unal.edu.co:unal/809402024-08-02 23:11:20.934Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |