Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones

ilustraciones, gráficas, tablas

Autores:
Sánchez Vásquez, José Leonardo
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80940
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80940
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
Ondas
Análisis espectral
Procesamiento de imágenes
Waves
Spectrum analysis
Image processing
Migration RTM
Acoustic
Visco-acoustic
Absorbing
Imaging
Migración RTM
Acústico
Visco acústico
Absorbente
Imagen
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_1826b4ecc13f65a932ab15a56b38951f
oai_identifier_str oai:repositorio.unal.edu.co:unal/80940
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
dc.title.translated.eng.fl_str_mv Reverse migration in time for acoustic and viscoacoustic media, by pseudo spectral methods of the wave equation and the equation of fractional wave in two dimensions
title Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
spellingShingle Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
550 - Ciencias de la tierra
Ondas
Análisis espectral
Procesamiento de imágenes
Waves
Spectrum analysis
Image processing
Migration RTM
Acoustic
Visco-acoustic
Absorbing
Imaging
Migración RTM
Acústico
Visco acústico
Absorbente
Imagen
title_short Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
title_full Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
title_fullStr Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
title_full_unstemmed Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
title_sort Migración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensiones
dc.creator.fl_str_mv Sánchez Vásquez, José Leonardo
dc.contributor.advisor.spa.fl_str_mv Montes Vides, Luis Alfredo
dc.contributor.author.spa.fl_str_mv Sánchez Vásquez, José Leonardo
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
topic 550 - Ciencias de la tierra
Ondas
Análisis espectral
Procesamiento de imágenes
Waves
Spectrum analysis
Image processing
Migration RTM
Acoustic
Visco-acoustic
Absorbing
Imaging
Migración RTM
Acústico
Visco acústico
Absorbente
Imagen
dc.subject.lemb.spa.fl_str_mv Ondas
Análisis espectral
Procesamiento de imágenes
dc.subject.lemb.eng.fl_str_mv Waves
Spectrum analysis
Image processing
dc.subject.proposal.eng.fl_str_mv Migration RTM
Acoustic
Visco-acoustic
Absorbing
Imaging
dc.subject.proposal.spa.fl_str_mv Migración RTM
Acústico
Visco acústico
Absorbente
Imagen
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-08
dc.date.accessioned.none.fl_str_mv 2022-02-10T22:00:47Z
dc.date.available.none.fl_str_mv 2022-02-10T22:00:47Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80940
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80940
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Amidror, I. (2014). Mastering the discrete Fourier transform in one, two or several dimensions: pitfalls and artifacts (T. N. MAX VIERGEVER Utrecht University, Utrecht & Series (eds.); 1st ed.). https://doi.org/10.5860/choice.51-5066
Basu, U. (2008). Perfectly Matched Layers for Acoustic and Elastic Waves. In Report DSO-07-02 (Issue October).
Baysal, E., Kosloff, D. D., & Sherwood, J. W. C. (1983). Reverse time migration. Geophysics, 48(11), 1514–1524. https://doi.org/10.1190/1.1441434
Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200. https://doi.org/10.1006/jcph.1994.1159
Biondi, B., & Shan, G. (2002). Prestack imagingg of overturned reflections by reverse time migration SEG Int ’ l Exposition and 72nd Annual Meeting * Salt Lake City , Utah * October 6-11 , 2002. October, 171–174. http://sepwww.stanford.edu/sep/biondo/PDF/Abs/SEG2002/biondoreverse. pdf
Carcione, J. M. (1999). Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 64(6), 1863–1866. https://doi.org/10.1190/1.1444692
Carcione, J. M. (2010). A generalization of the Fourier pseudospectral method. Geophysics, 75(6), 53–56. https://doi.org/10.1190/1.3509472
Carcione, M. (2009). Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. 74(1). http://dx.doi.org/10.1190/1.3008548
Chang W.F, McMechan, G. . (1989). 3d acoustic reverse-time migration’. Geophycal Prospecting, September 1988, 243–256. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1989.tb02205.x
Chica, E. J. (2016). Reverse Time Migration) en zonas Obtención de imágenes RTM estructuralmente complejas [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56134
Clayton, R., & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of Americ, 67(6), 1529–1540. https://doi.org/10.1016/0096-3003(88)90130-0
Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6), 854–859. https://doi.org/10.1190/1.1441223
Guan, H., Kim Y., Yoon W, Wang, B, Xu, W., Li, Z. (2007). Multistep reverse time migration. SPECIAL SECTION: Off Shore Technology. https://doi.org/10.1190/1.3112762
Guddati, M. N. (2006). Arbitrarily wide-angle wave equations for complex media. Computer Methods in Applied Mechanics and Engineering, 195(1–3), 65–93. https://doi.org/10.1016/j.cma.2005.01.006
Hu, W., & Cummer, S. A. (2004). The nearly perfectly matched layer is a perfectly matched layer. IEEE Antennas and Wireless Propagation Letters, 3(1), 137– 140. https://doi.org/10.1109/LAWP.2004.831077
Jingyi Chen, G. M. (2012). Application of Nearly Perfectly Matched Layer with Second-order Acoustic Equations in Seismic Numerical Modeling. Journal of Geology & Geosciences, 02(02). https://doi.org/10.4172/2329-6755.1000120
Kaelin, B., & Guitton, A. (2006). Imagingg condition for reverse time migration. SEG Technical Program Expanded Abstracts, 25(1), 2594–2598. https://doi.org/10.1190/1.2370059
Kelly , K.R., et al. (1976). Synthetic Seismograms: A Finite-Difference Approach. Geophysics, 41(I), 2–27. https://doi.org/10.1190/1.1440605
Kjartansson, E. (1979). Constant Q-Wave Propagation and Attenuation The constant Q theory fits both sets of data. JOURNAL OF GEOPHYSICAL RESEARCH, 84. http://sep.stanford.edu/data/media/public/oldsep/einar/Einar1979.pdf
Komatitsch, D., & Vilotte, J. P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392. https://www.researchgate.net/publication/232707622_The_Spectral_Element _method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3 D_geological_structures
Kun, T., Zhen‐chun, L., & Jian‐ping, H. (2011). An improved perfectly matched layer absorbing boundary condition. 138 SPG/SEG Shenzhen 2011 International Geophysical Conference Technical Program Expanded Abstracts, 1997, 49– 49. https://doi.org/10.1190/1.4705034
Levin, A. (1984). Principle of reverse-time migration. Geophysics, 49(5), 581–583. https://doi.org/10.1190/1.1441693
Liu, F., Zhang, G., Morton, S. A., & Leveille, J. P. (2011). An effective imagingg condition for reverse-time migration using wavefield decomposition. Geophysics, 76(1). https://doi.org/10.1190/1.3533914
Liu, Q., & Tao, J. (1997). The perfectly matched layer for acoustic waves. Acoustical Society of America, 102(4), 2072–2082. https://www.researchgate.net/publication/243521262_The_perfectly_matched _layer_for_acoustic_waves_in_absorptive_media
Liu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high-order finite-difference acoustic modeling. SEG San Antonio 2011 Annual Meeting 2952, 1, 2952–2956. https://doi.org/10.1190/1.3627807
