Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study

ilustraciones, gráficos

Autores:
Viveros Acosta, Edgar Frank
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86059
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86059
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Yacimientos de gas
Metano
Dinámica molecular
Gases de combustión - Mediciones
Depleted gas reservoir
Methane cushion gas
Molecular dynamic simulation
Pore-scale analysis
Underground hydrogen storage
Yacimiento de gas depletado
Metano como Cushion Gas
Simulación dinámica molecular
Análisis a escala de poro
Almacenamiento de hidrógeno
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_16ddbb5b2f069344baeb7818dfe8eb4a
oai_identifier_str oai:repositorio.unal.edu.co:unal/86059
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
dc.title.translated.spa.fl_str_mv Almacenamiento de hidrogeno en yacimientos de gas depletados usando metano como cushion gas : un estudio de tensión interfacial y escala de poro
title Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
spellingShingle Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Yacimientos de gas
Metano
Dinámica molecular
Gases de combustión - Mediciones
Depleted gas reservoir
Methane cushion gas
Molecular dynamic simulation
Pore-scale analysis
Underground hydrogen storage
Yacimiento de gas depletado
Metano como Cushion Gas
Simulación dinámica molecular
Análisis a escala de poro
Almacenamiento de hidrógeno
title_short Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
title_full Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
title_fullStr Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
title_full_unstemmed Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
title_sort Hydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale study
dc.creator.fl_str_mv Viveros Acosta, Edgar Frank
dc.contributor.advisor.none.fl_str_mv Franco Ariza, Camilo Andres
Cortes Correa, Farid Bernard
dc.contributor.author.none.fl_str_mv Viveros Acosta, Edgar Frank
dc.contributor.researchgroup.spa.fl_str_mv Fenómenos de Superficie Michael Polanyi
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
topic 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industriales
Yacimientos de gas
Metano
Dinámica molecular
Gases de combustión - Mediciones
Depleted gas reservoir
Methane cushion gas
Molecular dynamic simulation
Pore-scale analysis
Underground hydrogen storage
Yacimiento de gas depletado
Metano como Cushion Gas
Simulación dinámica molecular
Análisis a escala de poro
Almacenamiento de hidrógeno
dc.subject.lemb.none.fl_str_mv Yacimientos de gas
Metano
Dinámica molecular
Gases de combustión - Mediciones
dc.subject.proposal.eng.fl_str_mv Depleted gas reservoir
Methane cushion gas
Molecular dynamic simulation
Pore-scale analysis
Underground hydrogen storage
dc.subject.proposal.spa.fl_str_mv Yacimiento de gas depletado
Metano como Cushion Gas
Simulación dinámica molecular
Análisis a escala de poro
Almacenamiento de hidrógeno
description ilustraciones, gráficos
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-09T15:27:54Z
dc.date.available.none.fl_str_mv 2024-05-09T15:27:54Z
dc.date.issued.none.fl_str_mv 2024-05-08
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86059
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86059
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv N.F. Jariah, M.A. Hassan, Y.H. Taufiq-Yap, A.M. Roslan, Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review, 9 (2021) 1198.
M. Padilla, K. Swamygowda, R. Sheoran, Designing Waste Management Systems in the City of The Future, in: CITIES 20.50–Creating Habitats for the 3rd Millennium: Smart–Sustainable–Climate Neutral. Proceedings of REAL CORP 2021, 26th International Conference on Urban Development, Regional Planning and Information Society, CORP–Competence Center of Urban and Regional Planning, 2021, pp. 241-249.
V. Mirchi, M. Dejam, V. Alvarado, Interfacial tension and contact angle measurements for hydrogen-methane mixtures/brine/oil-wet rocks at reservoir conditions, International Journal of Hydrogen Energy, 47 (2022) 34963-34975.
