Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta

ilustraciones, diagramas

Autores:
Acevedo Mejía, Dorian Augusto
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83085
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83085
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Estructuras de acero
Building iron and steel
Sistema estructural autocentrante
Disipación de energía
Análisis no lineal
Diafragma
Fusibles mariposa
Self-centering structural system
Energy dissipation
Nonlinear analysis
Diaphragm
Butterfly fuses
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_17dc7aae2c2ed4b120406dfe4f0b7afb
oai_identifier_str oai:repositorio.unal.edu.co:unal/83085
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
dc.title.translated.eng.fl_str_mv Seismic performance evaluation of steel structures that use butterfly-type energy dissipation devices in composite section diaphragms
title Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
spellingShingle Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Estructuras de acero
Building iron and steel
Sistema estructural autocentrante
Disipación de energía
Análisis no lineal
Diafragma
Fusibles mariposa
Self-centering structural system
Energy dissipation
Nonlinear analysis
Diaphragm
Butterfly fuses
title_short Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
title_full Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
title_fullStr Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
title_full_unstemmed Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
title_sort Evaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuesta
dc.creator.fl_str_mv Acevedo Mejía, Dorian Augusto
dc.contributor.advisor.none.fl_str_mv Padilla Llanos, David Alberto
Molina Villegas, Juan Camilo
dc.contributor.author.none.fl_str_mv Acevedo Mejía, Dorian Augusto
dc.contributor.orcid.spa.fl_str_mv Acevedo Mejía, Dorian Augusto [0000-0001-6699-3058]
Molina Villegas, Juan Camilo [0000-0001-9546-2299]
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000185584
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Dorian-Acevedo-Mejia
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Estructuras de acero
Building iron and steel
Sistema estructural autocentrante
Disipación de energía
Análisis no lineal
Diafragma
Fusibles mariposa
Self-centering structural system
Energy dissipation
Nonlinear analysis
Diaphragm
Butterfly fuses
dc.subject.lemb.spa.fl_str_mv Estructuras de acero
dc.subject.lemb.eng.fl_str_mv Building iron and steel
dc.subject.proposal.spa.fl_str_mv Sistema estructural autocentrante
Disipación de energía
Análisis no lineal
Diafragma
Fusibles mariposa
dc.subject.proposal.eng.fl_str_mv Self-centering structural system
Energy dissipation
Nonlinear analysis
Diaphragm
Butterfly fuses
description ilustraciones, diagramas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2023-01-24T14:44:36Z
dc.date.available.none.fl_str_mv 2023-01-24T14:44:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83085
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83085
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv ASCE, Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers, 2017. doi: 10.1061/9780784412916.
M. R. Eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled-rocking steel building system with replaceable fuses,” p. 893, 2010, [Online]. Available: http://hdl.handle.net/2142/16718
M. T. Al Harash, A. Rathore, and N. Panahshahi, “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings,” Struct. Congr. 2010, vol. 41130, no. March, pp. 1971–1980, 2010, doi: 10.1061/41130(369)179.
R. I. Skinner, J. M. Kelly, and A. J. Heine, “Hysteretic dampers for earthquake‐resistant structures,” Earthq. Eng. Struct. Dyn., vol. 3, no. 3, pp. 287–296, 1974, doi: 10.1002/eqe.4290030307.
G. Tsampras, R. Sause, R. B. Fleischman, and J. I. Restrepo, “An earthquake-resistant building system to reduce floor accelerations,” New Zeal. Soc. Earthq. Eng., pp. 445–453, 2015, [Online]. Available: http://www.nzsee.org.nz/db/2015/Papers/O-48_Tsampras.pdf
D. Zhang, R. B. Fleischman, and Z. Zhang, “Analytical Investigation of Seismic Behavior of Building Structures with an Inertial Force-Limiting Floor Anchorage System,” Int. J. Eng. Technol., vol. 8, no. 4, pp. 234–240, 2016, doi: 10.7763/IJET.2016.V8.891.
C. S. Walter Yang, R. DesRoches, and R. T. Leon, “Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices,” Eng. Struct., vol. 32, no. 2, pp. 498–507, 2010, doi: 10.1016/j.engstruct.2009.10.011.
C. Zhang, T. C. Steele, and L. D. A. Wiebe, “Design-level estimation of seismic displacements for self-centering SDOF systems on stiff soil,” Eng. Struct., vol. 177, no. February 2017, pp. 431–443, 2018, doi: 10.1016/j.engstruct.2018.09.067.