Liu, Y., & Sen, M. K. (2010). A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics, 75(2). https://www.researchgate.net/publication/228978155_A_hybrid_scheme_for_ absorbing_edge_reflections_in_numerical_modeling_of_wave_propagation
McGarry, R., & Moghaddam, P. (2009). NPML boundary conditions for secondorder wave equations. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 5, 3590–3594. https://doi.org/10.1190/1.3255611 Ospina, B. (2011). Propagación de ondas
Ospina, B. (2011). Propagación de ondas sísmicas y migración [Universidad Nacional de Colombia]. In Tesis. https://repositorio.unal.edu.co/handle/unal/8575
Sava, P., & Vlad, I. (2011). Wide-azimuth angle gathers for wave-equation migration. Geophysics, 76(3). https://doi.org/10.1190/1.3560519 Tessmer, E. (2011). Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics, 76(4). https://doi.org/10.1190/1.3587217
Trefethen, L. N. (1996). Finite Difference And Spectal Methods for Ordinary and Partial Differential Equations. In Cornell University. https://people.maths.ox.ac.uk/trefethen/pdefront.pdf
Whitmore, N. D. (1993). Iterative depth migration by backward time propagation. 1983 SEG Annual Meeting, SEG 1983, 382–385. https://doi.org/10.1190/1.1893867
Zhu, T., & Carcione, J. M. (2014). Theory and modelling of constant-q p- and swaves using fractional spatial derivatives. Geophysical Journal International, 196(3), 1787–1795. https://doi.org/10.1093/gji/ggt483
Zhu, T., & Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/GEO2013-0245.1
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 128 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Geofísica
dc.publisher.department.spa.fl_str_mv Departamento de Geociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80940/1/79792724.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80940/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80940/3/79792724.2021.pdf.jpg
bitstream.checksum.fl_str_mv 23d052a66763cf3d94c95bc12760cc30
8153f7789df02f0a4c9e079953658ab2
b9df60e1e656a6f86018edd76a39bd2d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090247911243776
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montes Vides, Luis Alfredo2dc89542fb7c84b962cdbfa0e4b16181600Sánchez Vásquez, José Leonardo09ac2e1681d882ac112291ed7378360a2022-02-10T22:00:47Z2022-02-10T22:00:47Z2021-12-08https://repositorio.unal.edu.co/handle/unal/80940Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasLa Migración RTM o migración reversa en el tiempo es un método en el cual, se utiliza la ecuación de onda completa y no aproximaciones. En esta tesis se desarrolla un enfoque matemático unificado y se implementan los algoritmos numéricos para el correcto entendimiento del método pseudo espectral de Fourier generalizado, la simulación de fuentes y receptores para la onda acústica y visco acústica, la correcta implementación de la condición de imagen o “imaging”, además se implementan las fronteras absorbentes ABC hibrido, PML y NPML, donde la primera trabaja con una aproximación paraxial de la onda acústica y las dos siguientes con un “estreching” de las coordenadas. En el proceso de la migración RTM se utilizan dos condiciones de “imagin”, aplicándose a varios modelos sintéticos la migración, tanto para la onda acústica como visco acústico. Lo anterior permite contar con una herramienta de uso libre para migración RTM, dado que las herramientas comerciales son de costo elevado lo que dificulta el acceso a estudiantes de geociencias. (Texto tomado de la fuente).RTM migration or reverse time migration is a method in which the complete wave equation is used rather than approximations. In this thesis, a unified mathematical approach is developed and numerical algorithms are implemented for the correct understanding of the generalized pseudo-spectral Fourier method, simulation of sources and receivers for acoustic wave and visco-acoustic, the correct implementation of the image condition, in addition, the absorbent borders ABC hybrid, PML and NPML are implemented, where the first works with a paraxial approximation of the