A. Al-Yaseri, L. Esteban, N. Yekeen, A. Giwelli, J. Sarout, M. Sarmadivaleh, The effect of clay on initial and residual saturation of Hydrogen in clay-rich sandstone formation: Implications for underground hydrogen storage, International Journal of Hydrogen Energy, 48 (2023) 5175-5185.
E.I. Epelle, W. Obande, G.A. Udourioh, I.C. Afolabi, K.S. Desongu, U. Orivri, B. Gunes, J.A.J.S.E. Okolie, Fuels, Perspectives and prospects of underground hydrogen storage and natural hydrogen, (2022).
J.J.G.P.P. Speight, Recovery, storage, and transportation. Speight JG (ed.) Natural Gas, 149 (2019) 186.
J. Mouli-Castillo, N. Heinemann, K. Edlmann, Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study, Applied Energy, 283 (2021) 116348.
J. Miocic, N. Heinemann, K. Edlmann, J. Scafidi, F. Molaei, J. Alcalde, Underground hydrogen storage: a review, 528 (2023) 73-86.
S. Bauer, M. Pichler, Underground Sun Storage, Energ. Wasser-Prax, 8 (2017) 64-69.
A. Pérez, E. Pérez, S. Dupraz, J. Bolcich, Patagonia wind-hydrogen project: Underground storage and methanation, in: 21st world hydrogen energy conference, 2016.
R.A. Bartolomeu, L.F. Franco, Thermophysical properties of supercritical H2 from Molecular Dynamics simulations, International Journal of Hydrogen Energy, 45 (2020) 16372-16380.
N.S. Muhammed, B. Haq, D. Al Shehri, Role of methane as a cushion gas for hydrogen storage in depleted gas reservoirs, International Journal of Hydrogen Energy, (2023).
H. Al-Mukainah, A. Al-Yaseri, N. Yekeen, J. Al Hamad, M. Mahmoud, Wettability of shale–brine–H2 system and H2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage, Energy Reports, 8 (2022) 8830-8843.
A. Alanazi, N. Yekeen, M. Ali, M. Ali, I.S. Abu-Mahfouz, A. Keshavarz, S. Iglauer, H. Hoteit, Influence of organics and gas mixing on hydrogen/brine and methane/brine wettability using Jordanian oil shale rocks: Implications for hydrogen geological storage, Journal of Energy Storage, 62 (2023) 106865.
Q.T. Doan, A. Keshavarz, C.R. Miranda, P. Behrenbruch, S. Iglauer, Molecular dynamics simulation of interfacial tension of the CO2-CH4-water and H2-CH4-water systems at the temperature of 300 K and 323 K and pressure up to 70 MPa, Journal of Energy Storage, 66 (2023) 107470.
M. Lysyy, G. Ersland, M. Fernø, Pore-scale dynamics for underground porous media hydrogen storage, Advances in Water Resources, 163 (2022) 104167.
G. Wang, G. Pickup, K. Sorbie, E. Mackay, Scaling analysis of hydrogen flow with carbon dioxide cushion gas in subsurface heterogeneous porous media, International Journal of Hydrogen Energy, 47 (2022) 1752-1764.
W. van Rooijen, L. Hashemi, M. Boon, R. Farajzadeh, H. Hajibeygi, Microfluidics-based analysis of dynamic contact angles relevant for underground hydrogen storage, Advances in Water Resources, 164 (2022) 104221.
H. Song, J. Lao, L. Zhang, C. Xie, Y. Wang, Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency, Applied Energy, 337 (2023) 120901.
M. Lysyy, N. Liu, C.M. Solstad, M.A. Fernø, G. Ersland, Microfluidic hydrogen storage capacity and residual trapping during cyclic injections: Implications for underground storage, International Journal of Hydrogen Energy, (2023).
N. Liu, A.R. Kovscek, M.A. Fernø, N. Dopffel, Pore-scale study of microbial hydrogen consumption and wettability alteration during underground hydrogen storage, 11 (2023).