Constantin Christopoulos; Andre Filiatrault, Principles of Passive Supplemental Damping and Seismic Isolation. 2007
R. S. Henry, S. Sritharan, and J. M. Ingham, “Recentering requirements for the seismic design of self-centering systems,” 9th Pacific Conf. Earthq. Eng. Build. an Earthquake-Resilient Soc., no. 104, 2011.
B. Wang, S. Zhu, C. X. Qiu, and H. Jin, “High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation,” Eng. Struct., vol. 182, no. December 2018, pp. 446–458, 2019, doi: 10.1016/j.engstruct.2018.12.077.
D. A. Padilla-llano and J. F. Hajjar, “Postdoctoral Research Associate Category : Engineering and Technology Abstract ID # 1953 Composite Floor Diaphragms with Energy Dissipating Fuses in the Seismic Performance of Steel Buildings Example of Energy Dissipating Fuses,” no. April, p. 20014397, 2015, doi: 10.4231/D3FQ9Q536.
Z. Zhang et al., “Shake-table test performance of an inertial force-limiting floor anchorage system,” Earthq. Eng. Struct. Dyn., vol. 47, no. 10, pp. 1987–2011, 2018, doi: 10.1002/eqe.3047
ATC, “FEMA P-695: Quantification of building seismic performance factors.,” no. June, p. 421, 2009, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1716-25045-9655/fema_p695.pdf
N. Chancellor, M. Eatherton, D. Roke, and T. Akbaş, “Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow,” Buildings, vol. 4, no. 3, pp. 520–548, 2014, doi: 10.3390/buildings4030520.
G. C. Clifton, H. Nashid, G. Ferguson, M. Hodgson, C. Seal, and G. A. Macrae, “Performance of Eccentrically Braced Framed Buildings In The Christchurch Earthquake Series of 2010 / 2011,” 15 World Conf. Earthq. Eng., no. February, 2012.
A. S. Elnashai, FUNDAMENTALS OF EARTHQUAKE, 2008th ed. United Kingdom, 2008.
R. Sabelli, T. a Sabol, and S. W. Easterling, “Seismic Design of Composite Steel Deck and Concrete-Filled Diaphragms - A Guide for Practicing Engineers,” NEHRP Seism. Des. Tech. Br. No. 5, no. 5, p. 38, 2011, doi: 10.1002/2015WR017408.Received
H. Foroughi, G. Wei, S. Torabian, M. R. Eatherton, and B. W. Schafer, “Seismic Demands on Steel Diaphragms for 3D Archetype Buildings with Concentric Braced Frames,” pp. 1–8.
G. Tsampras, R. Sause, R. B. Fleischman, J. I. Restrepo, and D. Zhang, “Deformable Connection for Earthquake-Resistant Building Systems,” no. April 2016, pp. 1–8, 2015.
P. O’Brien, S. Florig, C. D. Moen, and M. R. Eatherton, “Characterizing the Load Deformation Behavior of Steel Deck Diaphragms,” Proc. Twentythird Int. Spec. Conf. Cold-Formed Steel Struct., pp. 1–15, 2016
N. F. Roth, “Parametric Study of Self-Centering Concentrically- Braced Frames in Response to Earthquakes,” 2015.
K. S. Hall, M. R. Eatherton, and J. Hajjar, “Nonlinear Behavior of Controlled Rocking Steel-Framed Building Systems with Replaceable Energy Dissipating Fuses,” Newmark Struct. Eng. Lab. Rep. Ser., no. NSEL-026, pp. 1–45, 2010, doi: 10.1080/00380768.2004.10408490.
C. Naresh, P. S. C. Bose, and C. S. P. Rao, “Shape memory alloys: A state of art review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 149, no. 1, 2016, doi: 10.1088/1757-899X/149/1/012054
M. S. Speicher, R. DesRoches, and R. T. Leon, “Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys,” J. Constr. Steel Res., vol. 130, pp. 65–78, 2017, doi: 10.1016/j.jcsr.2016.11.022
P. M. Clayton et al., “Self-centering steel plate shear walls for improving seismic resilience,” Front. Struct. Civ. Eng., vol. 10, no. 3, pp. 283–290, 2016, doi: 10.1007/s11709-016-0344-z.
D. M. Dowden and M. Bruneau, “Quasi-static cyclic testing and analytical investigation of steel plate shear walls with different post-tensioned beam-to-column rocking connections,” Eng. Struct., vol. 187, no. November 2018, pp. 43–56, 2019, doi: 10.1016/j.engstruct.2019.02.048
B. Erkmen and A. E. Schultz, “Self-centering behavior of unbonded, post-tensioned precast concrete shear walls,” J. Earthq. Eng., vol. 13, no. 7, pp. 1047–1064, 2009, doi: 10.1080/13632460902859136.
F. J. Perez, S. Pessiki, and R. Sause, “Lateral load behavior of unbonded post-tensioned precast concrete walls with vertical joints,” PCI J., vol. 49, no. 2, pp. 48–64, 2004, doi: 10.15554/pcij.03012004.48.64.
M. A. Eusuf, K. A. Rashid, W. M. Noor, and A. Al Hasan, “Shear wall construction in buildings: A conceptual framework on the aspect of analysis and design,” Appl. Mech. Mater., vol. 268, no. PART 1, pp. 706–711, 2013, doi: 10.4028/www.scientific.net/AMM.268-270.706
L. Xu, S. Xiao, and Z. Li, “Hysteretic behavior and parametric studies of a self-centering RC wall with disc spring devices,” Soil Dyn. Earthq. Eng., vol. 115, no. September, pp. 476–488, 2018, doi: 10.1016/j.soildyn.2018.09.017.
X. Geng and W. Zhou, “Cyclic experimental response of self-centering concrete frames with slotted columns,” Constr. Build. Mater., vol. 195, pp. 363–375, 2019, doi: 10.1016/j.conbuildmat.2018.11.079.
Y. Shen, X. Liu, Y. Li, and J. Li, “Cyclic tests of precast post-tensioned concrete filled steel tubular (PCFT) columns with internal energy-dissipating bars,” Eng. Struct., vol. 229, no. December 2020, p. 111651, 2021, doi: 10.1016/j.engstruct.2020.111651.
R. Wen, O. Seker, B. Akbas, and J. Shen, “Designs of Special Concentrically Braced Frame Using AISC 341-05 and AISC 341-10,” Pract. Period. Struct. Des. Constr., vol. 21, no. 1, p. 04015011, 2015, doi: 10.1061/(asce)sc.1943-5576.0000256.
P. O’brien, M. R. Eatherton, and W. S. Easterling, “Characterizing the load-deformation behavior of steel deck diaphragms using past test data SDII Steel Diaphragm Innovation Initiative,” 2017. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.
FEMA, “NEHRP Recommended seismic provisions for new buildings and other structures,” Build. Seism. Saf. Counc., vol. II, no. September, p. 388, 2020, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1730-25045-1580/femap_750.pdf
G. Wei et al., “Development of Steel Deck Diaphragm Seismic Design Provisions for ASCE 41/AISC 342,” Cold-formed steel Res. Consort. Rep. Ser., no. January, p. 21, 2019.
T. L. Bruce, “Behavior of post-tensioning strand systems subjected to inelastic cyclic loading,” Thesis Submitt. to Fac. Virginia Polytech. Inst. State Univ. Partial fulfillment Requir. degree Master Sci., 2014, [Online]. Available: http://weekly.cnbnews.com/news/article.html?no=124000
M. R. Eatherton and J. F. Hajjar, “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.,” 2010.
X. Ma, E. Borchers, A. Pena, H. Krawinkler, S. Billington, and G. G. Deierlein, “Design and Behavior of Steel Shear Plates with Openings as Energy-Dissipating Fuses,” Intern. Report, John A. Blume Earthq. Eng. Center, Stanford Univ., no. 17, 2010.
L. Liu, J. Zhao, and S. Li, “Nonlinear displacement ratio for seismic design of self-centering buckling-restrained braced steel frame considering trilinear hysteresis behavior,” Eng. Struct., vol. 158, no. August 2017, pp. 199–222, 2018, doi: 10.1016/j.engstruct.2017.12.026.
Matthew roy eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled rocking steel building system with replaceable fuses,” Proc. - 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, no. September, pp. 736–741, 2015, doi: 10.1109/BigData.2014.7004298.
H. Gholi Pour, M. Ansari, and M. Bayat, “A new lateral load pattern for pushover analysis in structures,” Earthq. Struct., vol. 6, no. 4, pp. 437–455, 2014, doi: 10.12989/eas.2014.6.4.437.
F. R. Rofooei, “COMPARISON OF STATIC AND DYNAMIC PUSHOVER ANALYSIS IN ASSESSMENT OF THE TARGET DISPLACEMENT,” 2006. [Online]. Available: www.SID.ir
G. Chu, W. Wang, and Y. Zhang, “Nonlinear seismic performance of beam-through steel frames with self-centering modular panel and replaceable hysteretic dampers,” J. Constr. Steel Res., vol. 170, p. 106091, 2020, doi: 10.1016/j.jcsr.2020.106091.
M. Xian, H. Krawinkler, and G. G. Deierlein, “Seismic Design and Behavior of Self-Centering Braced Frame with Controlled Rocking and Energy–Dissipating Fuses,” John A. Blume Earthq. Eng. Cent., no. August, p. 438, 2010, [Online]. Available: http://nees.illinois.edu/hosted/ControlledRocking/papers/Ma Xiang Dissertation 2010 Stanford University.pdf
D. A. Padilla-Llano, C. D. Moen, and M. R. Eatherton, “Cyclic axial response and energy dissipation of cold-formed steel framing members,” Thin-Walled Struct., vol. 78, pp. 95–107, 2014, doi: 10.1016/j.tws.2013.12.011.
S. Karimzadeh, A. Askan, A. Yakut, and G. Ameri, “Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study,” Soil Dyn. Earthq. Eng., vol. 98, pp. 38–53, Jul. 2017, doi: 10.1016/j.soildyn.2017.04.004.
M. N. Eldin, A. J. Dereje, and J. Kim, “Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers,” Eng. Struct., vol. 208, Apr. 2020, doi: 10.1016/j.engstruct.2019.109925.
N. D. Dao, H. Nguyen-Van, T. H. A. Nguyen, and A. B. Chung, “A new statistical equation for predicting nonlinear time history displacement of seismic isolation systems,” Structures, vol. 24, pp. 177–190, Apr. 2020, doi: 10.1016/j.istruc.2020.01.019.
G. Wei, M. R. Eatherton, H. Foroughi, S. Torabian, and B. W. Schafer, “Seismic Behavior of Steel BRBF Buildings Including Consideration of Diaphragm Inelasticity,” 2020. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.
S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “Open System for Earthquake Engineering Simulation (OpenSEES) user command-language manual,” Pacific Earthq. Eng. Res. Cent., p. 465, 2006.
D. A. Padilla-llano, A Framework for Cyclic Simulation of Thin-Walled Cold-Formed Steel Members in Structural Systems. 2015
R. L. Iman, “Latin Hypercube Sampling,” Encycl. Quant. Risk Anal. Assess., no. January 1999, 2008, doi: 10.1002/9780470061596.risk0299.
McLeod, Núñez-, J. E., and J. H. Barón, “Técnicas estadísticas avanzadas en el análisis de grandes modelos computacionales,” Mecánica Comput., vol. XIX, no. 14, pp. 1–7, 1999.
Sheikholeslami, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.
R. Sheikholeslami and S. Razavi, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.
A. Saltelli et al., Global Sensitivity Analysis. The Primer. 2008. doi: 10.1002/9780470725184.
A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (Google eBook). 2004.
S. Panda, A. K. Mishra, and U. C. Biswal, “Manganese induced peroxidation of thylakoid lipids and changes in chlorophyll-α fluorescence during aging of cell free chloroplasts in light,” Phytochemistry, vol. 26, no. 12, pp. 3217–3219, 1987, doi: 10.1016/S0031-9422(00)82472-3.
E. Lahura, “El Coeficiente De Correlación Y Correlaciones Espúreas,” Univ. Catol. del Perú, pp. 1–64, 2003.
C. Araya Alpízar, “Análisis de datos multivariantes con coordenadas paralelas,” Análisis datos multivariantes con Coord. paralelas, vol. 11, no. 16, pp. 81–91, 2011.
S. Latinoamericana para la calidad, “Histograma,” pp. 1–7, 2000.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 99 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Estructuras
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83085/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83085/5/71371001.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/83085/6/71371001.2021.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
167ebad07868b96beec9dca6290207b2
16ebca0ccaa889ab7b7b9c5eaffb2ef4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089484770213888
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Padilla Llanos, David Albertobaaf3ba808712006803edbc017654868Molina Villegas, Juan Camilo51624eb3409c427b4e4d18aeb3b84bc4600Acevedo Mejía, Dorian Augusto70765fe75ae5680c14ed4f6842495ee1Acevedo Mejía, Dorian Augusto [0000-0001-6699-3058]Molina Villegas, Juan Camilo [0000-0001-9546-2299]https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000185584https://www.researchgate.net/profile/Dorian-Acevedo-Mejia2023-01-24T14:44:36Z2023-01-24T14:44:36Z2020https://repositorio.unal.edu.co/handle/unal/83085Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn este proyecto se analizan los beneficios del comportamiento sísmico en estructuras de acero conectando los sistemas de resistencia a la fuerza lateral vertical con los diafragmas a través de disipadores de energía en forma de mariposa. Para ello, se llevaron a cabo análisis sobre diferentes configuraciones estructurales, comparando la simulación de elementos finitos con estructuras diseñadas con sistemas convencionales de resistencia a la fuerza lateral ("pórticos arriostrados concéntricamente" como arriostramiento X, arriostramiento en V y arriostramiento en V invertido) de acuerdo con la ASCE7 -16. Con el fin de ampliar el conocimiento para los ingenieros estructurales e investigadores del comportamiento sísmico de las estructuras de acero que utilizan elementos de disipación de energía en sus diafragmas, se generará un ejemplo de aplicación para servir como guía de análisis no lineal y además, mostrar los beneficios con respecto a la reducción del cortante basal, derivas, aceleraciones en los diafragmas y tensiones en los elementos estructurales que podrían conducir a una reducción del peso de la estructura y, en consecuencia, tener beneficios económicos. (Texto tomado de la fuente)The main objective of this project is to explore the benefits of the seismic behavior on steel structures by connecting the vertical lateral force resistance systems with the diaphragms through butterfly shaped energy dissipators. For this, studies on different structural configurations, will be carried out, comparing finite element simulation against structures designed with conventional lateral force resistance systems (“Special Concentrically braced frames” such as X bracing, V bracing and inverted V bracing) according to the ASCE7-16. In order to extend the knowledge to structural engineers and researchers of the seismic behavior of the steel structures using energy dissipation elements in their diaphragms, an application example will be generated to serve as an analysis guide and to show the benefits regarding the reduction of the basal shear, drifts, accelerations in the diaphragms, and stresses in the structural elements which would potentially lead to a reduction of the weight of the structure and consequently to have economic benefits.MaestríaMagíster en Ingeniería - EstructurasEstructuras de Acero- Comportamiento No-Lineal-Control EstructuralÁrea Curricular de Ingeniería Civilxvi, 99 páginasapplication/pdfspa620 - Ingeniería y operaciones afines::624 - Ingeniería civil690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosEstructuras de aceroBuilding iron and steelSistema estructural autocentranteDisipación de energíaAnálisis no linealDiafragmaFusibles mariposaSelf-centering structural systemEnergy dissipationNonlinear analysisDiaphragmButterfly fusesEvaluación del desempeño sísmico de estructuras de acero que emplean dispositivos de disipación de energía tipo mariposa en diafragmas de sección compuestaSeismic performance evaluation of steel structures that use butterfly-type energy dissipation devices in composite section diaphragmsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMedellín - Minas - Maestría en Ingeniería - EstructurasFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede MedellínRedColLaReferenciaASCE, Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American Society of Civil Engineers, 2017. doi: 10.1061/9780784412916.M. R. Eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled-rocking steel building system with replaceable fuses,” p. 893, 2010, [Online]. Available: http://hdl.handle.net/2142/16718M. T. Al Harash, A. Rathore, and N. Panahshahi, “Inelastic Seismic Response of Rectangular RC Buildings with Plan Aspect Ratio of 3:1 with Floor Diaphragm Openings,” Struct. Congr. 2010, vol. 41130, no. March, pp. 1971–1980, 2010, doi: 10.1061/41130(369)179.R. I. Skinner, J. M. Kelly, and A. J. Heine, “Hysteretic dampers for earthquake‐resistant structures,” Earthq. Eng. Struct. Dyn., vol. 3, no. 3, pp. 287–296, 1974, doi: 10.1002/eqe.4290030307.G. Tsampras, R. Sause, R. B. Fleischman, and J. I. Restrepo, “An earthquake-resistant building system to reduce floor accelerations,” New Zeal. Soc. Earthq. Eng., pp. 445–453, 2015, [Online]. Available: http://www.nzsee.org.nz/db/2015/Papers/O-48_Tsampras.pdfD. Zhang, R. B. Fleischman, and Z. Zhang, “Analytical Investigation of Seismic Behavior of Building Structures with an Inertial Force-Limiting Floor Anchorage System,” Int. J. Eng. Technol., vol. 8, no. 4, pp. 234–240, 2016, doi: 10.7763/IJET.2016.V8.891.C. S. Walter Yang, R. DesRoches, and R. T. Leon, “Design and analysis of braced frames with shape memory alloy and energy-absorbing hybrid devices,” Eng. Struct., vol. 32, no. 2, pp. 498–507, 2010, doi: 10.1016/j.engstruct.2009.10.011.C. Zhang, T. C. Steele, and L. D. A. Wiebe, “Design-level estimation of seismic displacements for self-centering SDOF systems on stiff soil,” Eng. Struct., vol. 177, no. February 2017, pp. 431–443, 2018, doi: 10.1016/j.engstruct.2018.09.067.Constantin Christopoulos; Andre Filiatrault, Principles of Passive Supplemental Damping and Seismic Isolation. 2007R. S. Henry, S. Sritharan, and J. M. Ingham, “Recentering requirements for the seismic design of self-centering systems,” 9th Pacific Conf. Earthq. Eng. Build. an Earthquake-Resilient Soc., no. 104, 2011.B. Wang, S. Zhu, C. X. Qiu, and H. Jin, “High-performance self-centering steel columns with shape memory alloy bolts: Design procedure and experimental evaluation,” Eng. Struct., vol. 182, no. December 2018, pp. 446–458, 2019, doi: 10.1016/j.engstruct.2018.12.077.D. A. Padilla-llano and J. F. Hajjar, “Postdoctoral Research Associate Category : Engineering and Technology Abstract ID # 1953 Composite Floor Diaphragms with Energy Dissipating Fuses in the Seismic Performance of Steel Buildings Example of Energy Dissipating Fuses,” no. April, p. 20014397, 2015, doi: 10.4231/D3FQ9Q536.Z. Zhang et al., “Shake-table test performance of an inertial force-limiting floor anchorage system,” Earthq. Eng. Struct. Dyn., vol. 47, no. 10, pp. 1987–2011, 2018, doi: 10.1002/eqe.3047ATC, “FEMA P-695: Quantification of building seismic performance factors.,” no. June, p. 421, 2009, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1716-25045-9655/fema_p695.pdfN. Chancellor, M. Eatherton, D. Roke, and T. Akbaş, “Self-Centering Seismic Lateral Force Resisting Systems: High Performance Structures for the City of Tomorrow,” Buildings, vol. 4, no. 3, pp. 520–548, 2014, doi: 10.3390/buildings4030520.G. C. Clifton, H. Nashid, G. Ferguson, M. Hodgson, C. Seal, and G. A. Macrae, “Performance of Eccentrically Braced Framed Buildings In The Christchurch Earthquake Series of 2010 / 2011,” 15 World Conf. Earthq. Eng., no. February, 2012.A. S. Elnashai, FUNDAMENTALS OF EARTHQUAKE, 2008th ed. United Kingdom, 2008.R. Sabelli, T. a Sabol, and S. W. Easterling, “Seismic Design of Composite Steel Deck and Concrete-Filled Diaphragms - A Guide for Practicing Engineers,” NEHRP Seism. Des. Tech. Br. No. 5, no. 5, p. 38, 2011, doi: 10.1002/2015WR017408.ReceivedH. Foroughi, G. Wei, S. Torabian, M. R. Eatherton, and B. W. Schafer, “Seismic Demands on Steel Diaphragms for 3D Archetype Buildings with Concentric Braced Frames,” pp. 1–8.G. Tsampras, R. Sause, R. B. Fleischman, J. I. Restrepo, and D. Zhang, “Deformable Connection for Earthquake-Resistant Building Systems,” no. April 2016, pp. 1–8, 2015.P. O’Brien, S. Florig, C. D. Moen, and M. R. Eatherton, “Characterizing the Load Deformation Behavior of Steel Deck Diaphragms,” Proc. Twentythird Int. Spec. Conf. Cold-Formed Steel Struct., pp. 1–15, 2016N. F. Roth, “Parametric Study of Self-Centering Concentrically- Braced Frames in Response to Earthquakes,” 2015.K. S. Hall, M. R. Eatherton, and J. Hajjar, “Nonlinear Behavior of Controlled Rocking Steel-Framed Building Systems with Replaceable Energy Dissipating Fuses,” Newmark Struct. Eng. Lab. Rep. Ser., no. NSEL-026, pp. 1–45, 2010, doi: 10.1080/00380768.2004.10408490.C. Naresh, P. S. C. Bose, and C. S. P. Rao, “Shape memory alloys: A state of art review,” IOP Conf. Ser. Mater. Sci. Eng., vol. 149, no. 1, 2016, doi: 10.1088/1757-899X/149/1/012054M. S. Speicher, R. DesRoches, and R. T. Leon, “Investigation of an articulated quadrilateral bracing system utilizing shape memory alloys,” J. Constr. Steel Res., vol. 130, pp. 65–78, 2017, doi: 10.1016/j.jcsr.2016.11.022P. M. Clayton et al., “Self-centering steel plate shear walls for improving seismic resilience,” Front. Struct. Civ. Eng., vol. 10, no. 3, pp. 283–290, 2016, doi: 10.1007/s11709-016-0344-z.D. M. Dowden and M. Bruneau, “Quasi-static cyclic testing and analytical investigation of steel plate shear walls with different post-tensioned beam-to-column rocking connections,” Eng. Struct., vol. 187, no. November 2018, pp. 43–56, 2019, doi: 10.1016/j.engstruct.2019.02.048B. Erkmen and A. E. Schultz, “Self-centering behavior of unbonded, post-tensioned precast concrete shear walls,” J. Earthq. Eng., vol. 13, no. 7, pp. 1047–1064, 2009, doi: 10.1080/13632460902859136.F. J. Perez, S. Pessiki, and R. Sause, “Lateral load behavior of unbonded post-tensioned precast concrete walls with vertical joints,” PCI J., vol. 49, no. 2, pp. 48–64, 2004, doi: 10.15554/pcij.03012004.48.64.M. A. Eusuf, K. A. Rashid, W. M. Noor, and A. Al Hasan, “Shear wall construction in buildings: A conceptual framework on the aspect of analysis and design,” Appl. Mech. Mater., vol. 268, no. PART 1, pp. 706–711, 2013, doi: 10.4028/www.scientific.net/AMM.268-270.706L. Xu, S. Xiao, and Z. Li, “Hysteretic behavior and parametric studies of a self-centering RC wall with disc spring devices,” Soil Dyn. Earthq. Eng., vol. 115, no. September, pp. 476–488, 2018, doi: 10.1016/j.soildyn.2018.09.017.X. Geng and W. Zhou, “Cyclic experimental response of self-centering concrete frames with slotted columns,” Constr. Build. Mater., vol. 195, pp. 363–375, 2019, doi: 10.1016/j.conbuildmat.2018.11.079.Y. Shen, X. Liu, Y. Li, and J. Li, “Cyclic tests of precast post-tensioned concrete filled steel tubular (PCFT) columns with internal energy-dissipating bars,” Eng. Struct., vol. 229, no. December 2020, p. 111651, 2021, doi: 10.1016/j.engstruct.2020.111651.R. Wen, O. Seker, B. Akbas, and J. Shen, “Designs of Special Concentrically Braced Frame Using AISC 341-05 and AISC 341-10,” Pract. Period. Struct. Des. Constr., vol. 21, no. 1, p. 04015011, 2015, doi: 10.1061/(asce)sc.1943-5576.0000256.P. O’brien, M. R. Eatherton, and W. S. Easterling, “Characterizing the load-deformation behavior of steel deck diaphragms using past test data SDII Steel Diaphragm Innovation Initiative,” 2017. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.FEMA, “NEHRP Recommended seismic provisions for new buildings and other structures,” Build. Seism. Saf. Counc., vol. II, no. September, p. 388, 2020, [Online]. Available: http://www.fema.gov/media-library-data/20130726-1730-25045-1580/femap_750.pdfG. Wei et al., “Development of Steel Deck Diaphragm Seismic Design Provisions for ASCE 41/AISC 342,” Cold-formed steel Res. Consort. Rep. Ser., no. January, p. 21, 2019.T. L. Bruce, “Behavior of post-tensioning strand systems subjected to inelastic cyclic loading,” Thesis Submitt. to Fac. Virginia Polytech. Inst. State Univ. Partial fulfillment Requir. degree Master Sci., 2014, [Online]. Available: http://weekly.cnbnews.com/news/article.html?no=124000M. R. Eatherton and J. F. Hajjar, “Large-Scale Cyclic and Hybrid Simulation Testing and Development of a Controlled- Rocking Steel Building System with Replaceable Fuses. Report No. NSEL-025.,” 2010.X. Ma, E. Borchers, A. Pena, H. Krawinkler, S. Billington, and G. G. Deierlein, “Design and Behavior of Steel Shear Plates with Openings as Energy-Dissipating Fuses,” Intern. Report, John A. Blume Earthq. Eng. Center, Stanford Univ., no. 17, 2010.L. Liu, J. Zhao, and S. Li, “Nonlinear displacement ratio for seismic design of self-centering buckling-restrained braced steel frame considering trilinear hysteresis behavior,” Eng. Struct., vol. 158, no. August 2017, pp. 199–222, 2018, doi: 10.1016/j.engstruct.2017.12.026.Matthew roy eatherton, “Large-scale cyclic and hybrid simulation testing and development of a controlled rocking steel building system with replaceable fuses,” Proc. - 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, no. September, pp. 736–741, 2015, doi: 10.1109/BigData.2014.7004298.H. Gholi Pour, M. Ansari, and M. Bayat, “A new lateral load pattern for pushover analysis in structures,” Earthq. Struct., vol. 6, no. 4, pp. 437–455, 2014, doi: 10.12989/eas.2014.6.4.437.F. R. Rofooei, “COMPARISON OF STATIC AND DYNAMIC PUSHOVER ANALYSIS IN ASSESSMENT OF THE TARGET DISPLACEMENT,” 2006. [Online]. Available: www.SID.irG. Chu, W. Wang, and Y. Zhang, “Nonlinear seismic performance of beam-through steel frames with self-centering modular panel and replaceable hysteretic dampers,” J. Constr. Steel Res., vol. 170, p. 106091, 2020, doi: 10.1016/j.jcsr.2020.106091.M. Xian, H. Krawinkler, and G. G. Deierlein, “Seismic Design and Behavior of Self-Centering Braced Frame with Controlled Rocking and Energy–Dissipating Fuses,” John A. Blume Earthq. Eng. Cent., no. August, p. 438, 2010, [Online]. Available: http://nees.illinois.edu/hosted/ControlledRocking/papers/Ma Xiang Dissertation 2010 Stanford University.pdfD. A. Padilla-Llano, C. D. Moen, and M. R. Eatherton, “Cyclic axial response and energy dissipation of cold-formed steel framing members,” Thin-Walled Struct., vol. 78, pp. 95–107, 2014, doi: 10.1016/j.tws.2013.12.011.S. Karimzadeh, A. Askan, A. Yakut, and G. Ameri, “Assessment of alternative simulation techniques in nonlinear time history analyses of multi-story frame buildings: A case study,” Soil Dyn. Earthq. Eng., vol. 98, pp. 38–53, Jul. 2017, doi: 10.1016/j.soildyn.2017.04.004.M. N. Eldin, A. J. Dereje, and J. Kim, “Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers,” Eng. Struct., vol. 208, Apr. 2020, doi: 10.1016/j.engstruct.2019.109925.N. D. Dao, H. Nguyen-Van, T. H. A. Nguyen, and A. B. Chung, “A new statistical equation for predicting nonlinear time history displacement of seismic isolation systems,” Structures, vol. 24, pp. 177–190, Apr. 2020, doi: 10.1016/j.istruc.2020.01.019.G. Wei, M. R. Eatherton, H. Foroughi, S. Torabian, and B. W. Schafer, “Seismic Behavior of Steel BRBF Buildings Including Consideration of Diaphragm Inelasticity,” 2020. [Online]. Available: https://jscholarship.library.jhu.edu/handle/1774.2/40427.S. Mazzoni, F. McKenna, M. H. Scott, and G. L. Fenves, “Open System for Earthquake Engineering Simulation (OpenSEES) user command-language manual,” Pacific Earthq. Eng. Res. Cent., p. 465, 2006.D. A. Padilla-llano, A Framework for Cyclic Simulation of Thin-Walled Cold-Formed Steel Members in Structural Systems. 2015R. L. Iman, “Latin Hypercube Sampling,” Encycl. Quant. Risk Anal. Assess., no. January 1999, 2008, doi: 10.1002/9780470061596.risk0299.McLeod, Núñez-, J. E., and J. H. Barón, “Técnicas estadísticas avanzadas en el análisis de grandes modelos computacionales,” Mecánica Comput., vol. XIX, no. 14, pp. 1–7, 1999.Sheikholeslami, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.R. Sheikholeslami and S. Razavi, “Progressive Latin Hypercube Sampling: An efficient approach for robust sampling-based analysis of environmental models,” Environ. Model. Softw., vol. 93, pp. 109–126, 2017, doi: 10.1016/j.envsoft.2017.03.010.A. Saltelli et al., Global Sensitivity Analysis. The Primer. 2008. doi: 10.1002/9780470725184.A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models (Google eBook). 2004.S. Panda, A. K. Mishra, and U. C. Biswal, “Manganese induced peroxidation of thylakoid lipids and changes in chlorophyll-α fluorescence during aging of cell free chloroplasts in light,” Phytochemistry, vol. 26, no. 12, pp. 3217–3219, 1987, doi: 10.1016/S0031-9422(00)82472-3.E. Lahura, “El Coeficiente De Correlación Y Correlaciones Espúreas,” Univ. Catol. del Perú, pp. 1–64, 2003.C. Araya Alpízar, “Análisis de datos multivariantes con coordenadas paralelas,” Análisis datos multivariantes con Coord. paralelas, vol. 11, no. 16, pp. 81–91, 2011.S. Latinoamericana para la calidad, “Histograma,” pp. 1–7, 2000.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83085/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL71371001.2021.pdf71371001.2021.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf20295126https://repositorio.unal.edu.co/bitstream/unal/83085/5/71371001.2021.pdf167ebad07868b96beec9dca6290207b2MD55THUMBNAIL71371001.2021.pdf.jpg71371001.2021.pdf.jpgGenerated Thumbnailimage/jpeg5674https://repositorio.unal.edu.co/bitstream/unal/83085/6/71371001.2021.pdf.jpg16ebca0ccaa889ab7b7b9c5eaffb2ef4MD56unal/83085oai:repositorio.unal.edu.co:unal/830852023-08-13 23:04:47.554Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=