acoustic wave and the next two with a of the coordinates estreching. In the RTM migration process, two “image” conditions are used, applying migration to various synthetic models, both for the acoustic wave and viscoacoustic. This allows us to have a free-to-use tool for RTM migration, since commercial tools are expensive, which makes it difficult for geoscience students to access.Incluye anexosMaestríaMagíster en Ciencias - GeofísicaProspección sísmicaxix, 128 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - GeofísicaDepartamento de GeocienciasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierraOndasAnálisis espectralProcesamiento de imágenesWavesSpectrum analysisImage processingMigration RTMAcousticVisco-acousticAbsorbingImagingMigración RTMAcústicoVisco acústicoAbsorbenteImagenMigración reversa en el tiempo para medios acústicos y visco acústicos, por métodos pseudo espectrales de la ecuación de onda y la ecuación de onda fraccional en dos dimensionesReverse migration in time for acoustic and viscoacoustic media, by pseudo spectral methods of the wave equation and the equation of fractional wave in two dimensionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAmidror, I. (2014). Mastering the discrete Fourier transform in one, two or several dimensions: pitfalls and artifacts (T. N. MAX VIERGEVER Utrecht University, Utrecht & Series (eds.); 1st ed.). https://doi.org/10.5860/choice.51-5066Basu, U. (2008). Perfectly Matched Layers for Acoustic and Elastic Waves. In Report DSO-07-02 (Issue October).Baysal, E., Kosloff, D. D., & Sherwood, J. W. C. (1983). Reverse time migration. Geophysics, 48(11), 1514–1524. https://doi.org/10.1190/1.1441434Berenger, J. P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114(2), 185–200. https://doi.org/10.1006/jcph.1994.1159Biondi, B., & Shan, G. (2002). Prestack imagingg of overturned reflections by reverse time migration SEG Int ’ l Exposition and 72nd Annual Meeting * Salt Lake City , Utah * October 6-11 , 2002. October, 171–174. http://sepwww.stanford.edu/sep/biondo/PDF/Abs/SEG2002/biondoreverse. pdfCarcione, J. M. (1999). Staggered mesh for the anisotropic and viscoelastic wave equation. Geophysics, 64(6), 1863–1866. https://doi.org/10.1190/1.1444692Carcione, J. M. (2010). A generalization of the Fourier pseudospectral method. Geophysics, 75(6), 53–56. https://doi.org/10.1190/1.3509472Carcione, M. (2009). Theory and modeling of constant-Q P- and S-waves using fractional time derivatives. 74(1). http://dx.doi.org/10.1190/1.3008548Chang W.F, McMechan, G. . (1989). 3d acoustic reverse-time migration’. Geophycal Prospecting, September 1988, 243–256. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2478.1989.tb02205.xChica, E. J. (2016). Reverse Time Migration) en zonas Obtención de imágenes RTM estructuralmente complejas [Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/56134Clayton, R., & Engquist, B. (1977). Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of Americ, 67(6), 1529–1540. https://doi.org/10.1016/0096-3003(88)90130-0Gazdag, J. (1981). Modeling of the acoustic wave equation with transform methods. Geophysics, 46(6), 854–859. https://doi.org/10.1190/1.1441223Guan, H., Kim Y., Yoon W, Wang, B, Xu, W., Li, Z. (2007). Multistep reverse time migration. SPECIAL SECTION: Off Shore Technology. https://doi.org/10.1190/1.3112762Guddati, M. N. (2006). Arbitrarily wide-angle wave equations for complex media. Computer Methods in Applied Mechanics and Engineering, 195(1–3), 65–93. https://doi.org/10.1016/j.cma.2005.01.006Hu, W., & Cummer, S. A. (2004). The nearly perfectly matched layer is a perfectly matched layer. IEEE Antennas and Wireless Propagation Letters, 3(1), 137– 140. https://doi.org/10.1109/LAWP.2004.831077Jingyi Chen, G. M. (2012). Application of Nearly Perfectly Matched Layer with Second-order Acoustic Equations in Seismic Numerical Modeling. Journal of Geology & Geosciences, 02(02). https://doi.org/10.4172/2329-6755.1000120Kaelin, B., & Guitton, A. (2006). Imagingg condition for reverse time migration. SEG Technical Program Expanded Abstracts, 