Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola

ilustraciones, fotografías, mapas

Autores:
Parra Quijano, Mauricio
Iriondo, José María
Torres, María Elena
López, Francisco
Phillips, Jade
Kell, Shelagh
Tipo de recurso:
Book
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85786
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85786
Palabra clave:
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Conservación de los recursos agrícolas
Conservación de la abriobiodiversidad
Ecología agrícola
Programación automática (Informática)
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_172312fc9fc8e1eea6460154cf1249fd
oai_identifier_str oai:repositorio.unal.edu.co:unal/85786
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
title Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
spellingShingle Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Conservación de los recursos agrícolas
Conservación de la abriobiodiversidad
Ecología agrícola
Programación automática (Informática)
title_short Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
title_full Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
title_fullStr Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
title_full_unstemmed Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
title_sort Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícola
dc.creator.fl_str_mv Parra Quijano, Mauricio
Iriondo, José María
Torres, María Elena
López, Francisco
Phillips, Jade
Kell, Shelagh
dc.contributor.author.none.fl_str_mv Parra Quijano, Mauricio
Iriondo, José María
Torres, María Elena
López, Francisco
Phillips, Jade
Kell, Shelagh
dc.contributor.photographer.none.fl_str_mv Parra Quijano, Mauricio
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
topic 630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
Conservación de los recursos agrícolas
Conservación de la abriobiodiversidad
Ecología agrícola
Programación automática (Informática)
dc.subject.lemb.none.fl_str_mv Conservación de los recursos agrícolas
Conservación de la abriobiodiversidad
Ecología agrícola
Programación automática (Informática)
description ilustraciones, fotografías, mapas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2024-03-10T06:11:26Z
dc.date.available.none.fl_str_mv 2024-03-10T06:11:26Z
dc.type.spa.fl_str_mv Libro
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
format http://purl.org/coar/resource_type/c_2f33
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85786
dc.identifier.eisbn.spa.fl_str_mv 9789585050341
url https://repositorio.unal.edu.co/handle/unal/85786
identifier_str_mv 9789585050341
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akinwande, M. O., Dikko, H. G., Samson, A. 2015. Variance inflation factor: as a condition for the inclusion of suppressor variable (s) in regression analysis. Open Journal of Statistics, 5(07), 754-767.
Allouche, O., Tsor, A., Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 5(7): 1223-1232.
Austin, M.P., Van Niel, K.P. 2010. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38(1): 1-8.
Barbet-Massin, M., Jiguet, F., Albert, C. H., Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods in Ecology and Evolution, 3(2), 327-338.
Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M., Benight, C. 2007. False alarms and close calls: A conceptual model of warning accuracy. Weather and Forecasting, 22(5), 1140-1147.
Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H., Benight, C. C. 2009. Corrigendum: False alarm rate or false alarm ratio?. Weather and Forecasting, 24(5), 1452-1454.
Bates, C. G. 1930. The frost hardiness of geographic strains of Norway pine. Journal of Forestry, 28(3), 327-333.
Booth, T. H., Nix, H. A., Busby, J. R., Hutchinson, M. F. 2014. BIOCLIM: the first species distribution modelling
Bower, A. D., Clair, J. B. S., Erickson, V. 2014. Generalized provisional seed zones for native plants. Ecological Applications, 24(5), 913-919.
Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J., Benton, T. G. 2013. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods in Ecology and Evolution, 4(2), 167-174.
Brown, A.H.D. 1989. The case for core collections. In: Brown, A.H.D., Frankel, O.H., Marshall, D.R., Williams, J.T. (ed.) The use of plant genetic resources. Cambridge University Press, Cambridge, UK.
Brown, A.H.D. 1995. The core collection at the crossroads. p. 3–19. En Hodgkin, T., Brown, A.H.D., Hintum, T.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Wiley & Sons, New York, NY.
Calinski, T., Harabasz, J. 1974. A dendrite method for cluster analysis. Communications in Statistics. 3(1): 1-27.
Ceballos-Silva, A., López-Blanco, J. 2003. Evaluating biophysical variables to identify suitable areas for oat in Central Mexico: a multi-criteria and GIS approach. Agriculture, Ecosystems and Environment 95 (2003) 371–377.
Cevallos, D., Bede-Fazekas, Á., Tanács, E., Szitár, K., Halassy, M., Kövendi-Jakó, A., Török, K. 2020. Seed transfer zones based on environmental variables better reflect variability in vegetation than administrative units: evidence from Hungary. Restoration Ecology, 28(4), 911-918.
Chapman, A.D. 2005. Principles of data quality, version 1.0. Report of the Global Biodiversity Information Facility, Copenhagen.
Chefaoui, R. M., Lobo, J. M. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological modelling, 210(4), 478-486.
Chrisman, N.R. 1983. The role of quality information in the long-term functioning of a GIS. Proceedings of AUTOCART06, 2: 303-321. Falls Church, VA: ASPRS.
Chuine, I. 2010. Why does phenology drive species distribution? Philosophical transactions of the royal society B. 365, 3149–3160
Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-40.
Contreras-Toledo, A. R., Cortés-Cruz, M., Costich, D. E., Rico-Arce, M., Magos Brehm, J., Maxted, N. 2019. Diversity and conservation priorities of crop wild relatives in Mexico. Plant Genetic Resources Characterisation and Utilisation, 17, 140-150.
Crossa, J., Vencovsky, R. 1994. Implications of the variance effective population size on the genetic conservation of monoecious species. Theoretical and Applied Genetics 89:936–942
Crossa, J., Vencovsky, R. 1997. Variance effective population size for two-stage sampling of monoecious species. Crop Science 37:14–26
Crossa, J., Vencovsky, R. 2011 Chapter 5: Basic sampling strategies: theory and practice. In: Guarino, L., Ramanatha Rao, V., Goldberg, E. (ed.) Collecting Plant Genetic Diversity: Technical Guidelines – 2011 Update. Bioversity International. Available online (accessed 6 November 2013) http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=671
Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J. 2007. Random forests for classification in ecology. Ecology, 88(11): 2783-2792.
Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J. 2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792.
Damme, P., Garcia, W., Tapia, C., Romero, J., Manuel Sigueñas, M., Hormaza, J.I. 2012. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources. PLoS ONE 7(1): e29845. doi:10.1371/journal.pone.0029845
Dean, N., Raftery, A.E., Scrucca, L. 2015. Package ‘clustvarsel’, variable selection for Model-Based clustering. http:// cran.r-project.org/web/packages/clustvarsel/clustvarsel.pdf
Dice, L.R. 1945. Measures of the Amount of Ecologic Association Between Species. Ecology 26:297–302.
FAO, BIOVERSITY. 2015. FAO/Bioversity multi-crop Passport descriptors V.2. URL: https://bioversityinternational.
Dinerstein, E. D., Olson, A., Joshi, C., Vynne, N., Burgess, E., Wikramanayake, N., Hahn, S., Palminteri, P., Hedao, R., Noss, M., Hansen, H., Locke, E., Ellis, B., Jones, C., Barber, V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baille, J., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., Souza, N., Pintea, L., Brito, J., Llewellyn, O., Miller, A., Patzelt, A., Ghazanfar, S., Timberlake, J., Klozer, H., Shenan-Farpón, Y., Kindt, R.Barnekow, J., van Breugel, P., Graudal, L., Voge, M., Al-
Shammari, K., Saleem, M. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), 534-545.
Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hansen, M. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), 534-545.
Doherty, K. D., Butterfield, B. J., Wood, T. E. 2017. Matching seed to site by climate similarity: techniques to prioritize plant materials development and use in restoration. Ecological Applications, 27(3), 1010-1023.
Dolnicar, S., Grabler, K., Mazanec, J. A. 1999. A tale of three cities: perceptual charting for analyzing destination images. Pp. 39-62 in: Woodside, A. et al. (eds) Consumer psychology of tourism, hospitality and leisure. CAB International, New York.
Durka, W., Michalski, S. G., Berendzen, K. W., Bossdorf, O., Bucharova, A., Hermann, J. M., Holzel, N., Kollmann, J. 2017. Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. Journal of Applied Ecology, 54(1), 116-126.
El Bouhssini, M. E., Street, K., Joubi, A., Ibrahim, Z., Rihawi, F. 2009. Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genetic Resources and Crop Evolution 56: 1065– 1069.
Elith, J., Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677.
Elith, J., Leathwick, J. R., Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57.
Endresen, D.T.F. 2010. Predictive association between trait data and ecogeographic data for Nordic barley landraces. Crop Science 50: 2418-2430.
Endresen, D.T.F., Street, K., Mackay, M., Bari, A., Amri, A., De Pauw, E., Nazari, K., Yahyaoui, A. 2012. Sources of resistance to stem rust (Ug99) in bread wheat and durum wheat identified using Focused Identification of Germplasm Strategy. Crop Science 52: 764-773.
Erickson, V. J., Mandel, N. L., Sorensen, F. C. 2004. Landscape patterns of phenotypic variation and population structuring in a selfing grass, Elymus glaucus (blue wildrye). Canadian Journal of Botany, 82(12), 1776-1789.
FAO 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome
FAO, BIOVERSITY. 2015. FAO/Bioversity multi-crop Passport descriptors V.2. URL: https://bioversityinternational. org/e-library/publications/detail/faobioversity-multi-crop-passport-descriptors-v21-mcpd-v21/
FAO, IPGRI. 2001.Lista de descriptores de pasaporte para cultivos múltiples desarrollada por la FAO y el IPGRI.
FAO. 1997. Plan de Acción Mundial para la Conservación y Utilización Sostenible de los Recursos Fitogenéticos para la Alimentación y la Agricultura y la Declaración de Leipzig. Rome, Italy. 64p.
FAO. 2012. Segundo Plan de Acción Mundial para los Recursos Fitogenéticos para la Alimentación y la Agricultura. Rome, Italy. 104p.
Fawcett, T. 2004. ROC graphs: Notes and practical considerations for researchers. Machine learning, 31, 1-38.
Feeley, K. J., Silman, M. R. 2009. Extinction risks of Amazonian plant species. Proceedings of the National Academy of Sciences, 106(30), 12382-12387.
Fielding, A. H., Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 24(01), 38-49.
Fitzgerald, H., Palmé, A., Asdal, Å., Endresen, D., Kiviharju, E., Lund, B., Rasmussen, M., Thorbjornsson, H., Weibull, J. 2019. A regional approach to Nordic crop wild relative in situ conservation planning. Plant genetic resources, 17(2), 196-207.
Foley, D.H., Wilkerson, R.C., Rueda, L.M. 2009. Importance of the “what,” “when,” and “where” of mosquito collection events. J Med Entomol. 2009 Jul;46(4):717-22.
Fowells, H. A. 1949. Cork oak planting tests in California. Journal of Forestry, 47(5), 357-365.
Fraley C., Raftery, A.E. 2007. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.
García, R. M., Parra-Quijano, M., Iriondo, J. M. 2017. A multispecies collecting strategy for crop wild relatives based on complementary areas with a high density of ecogeographical gaps. Crop Science, 57(3), 1059-1069.
García, R. M., Parra-Quijano, M., Iriondo, J. M. 2017. A multispecies collecting strategy for crop wild relatives based on complementary areas with a high density of ecogeographical gaps. Crop Science, 57(3), 1059-1069.
Germino, M. J., Moser, A. M., Sands, A. R. 2019. Adaptive variation, including local adaptation, requires decades to become evident in common gardens. Ecological Applications, 29(2), e01842.
Ghamkhar, K., R. Snowball, B.J. Wintle, Brown, A.H.D. 2008. Strategies for developing a core collection of bladder clover (Trifolium spumosum L.) using ecological and agro-morphological data. Aust. J. Agric. Res. 59:1103–1112.
Gibson, A., Nelson, C. R. 2017. Comparing provisional seed transfer zone strategies for a commonly seeded grass, Pseudoroegneria spicata. Natural Areas Journal, 37(2), 188-199.
Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857 - 74.
Grenier, C., Hamon, P., Bramel-Cox, P.J.. 2001. Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Science. 41:241–246.
Guisan, A., Edwards, T. C., Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2), 89-100.
Guisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.
Guisan, A., Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. Ecological modelling, 135(2), 147-186.
Hamann, A., Gylander, T., Chen, P. Y. 2011. Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genetics & Genomes, 7(2), 399-408.
Hanson, J. O., Rhodes, J. R., Riginos, C., Fuller, R. A. 2017. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proceedings of the National Academy of Sciences, 114(48), 12755-12760.
Harris, J. A., Hobbs, R. J., Higgs, E., Aronson, J. 2006. Ecological Restoration and Global Climate Change. Restoration Ecology, 14 (2), 170–176.
Havens, K., Vitt, P., Still, S., Kramer, A. T., Fant, J. B., Schatz, K. 2015. Seed sourcing for restoration in an era of climate change. Natural Areas Journal, 35(1), 122-133.
Higgs, E. S. 1997. What is Good Ecological Restoration?. Conservation biology, 11(2), 338-348. IPCC. 2013. IPCC Fifth Assessment Report (AR5). IPCC s. 10-12
Hijmans, R., Elith, J., 2015. Species distribution modeling with R. https://goo.gl/p8beyk
Hill, A.W., Guralnick, R., Flemons, P., Beaman, R., Wieczorek, J., Ranipeta, A., Chavan, V., Remsen, D. 2009. Location, location, location: utilizing pipelines and services to more effectively georeference the world’s biodiversity data. BMC Bioinformatics. 2009 Nov 10;10 Suppl 14:S3. doi: 10.1186/1471-2105-10-S14-S3.
Hoffmann, M.H., Glaß, A.S., Tomiuk, J., Schmuths, H., Fritsch, R.M., Bachmann, K. 2003. Analysis of molecular data of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) with Geographical Information Systems (GIS). Molecular Ecology, 12: 1007–1019
IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In:Stocker,T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jarvis, A., Lane, A., Hijmans, R. J. 2008. The effect of climate change on crop wild relatives. Agriculture, ecosystems & environment, 126(1), 13-23.
Jarvis, A.; Williams, K.; Williams, D.; Guarino, L.; Caballero, P.J. Mottram, G. 2005. Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genet. Resour. Crop Evol. 52:671-682.
Johnson, G. R., Sorensen, F. C., St Clair, J. B., Cronn, R. C. 2004. Pacific northwest Forest tree seed zones a template for native plants?. Native Plants Journal, 5(2), 131-140.
Johnson, R. C., Erickson, V. J., Mandel, N. L., St Clair, J. B., Vance-Borland, K. W. 2010. Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon, USA. Botany, 88(8), 725-736.
Jombart, T., Collins, C. 2015. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0. 0. London: Imperial College London, MRC Centre for Outbreak Analysis and Modelling.
Justus, J., Sarkar, S. 2002. The principle of complementarity in the design of reserve networks to conserve biodiversity: a preliminary history. Journal of Biosciences, 27(4): 421-435.
Kati, V., Devillers, P., Dufrêne, M., Legakis, A., Vokou, D., Lebrun, P. 2004. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biological Conservation, 120(4): 471-480.
Kaufman, L., Rousseeuw, P.J. 1987, Clustering by means of Medoids, in Statistical Data Analysis Based on the L1– Norm and Related Methods. Y. Dodge (eds), North-Holland, 405–416.
Kebede, A. S., Nicholls, R. J., Allan, A., Arto, I., Cazcarro, I., Fernandes, J. A., Hill, C.T., Hutton, C.W., Kay, S., Lázár, A.N., Macadam, I., Palmer, M., Suckall, N., Tompkins, E.L., Vincent,K., Whitehead, P. W. (2018). Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Science of the Total Environment, 635, 659-672.
Ketchen, D. J., Shook, C. L. 1996. The application of cluster analysis in Strategic Management Research: An analysis and critique. Strategic Management Journal 17(6): 441–458.
Khazaei, H., Street, K., Bari, A., Mackay, M., Stoddard, F.L. 2013. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8(5): e63107. doi:10.1371/journal.pone.0063107
King, J. R., Jackson, D. A. 1999. Variable selection in large environmental data sets using principal components analysis. Environmetrics, 10(1): 67-77.
Kramer, A. T., Havens, K. 2009. Plant conservation genetics in a changing world. Trends in plant science, 14(11), 599-607.
Kramer, A. T., Larkin, D. J., Fant, J. B. 2015. Assessing potential seed transfer zones for five forb species from the Great Basin Floristic Region, USA. Natural Areas Journal, 35(1), 174-188.
Liu, C., White, M., Newell, G. 2009. Measuring the accuracy of species distribution models: a review. In Proceedings 18th World IMACs/MODSIM Congress. Cairns, Australia (pp. 4241-4247).
Lobo, J. M., Jiménez-Valverde, A., Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography, 17(2), 145-151.
Mackay, M. C., Street, K. 2004. Focused identification of germplasm strategy – FIGS. p. 138-141. En: Black, C.K., Panozzo, J.F., Rebetzke, G.J. (eds). Cereals 2004. Proceedings of the 54th Australian Cereal Chemistry Conference and the 11th Wheat Breeders’ Assembly, 21-24 September 2004, Canberra, Australian Capital Territory (ACT). Cereal Chemistry Division, Royal Australian Chemical Institute, Melbourne, Australia.
Mackay, M.C. 1990. Strategic planning for effective evaluation of plant germplasm. p. 21-25 En: Srivastava, J.P., Damania, A.B. (eds). Wheat genetic resources: Meeting diverse needs. John Wiley & Sons, Chichester, UK.
Maiorano, L., Cheddadi, R., Zimmermann, N. E., Pellissier, L., Petitpierre, B., Pottier, J., Guisan, A. 2013. Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 22(3), 302-317.
Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209- 220.
Marinoni, L., Parra Quijano, M., Zabala, J.M., Pensiero, J.F., Iriondo, J.M. 2021. Spatio-temporal seed transfer zones as an efficient restoration strategy in response to climate change. Ecosphere, in press.
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., Thuiller, W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and distributions, 15(1), 59-69.
Mateo, R. G., Croat, T. B., Felicísimo, A. M., Munoz, J. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. Diversity and Distributions, 16(1), 84-94.
McKay, J. K., Christian, C. E., Harrison, S., Rice, K. J. 2005. “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 13(3), 432-440.
Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., van den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R. H. 2020. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571-3605. Miller, S. A., Bartow, A., Gisler, M., Ward, K., Young, A. S., Kaye, T. N. 2011. Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restoration Ecology, 19(201), 268-276.
Mponya, N. K., Chanyenga, T., Brehm, J. M., Maxted, N. 2020. In situ and ex situ conservation gap analyses of crop wild relatives from Malawi. Genetic Resources and Crop Evolution, 68: 759-771.
Omernik, J. M., Griffith, G. E. 2014. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental management, 54(6), 1249-1266. org/e-library/publications/detail/faobioversity-multi-crop-passport-descriptors-v21-mcpd-v21/
Otegui, J., Ariño, A.H., Encinas, M.A., Pando, F. 2013. Assessing the primary data hosted by the Spanish node of the Global Biodiversity Information Facility (GBIF). PLoS One. 2013;8(1), e55144. doi: 10.1371/journal.pone.0055144.
Özesmi, S. L., Özesmi, U. 1999. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological modelling, 116(1), 15-31.
Package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions, 20(1), 1-9.
Parra Quijano, M. 2016. Tools CAPFITOGEN Program to Strengthen Capabilities in National Plant Genetic Resources Programs in Latin America.
Parra Quijano, M., Iriondo, J. M. Torres, E. 2012A. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources Crop Evolution, 59, 205–217
Parra Quijano, M., Iriondo, J. M., Torres, E. 2012B. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Spanish Journal of Agricultural Research, 10(2), 419-429.
Parra Quijano, M., Iriondo, J.M., Frese, L., Torres, E. 2012C. Spatial and ecogeographic approaches for selecting genetic reserves in Europe. In: N. Maxted, M.E. Dulloo, B.V. Ford-Lloyd, L. Frese, J. Iriondo y M.A.A. Pinheiro de Carvalho (ed.) Agrobiodiversity Conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford, UK.
Parra Quijano, M., Iriondo, J.M., Torres, M.E., De la Rosa, L. 2011a. Evaluation and validation of ecogeographical core collections using phenotypic data. Crop Science 51:694-703.
Parra-Quijano, M. Iriondo, J.M., De la Cruz, M., Torres, M.E. 2011 A. Strategies for the development of core collections based on ecogeographical data. Crop Science 51:656-666
Parra-Quijano, M. Iriondo, J.M., Frese, L., Torres, M.E. 2012 C. Spatial and ecogeographic approaches for selecting genetic reserves in Europe. En: N. Maxted, M.E. Dulloo, B.V. Ford-Lloyd, L. Frese, J. Iriondo, M.A.A. Pinheiro de Carvalho (ed.) Agrobiodiversity Conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford, UK.
Parra-Quijano, M. Iriondo, J.M., Torres, M.E. 2012 A. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources and Crop Evolution 59(2):205-217 DOI 10.1007/s10722-011-9676-7 89
Parra-Quijano, M. Iriondo, J.M., Torres, M.E. 2012 B. Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation 21:79-96 DOI 10.1007/s10531-011-0167-0
Parra-Quijano, M. Iriondo, J.M., Torres, M.E., De la Rosa, L. 2011 B. Evaluation and validation of ecogeographical core collections using phenotypic data. Crop Science 51:694-703
Parra-Quijano, M., Draper, D., Iriondo, J. 2003. Assessing in situ conservation of Lupinus spp. In Spain through GIS. Crop Wild Relative, 1: 8-9.
Parra-Quijano, M., Iriondo, J. M., Torres, E. 2012b. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Spanish journal of agricultural research. 2: 419- 429.
Parra-Quijano, M., Iriondo, J. M., Torres, E. 2012c. Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation, 21(1), 79-96.
Parra-Quijano, M., Iriondo, J.M., de la Cruz, M., Torres, M.E. 2011b. Strategies for the development of core collections based on ecogeographical data. Crop Science 51:656-666.
Parra-Quijano, M., Iriondo, J.M., Frese, L., Torres, E.. 2012a. Spatial and ecogeographic approaches for selecting genetic reserves in Europe. En: Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., Frese, L., Iriondo, J., Pinheiro de Carvalho, M.A.A. (ed.) Agrobiodiversity Conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford, UK
Parra-Quijano, M.; Draper, D.; Torres, E., Iriondo, J.M. 2008. Ecogeographical representativeness in crop wild relative ex situ collections. p. 249-273. In Maxted, N.; Ford-Lloyd, B.V.; Kell, S.P.; Iriondo, J.M.; Dulloo, M.E., Turok, J. (ed.) Crop wild relative conservation and use. CAB International, Wallingford.
Parra-Quijano, M.; Draper, D.; Torres, E., Iriondo, J.M. 2008. Ecogeographical representativeness in crop wild relative ex situ collections. p. 249-273. In Maxted, N.; Ford-Lloyd, B.V.; Kell, S.P.; Iriondo, J.M.; Dulloo, M.E., Turok, J. (ed.) Crop wild relative conservation and use. CAB International, Wallingford.
Pearce, J., Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological modelling, 133(3), 225-245.
Peeters, J. P., Wilkes, H. G., Galwey, N. W. 1990. The use of ecogeographical data in the exploitation of variation from gene banks. Theoretical and applied genetics, 80(1), 110-112.
Phillips, J., Asdal, Å., Magos Brehm, J., Rasmussen, M., Maxted, N. 2016. In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions, 22(11), 1112-1126.
Phillips, J., Asdal, Å., Magos Brehm, J., Rasmussen, M., Maxted, N. 2016. In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions, 22(11), 1112-1126.
Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., Ferrier, S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), 181-197.
Pliscoff, P., Luebert, F., Hilger, H. H., Guisan, A. 2014. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecological Modelling, 288, 166-177.
Potter, K. M., Hargrove, W. W. 2012. Determining suitable locations for seed transfer under climate change: a global quantitative method. New Forests, 43, 581–599.
Raftery, A. E., Dean, N. 2006. Variable selection for model-based clustering. Journal of the American Statistical Association, 101(473):168-178.
Ramirez-Villegas, J., Jarvis, A., Läderach, P. 2013. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology, 170, 67-78.
Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D., Guarino, L. 2010. A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS ONE 5(10), e13497. doi:10.1371/journal.pone.0013497.
Rebelo, A. G., Siegfried, W. R. 1990. Protection of fynbos vegetation: ideal and real-world options. Biological Conservation, 54(1): 15-31.
Reddy, L.J., H.D. Upadhyaya, C.L.L. Gowda, S. Singh. 2005. Development of core collection in pigeonpea (Cajanus cajan (L.) Millspaugh) using geographic and qualitative morphological descriptors. Genetic Resources and Crop Evolution 52:1049–1056.
Richardson, B. A., Chaney, L. 2018. Climate-based seed transfer of a widespread shrub: population shifts, restoration strategies, and the trailing edge. Ecological Applications, 28(8), 2165-2174.
Roebber, P. J. 2009. Visualizing multiple measures of forecast quality. Weather and Forecasting, 24(2), 601-608.
Rousseeuw, P.J. 1987. Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.
Rubio Teso, M. L., Iriondo, J. M. 2019. In situ Conservation Assessment of Forage and Fodder CWR in Spain Using Phytosociological Associations. Sustainability, 11(21), 5882.
Russell, J., van Zonneveld, M., Dawson, I. K., Booth, A., Waugh, R., Steffenson, B. 2014. Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-lgm range expansion and limited mid-future climate threats. PloS one, 9(2), e86021.
Scheldeman, X., van Zonneveld, M. 2011. Manual de Capacitación en Análisis Espacial de Diversidad y Distribución de Plantas. Bioversity International, Roma, Italia.
Shryock, D., Defalco, L. A., Esque, T. C. 2018. Spatial decision-support tools to guide restoration and seed-sourcing in the Desert Southwest. Ecosphere, 9 (10), 1-19
Sillero, N., Barbosa, A. M. 2021. Common mistakes in ecological niche models. International Journal of Geographical Information Science, 35(2):213-226.
Soberón, J., Peterson, T. 2004. Biodiversity informatics: managing and applying primary biodiversity data. Phil. Trans. R. Soc. Lond. B. 359, 689-698.
Tapia, C., Paredes, N., Lima, L. (2019). Representatividad de la diversidad del género musa en el ecuador. Revista Científica Ecuatoriana, 6(1).
Taylor, N. G., Kell, S. P., Holubec, V., Parra-Quijano, M., Chobot, K., Maxted, N. (2017). A systematic conservation strategy for crop wild relatives in the Czech Republic. Diversity and Distributions, 23(4), 448-462.
Thomas, E., Alcazar, C., Moscoso L. G., Vásquez A., Osorio L. F., Salgado-Negrete, B., Gonzalez, M., Parra-Quijano, M., Bozzano, M., Loo, J., Jalonen, R., Ramírez, W. 2017. The importance of species selection and seed sourcing in forest restoration for enhancing adaptive capacity to climate change: Colombian tropical dry forest as a model. The Lima declaration on biodiversity and climate change: contributions from science to policy for sustainable development, (89), 122-132
Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., van Etten, J. 2012. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7(10): e47676.doi:10.1371/journal.pone.0047676
Thormann, I. 2012. Applying FIGS to crop wild relatives and landraces in Europe. Crop Wild Relative 8 14:16.
Thuiller, W. 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10(12), 2020-2027.
Thuiller, W., Araújo, M. B., Lavorel, S. 2003. Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680.
Thuiller, W., Lafourcade, B., Engler, R., Araújo, M. B. 2009. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373.
Tohme, J., Jones, P., Beebe, S., Iwanaga, M. 1995. The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. p. 95-107. In Hodgkin, T., Brown, A.H.D., van Hintum, Th.J.L., Morales, E.A.V. (eds.) Core collections of plant genetic resources. IPGRI, Rome.
Tohme, J., Jones, P., Beebe, S., Iwanaga, M. 1995. The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. p. 95–107. In Hodgkin, T., Brown, A.H.D., Hintum, T.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Wiley & Sons, New York, NY.
Upadhyaya, H.D., Ortiz, R., Bramel, P.J., S. Singh, S. 2003. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet. Resour. Crop Evol. 50:139–148.
Van Zonneveld M, Scheldeman X, Escribano P, Viruel MA, Van Damme P, et al. (2012) Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources. PLoS ONE 7(1): e29845. doi:10.1371/journal.pone.0029845
VanDerWal, J., Shoo, L. P., Graham, C., Williams, S. E. 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know?. Ecological modelling, 220(4), 589-594.
Williams, C.L., Hargrove, W.W., Liebman, M., James, D.E. 2008. Agro-ecoregionalization of Iowa using multivariate geographical clustering. Agriculture, Ecosystems and Environment 123 (2008) 161–174
Williams, M. I., Dumroese, R. K. 2013. Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 111 (4), 287–297
Withrow-Robinson, B. A., Johnson, R. 2006. Selecting native plant materials for restoration projects: ensuring local adaptation and maintaining genetic diversity Oregon State University. URL: https://ir.library.oregonstate.edu/ downloads/g732d9349
Wood, J. M. 2007. Understanding and Computing Cohen’s Kappa: A Tutorial. WebPsychEmpiricist. URL: Journal at http://wpe.info/.
Xiurong, Z., Yingzhong, Z., Yong, C., Xiangyun, F., Qingyuan, G., Mingde, Z., Hodgkin, T. 2000. Establishment of sesame germplasm core collection in China. Genet. Resour. Crop Evol. 47:273– 279.
Yonezawa, K., Nomura, T., Morishima, H. 1995. Sampling strategies for use in stratified germplasm collections. p. 35–53. In Hodgkin, T., Brown, A.H.D., Hintum, T.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Wiley & Sons, New York, NY.
Yonezawa, K.; Nomura, T., Morishima, H. 1995. Sampling strategies for use in stratified germplasm collections. P. 35-53. In: Hodgkin, T., Brown, A.H.D., van Hintum, Th.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Willey & sons, Chichester, UK.
Zair, W., Maxted, N., Brehm, J. M., Amri, A. 2020. Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genetic Resources and Crop Evolution, 1-17.
dc.rights.spa.fl_str_mv Universidad Nacional de Colombia, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Universidad Nacional de Colombia, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 311 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia. Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85786/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85786/2/V09122022_TERMINADAPDFEspan%cc%83ol_ProyectoCAPFIGEN3.pdf
https://repositorio.unal.edu.co/bitstream/unal/85786/3/V09122022_TERMINADAPDFEspan%cc%83ol_ProyectoCAPFIGEN3.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
e38bd732f61b657ac3b79c69dc0713ae
b02c6f66e1b916e13a3bc57bc3df6ff2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089972674723840
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalUniversidad Nacional de Colombia, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parra Quijano, Mauricio1e17c981ffb86490a77261643d7429e1Iriondo, José Maríaf4782f9480d3d4de224d765c2d39b78eTorres, María Elena0e29e8e3115d94a8c820d3b3286cdfcdLópez, Franciscoad286b8ccc4253e13940ee2004cfbd51Phillips, Jadeace02c537169bbe88714d5f7d202719dKell, Shelagh0ff51af4164be0a3d8878c66fc83d25fParra Quijano, Mauricio2024-03-10T06:11:26Z2024-03-10T06:11:26Z2021https://repositorio.unal.edu.co/handle/unal/857869789585050341ilustraciones, fotografías, mapasLas herramientas CAPFITOGEN y su evolución, CAPFITOGEN3, acumulan un trabajo continuo desde 2012, cuando las primeras dos herramientas se pensaron y diseñaron. Obviamente no salieron de una noche a la mañana siguiente, sino que provienen de desarrollos hechos desde 2005 cuando se obtuvo el primer mapa ELC y posteriormente se fueron desarrollando otras aplicaciones ecogeográficas útiles para la conservación y uso de los recursos fitogenéticos para la alimentación y la agricultura (RFAA). Desde 2012 han sido muchos los aciertos y errores, los obstáculos y dificulta- des, pero también las personas que aparecieron en el momento indicado para que el sueño de CAPFITOGEN se materializara. Hago referencia a un sueño, porque estas herramientas fueron literalmente eso, un sueño que tuve cuando terminé mi tesis doctoral y pensé que algunos adelantos metodológicos no podían quedar sólo en manos de algunos muy pocos investigadores del futuro que citaran mis publicaciones. Asumí, a partir de ese sueño, la premisa que el esfuerzo de hacer ciencia sólo se compensa cuando el avance llega en realidad a la gente para mejorar o facilitar su vida. En este caso CAPFITOGEN pudo llegar a muchos técnicos e investigadores que en su rutina hacen conservación y uso de la agrobiodiversidad, y logró en muchos casos facilitar y hasta permitir que pudieran hacer muchos análisis y tareas que antes no hubiera sido posible. (texto tomado de la fuente)311 páginasapplication/pdfspaUniversidad Nacional de Colombia. Facultad de Ciencias AgrariasBogotá630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesConservación de los recursos agrícolasConservación de la abriobiodiversidadEcología agrícolaProgramación automática (Informática)Capfitogen 3 : una caja de herramientas para la conservación y promoción del uso de la biodiversidad agrícolaLibroinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2f33http://purl.org/coar/version/c_970fb48d4fbd8a85TextAkinwande, M. O., Dikko, H. G., Samson, A. 2015. Variance inflation factor: as a condition for the inclusion of suppressor variable (s) in regression analysis. Open Journal of Statistics, 5(07), 754-767.Allouche, O., Tsor, A., Kadmon, R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 5(7): 1223-1232.Austin, M.P., Van Niel, K.P. 2010. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38(1): 1-8.Barbet-Massin, M., Jiguet, F., Albert, C. H., Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many?. Methods in Ecology and Evolution, 3(2), 327-338.Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M., Benight, C. 2007. False alarms and close calls: A conceptual model of warning accuracy. Weather and Forecasting, 22(5), 1140-1147.Barnes, L. R., Schultz, D. M., Gruntfest, E. C., Hayden, M. H., Benight, C. C. 2009. Corrigendum: False alarm rate or false alarm ratio?. Weather and Forecasting, 24(5), 1452-1454.Bates, C. G. 1930. The frost hardiness of geographic strains of Norway pine. Journal of Forestry, 28(3), 327-333.Booth, T. H., Nix, H. A., Busby, J. R., Hutchinson, M. F. 2014. BIOCLIM: the first species distribution modellingBower, A. D., Clair, J. B. S., Erickson, V. 2014. Generalized provisional seed zones for native plants. Ecological Applications, 24(5), 913-919.Bradter, U., Kunin, W. E., Altringham, J. D., Thom, T. J., Benton, T. G. 2013. Identifying appropriate spatial scales of predictors in species distribution models with the random forest algorithm. Methods in Ecology and Evolution, 4(2), 167-174.Brown, A.H.D. 1989. The case for core collections. In: Brown, A.H.D., Frankel, O.H., Marshall, D.R., Williams, J.T. (ed.) The use of plant genetic resources. Cambridge University Press, Cambridge, UK.Brown, A.H.D. 1995. The core collection at the crossroads. p. 3–19. En Hodgkin, T., Brown, A.H.D., Hintum, T.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Wiley & Sons, New York, NY.Calinski, T., Harabasz, J. 1974. A dendrite method for cluster analysis. Communications in Statistics. 3(1): 1-27.Ceballos-Silva, A., López-Blanco, J. 2003. Evaluating biophysical variables to identify suitable areas for oat in Central Mexico: a multi-criteria and GIS approach. Agriculture, Ecosystems and Environment 95 (2003) 371–377.Cevallos, D., Bede-Fazekas, Á., Tanács, E., Szitár, K., Halassy, M., Kövendi-Jakó, A., Török, K. 2020. Seed transfer zones based on environmental variables better reflect variability in vegetation than administrative units: evidence from Hungary. Restoration Ecology, 28(4), 911-918.Chapman, A.D. 2005. Principles of data quality, version 1.0. Report of the Global Biodiversity Information Facility, Copenhagen.Chefaoui, R. M., Lobo, J. M. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological modelling, 210(4), 478-486.Chrisman, N.R. 1983. The role of quality information in the long-term functioning of a GIS. Proceedings of AUTOCART06, 2: 303-321. Falls Church, VA: ASPRS.Chuine, I. 2010. Why does phenology drive species distribution? Philosophical transactions of the royal society B. 365, 3149–3160Cohen, J. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37-40.Contreras-Toledo, A. R., Cortés-Cruz, M., Costich, D. E., Rico-Arce, M., Magos Brehm, J., Maxted, N. 2019. Diversity and conservation priorities of crop wild relatives in Mexico. Plant Genetic Resources Characterisation and Utilisation, 17, 140-150.Crossa, J., Vencovsky, R. 1994. Implications of the variance effective population size on the genetic conservation of monoecious species. Theoretical and Applied Genetics 89:936–942Crossa, J., Vencovsky, R. 1997. Variance effective population size for two-stage sampling of monoecious species. Crop Science 37:14–26Crossa, J., Vencovsky, R. 2011 Chapter 5: Basic sampling strategies: theory and practice. In: Guarino, L., Ramanatha Rao, V., Goldberg, E. (ed.) Collecting Plant Genetic Diversity: Technical Guidelines – 2011 Update. Bioversity International. Available online (accessed 6 November 2013) http://cropgenebank.sgrp.cgiar.org/index.php?option=com_content&view=article&id=671Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J. 2007. Random forests for classification in ecology. Ecology, 88(11): 2783-2792.Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., Lawler, J. J. 2007. Random forests for classification in ecology. Ecology, 88(11), 2783-2792.Damme, P., Garcia, W., Tapia, C., Romero, J., Manuel Sigueñas, M., Hormaza, J.I. 2012. Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources. PLoS ONE 7(1): e29845. doi:10.1371/journal.pone.0029845Dean, N., Raftery, A.E., Scrucca, L. 2015. Package ‘clustvarsel’, variable selection for Model-Based clustering. http:// cran.r-project.org/web/packages/clustvarsel/clustvarsel.pdfDice, L.R. 1945. Measures of the Amount of Ecologic Association Between Species. Ecology 26:297–302.FAO, BIOVERSITY. 2015. FAO/Bioversity multi-crop Passport descriptors V.2. URL: https://bioversityinternational.Dinerstein, E. D., Olson, A., Joshi, C., Vynne, N., Burgess, E., Wikramanayake, N., Hahn, S., Palminteri, P., Hedao, R., Noss, M., Hansen, H., Locke, E., Ellis, B., Jones, C., Barber, V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baille, J., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., Souza, N., Pintea, L., Brito, J., Llewellyn, O., Miller, A., Patzelt, A., Ghazanfar, S., Timberlake, J., Klozer, H., Shenan-Farpón, Y., Kindt, R.Barnekow, J., van Breugel, P., Graudal, L., Voge, M., Al-Shammari, K., Saleem, M. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), 534-545.Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hansen, M. 2017. An ecoregion-based approach to protecting half the terrestrial realm. BioScience, 67(6), 534-545.Doherty, K. D., Butterfield, B. J., Wood, T. E. 2017. Matching seed to site by climate similarity: techniques to prioritize plant materials development and use in restoration. Ecological Applications, 27(3), 1010-1023.Dolnicar, S., Grabler, K., Mazanec, J. A. 1999. A tale of three cities: perceptual charting for analyzing destination images. Pp. 39-62 in: Woodside, A. et al. (eds) Consumer psychology of tourism, hospitality and leisure. CAB International, New York.Durka, W., Michalski, S. G., Berendzen, K. W., Bossdorf, O., Bucharova, A., Hermann, J. M., Holzel, N., Kollmann, J. 2017. Genetic differentiation within multiple common grassland plants supports seed transfer zones for ecological restoration. Journal of Applied Ecology, 54(1), 116-126.El Bouhssini, M. E., Street, K., Joubi, A., Ibrahim, Z., Rihawi, F. 2009. Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genetic Resources and Crop Evolution 56: 1065– 1069.Elith, J., Leathwick, J. R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677.Elith, J., Leathwick, J. R., Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77(4), 802-813.Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., Yates, C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43-57.Endresen, D.T.F. 2010. Predictive association between trait data and ecogeographic data for Nordic barley landraces. Crop Science 50: 2418-2430.Endresen, D.T.F., Street, K., Mackay, M., Bari, A., Amri, A., De Pauw, E., Nazari, K., Yahyaoui, A. 2012. Sources of resistance to stem rust (Ug99) in bread wheat and durum wheat identified using Focused Identification of Germplasm Strategy. Crop Science 52: 764-773.Erickson, V. J., Mandel, N. L., Sorensen, F. C. 2004. Landscape patterns of phenotypic variation and population structuring in a selfing grass, Elymus glaucus (blue wildrye). Canadian Journal of Botany, 82(12), 1776-1789.FAO 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. RomeFAO, BIOVERSITY. 2015. FAO/Bioversity multi-crop Passport descriptors V.2. URL: https://bioversityinternational. org/e-library/publications/detail/faobioversity-multi-crop-passport-descriptors-v21-mcpd-v21/FAO, IPGRI. 2001.Lista de descriptores de pasaporte para cultivos múltiples desarrollada por la FAO y el IPGRI.FAO. 1997. Plan de Acción Mundial para la Conservación y Utilización Sostenible de los Recursos Fitogenéticos para la Alimentación y la Agricultura y la Declaración de Leipzig. Rome, Italy. 64p.FAO. 2012. Segundo Plan de Acción Mundial para los Recursos Fitogenéticos para la Alimentación y la Agricultura. Rome, Italy. 104p.Fawcett, T. 2004. ROC graphs: Notes and practical considerations for researchers. Machine learning, 31, 1-38.Feeley, K. J., Silman, M. R. 2009. Extinction risks of Amazonian plant species. Proceedings of the National Academy of Sciences, 106(30), 12382-12387.Fielding, A. H., Bell, J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 24(01), 38-49.Fitzgerald, H., Palmé, A., Asdal, Å., Endresen, D., Kiviharju, E., Lund, B., Rasmussen, M., Thorbjornsson, H., Weibull, J. 2019. A regional approach to Nordic crop wild relative in situ conservation planning. Plant genetic resources, 17(2), 196-207.Foley, D.H., Wilkerson, R.C., Rueda, L.M. 2009. Importance of the “what,” “when,” and “where” of mosquito collection events. J Med Entomol. 2009 Jul;46(4):717-22.Fowells, H. A. 1949. Cork oak planting tests in California. Journal of Forestry, 47(5), 357-365.Fraley C., Raftery, A.E. 2007. Bayesian regularization for normal mixture estimation and model-based clustering. Journal of Classification 24:155-181.García, R. M., Parra-Quijano, M., Iriondo, J. M. 2017. A multispecies collecting strategy for crop wild relatives based on complementary areas with a high density of ecogeographical gaps. Crop Science, 57(3), 1059-1069.García, R. M., Parra-Quijano, M., Iriondo, J. M. 2017. A multispecies collecting strategy for crop wild relatives based on complementary areas with a high density of ecogeographical gaps. Crop Science, 57(3), 1059-1069.Germino, M. J., Moser, A. M., Sands, A. R. 2019. Adaptive variation, including local adaptation, requires decades to become evident in common gardens. Ecological Applications, 29(2), e01842.Ghamkhar, K., R. Snowball, B.J. Wintle, Brown, A.H.D. 2008. Strategies for developing a core collection of bladder clover (Trifolium spumosum L.) using ecological and agro-morphological data. Aust. J. Agric. Res. 59:1103–1112.Gibson, A., Nelson, C. R. 2017. Comparing provisional seed transfer zone strategies for a commonly seeded grass, Pseudoroegneria spicata. Natural Areas Journal, 37(2), 188-199.Gower, J.C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27: 857 - 74.Grenier, C., Hamon, P., Bramel-Cox, P.J.. 2001. Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Science. 41:241–246.Guisan, A., Edwards, T. C., Hastie, T. 2002. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological modelling, 157(2), 89-100.Guisan, A., Thuiller, W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology letters, 8(9), 993-1009.Guisan, A., Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. Ecological modelling, 135(2), 147-186.Hamann, A., Gylander, T., Chen, P. Y. 2011. Developing seed zones and transfer guidelines with multivariate regression trees. Tree Genetics & Genomes, 7(2), 399-408.Hanson, J. O., Rhodes, J. R., Riginos, C., Fuller, R. A. 2017. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proceedings of the National Academy of Sciences, 114(48), 12755-12760.Harris, J. A., Hobbs, R. J., Higgs, E., Aronson, J. 2006. Ecological Restoration and Global Climate Change. Restoration Ecology, 14 (2), 170–176.Havens, K., Vitt, P., Still, S., Kramer, A. T., Fant, J. B., Schatz, K. 2015. Seed sourcing for restoration in an era of climate change. Natural Areas Journal, 35(1), 122-133.Higgs, E. S. 1997. What is Good Ecological Restoration?. Conservation biology, 11(2), 338-348. IPCC. 2013. IPCC Fifth Assessment Report (AR5). IPCC s. 10-12Hijmans, R., Elith, J., 2015. Species distribution modeling with R. https://goo.gl/p8beykHill, A.W., Guralnick, R., Flemons, P., Beaman, R., Wieczorek, J., Ranipeta, A., Chavan, V., Remsen, D. 2009. Location, location, location: utilizing pipelines and services to more effectively georeference the world’s biodiversity data. BMC Bioinformatics. 2009 Nov 10;10 Suppl 14:S3. doi: 10.1186/1471-2105-10-S14-S3.Hoffmann, M.H., Glaß, A.S., Tomiuk, J., Schmuths, H., Fritsch, R.M., Bachmann, K. 2003. Analysis of molecular data of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) with Geographical Information Systems (GIS). Molecular Ecology, 12: 1007–1019IPCC, 2013. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In:Stocker,T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Jarvis, A., Lane, A., Hijmans, R. J. 2008. The effect of climate change on crop wild relatives. Agriculture, ecosystems & environment, 126(1), 13-23.Jarvis, A.; Williams, K.; Williams, D.; Guarino, L.; Caballero, P.J. Mottram, G. 2005. Use of GIS for optimizing a collecting mission for a rare wild pepper (Capsicum flexuosum Sendtn.) in Paraguay. Genet. Resour. Crop Evol. 52:671-682.Johnson, G. R., Sorensen, F. C., St Clair, J. B., Cronn, R. C. 2004. Pacific northwest Forest tree seed zones a template for native plants?. Native Plants Journal, 5(2), 131-140.Johnson, R. C., Erickson, V. J., Mandel, N. L., St Clair, J. B., Vance-Borland, K. W. 2010. Mapping genetic variation and seed zones for Bromus carinatus in the Blue Mountains of eastern Oregon, USA. Botany, 88(8), 725-736.Jombart, T., Collins, C. 2015. A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0. 0. London: Imperial College London, MRC Centre for Outbreak Analysis and Modelling.Justus, J., Sarkar, S. 2002. The principle of complementarity in the design of reserve networks to conserve biodiversity: a preliminary history. Journal of Biosciences, 27(4): 421-435.Kati, V., Devillers, P., Dufrêne, M., Legakis, A., Vokou, D., Lebrun, P. 2004. Hotspots, complementarity or representativeness? Designing optimal small-scale reserves for biodiversity conservation. Biological Conservation, 120(4): 471-480.Kaufman, L., Rousseeuw, P.J. 1987, Clustering by means of Medoids, in Statistical Data Analysis Based on the L1– Norm and Related Methods. Y. Dodge (eds), North-Holland, 405–416.Kebede, A. S., Nicholls, R. J., Allan, A., Arto, I., Cazcarro, I., Fernandes, J. A., Hill, C.T., Hutton, C.W., Kay, S., Lázár, A.N., Macadam, I., Palmer, M., Suckall, N., Tompkins, E.L., Vincent,K., Whitehead, P. W. (2018). Applying the global RCP–SSP–SPA scenario framework at sub-national scale: A multi-scale and participatory scenario approach. Science of the Total Environment, 635, 659-672.Ketchen, D. J., Shook, C. L. 1996. The application of cluster analysis in Strategic Management Research: An analysis and critique. Strategic Management Journal 17(6): 441–458.Khazaei, H., Street, K., Bari, A., Mackay, M., Stoddard, F.L. 2013. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8(5): e63107. doi:10.1371/journal.pone.0063107King, J. R., Jackson, D. A. 1999. Variable selection in large environmental data sets using principal components analysis. Environmetrics, 10(1): 67-77.Kramer, A. T., Havens, K. 2009. Plant conservation genetics in a changing world. Trends in plant science, 14(11), 599-607.Kramer, A. T., Larkin, D. J., Fant, J. B. 2015. Assessing potential seed transfer zones for five forb species from the Great Basin Floristic Region, USA. Natural Areas Journal, 35(1), 174-188.Liu, C., White, M., Newell, G. 2009. Measuring the accuracy of species distribution models: a review. In Proceedings 18th World IMACs/MODSIM Congress. Cairns, Australia (pp. 4241-4247).Lobo, J. M., Jiménez-Valverde, A., Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global ecology and Biogeography, 17(2), 145-151.Mackay, M. C., Street, K. 2004. Focused identification of germplasm strategy – FIGS. p. 138-141. En: Black, C.K., Panozzo, J.F., Rebetzke, G.J. (eds). Cereals 2004. Proceedings of the 54th Australian Cereal Chemistry Conference and the 11th Wheat Breeders’ Assembly, 21-24 September 2004, Canberra, Australian Capital Territory (ACT). Cereal Chemistry Division, Royal Australian Chemical Institute, Melbourne, Australia.Mackay, M.C. 1990. Strategic planning for effective evaluation of plant germplasm. p. 21-25 En: Srivastava, J.P., Damania, A.B. (eds). Wheat genetic resources: Meeting diverse needs. John Wiley & Sons, Chichester, UK.Maiorano, L., Cheddadi, R., Zimmermann, N. E., Pellissier, L., Petitpierre, B., Pottier, J., Guisan, A. 2013. Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 22(3), 302-317.Mantel, N. (1967) The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209- 220.Marinoni, L., Parra Quijano, M., Zabala, J.M., Pensiero, J.F., Iriondo, J.M. 2021. Spatio-temporal seed transfer zones as an efficient restoration strategy in response to climate change. Ecosphere, in press.Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., Thuiller, W. 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and distributions, 15(1), 59-69.Mateo, R. G., Croat, T. B., Felicísimo, A. M., Munoz, J. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. Diversity and Distributions, 16(1), 84-94.McKay, J. K., Christian, C. E., Harrison, S., Rice, K. J. 2005. “How local is local?”—a review of practical and conceptual issues in the genetics of restoration. Restoration Ecology, 13(3), 432-440.Meinshausen, M., Nicholls, Z. R., Lewis, J., Gidden, M. J., Vogel, E., Freund, M., Beyerle, U., Gessner, C., Nauels, A., Bauer, N., Canadell, J.G., Daniel, J.S., John, A., Krummel, P.B., Luderer, G., Meinshausen, N., Montzka, S.A., Rayner, P.J., Reimann, S., Smith, S.J., van den Berg, M., Velders, G.J.M., Vollmer, M.K., Wang, R. H. 2020. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geoscientific Model Development, 13(8), 3571-3605. Miller, S. A., Bartow, A., Gisler, M., Ward, K., Young, A. S., Kaye, T. N. 2011. Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restoration Ecology, 19(201), 268-276.Mponya, N. K., Chanyenga, T., Brehm, J. M., Maxted, N. 2020. In situ and ex situ conservation gap analyses of crop wild relatives from Malawi. Genetic Resources and Crop Evolution, 68: 759-771.Omernik, J. M., Griffith, G. E. 2014. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental management, 54(6), 1249-1266. org/e-library/publications/detail/faobioversity-multi-crop-passport-descriptors-v21-mcpd-v21/Otegui, J., Ariño, A.H., Encinas, M.A., Pando, F. 2013. Assessing the primary data hosted by the Spanish node of the Global Biodiversity Information Facility (GBIF). PLoS One. 2013;8(1), e55144. doi: 10.1371/journal.pone.0055144.Özesmi, S. L., Özesmi, U. 1999. An artificial neural network approach to spatial habitat modelling with interspecific interaction. Ecological modelling, 116(1), 15-31.Package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions, 20(1), 1-9.Parra Quijano, M. 2016. Tools CAPFITOGEN Program to Strengthen Capabilities in National Plant Genetic Resources Programs in Latin America.Parra Quijano, M., Iriondo, J. M. Torres, E. 2012A. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources Crop Evolution, 59, 205–217Parra Quijano, M., Iriondo, J. M., Torres, E. 2012B. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Spanish Journal of Agricultural Research, 10(2), 419-429.Parra Quijano, M., Iriondo, J.M., Frese, L., Torres, E. 2012C. Spatial and ecogeographic approaches for selecting genetic reserves in Europe. In: N. Maxted, M.E. Dulloo, B.V. Ford-Lloyd, L. Frese, J. Iriondo y M.A.A. Pinheiro de Carvalho (ed.) Agrobiodiversity Conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford, UK.Parra Quijano, M., Iriondo, J.M., Torres, M.E., De la Rosa, L. 2011a. Evaluation and validation of ecogeographical core collections using phenotypic data. Crop Science 51:694-703.Parra-Quijano, M. Iriondo, J.M., De la Cruz, M., Torres, M.E. 2011 A. Strategies for the development of core collections based on ecogeographical data. Crop Science 51:656-666Parra-Quijano, M. Iriondo, J.M., Frese, L., Torres, M.E. 2012 C. Spatial and ecogeographic approaches for selecting genetic reserves in Europe. En: N. Maxted, M.E. Dulloo, B.V. Ford-Lloyd, L. Frese, J. Iriondo, M.A.A. Pinheiro de Carvalho (ed.) Agrobiodiversity Conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford, UK.Parra-Quijano, M. Iriondo, J.M., Torres, M.E. 2012 A. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resources and Crop Evolution 59(2):205-217 DOI 10.1007/s10722-011-9676-7 89Parra-Quijano, M. Iriondo, J.M., Torres, M.E. 2012 B. Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation 21:79-96 DOI 10.1007/s10531-011-0167-0Parra-Quijano, M. Iriondo, J.M., Torres, M.E., De la Rosa, L. 2011 B. Evaluation and validation of ecogeographical core collections using phenotypic data. Crop Science 51:694-703Parra-Quijano, M., Draper, D., Iriondo, J. 2003. Assessing in situ conservation of Lupinus spp. In Spain through GIS. Crop Wild Relative, 1: 8-9.Parra-Quijano, M., Iriondo, J. M., Torres, E. 2012b. Applications of ecogeography and geographic information systems in conservation and utilization of plant genetic resources. Spanish journal of agricultural research. 2: 419- 429.Parra-Quijano, M., Iriondo, J. M., Torres, E. 2012c. Improving representativeness of genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodiversity and Conservation, 21(1), 79-96.Parra-Quijano, M., Iriondo, J.M., de la Cruz, M., Torres, M.E. 2011b. Strategies for the development of core collections based on ecogeographical data. Crop Science 51:656-666.Parra-Quijano, M., Iriondo, J.M., Frese, L., Torres, E.. 2012a. Spatial and ecogeographic approaches for selecting genetic reserves in Europe. En: Maxted, N., Dulloo, M.E., Ford-Lloyd, B.V., Frese, L., Iriondo, J., Pinheiro de Carvalho, M.A.A. (ed.) Agrobiodiversity Conservation: securing the diversity of crop wild relatives and landraces. CABI, Wallingford, UKParra-Quijano, M.; Draper, D.; Torres, E., Iriondo, J.M. 2008. Ecogeographical representativeness in crop wild relative ex situ collections. p. 249-273. In Maxted, N.; Ford-Lloyd, B.V.; Kell, S.P.; Iriondo, J.M.; Dulloo, M.E., Turok, J. (ed.) Crop wild relative conservation and use. CAB International, Wallingford.Parra-Quijano, M.; Draper, D.; Torres, E., Iriondo, J.M. 2008. Ecogeographical representativeness in crop wild relative ex situ collections. p. 249-273. In Maxted, N.; Ford-Lloyd, B.V.; Kell, S.P.; Iriondo, J.M.; Dulloo, M.E., Turok, J. (ed.) Crop wild relative conservation and use. CAB International, Wallingford.Pearce, J., Ferrier, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological modelling, 133(3), 225-245.Peeters, J. P., Wilkes, H. G., Galwey, N. W. 1990. The use of ecogeographical data in the exploitation of variation from gene banks. Theoretical and applied genetics, 80(1), 110-112.Phillips, J., Asdal, Å., Magos Brehm, J., Rasmussen, M., Maxted, N. 2016. In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions, 22(11), 1112-1126.Phillips, J., Asdal, Å., Magos Brehm, J., Rasmussen, M., Maxted, N. 2016. In situ and ex situ diversity analysis of priority crop wild relatives in Norway. Diversity and Distributions, 22(11), 1112-1126.Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., Ferrier, S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), 181-197.Pliscoff, P., Luebert, F., Hilger, H. H., Guisan, A. 2014. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecological Modelling, 288, 166-177.Potter, K. M., Hargrove, W. W. 2012. Determining suitable locations for seed transfer under climate change: a global quantitative method. New Forests, 43, 581–599.Raftery, A. E., Dean, N. 2006. Variable selection for model-based clustering. Journal of the American Statistical Association, 101(473):168-178.Ramirez-Villegas, J., Jarvis, A., Läderach, P. 2013. Empirical approaches for assessing impacts of climate change on agriculture: The EcoCrop model and a case study with grain sorghum. Agricultural and Forest Meteorology, 170, 67-78.Ramirez-Villegas, J., Khoury, C., Jarvis, A., Debouck, D., Guarino, L. 2010. A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS ONE 5(10), e13497. doi:10.1371/journal.pone.0013497.Rebelo, A. G., Siegfried, W. R. 1990. Protection of fynbos vegetation: ideal and real-world options. Biological Conservation, 54(1): 15-31.Reddy, L.J., H.D. Upadhyaya, C.L.L. Gowda, S. Singh. 2005. Development of core collection in pigeonpea (Cajanus cajan (L.) Millspaugh) using geographic and qualitative morphological descriptors. Genetic Resources and Crop Evolution 52:1049–1056.Richardson, B. A., Chaney, L. 2018. Climate-based seed transfer of a widespread shrub: population shifts, restoration strategies, and the trailing edge. Ecological Applications, 28(8), 2165-2174.Roebber, P. J. 2009. Visualizing multiple measures of forecast quality. Weather and Forecasting, 24(2), 601-608.Rousseeuw, P.J. 1987. Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics 20: 53–65. doi:10.1016/0377-0427(87)90125-7.Rubio Teso, M. L., Iriondo, J. M. 2019. In situ Conservation Assessment of Forage and Fodder CWR in Spain Using Phytosociological Associations. Sustainability, 11(21), 5882.Russell, J., van Zonneveld, M., Dawson, I. K., Booth, A., Waugh, R., Steffenson, B. 2014. Genetic diversity and ecological niche modelling of wild barley: refugia, large-scale post-lgm range expansion and limited mid-future climate threats. PloS one, 9(2), e86021.Scheldeman, X., van Zonneveld, M. 2011. Manual de Capacitación en Análisis Espacial de Diversidad y Distribución de Plantas. Bioversity International, Roma, Italia.Shryock, D., Defalco, L. A., Esque, T. C. 2018. Spatial decision-support tools to guide restoration and seed-sourcing in the Desert Southwest. Ecosphere, 9 (10), 1-19Sillero, N., Barbosa, A. M. 2021. Common mistakes in ecological niche models. International Journal of Geographical Information Science, 35(2):213-226.Soberón, J., Peterson, T. 2004. Biodiversity informatics: managing and applying primary biodiversity data. Phil. Trans. R. Soc. Lond. B. 359, 689-698.Tapia, C., Paredes, N., Lima, L. (2019). Representatividad de la diversidad del género musa en el ecuador. Revista Científica Ecuatoriana, 6(1).Taylor, N. G., Kell, S. P., Holubec, V., Parra-Quijano, M., Chobot, K., Maxted, N. (2017). A systematic conservation strategy for crop wild relatives in the Czech Republic. Diversity and Distributions, 23(4), 448-462.Thomas, E., Alcazar, C., Moscoso L. G., Vásquez A., Osorio L. F., Salgado-Negrete, B., Gonzalez, M., Parra-Quijano, M., Bozzano, M., Loo, J., Jalonen, R., Ramírez, W. 2017. The importance of species selection and seed sourcing in forest restoration for enhancing adaptive capacity to climate change: Colombian tropical dry forest as a model. The Lima declaration on biodiversity and climate change: contributions from science to policy for sustainable development, (89), 122-132Thomas, E., van Zonneveld, M., Loo, J., Hodgkin, T., Galluzzi, G., van Etten, J. 2012. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal. PLoS ONE 7(10): e47676.doi:10.1371/journal.pone.0047676Thormann, I. 2012. Applying FIGS to crop wild relatives and landraces in Europe. Crop Wild Relative 8 14:16.Thuiller, W. 2004. Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology, 10(12), 2020-2027.Thuiller, W., Araújo, M. B., Lavorel, S. 2003. Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680.Thuiller, W., Lafourcade, B., Engler, R., Araújo, M. B. 2009. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373.Tohme, J., Jones, P., Beebe, S., Iwanaga, M. 1995. The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. p. 95-107. In Hodgkin, T., Brown, A.H.D., van Hintum, Th.J.L., Morales, E.A.V. (eds.) Core collections of plant genetic resources. IPGRI, Rome.Tohme, J., Jones, P., Beebe, S., Iwanaga, M. 1995. The combined use of agroecological and characterisation data to establish the CIAT Phaseolus vulgaris core collection. p. 95–107. In Hodgkin, T., Brown, A.H.D., Hintum, T.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Wiley & Sons, New York, NY.Upadhyaya, H.D., Ortiz, R., Bramel, P.J., S. Singh, S. 2003. Development of a groundnut core collection using taxonomical, geographical and morphological descriptors. Genet. Resour. Crop Evol. 50:139–148.Van Zonneveld M, Scheldeman X, Escribano P, Viruel MA, Van Damme P, et al. (2012) Mapping Genetic Diversity of Cherimoya (Annona cherimola Mill.): Application of Spatial Analysis for Conservation and Use of Plant Genetic Resources. PLoS ONE 7(1): e29845. doi:10.1371/journal.pone.0029845VanDerWal, J., Shoo, L. P., Graham, C., Williams, S. E. 2009. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know?. Ecological modelling, 220(4), 589-594.Williams, C.L., Hargrove, W.W., Liebman, M., James, D.E. 2008. Agro-ecoregionalization of Iowa using multivariate geographical clustering. Agriculture, Ecosystems and Environment 123 (2008) 161–174Williams, M. I., Dumroese, R. K. 2013. Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 111 (4), 287–297Withrow-Robinson, B. A., Johnson, R. 2006. Selecting native plant materials for restoration projects: ensuring local adaptation and maintaining genetic diversity Oregon State University. URL: https://ir.library.oregonstate.edu/ downloads/g732d9349Wood, J. M. 2007. Understanding and Computing Cohen’s Kappa: A Tutorial. WebPsychEmpiricist. URL: Journal at http://wpe.info/.Xiurong, Z., Yingzhong, Z., Yong, C., Xiangyun, F., Qingyuan, G., Mingde, Z., Hodgkin, T. 2000. Establishment of sesame germplasm core collection in China. Genet. Resour. Crop Evol. 47:273– 279.Yonezawa, K., Nomura, T., Morishima, H. 1995. Sampling strategies for use in stratified germplasm collections. p. 35–53. In Hodgkin, T., Brown, A.H.D., Hintum, T.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Wiley & Sons, New York, NY.Yonezawa, K.; Nomura, T., Morishima, H. 1995. Sampling strategies for use in stratified germplasm collections. P. 35-53. In: Hodgkin, T., Brown, A.H.D., van Hintum, Th.J.L., Morales, E.A.V. (ed.) Core collections of plant genetic resources. John Willey & sons, Chichester, UK.Zair, W., Maxted, N., Brehm, J. M., Amri, A. 2020. Ex situ and in situ conservation gap analysis of crop wild relative diversity in the Fertile Crescent of the Middle East. Genetic Resources and Crop Evolution, 1-17.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85786/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALV09122022_TERMINADAPDFEspañol_ProyectoCAPFIGEN3.pdfV09122022_TERMINADAPDFEspañol_ProyectoCAPFIGEN3.pdfLibro CAPFITOGEN 3application/pdf16493263https://repositorio.unal.edu.co/bitstream/unal/85786/2/V09122022_TERMINADAPDFEspan%cc%83ol_ProyectoCAPFIGEN3.pdfe38bd732f61b657ac3b79c69dc0713aeMD52THUMBNAILV09122022_TERMINADAPDFEspañol_ProyectoCAPFIGEN3.pdf.jpgV09122022_TERMINADAPDFEspañol_ProyectoCAPFIGEN3.pdf.jpgGenerated Thumbnailimage/jpeg7748https://repositorio.unal.edu.co/bitstream/unal/85786/3/V09122022_TERMINADAPDFEspan%cc%83ol_ProyectoCAPFIGEN3.pdf.jpgb02c6f66e1b916e13a3bc57bc3df6ff2MD53unal/85786oai:repositorio.unal.edu.co:unal/857862024-03-10 23:04:06.357Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=