M. Buchgraber, M. Al-Dossary, C.M. Ross, A.R. Kovscek, Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow, Journal of Petroleum Science and Engineering, 86-87 (2012) 27-38.
J.W. Hornbrook, L.M. Castanier, P.A. Pettit, Observation of Foam/Oil Interactions in a New, High-Resolution Micromodel, in: SPE Annual Technical Conference and Exhibition, 1991.
B. Benali, Quantitative Pore-Scale Analysis of CO2 Foam for CCUS, in: Department of Physics and Technology, University of Bergen, Norway, 2019, pp. 142.
A. Hassanpouryouzband, E. Joonaki, K. Edlmann, R.S. Haszeldine, Offshore geological storage of hydrogen: is this our best option to achieve net-zero?, ACS Energy Letters, 6 (2021) 2181-2186.
G.M. Hale, M.R.J.A.o. Querry, Optical constants of water in the 200-nm to 200-μm wavelength region, 12 (1973) 555-563.
E.R. Peck, S.J.J. Huang, Refractivity and dispersion of hydrogen in the visible and near infrared, 67 (1977) 1550-1554.
J. Jin, J.W. Kim, C.-S. Kang, J.-A. Kim, T.B.J.O.e. Eom, Thickness and refractive index measurement of a silicon wafer based on an optical comb, 18 (2010) 18339-18346.
C. Chomsurin, C.J. Werth, Analysis of pore‐scale nonaqueous phase liquid dissolution in etched silicon pore networks, Water resources research, 39 (2003).
X. Zhao, H. Jin, Investigation of hydrogen diffusion in supercritical water: A molecular dynamics simulation study, International Journal of Heat and Mass Transfer, 133 (2019) 718-728.
P. Witherspoon, D. Saraf, Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43, The Journal of Physical Chemistry, 69 (1965) 3752-3755.
S. Peng, Q. He, D. Peng, X. Ouyang, X. Zhang, C. Chai, L. Zhang, X. Sun, H. Deng, W. Hu, Equilibrium distribution and diffusion of mixed hydrogen-methane gas in gravity field, arXiv preprint arXiv:2304.03948, (2023).
R. Lenormand, E. Touboul, C.J.J.o.f.m. Zarcone, Numerical models and experiments on immiscible displacements in porous media, 189 (1988) 165-187.
C. Zhang, M. Oostrom, T.W. Wietsma, J.W. Grate, M.G.J.E. Warner, Fuels, Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering, 25 (2011) 3493-3505.
S. Harsha Bhimineni, T. Zhou, S. Mahmoodpour, M. Singh, W. Li, S. Bag, I. Sass, F. Müller-Plathe, Machine-Learning-Assisted Investigation of the Diffusion of Hydrogen in Brine by Performing Molecular Dynamics Simulation, in, 2022, pp. arXiv:2207.02966.
R. Conrad, W. Seiler, Methane and hydrogen in seawater (Atlantic Ocean), Deep Sea Research Part A. Oceanographic Research Papers, 35 (1988) 1903-1917.
F. Lang, P. Servio, Solubility measurements for the CH4 + C2H6 + H2O system under hydrate-liquid-vapour equilibrium, Journal of Natural Gas Science and Engineering, 26 (2015) 130-134.
N.K. Jha, A. Al-Yaseri, M. Ghasemi, D. Al-Bayati, M. Lebedev, M. Sarmadivaleh, Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography, International Journal of Hydrogen Energy, 46 (2021) 34822-34829.
M. Boon, H. Hajibeygi, Experimental characterization of H 2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS), Scientific reports, 12 (2022) 14604.
A. Al-Yaseri, M. Ali, G.R. Abbasi, H.R. Abid, N.K. Jha, Enhancing CO2 storage capacity and containment security of basaltic formation using silica nanofluids, International Journal of Greenhouse Gas Control, 112 (2021) 103516.
E.M. Thaysen, I.B. Butler, A. Hassanpouryouzband, D. Freitas, F. Alvarez-Borges, S. Krevor, N. Heinemann, R. Atwood, K. Edlmann, Pore-scale imaging of hydrogen displacement and trapping in porous media, International Journal of Hydrogen Energy, 48 (2023) 3091-3106.
Z. Jangda, H. Menke, A. Busch, S. Geiger, T. Bultreys, H. Lewis, K. Singh, Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability, Journal of Colloid and Interface Science, 629 (2023) 316-325.
H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I. Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, M. Kappl, Contact angle hysteresis, Current Opinion in Colloid & Interface Science, 59 (2022) 101574.
M.S.A. Perera, A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity, Fuel, 334 (2023) 126677.
N.S. Muhammed, M.B. Haq, D.A. Al Shehri, A. Al-Ahmed, M.M. Rahman, E. Zaman, S. Iglauer, Hydrogen storage in depleted gas reservoirs: A comprehensive review, Fuel, 337 (2023) 127032.
M. Bai, K. Song, Y. Sun, M. He, Y. Li, J. Sun, An overview of hydrogen underground storage technology and prospects in China, Journal of Petroleum Science and Engineering, 124 (2014) 132-136.
W. Li, Z. Jin, Effect of ion concentration and multivalence on methane-brine interfacial tension and phenomena from molecular perspectives, Fuel, 254 (2019) 115657.
J.J. Taber, Research on Enhanced Oil Recovery: Past, Present and Future, in: D.O. Shah (Ed.) Surface Phenomena in Enhanced Oil Recovery, Springer US, Boston, MA, 1981, pp. 13-52.
N.S. Muhammed, B. Haq, D. Al Shehri, CO2 rich cushion gas for hydrogen storage in depleted gas reservoirs: Insight on contact angle and surface tension, International Journal of Hydrogen Energy, (2023).
L. Ji, F. Xu, M. Lin, W. Jiang, G. Cao, S. Wu, X. Jiang, Rapid evaluation of capillary pressure and relative permeability for oil–water flow in tight sandstone based on a physics-informed neural network, Journal of Petroleum Exploration and Production Technology, 13 (2023) 2499-2517.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 77 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86059/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86059/2/1123311292.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86059/3/1123311292.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f7bc5252ca6eb3fb80b9005da55f0378
818ad985d3ae6db06fa1016b8ab1fc1f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089304889098240
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco Ariza, Camilo Andresc7dfef551d42ea2b6a8e8edf3acb9155Cortes Correa, Farid Bernard81fecdfbaf3209c1274825b4ec851e58Viveros Acosta, Edgar Frank6f6cbdb2c6412366651a4c18feb65f19Fenómenos de Superficie Michael Polanyi2024-05-09T15:27:54Z2024-05-09T15:27:54Z2024-05-08https://repositorio.unal.edu.co/handle/unal/86059Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficosThis work presents the evaluation of a mixture of gases (H2 and CH4) as Cushion gas in a depleted gas reservoir. Where the flow behaviors and the different interactions between these gases are studied. The experimental tests were performed to pore scale using a micromodel that simulated a sandstone reservoir saturated with deionized water at a pressure of 30 bar. The injection dynamics used were drainage (gas injection) and imbibition (water injection) observed in geological formations. The amount of gas injected corresponds to fifty pore volumes of each of the gases (CH4, H2 and H2-CH4 in a ratio of 1:1) at room temperature (20 °C) at three injection rates (0.1, 1, 10 mL·h-1). Data collection was carried out using a videographic record and using a MATLAB algorithm for an image segmentation and analysis was carried out, this analysis was complemented with ImageJ software for the comparison of methods, ensuring precision. The main results are found in the increase in gas saturation for high Capillary Numbers NCa) and among them a greater saturation of H2-CH4 compared to individual gas systems. As capillary number increases, dissolution times become similar, with significant differences observed at lower capillary numbers. The contact angles demonstrated minimal variation, indicating weak wettability toward gases. While the gas retention capacity in the imbibition stage is affected by the capillary pressure that varies with the pore throats, favoring the presence of gases such as Cushion Gas. The study pioneers the investigation of hydrogen flow behavior in a multiphase system at the pore scale under high pressure conditions. These insights contribute to addressing the knowledge gap, advancing the potential implementation of hydrogen in diverse geological formations for energy storage. (Tomado de la fuente)Este trabajo presenta la evaluación de una mezcla de gases (H2 y CH4) como Cushion Gas en un yacimiento de gas depletado. Donde se estudian los comportamientos de flujo de y las diferentes interacciones entre estos gases. Las pruebas experimentales utilizaron a escala de poro usando un micromodelo que imita un yacimiento de arenisca saturado con agua desionizada a una presión de 30 bar. Las dinámicas de inyección usada fueron de drenaje (inyección de gas) e imbibición (inyección de agua) observadas en formaciones geológicas. La cantidad de gas inyectado corresponde a cincuenta volúmenes porosos de cada uno de los gases (CH4, H2 y H2-CH4 en una proporción de 1:1) a temperatura ambiente (20 °C) y a tres tasas de inyección (0.1, 1, 10 m·h-1). La recolección de datos se realizó mediante un registro videográfico y usando un algoritmo de MATLAB se realizó la segmentación y análisis de imágenes, complementado con el software ImageJ para la comparación de métodos, asegurando precisión. Los principales resultados se encuentran en el aumento de la saturación de gases para altos Números Capilares NCa) y entre ellos una mayor saturación de H2-CH4 en comparación con sistemas de gas individuales. A medida que aumenta el número capilar, los tiempos de disolución se vuelven similares, con diferencias significativas observadas en números capilares más bajos. Los ángulos de contacto demostraron una variación mínima, indicando una débil humectabilidad hacia los gases. Mientras que la capacidad de retención de gases en la etapa de imbibición es afectada por la presión capilar que varía con las gargantas de poro favoreciendo la presencia de gases como Cushion Gas. Así, este estudio investiga el comportamiento del flujo de hidrógeno en un sistema multifásico a escala de poro bajo condiciones de alta presión. Estos conocimientos contribuyen a abordar la brecha de conocimiento, avanzando en la implementación potencial del hidrógeno en diversas formaciones geológicas para el almacenamiento de energía.Fenomenos de Superficie Michael Polanyi - NORAD NorwayMaestríaMagíster en Ingeniería - Ingeniería QuímicaEnergy transitionIngeniería Química E Ingeniería De Petróleos.Sede Medellín77 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas660 - Ingeniería química::665 - Tecnología de aceites, grasas, ceras, gases industrialesYacimientos de gasMetanoDinámica molecularGases de combustión - MedicionesDepleted gas reservoirMethane cushion gasMolecular dynamic simulationPore-scale analysisUnderground hydrogen storageYacimiento de gas depletadoMetano como Cushion GasSimulación dinámica molecularAnálisis a escala de poroAlmacenamiento de hidrógenoHydrogen storage in depleted gas reservoirs using methane cushion gas : an interfacial tension and pore scale studyAlmacenamiento de hidrogeno en yacimientos de gas depletados usando metano como cushion gas : un estudio de tensión interfacial y escala de poroTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaN.F. Jariah, M.A. Hassan, Y.H. Taufiq-Yap, A.M. Roslan, Technological Advancement for Efficiency Enhancement of Biodiesel and Residual Glycerol Refining: A Mini Review, 9 (2021) 1198.M. Padilla, K. Swamygowda, R. Sheoran, Designing Waste Management Systems in the City of The Future, in: CITIES 20.50–Creating Habitats for the 3rd Millennium: Smart–Sustainable–Climate Neutral. Proceedings of REAL CORP 2021, 26th International Conference on Urban Development, Regional Planning and Information Society, CORP–Competence Center of Urban and Regional Planning, 2021, pp. 241-249.V. Mirchi, M. Dejam, V. Alvarado, Interfacial tension and contact angle measurements for hydrogen-methane mixtures/brine/oil-wet rocks at reservoir conditions, International Journal of Hydrogen Energy, 47 (2022) 34963-34975.A. Al-Yaseri, L. Esteban, N. Yekeen, A. Giwelli, J. Sarout, M. Sarmadivaleh, The effect of clay on initial and residual saturation of Hydrogen in clay-rich sandstone formation: Implications for underground hydrogen storage, International Journal of Hydrogen Energy, 48 (2023) 5175-5185.E.I. Epelle, W. Obande, G.A. Udourioh, I.C. Afolabi, K.S. Desongu, U. Orivri, B. Gunes, J.A.J.S.E. Okolie, Fuels, Perspectives and prospects of underground hydrogen storage and natural hydrogen, (2022).J.J.G.P.P. Speight, Recovery, storage, and transportation. Speight JG (ed.) Natural Gas, 149 (2019) 186.J. Mouli-Castillo, N. Heinemann, K. Edlmann, Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study, Applied Energy, 283 (2021) 116348.J. Miocic, N. Heinemann, K. Edlmann, J. Scafidi, F. Molaei, J. Alcalde, Underground hydrogen storage: a review, 528 (2023) 73-86.S. Bauer, M. Pichler, Underground Sun Storage, Energ. Wasser-Prax, 8 (2017) 64-69.A. Pérez, E. Pérez, S. Dupraz, J. Bolcich, Patagonia wind-hydrogen project: Underground storage and methanation, in: 21st world hydrogen energy conference, 2016.R.A. Bartolomeu, L.F. Franco, Thermophysical properties of supercritical H2 from Molecular Dynamics simulations, International Journal of Hydrogen Energy, 45 (2020) 16372-16380.N.S. Muhammed, B. Haq, D. Al Shehri, Role of methane as a cushion gas for hydrogen storage in depleted gas reservoirs, International Journal of Hydrogen Energy, (2023).H. Al-Mukainah, A. Al-Yaseri, N. Yekeen, J. Al Hamad, M. Mahmoud, Wettability of shale–brine–H2 system and H2-brine interfacial tension for assessment of the sealing capacities of shale formations during underground hydrogen storage, Energy Reports, 8 (2022) 8830-8843.A. Alanazi, N. Yekeen, M. Ali, M. Ali, I.S. Abu-Mahfouz, A. Keshavarz, S. Iglauer, H. Hoteit, Influence of organics and gas mixing on hydrogen/brine and methane/brine wettability using Jordanian oil shale rocks: Implications for hydrogen geological storage, Journal of Energy Storage, 62 (2023) 106865.Q.T. Doan, A. Keshavarz, C.R. Miranda, P. Behrenbruch, S. Iglauer, Molecular dynamics simulation of interfacial tension of the CO2-CH4-water and H2-CH4-water systems at the temperature of 300 K and 323 K and pressure up to 70 MPa, Journal of Energy Storage, 66 (2023) 107470.M. Lysyy, G. Ersland, M. Fernø, Pore-scale dynamics for underground porous media hydrogen storage, Advances in Water Resources, 163 (2022) 104167.G. Wang, G. Pickup, K. Sorbie, E. Mackay, Scaling analysis of hydrogen flow with carbon dioxide cushion gas in subsurface heterogeneous porous media, International Journal of Hydrogen Energy, 47 (2022) 1752-1764.W. van Rooijen, L. Hashemi, M. Boon, R. Farajzadeh, H. Hajibeygi, Microfluidics-based analysis of dynamic contact angles relevant for underground hydrogen storage, Advances in Water Resources, 164 (2022) 104221.H. Song, J. Lao, L. Zhang, C. Xie, Y. Wang, Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency, Applied Energy, 337 (2023) 120901.M. Lysyy, N. Liu, C.M. Solstad, M.A. Fernø, G. Ersland, Microfluidic hydrogen storage capacity and residual trapping during cyclic injections: Implications for underground storage, International Journal of Hydrogen Energy, (2023).N. Liu, A.R. Kovscek, M.A. Fernø, N. Dopffel, Pore-scale study of microbial hydrogen consumption and wettability alteration during underground hydrogen storage, 11 (2023).M. Buchgraber, M. Al-Dossary, C.M. Ross, A.R. Kovscek, Creation of a dual-porosity micromodel for pore-level visualization of multiphase flow, Journal of Petroleum Science and Engineering, 86-87 (2012) 27-38.J.W. Hornbrook, L.M. Castanier, P.A. Pettit, Observation of Foam/Oil Interactions in a New, High-Resolution Micromodel, in: SPE Annual Technical Conference and Exhibition, 1991.B. Benali, Quantitative Pore-Scale Analysis of CO2 Foam for CCUS, in: Department of Physics and Technology, University of Bergen, Norway, 2019, pp. 142.A. Hassanpouryouzband, E. Joonaki, K. Edlmann, R.S. Haszeldine, Offshore geological storage of hydrogen: is this our best option to achieve net-zero?, ACS Energy Letters, 6 (2021) 2181-2186.G.M. Hale, M.R.J.A.o. Querry, Optical constants of water in the 200-nm to 200-μm wavelength region, 12 (1973) 555-563.E.R. Peck, S.J.J. Huang, Refractivity and dispersion of hydrogen in the visible and near infrared, 67 (1977) 1550-1554.J. Jin, J.W. Kim, C.-S. Kang, J.-A. Kim, T.B.J.O.e. Eom, Thickness and refractive index measurement of a silicon wafer based on an optical comb, 18 (2010) 18339-18346.C. Chomsurin, C.J. Werth, Analysis of pore‐scale nonaqueous phase liquid dissolution in etched silicon pore networks, Water resources research, 39 (2003).X. Zhao, H. Jin, Investigation of hydrogen diffusion in supercritical water: A molecular dynamics simulation study, International Journal of Heat and Mass Transfer, 133 (2019) 718-728.P. Witherspoon, D. Saraf, Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43, The Journal of Physical Chemistry, 69 (1965) 3752-3755.S. Peng, Q. He, D. Peng, X. Ouyang, X. Zhang, C. Chai, L. Zhang, X. Sun, H. Deng, W. Hu, Equilibrium distribution and diffusion of mixed hydrogen-methane gas in gravity field, arXiv preprint arXiv:2304.03948, (2023).R. Lenormand, E. Touboul, C.J.J.o.f.m. Zarcone, Numerical models and experiments on immiscible displacements in porous media, 189 (1988) 165-187.C. Zhang, M. Oostrom, T.W. Wietsma, J.W. Grate, M.G.J.E. Warner, Fuels, Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering, 25 (2011) 3493-3505.S. Harsha Bhimineni, T. Zhou, S. Mahmoodpour, M. Singh, W. Li, S. Bag, I. Sass, F. Müller-Plathe, Machine-Learning-Assisted Investigation of the Diffusion of Hydrogen in Brine by Performing Molecular Dynamics Simulation, in, 2022, pp. arXiv:2207.02966.R. Conrad, W. Seiler, Methane and hydrogen in seawater (Atlantic Ocean), Deep Sea Research Part A. Oceanographic Research Papers, 35 (1988) 1903-1917.F. Lang, P. Servio, Solubility measurements for the CH4 + C2H6 + H2O system under hydrate-liquid-vapour equilibrium, Journal of Natural Gas Science and Engineering, 26 (2015) 130-134.N.K. Jha, A. Al-Yaseri, M. Ghasemi, D. Al-Bayati, M. Lebedev, M. Sarmadivaleh, Pore scale investigation of hydrogen injection in sandstone via X-ray micro-tomography, International Journal of Hydrogen Energy, 46 (2021) 34822-34829.M. Boon, H. Hajibeygi, Experimental characterization of H 2/water multiphase flow in heterogeneous sandstone rock at the core scale relevant for underground hydrogen storage (UHS), Scientific reports, 12 (2022) 14604.A. Al-Yaseri, M. Ali, G.R. Abbasi, H.R. Abid, N.K. Jha, Enhancing CO2 storage capacity and containment security of basaltic formation using silica nanofluids, International Journal of Greenhouse Gas Control, 112 (2021) 103516.E.M. Thaysen, I.B. Butler, A. Hassanpouryouzband, D. Freitas, F. Alvarez-Borges, S. Krevor, N. Heinemann, R. Atwood, K. Edlmann, Pore-scale imaging of hydrogen displacement and trapping in porous media, International Journal of Hydrogen Energy, 48 (2023) 3091-3106.Z. Jangda, H. Menke, A. Busch, S. Geiger, T. Bultreys, H. Lewis, K. Singh, Pore-scale visualization of hydrogen storage in a sandstone at subsurface pressure and temperature conditions: Trapping, dissolution and wettability, Journal of Colloid and Interface Science, 629 (2023) 316-325.H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I. Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, M. Kappl, Contact angle hysteresis, Current Opinion in Colloid & Interface Science, 59 (2022) 101574.M.S.A. Perera, A review of underground hydrogen storage in depleted gas reservoirs: Insights into various rock-fluid interaction mechanisms and their impact on the process integrity, Fuel, 334 (2023) 126677.N.S. Muhammed, M.B. Haq, D.A. Al Shehri, A. Al-Ahmed, M.M. Rahman, E. Zaman, S. Iglauer, Hydrogen storage in depleted gas reservoirs: A comprehensive review, Fuel, 337 (2023) 127032.M. Bai, K. Song, Y. Sun, M. He, Y. Li, J. Sun, An overview of hydrogen underground storage technology and prospects in China, Journal of Petroleum Science and Engineering, 124 (2014) 132-136.W. Li, Z. Jin, Effect of ion concentration and multivalence on methane-brine interfacial tension and phenomena from molecular perspectives, Fuel, 254 (2019) 115657.J.J. Taber, Research on Enhanced Oil Recovery: Past, Present and Future, in: D.O. Shah (Ed.) Surface Phenomena in Enhanced Oil Recovery, Springer US, Boston, MA, 1981, pp. 13-52.N.S. Muhammed, B. Haq, D. Al Shehri, CO2 rich cushion gas for hydrogen storage in depleted gas reservoirs: Insight on contact angle and surface tension, International Journal of Hydrogen Energy, (2023).L. Ji, F. Xu, M. Lin, W. Jiang, G. Cao, S. Wu, X. Jiang, Rapid evaluation of capillary pressure and relative permeability for oil–water flow in tight sandstone based on a physics-informed neural network, Journal of Petroleum Exploration and Production Technology, 13 (2023) 2499-2517.CO2-EOR for CCUS in Colombia and Ecuador: Norwegian energy initiativeEstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86059/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1123311292.2024.pdf1123311292.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf3081773https://repositorio.unal.edu.co/bitstream/unal/86059/2/1123311292.2024.pdff7bc5252ca6eb3fb80b9005da55f0378MD52THUMBNAIL1123311292.2024.pdf.jpg1123311292.2024.pdf.jpgGenerated Thumbnailimage/jpeg5081https://repositorio.unal.edu.co/bitstream/unal/86059/3/1123311292.2024.pdf.jpg818ad985d3ae6db06fa1016b8ab1fc1fMD53unal/86059oai:repositorio.unal.edu.co:unal/860592024-05-09 23:04:47.753Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=