25(1), 2594–2598. https://doi.org/10.1190/1.2370059Kelly , K.R., et al. (1976). Synthetic Seismograms: A Finite-Difference Approach. Geophysics, 41(I), 2–27. https://doi.org/10.1190/1.1440605Kjartansson, E. (1979). Constant Q-Wave Propagation and Attenuation The constant Q theory fits both sets of data. JOURNAL OF GEOPHYSICAL RESEARCH, 84. http://sep.stanford.edu/data/media/public/oldsep/einar/Einar1979.pdfKomatitsch, D., & Vilotte, J. P. (1998). The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bulletin of the Seismological Society of America, 88(2), 368–392. https://www.researchgate.net/publication/232707622_The_Spectral_Element _method_an_efficient_tool_to_simulate_the_seismic_response_of_2D_and_3 D_geological_structuresKun, T., Zhen‐chun, L., & Jian‐ping, H. (2011). An improved perfectly matched layer absorbing boundary condition. 138 SPG/SEG Shenzhen 2011 International Geophysical Conference Technical Program Expanded Abstracts, 1997, 49– 49. https://doi.org/10.1190/1.4705034Levin, A. (1984). Principle of reverse-time migration. Geophysics, 49(5), 581–583. https://doi.org/10.1190/1.1441693Liu, F., Zhang, G., Morton, S. A., & Leveille, J. P. (2011). An effective imagingg condition for reverse-time migration using wavefield decomposition. Geophysics, 76(1). https://doi.org/10.1190/1.3533914Liu, Q., & Tao, J. (1997). The perfectly matched layer for acoustic waves. Acoustical Society of America, 102(4), 2072–2082. https://www.researchgate.net/publication/243521262_The_perfectly_matched _layer_for_acoustic_waves_in_absorptive_mediaLiu, Y., Ding, L., & Sen, M. K. (2011). Comparisons between the hybrid ABC and the PML method for 2D high-order finite-difference acoustic modeling. SEG San Antonio 2011 Annual Meeting 2952, 1, 2952–2956. https://doi.org/10.1190/1.3627807Liu, Y., & Sen, M. K. (2010). A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation. Geophysics, 75(2). https://www.researchgate.net/publication/228978155_A_hybrid_scheme_for_ absorbing_edge_reflections_in_numerical_modeling_of_wave_propagationMcGarry, R., & Moghaddam, P. (2009). NPML boundary conditions for secondorder wave equations. 79th Society of Exploration Geophysicists International Exposition and Annual Meeting 2009, SEG 2009, 5, 3590–3594. https://doi.org/10.1190/1.3255611 Ospina, B. (2011). Propagación de ondasOspina, B. (2011). Propagación de ondas sísmicas y migración [Universidad Nacional de Colombia]. In Tesis. https://repositorio.unal.edu.co/handle/unal/8575Sava, P., & Vlad, I. (2011). Wide-azimuth angle gathers for wave-equation migration. Geophysics, 76(3). https://doi.org/10.1190/1.3560519 Tessmer, E. (2011). Using the rapid expansion method for accurate time-stepping in modeling and reverse-time migration. Geophysics, 76(4). https://doi.org/10.1190/1.3587217Trefethen, L. N. (1996). Finite Difference And Spectal Methods for Ordinary and Partial Differential Equations. In Cornell University. https://people.maths.ox.ac.uk/trefethen/pdefront.pdfWhitmore, N. D. (1993). Iterative depth migration by backward time propagation. 1983 SEG Annual Meeting, SEG 1983, 382–385. https://doi.org/10.1190/1.1893867Zhu, T., & Carcione, J. M. (2014). Theory and modelling of constant-q p- and swaves using fractional spatial derivatives. Geophysical Journal International, 196(3), 1787–1795. https://doi.org/10.1093/gji/ggt483Zhu, T., & Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/GEO2013-0245.1EstudiantesInvestigadoresORIGINAL79792724.2021.pdf79792724.2021.pdfTesis de Maestría en Ciencias - Geofísicaapplication/pdf25620967https://repositorio.unal.edu.co/bitstream/unal/80940/1/79792724.2021.pdf23d052a66763cf3d94c95bc12760cc30MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80940/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL79792724.2021.pdf.jpg79792724.2021.pdf.jpgGenerated Thumbnailimage/jpeg6309https://repositorio.unal.edu.co/bitstream/unal/80940/3/79792724.2021.pdf.jpgb9df60e1e656a6f86018edd76a39bd2dMD53unal/80940oai:repositorio.unal.edu.co:unal/809402024-08-02 23:11:20.934Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK