Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)

Se evaluó el efecto del alimento vivo enriquecido (rotífero Brachionus plicatilis) con siete proporciones de proteínas y lípidos (P/L): 100/0, 90/10, 80/20, 70/30, 60/40, 50/50 y 40/60, durante el desarrollo larval de la jaiba azul Callinectes sapidus. El contenido de lípidos aumentó significativame...

Full description

Autores:
Ospina Salazar, Gloria Helena
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85728
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85728
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
590 - Animales::592 - Invertebrados
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Callinectes sapidus
desarrollo larval
influencia de la dieta
expresión génica
metabolismo de nutrientes
larval development
diet influence
gene expression
nutrient metabolism
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_16a323c5050eef84a7d2771c76ae3436
oai_identifier_str oai:repositorio.unal.edu.co:unal/85728
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
dc.title.translated.eng.fl_str_mv Diet influence on larval development of blue crab Callinectes sapidus (Decapoda: Brachyura)
title Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
spellingShingle Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
590 - Animales::592 - Invertebrados
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Callinectes sapidus
desarrollo larval
influencia de la dieta
expresión génica
metabolismo de nutrientes
larval development
diet influence
gene expression
nutrient metabolism
title_short Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
title_full Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
title_fullStr Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
title_full_unstemmed Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
title_sort Influencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)
dc.creator.fl_str_mv Ospina Salazar, Gloria Helena
dc.contributor.advisor.none.fl_str_mv Zea, Sven
Miranda-Baeza, Anselmo
dc.contributor.author.none.fl_str_mv Ospina Salazar, Gloria Helena
dc.contributor.researchgroup.spa.fl_str_mv Fauna Marina Colombiana: Biodiversidad y Usos
dc.contributor.orcid.spa.fl_str_mv Ospina Salazar, Gloria Helena [0000-0001-7754-8304]
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
590 - Animales::592 - Invertebrados
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
topic 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::576 - Genética y evolución
590 - Animales::592 - Invertebrados
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Callinectes sapidus
desarrollo larval
influencia de la dieta
expresión génica
metabolismo de nutrientes
larval development
diet influence
gene expression
nutrient metabolism
dc.subject.proposal.spa.fl_str_mv Callinectes sapidus
desarrollo larval
influencia de la dieta
expresión génica
metabolismo de nutrientes
dc.subject.proposal.eng.fl_str_mv larval development
diet influence
gene expression
nutrient metabolism
description Se evaluó el efecto del alimento vivo enriquecido (rotífero Brachionus plicatilis) con siete proporciones de proteínas y lípidos (P/L): 100/0, 90/10, 80/20, 70/30, 60/40, 50/50 y 40/60, durante el desarrollo larval de la jaiba azul Callinectes sapidus. El contenido de lípidos aumentó significativamente de 100/0 a 40/60 (7,48 a 11,47 g 100 g-1), al igual que la energía (21,88 a 23,16 kJ g-1), y aparentemente el contenido de proteínas no fue un factor limitante (63,93 a 67,50 g 100 g-1). Las dietas 50/50 y 40/60 evidenciaron las mejores respuestas en todas las variables estudiadas. Se presentaron hasta ocho estadios de zoea, y la metamorfosis a megalopa ocurrió desde la quinta muda, entre 49 a 57 días. La supervivencia fluctuó entre 6 y 34 %, y el ciclo de muda fue haciéndose significativamente más corto de 100/0 a 40/60. Mediante RNA-seq se realizó un análisis transcriptómico de novo entre el primer (inicial) y segundo estadio de zoea, para observar el efecto de dos dietas con resultados opuestos durante el primer ensayo (80/20 y 40/60). En las rutas metabólicas relacionadas con la digestión y metabolismo de los nutrientes se identificaron 110 genes sobre-regulados en 40/60 vs inicial y 47 en 80/20 vs inicial. Las zoeas alimentadas con el mayor contenido de lípidos (40/60) mejoraron los niveles de expresión de los genes relacionados con este nutriente, influenciando el metabolismo de proteínas, carbohidratos, y la expresión de genes del sistema digestivo y transporte y catabolismo celular. Este estudio establece los cimientos básicos de dietas formuladas de composición bioquímica conocida, como suministro a las larvas de C. sapidus con el fin de optimizar y parametrizar su cultivo (Texto tomado de la fuente)
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-02-26T20:59:13Z
dc.date.available.none.fl_str_mv 2024-02-26T20:59:13Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85728
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85728
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aaqillah-Amr, M.A., Hidir, A., Azra, M.N., Ahmad-Ideris, A.R., Abualreesh, M.H., Noordiyana, M.N., and Ikhwanuddin, M. 2021. Use of pelleted diets in commercially farmed decapods during juvenile stages: A Review. Animals, 11: 1971. https://doi.org/10.3390/ani11061761
Abrunhosa, F., and Melo, M. 2008. Development and functional morphology of the foreguts of larvae and postlarvae of three crustacean decapods. Braz. J. Biol., 68: 221–228. https://doi.org/10.1590/S1519-69842008000100032
Abu-Rezq, T., Al-Abdul-Elah, K., Duremdez, R., Al-Marzouk, A., James, C. M., Al- Gharabally, H., Al-Shimmari, J. 2002. Studies on the effect of using the rotifer, Brachionus plicatilis, treated with different nutritional enrichment media and antibiotics on the growth and survival of blue-fin sea bream, Sparidentex hasta (Valenciennes), larvae. Aquac. Res., 33: 117–128. https://doi.org/10.1046/j.1365- 2109.2002.00658.x
Acosta, E., and Gómez-León, J. 2013. Influence of larval density at the initial seeding and the concentration of food on Argopecten nucleus larviculture (Ostreoida: Pectiniidae). Bol. Investig. Mar. Cost., 42 (1): 73–90. http://boletin.invemar.org.co:8085/ojs/index.php/boletin/article/view/60
Aggio, J.F., Tieu, R., Wei, A., and Derby, C.D. 2012. Oesophageal chemoreceptors of blue crabs, Callinectes sapidus, sense chemical deterrents and can block ingestion of food. J. Exp. Biol., 215: 1700–1710. https://doi.org/10.1523/ENEURO.0324- 17.2017A
Agh, N., and Sorgeloos, P. 2005. Handbook of protocols and guidelines for culture and enrichment of live food for use in larviculture. Urmia, Iran. 61 p.
Aguilar, R., Johnson, E.G., Hines, A.H., Kramer, M.A., and Goodison, M.R. 2008. Importance of blue crab life history for stock enhancement and spatial management of the fishery in Chesapeake Bay. Rev. Fish. Sci., 16: 117–124. https://doi.org/10.1080/10641260701681599
Alagawany, M., Taha, A.E., Noreldin, A., El-Tarabily, K. A., and Abd El-Hack, M.E. 2021. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542 736841. https://doi.org/10.1016/j.aquaculture.2021.736841
Alava, V.R., Quinitio, E.T., De Pedro, J.B., Orosco, Z.G.A., and Wille, M. 2007. Reproductive performance, lipids and fatty acids of mud crab Scylla serrata (Forsskål) fed dietary lipid levels. Aquac. Res., 38: 1442–1451. https://doi.org/10.1111/j.1365-2109.2007.01722.x
Ali, Y.B., Verger, R., and Abousalham, A. 2012. Lipases or esterases: Does it really matter? toward a new bio-physico-chemical classification. 31–51. In: Sandoval, G. (Ed.). Methods in Molecular Biology, Vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_2
Allman, A.L., Williams, E.P., and Place, A.R. 2017. Growth and enzyme production in blue crabs (Callinectes sapidus) fed cellulose and chitin supplemented diets. J. Shellfish Res., 36: 283–291. https://doi.org/10.2983/035.036.0132
Almeida, E.V., Cardoso, C.S., Souza, M.S., and Bonecker, S.L.C. 2021. Swimming behavior of newly hatched larvae of six decapod species (Crustacea: Decapoda). Nauplius, https://doi.org/10.1590/2358-2936e2021023
Amaro, M.A., and Fiscarelli, A.G. 2009. Length-weight relationship and condition factor of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Crustacea, Brachyura, Ucididae). Braz. Arch. Biol., 52: 397–406. https://doi.org/10.1590/S1516-89132009000200017
Amsler, M.O., and George, R.Y. 1984. Seasonal variation in the biochemical composition of the embryos of Callinectes sapidus Rathbun. J. Crustac. Biol., 4: 546–553. https://doi.org/10.2307/1548068
Anastasia, J.R., Morgan, S.G., and Fisher, N.S. 1998. Tagging crustacean larvae: Assimilation and retention of trace elements. Limnol. Oceanogr., 43: 362–368. https://doi.org/10.4319/lo.1998.43.2.0362
Andrés, M., Estévez, A., Anger, K., and Rotllant, G. 2008. Developmental patterns of larval growth in the edible spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol., 357: 35–40. https://doi.org/10.1016/j.jembe.2007.12.015
Andrés, M., Estévez, A., Hontoria, F., and Rotllant, G. 2010a. Differential utilization of biochemical components during larval development of the spider crab Maja brachydactyla (Decapoda: Majidae). Mar. Biol., 157: 2329–2340. http://hdl.handle.net/10261/43429
Andrés, M., Estévez, A., and Rotllant, G. 2007. Growth, survival and biochemical composition of spider crab Maja brachydactyla (Balss, 1922) (Decapoda: Majidae) larvae reared under different stocking densities, prey: larva ratios and diets. Aquaculture, 273: 494–502. https://doi.org/10.1016/j.aquaculture.2007.10.026
Andrés, M., Gisbert, E., Díaz, M., Moyano, F. J., Estévez, A., and Rotllant, G. 2010b. Ontogenetic changes in digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol., 389: 75–84. https://doi.org/10.1016/j.jembe.2010.03.015
Anger, K. 1983. Moult cycle and morphogenesis in Hyas araneus larvae (decapoda, majidae), reared in the laboratory. Helgolander Meeresun., 36: 285–302. https://doi.org/10.1007/BF01983632
Anger, K. 1987. The D0 threshold: a critical point in the larval development of decapod crustaceans. J. Exp. Mar. Biol. Ecol., 108: 15–30. https://doi.org/10.1016/0022-0981(87)90128-6
Anger, K. 2001. The Biology of Decapod Crustacean Larvae: Crustacean Issues Volume 14. A.A. Balkema Publishers, Pensilvania. 419 p. https://doi.org/10.1016/S0022-0981(02)00381-7
Anger, K. 2006. Contributions of larval biology to crustacean research: a review. Invertebr. Reprod. Dev., 49: 175–205. https://doi.org/10.1080/07924259.2006.9652207
Anger, K., and Dawirs, R.R. 1981. Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae). Helgolander Meeresun., 34: 287–311. https://doi.org/10.1007/BF02074124
Anger, K., Dawirs, R.R., Anger, V., Goy, J.W., and Costlow, J.D. 1981. Starvation resistance in first stage zoeae of brachyuran crabs in relation to temperature. J. Crustac. Biol., 1: 518–525. https://doi.org/10.2307/1548128
Anger, K., and Nair, K.K.C. 1979. Laboratory experiments on the larval development of Hyas araneus (Decapoda, Majidae). Helgoland. Wiss. Meer., 32: 36–54. https://doi.org/10.1007/BF02189891
Anger, K., and Spindler, K.D. 1987. Energetics, moult cycle and ecdysteroid titers in spider crab (Hyas araneus) larvae starved after the D0 threshold. Mar. Biol., 94: 367–375. https://doi.org/10.1007/BF00428242
Antipov, D., Korobeynikov, A., McLean, J.S., and Pevzner, P.A. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics, 32: 1009–1015. https://doi.org/10.1093/bioinformatics/btv688
A.O.A.C. 1984. Official methods of Analysis of the Association of Official Agricultural Chemists. 13th ed. AOAC, Washington. 1038 p.
A.O.A.C. 2000. Oficial methods of Analysis of the Asociation of Official Analytical Chemists. 17th ed. Sigma-Aldrich, Washington. 2200 p.
A.O.A.C. 2005. Official methods of Analysis of the Asociation of Official Analytical Chemists. 18th ed. AOAC, Arlington
Arakane, Y., and Muthukrishnan, S. 2010. Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci., 67: 201–216. https://doi.org/10.1007/s00018-009-0161-9
Arguelles, E. 2021. Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Curr. Appl. Sci. Technol. 21: 65–77. https://li01.tci-thaijo.org/index.php/cast/article/view/245911
Arias-Moscoso, J.L., Cuevas-Acuña, D.A., Rivas-Vega, M.E., Martínez-Córdova, L.R., Osuna-Amarilas, P., and Miranda-Baeza, A. 2016. Características físicas y químicas de biofloc liofilizado producido en cultivos de camarón blanco con diferente inclusión de harina de pescado en la dieta. Lat. Am. J. Aquat. Res., 44: 760-768. http://dx.doi.org/10.3856/vol44-issue4-fulltext-12
Asadpour-Ousalou, Y.A. 2014. Application of shark liver oil for Artemia enrichment and its comparison with imported Selco oil. Glob. Vet., 13: 1037–1042. http://www.idosi.org/gv/gv13(6)14/13.pdf
Ashraf, M.Y., Javed Iqbal, M., and Naqvi, S.A. 2011. Replacement of expensive pure nutritive media with low cost commercial fertilizers for mass culture of freshwater algae, Chlorella vulgaris Intensive fish culture. Int. J. Agric. Biol., 13: 484–490. https://www.researchgate.net/profile/Muhammad-Iqbal-147/publication/288717170_Replacement_of_Expensive_Pure_Nutritive_Media_with_Low_Cost_Commercial_Fertilizers_for_Mass_Culture_of_Freshwater_Algae_Chlorella_vulgaris/links/58f21746aca27289c2167107/Replacement-of-Expensive-Pure-Nutritive-Media-with-Low-Cost-Commercial-Fertilizers-for-Mass-Culture-of-Freshwater-Algae-Chlorella-vulgaris.pdf
Austin, E.L., and Moore, P.A. 2022. Influence of amino acid concentrations on foraging and feeding in the rusty crayfish Faxonius rusticus (Girard, 1852) (Decapoda: Astacidea: Cambaridae), assayed in flow-through mesocosms. J. Crustac. Biol., 42: https://doi.org/10.1093/jcbiol/ruac034
Azra, M.N., Chen, J.C., Hsu, T.H., Ikhwanuddin, M., and Abol-Munafi, A.B. 2019. Growth, molting duration and carapace hardness of blue swimming crab, Portunus pelagicus, instars at different water temperatures. Aquac. Rep., 15: 100226. https://doi.org/10.1016/j.aqrep.2019.100226
Bacab, F.J., Amador, L.E., Valdes, R., and Cabrera, P. 2002. Cultivo de larvas de la jaiba azul Callinectes sapidus en condiciones de laboratorio en la Isla del Carmen, Campeche, México. I Congreso Iberoamericano Virtual de Acuicultura - Civa, 122–128. https://www.researchgate.net/profile/Luis-Enrique-Amador-Del-Angel/publication/235256039_Cultivo_de_larvas_de_la_jaiba_azul_Callinectes_sapidus_en_condiciones_de_laboratorio_en_la_Isla_del_Carmen_Campeche_Mexico_Mexico/links/0deec52a8ee312ec10000000/Cultivo-de-larvas-de-la-jaiba-azul-Callinectes-sapidus-en-condiciones-de-laboratorio-en-la-Isla-del-Carmen-Campeche-Mexico-Mexico.pdf
Ballabio, A. 2016. The awesome lysosome. EMBO Mol. Med., 8: 73–76. https://pubmed.ncbi.nlm.nih.gov/26787653/
BangHong, W., ZhiGang, Y., YongXu, C., Hang, Y., and XiaoZhen, Y. 2019. Gene cloning and expression analysis of pancreatic lipase in Chinese mitten crab (Eriocheir sinensis). Gen. Appl. Biol., 38: 2466–2475. https://www.cabdirect.org/cabdirect/abstract/20193351306
Bartlett, K., and Eaton, S. 2004. Mitochondrial β-oxidation. European J. Mol. Biol. Biochem., 271: 462–469. https://doi.org/10.1046/j.1432-1033.2003.03947.x
Barrett, A.J. 1994. [1] Classification of peptidases. Meth. Enzymol., 244: 1–15. https://doi.org/10.1016/0076-6879(94)44003-4
Barrett, A.J., Rawlings, N.D., and Woessner, J.F. 2004. Handbook of proteolytic enzymes. Elsevier Academic Press. Miami. 984 p.
Basford, A.J., Makings, N., Mos, B., White, C.A., and Dworjanyn, S. 2021. Greenwater, but not live feed enrichment, promotes development, survival, and growth of larval Portunus armatus. Aquaculture, 534: 736331. https://doi.org/10.1016/j.aquaculture.2020.736331
Baylon, J.C. 2009. Appropriate food type, feeding schedule and Artemia density for the zoea larvae of the mud crab, Scylla tranquebarica (Crustacea: Decapoda: Portunidae). Aquaculture, 288, 190–195. https://doi.org/10.1016/j.aquaculture.2008.11.028
Baylon, J.C., Bravo, M.E.A., and Maningo, N.C. 2004. Ingestion of Brachionus plicatilis and Artemia salina nauplii by mud crab Scylla serrata larvae. Aquac. Res., 35: 62–70. https://doi.org/10.1111/j.1365-2109.2004.00987.x
Begum, N., Mamun Siddiky, M.N.S., Ahmmed, S. 2021. Comparison of growth performance of live feed microalgae and rotifer (Brachionus sp.) under different feeding medium in outdoor culture condition. World J. Biol. Pharm. Health Sci. 5: 025–032. https://doi.org/10.30574/wjbphs.2021.5.2.0008
Belgrad, B.A., and Griffen, B.D. 2016. The influence of diet composition on fitness of the blue crab, Callinectes sapidus. Plos One, 11: e0145481. https://pubmed.ncbi.nlm.nih.gov/26784581/
Bell, J.D., Leber, K.M., Blankenship, H.L., Loneragan, N.R., and Masuda, R. 2008. A new era for restocking, stock enhancement and sea ranching of coastal fisheries resources. Rev. Fish. Sci., 16: 1–9. https://doi.org/10.1080/10641260701776951
Bembe, S., Liang, D., and Chung, J.S. 2017. Optimal temperature and photoperiod for the spawning of blue crab, Callinectes sapidus, in captivity. Aquac. Res., 48: 5498–5505. https://doi.org/10.1111/are.13366
Bhavan, P.S., Devi, V.G., Shanti, R., Radhakrishnan, S., and Poongodi, R. 2010. Basic biochemical constituents and profiles of amino acids in the post larvae of Macrobrachium rosenbergii fed with spirulina and yeast enriched Artemia. J. Sci. Res., 2 539–539. https://api.semanticscholar.org/CorpusID:83716180
Biesiot, P.M., and Capuzzo, J.M.D. 1990. Changes in digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. J. Exp. Mar. Biol. Ecol., 136: 107–122. https://doi.org/10.1016/0022-0981(90)90190-N
Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
Bonilla-Gómez, J.L., Chiappa-Carrara, X., Galindo, C., Cuzón, G., and Gaxiola, G. 2013. Effects of adaptation to laboratory conditions on growth, molting, and food consumption of juvenile Farfantepenaeus duorarum (Decapoda: Penaeidae). J. Crustac. Biol., 33: 191–197. https://doi.org/10.1163/1937240X-00002125
Bookhout, C., and Costlow, J.D. 1977. Larval development of Callinectes similis reared in the laboratory. Bull. Mar. Sci., 27: 704–728. https://www.ingentaconnect.com/content/umrsmas/bullmar/1977/00000027/00000004/art00006
Bown, D.P., and Gatehouse, J.A. 2004. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues. Eur. J. Biochem., 271: 2000–2011. https://doi.org/10.1111/j.1432-1033.2004.04113.x
Brandão, M.C., Freire, A.S., and Burton, R.S. 2016. Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Syst. Biodivers., 14: 288–302. https://doi.org/10.1080/14772000.2016.1140245
Brito, R., Rosas, C., Chimal, M.E., Gaxiola, G. 2001. Effect of different diets on growth and digestive enzyme activity in Litopenaeus vannamei (Boone, 1931) early post-larvae. Aquac. Res., 32: 257-266. https://doi.org/10.1046/j.1365-2109.2001.00548.x
Brooks, W.K. 1882. Handbook of invertebrate zoology for laboratories and seaside work. Bradlee Whidden, Boston. 392 p.
Brucet, S., Boix, D., López-Flores, R., Badosa, A., and Quintana, X.D. 2005. Ontogenic changes of amino acid composition in planktonic crustacean species. Mar. Biol., 148: 131–139. https://doi.org/10.1007/s00227-005-0068-4
Bu, X., Wang, X., Lin, Z., Wang, C., Li, L., Liu, S., Shi, Q., Qin, J.G., and Chen, L. 2022. Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Br. J. Nutr., 127: 666–678. https://doi.org/10.1017/S0007114521001409
Calado, R., Carvalho, L., Rodrigues, A.C.M., Abe, F., Patrício, S.A.L., Soares, A.M.V.M., and Gravato, C. 2022. The physiological consequences of delaying metamorphosis in the marine ornamental shrimp Lysmata seticaudata and its implications for aquaculture. Aquaculture, 546: 737391. https://doi.org/10.1016/j.aquaculture.2021.737391
Cantalapiedra, C.P., Hern̗andez-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. 2021. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol., 38: 5825–5829. https://doi.org/10.1093/molbev/msab293
Caracappa, J.C., and Munroe, D.M. 2018. Morphological variability among broods of first-stage blue crab (Callinectes sapidus) zoeae. Biol. Bull., 235: 123–133. https://www.journals.uchicago.edu/doi/abs/10.1086/699922
Cardona, E., Lorgeoux, B., Geffroy, C., Richard, P., Saulnier, D., Gueguen, Y., Guillou, G., and Chim, L. 2015. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes. Aquaculture, 448: 288–297. https://doi.org/10.1016/j.aquaculture.2015.05.035
Carić, M., Sanko-Njire, J., and Skaramuca, B. 1993. Dietary effects of different feeds on the biochemical composition of the rotifer (Brachionus plicatilis Müller). Aquaculture, 110: 141–150. https://doi.org/10.1016/0044-8486(93)90268-4
Carneiro, W.F., Castro, T.F.D., Orlando, T.M., Meurer, F., Paula, D.A.J., Virote, B.C.R., Vianna, A.R.C.B., and Murgas, L.D.S. 2020. Replacing fish meal by Chlorella sp. meal: Effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture, 528: 735612. https://doi.org/10.1016/j.aquaculture.2020.735612
Carrillo-Farnés, O., Forrellat-Barrios, A., Guerrero-Galván, S., and Vega-Villasante, F. 2007. A review of digestive enzyme activity in penaeid shrimps. Crustaceana, 80: 257–275. https://www.jstor.org/stable/20107805
Carter, C.G. 2015. Feeding in hatcheries. 317-348. In: Davis, D.A. (Ed.). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Oxford. 432 p. https://doi.org/10.1016/B978-0-08-100506-4.00013-1
Carter, C.G., and Codabaccus, M.B. 2022. Feeding in hatcheries. 355–398. In: Davis, D.A. (Ed.). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Cambridge. 403 p.
Carter, C.G., and Mente, E. 2014. Protein synthesis in crustaceans: A review focused on feeding and nutrition. Cent. Eur. J. Biol., 9: 1–10. https://doi.org/10.2478/s11535-013-0134-0
Castejón, D., Rotllant, G., Alba-Tercedor, J., Font-i-Furnols, M., Ribes, E., Durfort, M., and Guerao, G. 2019. Morphology and ultrastructure of the midgut gland (“hepatopancreas”) during ontogeny in the common spider crab Maja brachydactyla Balss, 1922 (Brachyura, Majidae). Arthropod Struct. Dev., 49: 137–151. https://doi.org/10.1016/j.asd.2018.11.013
Ceccaldi, H.J. 1997. Anatomy and phisiology of the digestive system. 261–291. In: D´Abramo, L., Conklin, D., and Akiyama, D. (Eds.). Crustacean nutrition. The World Aquaculture Society, Louisiana. 587 p.
Cha, G.H., Wang, W.N., Peng, T., Huang, M.Z., and Liu, Y. 2015. A Rac1 GTPase is a critical factor in the immune response of shrimp (Litopenaeus vannamei) to Vibrio alginolyticus infection. Dev. Com. Immunol., 51: 226–237. https://doi.org/10.1016/j.dci.2015.04.004
Chakraborty, K., Chakraborty, R.D., Radhakrishnan, E.V., and Vijayan, K.K. 2010. Fatty acid profiles of spiny lobster (Panulirus homarus) phyllosoma fed enriched Artemia. Aquac. Res., 41: e393–e403. https://doi.org/10.1111/j.1365-2109.2009.02469.x
Chandhini, S., and Kumar, R. 2019. Transcriptomics in aquaculture: current status and applications. Rev. Aquac., 11: 1379–1397. https://doi.org/10.1111/raq.12298
Chang, E.S., and Mykles, D.L. 2011. Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol., 172: 323–330. https://doi.org/10.1016/j.ygcen.2011.04.003
Chaoruangrit, L., Tapaneeyaworawong, P., Powtongsook, S., and Sanoamuang, L. 2018. Alternative microalgal diets for cultivation of the fairy shrimp Branchinella thailandensis (Branchiopoda: Anostraca). Aquacult. Int., 26: 37–47. https://doi.org/10.1007/s10499-017-0191-5
Chen, B., Zheng, J., Chen, C., Wu, K., Lin, F., Ning, L., Rong, H., Chen, C., Xiao, F., Zhang, H., and Wen, X. 2023. Differences in lipid accumulation and mobilization in the hepatopancreas and ovary of female mud crab (Scylla paramamosain, Estampador, 1949) during ovarian development. Aquaculture, 564: 739046. https://doi.org/10.1016/j.aquaculture.2022.739046
Chen, L., and Yang, G. 2014. PPARs integrate the mammalian clock and energy metabolism. PPAR Res., 2014: 653017. https://doi.org/10.1155/2014/653017
Chi, Y., Li, F., Sun, Y., Wen, R., and Li, S. 2013. Expression and function analysis of Rac1 homolog in Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol., 35: 927–932. https://doi.org/10.1016/j.fsi.2013.07.006
Chiu, T.T., Jensen, T.E., Sylow, L., Richter, E.A., and Klip, A. 2011. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell. Signal., 23: 1546–1554. https://doi.org/10.1016/j.cellsig.2011.05.022
Christiansen, M.E., and Costlow, J.D. 1982. Ultrastructural study of the exoskeleton of the estuarine crab Rhithropanopeus harrisii: Effect of the insect growth regulator Dimilin® (diflubenzuron) on the formation of the larval cuticle. Mar. Biol., 66: 217–226. https://doi.org/10.1007/BF00397025
Chung, J.S. 2010. Hemolymph ecdysteroids during the last three molt cycles of the blue crab, Callinectes sapidus: quantitative and qualitative analyses and regulation. Arch. Insect. Biochem. Physiol., 73: 1–13. https://doi.org/10.1002/arch.20327C
Chung, J.S. 2020. Role of hepatopancreas trehalose-6-phosphate synthase in carbohydrate levels of the blue crab Callinectes sapidus in feeding and emersion. J. Shellfish Res., 39: 449–459. https://doi.org/10.2983/035.039.0226
Churchill, E.R. 1942. The zoeal stages of the blue crab, Callinectes sapidus Rathbun. Ches. Biol. Lab. Pub. 49. 26 p.
Cock, P.J.A., Grüning, B.A., Paszkiewicz, K., and Pritchard, L. 2013. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ, e167. https://doi.org/10.7717/peerj.167
Codabaccus, B.M., Carter, C.G., Fitzgibbon, Q.P., Trotter, A.J., and Smith, G.G. 2020. Growth and biochemical composition of hatchery reared Scyllaridae lobster (Thenus australiensis) larval stages, nisto and juvenile first stage. Aquaculture, 524: 735262. https://doi.org/10.1016/j.aquaculture.2020.735262
Côrtes, G., and Tsuzuki, M.Y. 2012. Effect of different live food on survival and growth of first feeding barber goby, Elacatinus figaro (Sazima, Moura & Rosa 1997) larvae. Aquac. Res., 43: 831–834. https://doi.org/10.1111/j.1365-2109.2011.02896.x
Costlow, J.D. 1965. Variability in larval stages of the blue crab, Callinectes sapidus. Biol. Bull., 128: 58–66. https://www.journals.uchicago.edu/doi/abs/10.2307/1539389?journalCode=bbl
Costlow, J.D. 1967. The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab Callinectes sapidus. Elgoland. Wiss. Meer., 15: 84–97. https://doi.org/10.1007/BF01618611
Costlow, J.D., and Bookhout, C.G. 1959a. Preliminary note on the complete larval development of Callinectes sapidus Rathbun under laboratory conditions. Limnol. Oceanogr. 4: 222–223. https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.1959.4.2.0222
Costlow, J.D., and Bookhout, C.G. 1959b. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116: 373–396. https://www.journals.uchicago.edu/doi/abs/10.2307/1538947?journalCode=bbl
Cruz-Suárez, L.E., Ricque-Marie, D., Pinal-Mansilla, J.D., and Wesche-Ebelling, P. 1994. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact. Aquaculture, 123: 349–360. https://doi.org/10.1016/0044-8486(94)90070-1
Cruz-Suárez, L.E., Ricque-Marie, D., Pinal-Mansilla, J.D., and Wesche-Ebelling, P. 1994. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact. Aquaculture, 123: 349–360. https://doi.org/10.1016/0044-8486(94)90070-1
da Silva, U.A.T., Cottens, K., Ventura, R., Boeger, W. A., and Ostrensky, A. 2012. Different pathways in the larval development of the crab Ucides cordatus (Decapoda, Ocypodidae) and their relation with high mortality rates by the end of massive larvicultures. Pesquisa Vet. Brasil., 32: 284–288. https://doi.org/10.1590/S0100-736X2012000400002
Dai, T., Zhang, X., Li, M., Tao, X., Jin, M., Sun, P., Zhou, Q., and Jiao, L. 2022. Dietary vitamin K3 activates mitophagy, improves antioxidant capacity, immunity and affects glucose metabolism in Litopenaeus vannamei. Food Funct., 13: 6362–6372. https://doi.org/10.1039/D2FO00865C
Dai, Y., Wang, T.T., Wang, Y.F., Gong, X.J., and Yue, C.F. 2009. Activities of digestive enzymes during embryonic development in the crayfish Procambarus clarkii (Decapoda). Aquac. Res., 40: 1394–1399. https://doi.org/10.1111/j.1365-2109.2009.02237.x
Daly, B.J., Eckert, G.L., and Long, W.C. 2020. Moulding the ideal crab: implications of phenotypic plasticity for crustacean stock enhancement. ICES J. Mar. Sci., 78: 421-434. https://doi.org/10.1093/icesjms/fsaa043
Dan, S., and Koiso, M. 2008. Effect of microalgal addition on stability of n-3HUFA contents in enriched rotifer Brachionus plicatilis in large tank for seed production. Aquac. Sci., 56: 603-604. https://doi.org/10.11233/aquaculturesci.56.603
Dan, S., and Hamasaki, K. 2011. Effects of salinity and dietary n-3 highly unsaturated fatty acids on the survival, development, and morphogenesis of the larvae of laboratory-reared mud crab Scylla serrata (Decapoda, Portunidae). Aquac. Int., 19: 323–338. https://doi.org/10.1007/s10499-010-9374-z
Dan, S., Ashidate, M., and Hamasaki, K. 2015. Improved method for culturing the swimming crab Portunus trituberculatus larvae to prevent mass mortality during seed production. Fish. Sci., 82: 113–126. https://doi.org/10.1007/s12562-015-0935-y
Davis, J.A. 2003. Development of hatchery techniques for the mud crab Scylla serrata (Forskǻl) in South Africa. Tesis Ph.D. in Applied Biological Sciences, Universiteit Gent, Bélgica. 165 p. https://biblio.ugent.be/publication/521739/file/1875443.pdf#page=101
Dawirs, R.R. 1984. Influence of starvation on larval development of Carcinus maenas L. (Decapoda : Portunidae). J. Exp. Mar. Biol. Ecol., 80: 47–66. https://doi.org/10.1016/0022-0981(84)90093-5
Deleo, D.M., Pérez-Moreno, J.L., Vázquez-Miranda, H., and Bracken-Grissom, H.D. 2018. RNA profile diversity across arthropoda: guidelines, methodological artifacts, and expected outcomes. Biol. Methods Protoc., 3: bpy012. https://doi.org/10.1093/biomethods/bpy012
De Silva, S.S., and Anderson, T.A. 1994. Fish Nutrition in Aquaculture. Aquaculture Series. Chapman y Hall, London. 320 p.
De Walsche, C., Mertens, J., and Dumont, H.J. 1991. Observations on temperature optimum, cyst production, and survival of Streptocephalus proboscideus (Frauenfeld, 1873) (Crustacea: Anostraca), fed different diets. Hydrobiologia, 212: 21–26. https://doi.org/10.1007/BF00025983
Dendinger, J.E. 1987. Digestive proteases in the midgut gland of the atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol., 88: 503–506. https://doi.org/10.1016/0305-0491(87)90334-8
Dendinger, J.E., and Alterman, A. 1983. Mechanical properties in relation to chemical constituents of postmolt cuticle of the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. Part A: Phys., 75: 421–424. http://biomimetic.pbworks.com/f/MECHANICAL+PROPERTIES+IN+RELATION+TODendinger.pdf
Dendinger, J.E., and O’Connor, K.L. 1990. Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol., 95: 525–530. https://doi.org/10.1016/0305-0491(90)90014-K
Dhert, P., King, N., and O’Brien, E. 2014. Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture, 431: 59–64. https://doi.org/10.1016/j.aquaculture.2014.04.021
Dhert, P., Rombaut, G., Suantika, G., and Sorgeloos, P. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200: 129–146. https://doi.org/10.1016/S0044-8486(01)00697-4
Díaz-Tenorio, L.M., García-Carreño, F.L., and Navarrete del Toro, M.A. 2006. Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebr. Biol., 125: 125–135. https://doi.org/10.1111/j.1744-7410.2006.00047.x
Domingues, P.M., Turk, P.E., Andrade, J.P., and Lee, P.G. 2001. Effects of enriched Artemia nauplii on production, survival and growth of the mysid shrimp Mysidopsis almyra Bowman 1964 (Crustacea: Mysidacea). Aquac. Res., 32: 599–603. https://doi.org/10.1046/j.1365-2109.2001.00608.xD
Donnelly, J.M. 2009. Blue crab farming on Maryland’s eastern shore. Doctoral Thesis. University of Maryland, College Park, Maryland. 102 p. https://drum.lib.umd.edu/handle/1903/10054
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350–356. https://doi.org/10.1021/ac60111a017
Engel, D. W., and Brouwer, M. 1993. Crustaceans as models for metal metabolism: I. Effects of the molt cycle on Blue Crab Metal Metabolism and MetallothioneinMar. Environ. Res., 35, 1–5. https://doi.org/10.1016/0141-1136(93)90004-J
Epelbaum, A., and Borisov, R. 2006. Feeding behaviour and functional morphology of the feeding appendages of red king crab Paralithodes camtschaticus larvae. Mar. Biol. Res., 2: 77–88. https://doi.org/10.1080/17451000600672529
Epifanio, C.E. 2019. Early life history of the blue crab Callinectes sapidus: A Review. J. Shellfish Res., 38: 1–22. https://doi.org/10.2983/035.038.0101
Estudillo-del Castillo, C., Gapasin, R.S., and Leaño, E.M. 2009. Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture, 293: 57–61. doi:10.1016/j.aquaculture.2009.04.008. https://doi.org/10.1016/j.aquaculture.2009.04.008
Factor, J.R. 1982. Development and metamorphosis of the feeding apparatus of the stone crab, Menippe mercenaria (brachyura, xanthidae). J. Morphol., 172: 299–312. https://doi.org/10.1002/jmor.1051720305
Fang, F., Yuan, Y., Jin, M., Shi, B., Zhu, T., Luo, J., Lu, J., Wang, X., Jiao, L., and Zhou, Q. 2021. Hepatopancreas transcriptome analysis reveals the molecular responses to different dietary n-3 PUFA lipid sources in the swimming crab Portunus trituberculatus. Aquaculture, 543: 737016. https://doi.org/10.1016/j.aquaculture.2021.737016
Fan, L., Wang, A., Miao, Y., Liao, S., Ye, C., and Lin, Q. 2016. Comparative proteomic identification of the hepatopancreas response to cold stress in white shrimp, Litopenaeus vannamei. Aquaculture, 454: 27–34. https://doi.org/10.1016/j.aquaculture.2015.10.016
Fan, L., Wang, L., and Wang, Z. 2019. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. Fish Shellfish Immunol., 92: 438–449. https://doi.org/10.1016/j.fsi.2019.06.037
Fantle, M.S., Dittel, A.I., Schwalm, S.M., Epifanio, C.E., and Fogel, M.L. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia, 120: 416–426. https://doi.org/10.1007/s004420050874
FAO 2020. FAO Yearbook. Fishery and Aquaculture Statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/ FAO anuario. Estadísticas de pesca y acuicultura 2018. Food and Agriculture Organization of the United Nations, Roma. 110 p. https://www.fao.org/fishery/en/publications/269665
Fassatoui, C., Hatira, S., and Romdhane, M.S. 2021. Size-weight relationships and condition factor of the invasive Atlantic blue crab Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae) from northern Tunisia: a preliminary investigation. J. Crustac. Biol., 41: ruab039. https://doi.org/10.1093/jcbiol/ruab039
Felgenhauer, A., Thistle, B., and Watling, L. 1989. Functional Morphology of Feeding and Grooming in Crustacea. Crustacean Issues 6. A.A. Balkema, Netherlands. 224 p.
Ferreira, M., Cortina-Burgueño, Á., Freire, I., and Otero, A. 2018. Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture, 491: 351–357. https://doi.org/10.1016/j.aquaculture.2018.03.024 .
Fiore, D.R., and Tlusty, M.F. 2005. Use of commercial Artemia replacement diets in culturing larval American lobsters (Homarus americanus). Aquaculture, 243: 291–303. https://doi.org/10.1016/j.aquaculture.2004.10.009
Fischer, S., Thatje, S., and Brey, T. 2009. Early egg traits in Cancer setosus (Decapoda, Brachyura): effects of temperature and female size. Mar. Ecol. Prog. Ser., 377: 193–202. https://doi.org/10.3354/meps07845
Flowers, E.M., Johnson, A.F., Aguilar, R., and Schott, E.J. 2018. Prevalence of the pathogenic crustacean virus Callinectes sapidus reovirus 1 near flow-through blue crab aquaculture in Chesapeake Bay, USA. Dis. Aquat. Organ., 129: 135–144. https://doi.org/10.3354/dao03232
Forbes, M.S. 2012. Cell Structure. 67–83. In: Sperelakis, N. (Ed.). Cell Physiology Source Book: Essentials of Membrane Biophysics, Academic Press, Canada. 1235 p.
Francis, R., Bryan, M., Aguilar, R., Watkins, E., Lindquist, M., and Hemingway, A. 2021. The influence of blue crab movement on mark-recapture estimates of recreational harvest and exploitation. Can. J. Fish. Aquat. Sci., 78: 371–385. https://doi.org/10.1139/cjfas-2020-0112
Frank, J.R., Sulkin, S.D., and Morgan, R.P. 1975. Biochemical changes during larval development of the xanthid crab Rhithropanopeus harrisii. I. Protein, total lipid, alkaline phosphatase, and glutamic oxaloacetic transaminase. Mar. Biol., 32: 105–111. https://doi.org/10.1007/BF00388503
Frolova, A., Muffett, K., and Miglietta, M.P. 2022. Multiple occurrences of Callinectes sapidus larvae on Gulf of Mexico Chrysaora chesapeakei. J. Plankton Res., 44: 966-969. https://doi.org/10.1093/plankt/fbac053
Frolov, A.V., Pankov, S.L., Geradze, K.N., Pankova, S.A., and Spektorova, L.V. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture, 97: 181-202. https://doi.org/10.1016/0044-8486(91)90264-8
Fuzita, F.J., Pinkse, M.W.H., Patane, J.S.L., Juliano, M.A., Verhaert, P., and Lopes, A.R. 2015. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: Insights into function and evolution of digestion in an ancient arthropod. Plos One 10: e0123841. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123841
Fu, Z., Yang, R., Zhou, S., Ma, Z., and Zhang, T. 2021. Effects of rotifers enriched with different enhancement products on larval performance and jaw deformity of golden Pompano larvae Trachinotus ovatus (Linnaeus, 1758). Front. Mar. Sci., 7. https://doi.org/10.3389/fmars.2020.626071
Gamboa-Delgado, J., Morales-Navarro, Y.I., Nieto-López, M.G., Villarreal-Cavazos, D.A., and Cruz-Suárez, L.E. 2019. Assimilation of dietary nitrogen supplied by fish meal and microalgal biomass from Spirulina (Arthrospira platensis) and Nannochloropsis oculata in shrimp Litopenaeus vannamei fed compound diets. J. Appl. Phycol., 31: 2379–2389. https://doi.org/10.1007/s10811-019-1732-2
Gao, Q., Liu, B., Shan, F., Gu, Z., Song, C., Sun, C., and Zhou, Q. 2022. Effects of oxidized fish oil on digestive enzyme activity and antioxidant system in Macrobrachium rosenbergii post-larvae. Aquac. Rep., 23: 101062. https://doi.org/10.1016/j.aqrep.2022.101062
Garcia, A.S., Parrish, C.C., and Brown, J.A. 2008. Use of enriched rotifers and Artemia during larviculture of Atlantic cod (Gadus morhua Linnaeus, 1758): Effects on early growth, survival and lipid composition. Aquac. Res., 39: 406–419. https://doi.org/10.1111/j.1365-2109.2007.01816.x
Gebauer, P., Giménez, L., Hinojosa, I.A., and Paschke, K. 2020. Settlement and metamorphosis in barnacles and decapods. 223–253. In: Anger, K., Harzsch, S., and Thiel, M.(Eds.). Developmental Biology and Larval Ecology. Vol. 7. Oxford University Press, New York. 836 p.
Gebauer, P., Paschke, K., and Anger, K. 1999. Costs of delayed metamorphosis: reduced growth and survival in early juveniles of an estuarine grapsid crab, Chasmagnathus granulata. J. Exp. Mar. Biol. Ecol., 238: 271–281. https://doi.org/10.1016/S0022-0981(98)00219-6
Gebauer, P., Paschke, K., and Anger, K. 2003. Delayed metamorphosis in decapod crustaceans: evidence and consequences. Rev. Chil. Hist. Nat., 76: 169–175. https://epic.awi.de/id/eprint/9112/
Genodepa, J., Zeng, C., and Southgate, P.C. 2004. Preliminary assessment of a microbound diet as an Artemia replacement for mud crab, Scylla serrata, megalopa. Aquaculture, 236: 497-509. https://doi.org/10.1016/j.aquaculture.2004.02.007
Genodepa, J., Zeng, C., Militz, T.A., and Southgate, P.C. 2022a. Ontogenetic variation in digestive enzyme activities within embryos and newly-hatched larvae of the tropical spiny lobster, Panulirus ornatus. Aquaculture, 548: 737595. https://doi.org/10.1016/j.aquaculture.2021.737595
Genodepa, J., Zeng, C., Militz, T.A., and Southgate, P.C. 2022b. Responses of digestive enzyme profiles to various scenarios of food availability in newly-hatched Stage I phyllosoma larvae of the tropical spiny lobster Panulirus ornatus. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 261: 110751. https://doi.org/10.1016/j.cbpb.2022.110751
Giménez, L. 2003. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata. Helgol. Mar. Res., 56: 265–273. https://doi.org/10.1007/s10152-002-0127-x
Giménez, L. 2006. Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integr. Comp. Biol., 46: 615–622. https://doi.org/10.1093/icb/icl010
Giménez, L. 2010. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology, 91: 1401–1413. https://doi.org/10.1890/09-1028.1
Gimenez, L., and Anger, K. 2005. Effects of temporary food limitation on survival and development of brachyuran crab larvae. J. Plankton. Res., 27: 485–494. https://doi.org/10.1093/plankt/fbi024
Giménez, L., and Anger, K. 2001. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. J. Exp. Mar. Biol. Ecol., 260: 241–257. https://doi.org/10.1016/S0022-0981(01)00258-1
Goh, J., Tan, L., Law, J., Khaw, K., Zengin, G., Chan, K., Letchumanan, V., Lee, L., and Goh, B. 2023. Probiotics: comprehensive exploration of the growth promotion mechanisms in shrimps. Prog. Microbes Mol. Biol., 6 (1): a0000324. https://doi.org/10.36877/pmmb.a0000324
Goncalves, R., Gesto, M., Rodríguez, C., Reis, D.B., Pérez, J.A., and Lund, I. 2022. Ontogenetic changes in digestive enzyme activity and biochemical indices of larval and postlarval European lobster (Homarus gammarus, L). Mar. Biol., 169: 53. https://doi.org/10.1007/s00227-022-04034-x
Goptar, I.A., Shagin, D.A., Shagina, I.A., Mudrik, E.S., Smirnova, Y.A., Zhuzhikov, D.P., Belozersky, M.A., Dunaevsky, Y.E., Oppert, B., Filippova, I.Y., and Elpidina, E.N. 2013. A digestive prolyl carboxypeptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol., 43: https://doi.org/10.1016/j.ibmb.2013.02.009
Gore, R.H. 1985. Molting and growth in decapod larvae. 1–66. In: Wenner, A.M. (Ed.). Crustacean Issues 2: Larval Growth. A.A. Balkema Publishers, Rotterdam. 252 p.
Guarizo, M., Costa, T.M., and Marochi, M.Z. 2020. Effect of diet during larval development of Menippe nodifrons Stimpson, 1859 and Callinectes danae Smith, 1869. Aquac. Int., 28: 1969–1980. https://doi.org/10.1007/s10499-020-00569-2
Guillaume, J. 1997. Protein and aminoacids. 26-50. In: D'Abramo, R., Douglas, E., Conklin, D., and Akiyama, M. (Eds.). Crustacean Nutrition. World Aquaculture Society, Bator Rouge. 587 p.
Gulf Coast Research Laboratory. 2021. The University of Souther Mississipi. Blue Crab Aquaculture. https://gcrl.usm.edu/research/blue.crab.aquaculture.php
Gul, I., Abbas, M.N., Kausar, S., Luo, J., Gao, X., Mu, Y., Fan, W., and Cui, H. 2023. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. Fish Shellfish Immunol., 139: 108852. https://doi.org/10.1016/j.fsi.2023.108852
Guo, H., Tang, D., Shi, X., Wu, Q., Liu, R., Tang, B., and Wang, Z. 2019a. Comparative transcriptome analysis reveals the expression and characterization of digestive enzyme genes in the hepatopancreas of the Chinese mitten crab. Fish. Sci., 85: 979–989. https://doi.org/10.1080/07420528.2023.2189481
Guo, Q., Chen, Z., Santhanam, R. K., Xu, L., Gao, X., Ma, Q., Xue, Z., and Chen, H. 2019b. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int. J. Biol. Macromol., 121: 981–988. https://doi.org/10.1016/j.ijbiomac.2018.10.100
Gu, X., Fu, H., Sun, S., Qiao, H., Zhang, W., Jiang, S., Xiong, Y., Jin, S., Gong, Y., and Wu, Y. 2017. Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. Comp. Biochem. Physiol. Part D Genomics Proteomics, 23: 39–48. https://doi.org/10.1016/j.cbd.2017.06.001
Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T.,Dewey, C.N., Henschel, R.,,Leduc, R.D., Friedman, N., and Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8: 1494– https://doi.org/10.1038/nprot.2013.084
Haché, R., and Plante, S. 2011. The relationship between enrichment, fatty acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis L-strain) and Artemia (Artemia salina strain Franciscana). Aquaculture, 311: 201–208. https://doi.org/10.1016/j.aquaculture.2010.11.034
Hamasaki, K., Suprayudi, M.A., and Takeuchi, T. 2002. Effects of dietary N-3 HUFA on larval morphogenesis and metamorphosis to megalops in the seed production of the mud crab, Scylla serrata (Brachyura: Portunidae). Aquac. Sci., 50: 333–340. https://doi.org/10.11233/aquaculturesci1953.50.333
Hammer, H.S., Bishop, C.D., and Watts, S.A. 2000. Activities of three digestive enzymes during development in the crayfish Procambarus clarkii (Decapoda). J. Crustac. Biol., 20: 614–620. https://doi.org/10.1163/20021975-99990084
Hamre, K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450: 136–142. https://doi.org/10.1016/j.aquaculture.2015.07.016
Hamre, K., Srivastava, A., Ronnestad, I., Mangor-Jensen, A., and Stoss, J. 2008. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquac. Nutr., 14: 51–60. https://doi.org/10.1111/j.1365-2095.2007.00504.x
Han, W., Sun, Y., Liu, J., Zhang, Y., Lu, Z., and Cheng, Y. 2021. Effect of different feeding modes on the growth, biochemical composition, and living environment of the juvenile Chinese mitten crab Eriocheir sinensis. Aquaculture, 541: 736687. https://doi.org/10.1016/j.aquaculture.2021.736687
Harms, J., Anger, K., Klaus, S., and Seeger, B. 1991. Nutritional effects on ingestion rate, digestive enzyme activity, growth, and biochemical composition of Hyas araneus L. (Decapoda: Majidae) larvae. J. Exp. Mar. Biol. Ecol.,145: 233–265. https://doi.org/10.1016/0022-0981(91)90178-Y
Harms, J., Meyer-Harms, B., Dawirs, R.R., and Anger, K. 1994. Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar. Ecol. Prog. Ser., 108: 107–118. https://www.int-res.com/articles/meps/108/m108p107.pdf
Haunerland, N.H. 1997. Transport and utilization of lipids in insect flight muscles. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 117: 475–482. https://doi.org/10.1016/S0305-0491(97)00185-5
Hewitt, D.R. 1992. Response of protein turnover in the brown tiger prawn Penaeus esculentus to variation in dietary protein content. Comp. Biochem. Physiol. Part A Physiol., 103: 183–187. https://doi.org/10.1016/0300-9629(92)90261-N
Hill, J., Fowler, D.L., and Van Den Avyle, M.J. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic) - blue crab. Biological Report - US Fish & Wildlife Service 82, 18 p. https://apps.dtic.mil/sti/pdfs/ADA210181.pdf
Hirche, H.J., and Anger, K. 1987. Digestive enzyme activities during larval development of Hyas araneus (Decapoda, Majidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 87: 297–302. https://epic.awi.de/id/eprint/1387/
Hoeger, U., and Schenk, S. 2023. Crustacean yolk proteins: structure, function and diversity. 38-69. In: Zupo, V. (Ed.). Crustaceans: Endocrinology, Biology and Aquaculture. CRS Press Taylor & Francis Group, Boca Ratón. 308 p.
Holme, M.H., Southgate, P.C., and Zeng, C. 2007. Survival, development and growth response of mud crab, Scylla serrata, megalopae fed semi-purified diets containing various fish oil:corn oil ratios. Aquaculture, 269: 427–435. https://doi.org/10.1016/j.aquaculture.2007.05.024
Holme, M.H., Zeng, C., and Southgate, P. 2009. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements. Aquaculture, 286: 164–175. https://doi.org/10.1016/j.aquaculture.2008.09.021
Hopkins, S.H. 1944. the external morphology of the third and fourth zoeal stages of the blue crab, Callinectes sapidus Rathbun. Biol. Bull., 87: 145–152. https://www.journals.uchicago.edu/doi/abs/10.2307/1538344?journalCode=bbl
Horst, M.N. 1990. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs. J. Exp. Zool., 256: 242–254. https://doi.org/10.1002/jez.1402560303
Hosain, M.E., Amin, S.M.N., Kamarudin, M.S., Arshad, A., Karim, M., and Romano, N. 2021. Effect of salinity on growth, survival, and proximate composition of Macrobrachium rosenbergii post larvae as well as zooplankton composition reared in a maize starch based biofloc system. Aquaculture, 533: 736235. https://doi.org/10.1016/j.aquaculture.2020.736235
Huang, Y., Wang, G., Liu, J., Zhang, L., Huang, S., Wang, Y., Yang, Z., and Ge, H. 2021. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene, 787: 145642. https://doi.org/10.1016/j.gene.2021.145642
Hu, K.J., and Leung, P.C. 2007. Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 146: 69–80. https://doi.org/10.1016/j.cbpb.2006.09.010
Hu, S., Wang, J., Han, T., Li, X., Jiang, Y., and Wang, C. 2017. Effects of dietary DHA/EPA ratios on growth performance, survival and fatty acid composition of juvenile swimming crab (Portunus trituberculatus). Aquac. Res., 48: 1291–1301. https://doi.org/10.1111/are.12971
Huang, X., and Madan, A. 1999. CAP3: A DNA Sequence Assembly Program. Genome Res., 9: 868–877. https://genome.cshlp.org/content/9/9/868.short
Inbakandan, D. 2020. Transcriptomics in Aquaculture. 1919–1936. In: Se-Kwon, K. (ed.). Encyclopedia of Marine Biotechnology, Volume III. John Wiley & Sons, New Jersey. 649 p. https://doi.org/10.1002/9781119143802.ch84
INVE-Aquaculture TC-SPRESSO-EN-0212 Technical card S.Presso: complete liquid enrichment for Artemia and rotifers.
Invitrogen 2016. Trizol reagent invitrogen user guide. Catalog Numbers 15596026 and 15596018 Doc. Part No. 15596026.PPS Pub. No. MAN0001271 Rev. A.0. 4 p.
Invitrogen 2019. Quant-iT RiboGreeen RNA reagent and kit user guide. Catalog Numbers R11490, R11491, T11493 Pub. No. MAN0002073 Rev. A.0. 6 p.
Jahn, C.E., Charkowski, A.O., and Willis, D.K. 2008. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J. Microbiol. Methods, 75: 318–324. https://doi.org/10.1016/j.mimet.2008.07.004
Jeffs, A., and O´Rorke, R. 2020. Feeding and nutrition of crustacean larvae. 309–331. In: Anger, K., Harzsch, S., and Thiel, M. (Eds.). The Natural History of the Crustacea: Developmental Biology and Larval Ecology, Volume 7. Oxford University Press, New York. 437 p.
Jeong, C.B., Kim, B.M., Lee, J.S., and Rhee, J.S. 2014. Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicus. BMC Genom., 15: 1–15. https://doi.org/10.1186/1471-2164-15-651
Jiang, K., Zhang, F., Zhang, D., Tao, Q., Zhang, Y., Pi, Y., Qiao, Z., and Ma, L. 2011. Identification of a trypsin gene from Scylla paramamosain and its expression profiling during larval development. Afr. J. Agric. Res., 6: 6613–6621. https://doi.org/10.5897/AJAR11.784
Jiang, S., Xiong, Y., Zhang, W., Zhu, J., Cheng, D., Gong, Y., Wu, Y., Qiao, H., and Fu, H. 2022. A Novel legumain-like protease in Macrobrachium nipponense: Identification, characterization, and function analysis in ovary maturation. Front. Endocrinol., 13: 858726. https://doi.org/10.3389/fendo.2022.858726
Jiang, X., Yang, Y., Cheng, Y., and Wu, X. 2021. Feeding history affects the crabseed quality and subsequent culture performance of juvenile Chinese mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Brachyura, Varunidae). Crustaceana, 94: 97–114. https://brill.com/view/journals/cr/94/1/article-p97_6.xml
Jimenez-Gutierrez, S., Cadena-Caballero, C.E., Barrios-Hernandez, C., Perez-Gonzalez, R., Martinez-Perez, F., and Jimenez-Gutierrez, L.R. 2019. Crustacean vitellogenin: a systematic and experimental analysis of their genes, genomes, mRNAs and proteins; and perspective to Next Generation Sequencing. Crustaceana, 92: 1169–1205. https://doi.org/10.1163/15685403-00003930
Jones, D.A., Kumlu, M., Le Vay, L., and Fletcher, D.J. 1997a. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: A review. Aquaculture, 155: 285–295. https://doi.org/10.1016/S0044-8486(97)00129-4
Jones, D.A., Yule, A.B., and Holland, D.L. 1997b. Larval nutrition. 353-389. In: D’Abramo, L.R., Conklin, D.E., and Akiyama, D.M. (Eds). Crustacean nutrition. World Aquaculture Society, 587 p.
Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., and Jermiin, L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods, 14: 587–589. https://doi.org/10.1038/nmeth.4285
Kamarudin, M.S., Jones, D.A., le Vay, L., and Abidin, A.Z. 1994. Ontogenetic change in digestive enzyme activity during larval development of Macrobrachium rosenbergii. Aquaculture, 123: 323–333. https://doi.org/10.1016/0044-8486(94)90068-X
Kent, M., Browdy, C.L., and Leffler, J.W. 2011. Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture, 319: 363–368. https://doi.org/10.1016/j.aquaculture.2011.06.048
Kerr, M.S. 1969. The hemolymph proteins of the blue crab, Callinectes sapidus: II. A lipoprotein serologically identical to oocyte lipovitellin. Dev. Biol., 20: 1–17. https://doi.org/10.1016/0012-1606(69)90002-5
Keller, T.A., Powell, I., and Weissburg, M.J. 2003. Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar. Ecol. Prog. Ser., 261: 217–231. https://www.int-res.com/abstracts/meps/v261/p217-231
Keskin, E., and Atar, H.H. 2013. DNA barcoding commercially important aquatic invertebrates of Turkey. Mitochondrial DNA, 24: 440–450. https://doi.org/10.3109/19401736.2012.762576
Khoa, T.N.D., Waqalevu, V., Honda, A., Matsui, H., Truong, N.X., Sakaguchi, K., Kawaji, H., Ishikawa, M., and Shiozaki, K. 2021. Enrichment effects of fermented by-product of Shochu distillery on Brachionus plicatilis sp. rotifer and larviculture performance in Japanese flounder (Paralichthys olivaceus). Aquaculture, 535: 736352. https://doi.org/10.1016/j.aquaculture.2021.736352
Khudyi, O., Khuda, L., Kushniryk, O., Prusinska, M., Kolman, R., Marchenko, M. 2017. An effectiveness of Artemia nauplii enrichment with polyunsaturated fatty acids using a supplement easy dha selco. Acta Biol. Univ. Daugavp., 17: 169–183. https://du.lv/wp-content/uploads/2022/02/Khudyi.pdf
Kibria, G. 1993. Studies on molting, molting frequency and growth of shrimp Penaeus monodon fed on natural and compounded diets. Asian Fish. Sci., 6: 203–211. https://cir.nii.ac.jp/crid/1571417125960508032
Kim, D., Langmead, B., and Salzberg, S.L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, https://doi.org/10.1038/nmeth.3317
Klee, C.B., and Vanaman, T.C. 1982. Calmodulin. Adv. Protein Chem., 35: 213–321. https://doi.org/10.1016/S0065-3233(08)60470-2
Kobayashi, T., Nagase, T., Hino, A., and Takeuchi, T. 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fisheries Sci., 74: 649–656. https://doi.org/10.1111/j.1444-2906.2008.01570.x
Koopman, H.N., and Siders, Z.A. 2013. Variation in egg quality in blue crabs, Callinectes sapidus, from North Carolina: Does female size matter? J. Crustac. Biol., 33: 481–487. https://doi.org/10.1163/1937240X-00002152
Kovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R., Salzberg, S.L., and Pertea, M. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol., 20: 1–13. https://doi.org/10.1186/s13059-019-1910-1
Kumari, S.S., and Skinner, D.M. 1993. Proteins of crustacean exoskeleton II: Immunological evidence for their relatedness to cuticular proteins of two insects. J. Exp. Zool., 265: 195–210. https://doi.org/10.1002/jez.1402650302
Kumar, V., Sinha, A.K., Romano, N., Allen, K.M., Bowman, B.A., Thompson, K.R., and Tidwell, J.H. 2018. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Rev. Fish. Sci. Aquac., 26: 254–273. https://doi.org/10.1080/23308249.2018.1429384
Kurmaly, K., Jones, D.A., and Yule, A.B. 1990. Acceptability and digestion of diets fed to larval stages of Homarus gammarus and the role of dietary conditioning behaviour. Mar. Biol., 106: 181–190. https://doi.org/10.1007/BF01314799
Kurmaly, K., Yule, A.B., and Jones, D.A. 1989. An energy budget for the larvae of Penaeus monodon (Fabricius). Aquaculture, 81: 13–25. https://doi.org/10.1016/0044-8486(89)90227-5
Lage, L.P.A., Plagnes-Juan, E., Putrino, S.M., Baron, F., Weissman, D., Guyonvarch, A., Brugger, R., Nunes, A.J.P., and Panserat, S. 2017. Ontogenesis of metabolic gene expression in whiteleg shrimp (Litopenaeus vannamei): New molecular tools for programming in the future. Aquaculture, 479: 142–149. https://doi.org/10.1016/j.aquaculture.2017.05.030
Lakshmanasenthil, S., Vinothkumar, T., Geetharamani, D., and Maruthupandi, T. 2013. Influence of Micro algae in enrichment of Artemia salina for aquaculture feed enhancement Research Article J. Algal Biomass Utln., 4: 67–73. http://www.jalgalbiomass.com/vol4-2
Lavarías, S., Pasquevich, M.Y., Dreon, M. S., and Heras, H. 2009. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea: Palaemonidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 152: 364–369. https://doi.org/10.1016/j.cbpb.2009.01.004
Lavens, P., and Sorgeloos, P. 2000. Experiences on importance of diet for shrimp postlarval quality. Aquaculture, 191: 169-176. https://doi.org/10.1016/S0044-8486(00)00426-9
Lavens, P., and Sorgeloos, P. 1996. Manual of the production and use of live food for aquaculture. Food and agriculture organization on the United Nations – FAO, Rome. http://www.fao.org/3/w3732e03.htm#2
Le Cren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the Perch (Perca fluviatilis). J. Anim. Ecol., 20: 201-219. https://www.jstor.org/stable/1540
Le, D.V.B., Nguyen, P.N., Dierckens, K., Nguyen, D.V., De Schryver, P., Hagiwara, A., and Bossier, P. 2017. Growth performance of the very small rotifer Proales similis is more dependent on proliferating bacterial community than the bigger rotifer Brachionus rotundiformis. Aquaculture, 476: 185–193. https://doi.org/10.1016/j.aquaculture.2017.03.046
Lee, M.H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., Srivastava, A.K., Salen, G., Dean, M., and Patel, S.B. 2001. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet., 27: 79–83. https://doi.org/10.1038/83799
Lee, P.G., and Meyers, S.P. 1997. Chemoattraction and feeding stimulation, 292–352. In: D´Abramo, L.R., Conklin, D. E. and Akiyama, D.M. (Eds.). Crustacean nutrition. The World Aquaculture Society; Louisiana. 587 p.
Lee, S.Y., Kim, D.S., and Nam, Y.K. 2012. Molecular characterization of cytoskeletal beta-actin and its promoter in the javanese ricefish Oryzias javanicus. Fish. Aquatic Sci., 15: 317–324. https://oak.go.kr/central/journallist/journaldetail.do?article_seq=12011
Lemos, D., Garcia-Carreño, F.L., Hernández, P., and Navarrete del Toro, A. 2002. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture, 214: 363–380. https://doi.org/10.1016/S0044-8486(02)00253-3
Lemos, D., and Weissman, D. 2020. Moulting in the grow-out of farmed shrimp: a review. Rev. Aquac., 13: 5–17. https://doi.org/10.1111/raq.12461
Le Moullac, G., Klein, B., Sellos, D., and Van Wormhoud, A. 1997. Adaptation of trypsin, chymotrypsin and α-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). J. Exp. Mar. Biol. Ecol., 208: 107–125. https://doi.org/10.1016/S0022-0981(96)02671-8
Le Moullac, G., and Van Wormhoudt, A. 1994. Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat. Living Resour., 7: 203–210. https://doi.org/10.1051/alr:1994022
Le Vay, L., Jones, D.A., Puello-Cruz, A.C., Sangha, R.S., and Ngamphongsai, C. 2001. Digestion in relation to feeding strategies exhibited by crustacean larvae. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 128: 621–628. https://doi.org/10.1016/S1095-6433(00)00339-1
Li, K., Kjørsvik, E., Bergvik, M., and Olsen, Y. 2015a. Manipulation of the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine in rotifers Brachionus nevada and Brachionus cayman. Aquac. Nut., 21: 85–97. https://doi.org/10.1111/anu.12140
Li, K., and Olsen, Y. 2015. Effect of enrichment time and dietary DHA and non-highly unsaturated fatty acid composition on the efficiency of DHA enrichment in phospholipid of rotifer (Brachionus cayman). Aquaculture, 446: 310–317. https://doi.org/10.1016/j.aquaculture.2015.05.005
Li, S., Cheng, Y., Zhou, B., and Hines, A.H. 2012. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab Callinectes sapidus. J. Shellfish Res., 31: 941–946. https://doi.org/10.2983/035.031.0405
Li, W., Chiu, K.H., Tien, Y.C., Tsai, S.F., Shih, L.J., Lee, C.H., Toullec, J.Y., and Lee, C.Y. 2017. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii. Plos One, 12: e0172557. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172557
Li, X., Han, T., Zheng, S., and Wu, G. 2021. Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Adv. Exp. Med. Biol., 1285: 169–198. https://pubmed.ncbi.nlm.nih.gov/33770407/
Li, Y., Min, H., Cui, Z., Liu, Y., Song, C., and Shi, G. 2015b. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. Comp. Biochem. Physiol. - D: Genom. Proteom., 13: 1–9. https://doi.org/10.1016/j.cbd.2014.10.002
Li, Y., Xue, H., and Li, X. 2018. Transcriptome analysis of the Chinese grass shrimp Palaemonetes sinensis (Sollaud 1911) and its predicted feeding habit. J. Oceanol. Limnol., 36: 1778–1787. https://doi.org/10.1007/s00343-019-7189-y
Liao, Y., Smyth, G.K., and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30: 923–930. https://doi.org/10.1093/bioinformatics/btt656
Lin, Z., Wang, X., Bu, X., Jia, Y., Shi, Q., Du, Z., Qin, J., and Chen, L. 2021. Dietary phosphatidylcholine affects growth performance, antioxidant capacity and lipid metabolism of Chinese mitten crab (Eriocheir sinensis). Aquaculture, 541: 736814. https://doi.org/10.1016/j.aquaculture.2021.736814
Liu, J.D., Liu, W.B., Zhang, D.D., Xu, C.Y., Zhang, C.Y., Zheng, X. C., and Chi, C. 2020. Dietary reduced glutathione supplementation can improve growth, antioxidant capacity, and immunity on Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol., 100: 300– https://doi.org/10.1016/j.fsi.2020.02.064
Liu, Q., Wen, B., Li, X., Jiang, Y., Liang, Z., and Zuo, R. 2021a. An investigation on the effects of dietary protein level in juvenile Chinese mitten crab (Eriocheir sinensis) reared at three salinities: survival, growth performance, digestive enzyme activities, antioxidant capacity and body composition. Aquac. Res., 52: 2580-2592. https://doi.org/10.1111/are.15106
Liu, S., Wang, X., Bu, X., Zhang, C., Qiao, F., Qin, C., Li, E., Qin, J.G., and Chen, L. 2021b. Influences of dietary vitamin D3 on growth, antioxidant capacity, immunity and molting of Chinese mitten crab (Eriocheir sinensis) larvae. J. Steroid Biochem. Mol. Biol., 210: 105862. https://doi.org/10.1016/j.jsbmb.2021.105862
Lloret, J., Shulman, G., and Love, R.M. 2013. Condition and health indicators of exploited marine fishes. John Wiley & Sons, Oxford. 247 p.
Loose, G.J., Vogt, G., Charmantier-Daures, M., Charmantier, G., and Harzsch, S. 2020. Organogenesis. 80-112. In: Klaus, A., Harzsch, S., and Thiel, M. (Eds.). Developmental Biology and Larval Ecology: The Natural History of the Crustacea, Volume 7. University Press, Oxford., https://doi.org/10.1093/oso/9780190648954.003.0003
Love M.I., Huber W., and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15: 550. http://bioconductor.org/packages/DESeq2/
Lovett, D.L., and Felder, D.L. 1990. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Aquaculture, 178: 144–159. https://www.journals.uchicago.edu/doi/pdf/10.2307/1541973
Lucía-Pavón, E., Sarma, S.S.S., and Nandin, S. 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev. Biol. Trop., 49:, 895–902. https://revistas.ucr.ac.cr/index.php/rbt/article/view/18037/18222
Luo, W., Zhao, Y., Zhou, Z., An, C., and Ma, Q. 2008. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus. Chin. J. Oceanol. Limnol., 26: 62–68. https://doi.org/10.1007/s00343-008-0062-z
Luo, W., Zhao, Y., Zhou, Z., An, C., and Ma, Q. 2008. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus. Chin. J. Oceanol. Limnol., 26: 62–68. https://doi.org/10.1007/s00343-008-0062-z
Mahmoud, N., Mozanzadeh, M., Agh, N., Ahmadi, A., and Yaghoubi, M. 2018. Enriched Artemia with L-lysine and DL-methionine on growth performance, stress resistance, and fatty acid profile of Litopenaeus vannamei postlarvae. J. Appl. Aquac., 30: 325–336. https://doi.org/10.1080/10454438.2018.1484838
Maliwat, G.C.F., Velasquez, S.F., Buluran, S.M.D., Tayamen, M.M., and Ragaza, J.A. 2020. Growth and immune response of pond-reared giant freshwater prawn Macrobrachium rosenbergii post larvae fed diets containing Chlorella vulgaris. Aquac. Fish., 6: 465-470. https://doi.org/10.1016/j.aaf.2020.07.002
Maliwat, G.C., Velasquez, S., Robil, J.L., Chan, M., Traifalgar, R.F.,and Tayamen, M. 2017. Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquac. Res., 48: 1666–1676 https://doi.org/10.1111/are.13004
Mansour, A.T., Ashry, O.A., El-Neweshy, M.S., Alsaqufi, A.S., Dighiesh, H.S., Ashour, M., Kelany, M.S., El-Sawy, M.A., Mabrouk, M.M., and Abbas, E.M. 2022. Effect of agricultural by-products as a carbon source in a biofloc-based system on growth performance, digestive enzyme activities, hepatopancreas histology, and gut bacterial load of Litopenaeus vannamei post larvae. J. Mar. Sci. Eng., 10: 1333. https://doi.org/10.3390/jmse10101333
Mantelatto, F.L., Reigada, A.L.D., Gatti, A.C.R., and Cuesta, J.A. 2014. Morphology of the first zoeal stages of five species of the portunid genus Callinectes (Decapoda, Brachyura) hatched at the laboratory. An. Acad. Bras., 86: 755–767. https://www.scielo.br/j/aabc/a/TqKbh5yVGwPndMrXpLLnVpm/?lang=en&format=html
Martin, S.A.M., and Król, E. 2017. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev. Comp. Immunol., 75: 86–98. https://doi.org/10.1016/j.dci.2017.02.024
Martínez-Alarcón, D., Hagen, W., Held, C., and Saborowski, R. 2020. Molecular aspects of lipid metabolism in the midgut gland of the brown shrimp Crangon crangon. Comp. Biochem. Physiol. B, Biochem. Mol. Biol.. 248–249: 110465. https://doi.org/10.1016/j.cbpb.2020.110465
Martínez-Alarcón, D., Saborowski, R., Rojo-Arreola, L., and García-Carreño, F. 2018. Is digestive cathepsin D the rule in decapod crustaceans? Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 215: 31–38. https://doi.org/10.1016/j.cbpb.2017.09.006
Martínez-Barrio, A., Lagercrantz, E., Sperber, G.O., Blomberg, J., and Bongcam-Rudloff, E. 2009. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX. BMC Bioinformatics, 10: https://doi.org/10.1186/1471-2105-10-S6-S18
Maruyama, I., and Hirayama, K. 1993. The Culture of the rotifer Brachionus plicatilis with Chlorella vulgaris containing vitamin B12 in its cells. J. World Aquacult. Soc., 24: 194–198. https://doi.org/10.1111/j.1749-7345.1993.tb00008.x
Maruyama, I., Nakao, T., Shigeno, I., Ando, Y., and Hirayama, K. 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. 133-138. In: Hagiwara, A., Snell, T.W., Lubzens, E., Tamaru, C.S. (Eds.). Live Food in Aquaculture. Developments in Hydrobiology, vol 124. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2097-7_20
Maurer, L., Liang, D., and Chung, J.S. 2017. Effects of prey densities and dietary supplementation on the larval development of the blue crab Callinectes sapidus Rathbun, 1896 (Brachyura: Portunidae). J. Crustac. Biol., 37: 674–682. https://doi.org/10.1093/jcbiol/rux079
McCarthy, J.F. 1979. Ponasterone A: A new ecdysteroid from the embyros and serum of brachyuran crustaceans. Steroids, 34: 799–806. https://doi.org/10.1016/0039-128X(79)90092-8
McCarthy, S.D., Dugon, M.M., and Power, A.M. 2015. “Degraded” RNA profiles in Arthropoda and beyond. PeerJ., 2015: e1436. https://doi.org/10.7717/peerj.1436 McClintock, J.B., Klinger, T.S., Marion, K., and Hsueh, P. 1991. Digestive carbohydrases of the blue crab Callinectes sapidus (Rathbun): implications in utilization of plant-derived detritus as a trophic resource. J. Exp. Mar. Biol. Ecol., 148: 233–239. https://doi.org/10.1016/0022-0981(91)90084-A
McConaugha, J.R. 1985. Nutrition and larval growth, chapter 3. 1-28. In: Shram, F.R. (Ed.). Crustacean Issues 2. A.A. Balkema Publishers, Boston. 252 p.
Mente, E., Coutteau, P., Houlihan, D., Davidson, I., and Sorgeloos, P. 2002. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source. J. Exp. Biol., 205: 3107–3122. https://doi.org/10.1242/jeb.205.20.3107
Mente, E., Houlihan, D.F., and Smith, K. 2001. Growth, feeding frequency, protein turnover, and amino acid metabolism in European lobster Homarus gammarus L. J. Exp. Zool., 289: https://doi.org/10.1002/jez.1023
Miandare, H.K., Mirghaed, A.T., Hosseini, M., Mazloumi, N., Zargar, A., and Nazari, S. 2017. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae. Fish Shellfish Immunol., 70: 621–627. https://doi.org/10.1016/j.fsi.2017.09.048
Miandare, H.K., Yarahmadi, P., and Abbasian, M. 2016. Immune related transcriptional responses and performance of Litopenaeus vannamei post-larvae fed on dietary probiotic PrimaLac®. Fish Shellfish Immunol., 55: 671–678. https://doi.org/10.1016/j.fsi.2016.06.053
Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K., and Relyea, R.A. 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol., 20: 685–692. https://doi.org/10.1016/j.tree.2005.08.002
Mirbakhsh, M., Mahjoub, M., Afsharnasab, M., Kakoolaki, S., Sayyadi, M., and Hosseinzadeh, S. 2021. Effects of Bacillus subtilis on the water quality, stress tolerance, digestive enzymes, growth performance, immune gene expression, and disease resistance of white shrimp (Litopenaeus vannamei) during the early hatchery period. Aquac. Int., 29: 2489–2506. https://doi.org/10.1007/s10499-021-00758-7
Möller, L., Vainstein, Y., Wöhlbrand, L., Dörries, M., Meyer, B., Sohn, K., and Rabus, R. 2022. Transcriptome–proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes. Proteomics, 22: 2100404. https://doi.org/10.1002/pmic.202100404
Moller, O.S., Anger, K., and Guerao, G. 2020. Patterns of larval development. 165–194. In: Anger, K., Harzsch, S., and Thiel, M. (Eds.). Developmental Biology and Larval Ecology. Vol. 7. Oxford University Press, New York. 449 p.
Moller, T.H. 1978. Feeding behaviour of larvae and postlarvae of Macrobrachium rosenbergii (de Man) (Crustacea: palaemonidae). J. Exp. Mar. Biol. Ecol., 35: 251–258. https://doi.org/10.1016/0022-0981(78)90078-3
Montu, M., Anger, K., and Bakker, C. 1990. Variability in the larval development of Metasesarma rubripes (Decapoda, Grapsidae) reared in the laboratory. Neritica, 5: 113–118. https://epic.awi.de/id/eprint/5327/
Montú, M., Anger, K., and de Bakker, C. 1996. Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne-Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgolander Meeresun., 50: 223–252. https://doi.org/10.1007/BF02367153
Moran, A.L., and McAlister, J.S. 2009. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull., 216: 226–242. https://doi.org/10.1086/BBLv216n3p226
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35: W182–W185. https://doi.org/10.1093/nar/gkm321
Mostary, S., Rahman, M., Mandal, A., Hasan, K., Rehena, Z., and Basar, S. 2010. Culture of Brachionus plicatilis feeding with powdered dried Chlorella. Bangladesh Vet., 27: 91–98. https://www.researchgate.net/profile/Md-Safiul-Basar/publication/266880015_Culture_of_Brachionus_plicatilis_feeding_with_powdered_dried_Chlorella/links/6381c2d67b0e356feb86181b/Culture-of-Brachionus-plicatilis-feeding-with-powdered-dried-Chlorella.pdf
Muangyao, P., Fukami, K., Songsangjinda, P., and Predalumpaburt, Y. 2020. Stimulation by gutweed to increase the abundance of insect larvae as food for shrimp aquaculture in Thailand. Aquaculture, 519: 734740. https://doi.org/10.1016/j.aquaculture.2019.734740
Mugnier, C., and Justou, C. 2004. Combined effect of external ammonia and molt stage on the blue shrimp Litopenaeus stylirostris physiological response. J. Exp. Mar. Biol. Ecol., 309: 35–46. https://doi.org/10.1016/j.jembe.2004.03.008
Muhlia-Almazán, A.T., and Fernández-Gimenez, A.V. 2022. Understanding the digestive peptidases from crustaceans: from their biochemical basis and classical perspective to the biotechnological approach. Mar. Biotechnol., 24: 480–491. https://doi.org/10.1007/s10126-022-10122-2
Nates, S.F., and McKenney, C.L. 2000. Ontogenetic changes in biochemical composition during larval and early postlarval development of Lepidophthalmus louisianensis, a ghost shrimp with abbreviated development. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 127: 459–468. https://doi.org/10.1016/S0305-0491(00)00283-2
Navarrete del Toro, M.A., and García-Carreño, F. 2019. The toolbox for protein digestion in decapod crustaceans: a review. Rev. Aquac., 11: 1005–1021. https://doi.org/10.1111/raq.12276
Navarrete Del Toro, M., García-Carreño, F., López, M., Celis-Guerrero, L., and Saborowski, R. 2006. Aspartic proteinases in the digestive tract of marine decapod crustaceans. J. Exp. Zool. A, Com. Exp. Biol., 305A: 645–654. https://doi.org/10.1002/jez.a.318
Nelson, M.M., Crear, B.J., Nichols, P.D., and Ritz, D.A. 2004. Growth and lipid composition of phyllosomata of the southern rock lobster, Jasus edwardsii, fed enriched Artemia. Aquac. Nutr., 10: 237–246. https://doi.org/10.1111/j.1365-2095.2004.00295.x
Neori, A. 2011. Green water microalgae: The leading sector in world aquaculture. Journal of Applied Phycology 23. https://doi.org/10.1007/s10811-010-9531-9
Nghia, T.T., Wille, M., Vandendriessche, S., Vinh, Q.T., and Sorgeloos, P. 2007. Influence of highly unsaturated fatty acids in live food on larviculture of mud crab Scylla paramamosain (Estampador 1949). Aquac. Res., 38 (4): 1512–1528. https://doi.org/10.1111/j.1365-2109.2007.01815.x
Nieves-Soto, M., Lozano-Huerta, R., López-Peraza, D.J., Medina-Jasso, M.A., Hurtado-Oliva, M.A., and Bermudes-Lizárraga, J.F. 2021. Effect of the enrichment time with the tuna orbital oil emulsion on the fatty acids profile of juveniles of Artemia franciscana. Aquac. Fish., 6: 69–74. https://doi.org/10.1016/j.aaf.2020.03.008
Niță, V., and Nenciu, M. 2021. Laboratory testing of the American blue crab’s (Callinectes sapidus Rathbun, 1896) capacity of adaptation to aquaculture systems at the Romanian coast. Sci. Papers Ser. D, Anim. Sci. Vol. LXIV, No. 1: 560- 568. https://www.animalsciencejournal.usamv.ro/pdf/2021/issue_1/Art78.pdf
Nordgreen, A., Penglase, S., and Hamre, K. 2013. Increasing the levels of the essential trace elements Se, Zn, Cu and Mn in rotifers (Brachionus plicatilis) used as live feed. Aquaculture, 380–383: 120–129. https://doi.org/10.1016/j.aquaculture.2012.11.032
Oliphant, A., and Thatje, S. 2013. Per offspring investment implications for crustacean larval development: evolutionary insights into endotrophy and abbreviated development. Mar. Ecol. Prog. Ser., 493: 207–217 https://doi.org/10.3354/meps10496
Olvera, M.A., Martínez-Palacios, C.A., and Real de León, E. 1993. Manual de tecnicas para laboratorio de nutricion de peces y crustaceos. Documento de campo No.7. Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion FAO, México. http://www.fao.org/3/AB489S/AB489S00.htm
Orbea, A., Fahimi, H.D., and Cajaraville, M.P. 2000. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem. Cell Biol., 114: 393–404. https://doi.org/10.1007/s004180000207
Ospina-Salazar, G.H., Santos-Acevedo, M., López-Navarro, J., Gómez-López, D.I., Álvarez-Barrera, J.E., and Gómez-León, J. 2011. Avances en la reproducción y mantenimiento de peces marinos ornamentales. Santa Marta: Serie de Publicaciones Generales del INVEMAR No. 46 http://hdl.handle.net/1834/8269
Palm, H., Sörensen, H., and Knaus, U. 2015. Montmorillonite clay minerals with or without microalgaeb as a feed additive in larval white leg shrimp (Litopenaeus vannamei). Ann. Aquac. Res., 2: 1008. https://doi.org/10.47739/2379-0881/1008
Paran, B.C., Jeyagobi, B., Kizhakedath, V.K., Antony, J., Francis, B., Anand, P.S.S., Radhakrishnapillai, A., Lalramchhani, C., Kannappan, S., Marimuthu, R.D., and Paulpandi, S. 2022. Production of juvenile mud crabs, Scylla serrata: Captive breeding, larviculture and nursery production. Aquac. Rep., 22: 101003. https://doi.org/10.1016/j.aqrep.2021.101003
Park, H.G., and Brown, J. 2004. Biochemical composition of rotifer, Brachionus plicatilis enriched with different commercial enrichments. J. Aquac., 17: 187–196. Available at: https://www.koreascience.or.kr/article/JAKO200411922608006.page
Pedroza-Islas, R., Gallardo, P., Vernon-Carter, E.J., Garcia-Galano, T., Rosas, C., Pascual, C., and Gaxiola, G. 2004. Growth, survival, quality and digestive enzyme activities of larval shrimp fed microencapsulated, mixed and live diets. Aquac. Nutr. 10: 167–173. https://doi.org/10.1111/j.1365-2095.2004.00284.x
Peñaflorida, V.D. 2004. Amino acid profiles in the midgut, ovary, developing eggs and zoes of the mud crab, Scylla serrata. Isr. J. Aquac. – Bamidgeh, 56: 111–123. https://evols.library.manoa.hawaii.edu/items/f8e34477-5db6-4357-b792-a55eea7dda7a
Perera, E., Moyano, F.J., Díaz, M., Perdomo-Morales, R., Montero-Alejo, V., Rodriguez-Viera, L., Alonso, E., Carrillo, O., and Galich, G.S. 2008. Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 151: 250–256. https://doi.org/10.1016/j.cbpb.2008.07.005
Pedroza-Islas, R., Gallardo, P., Vernon-Carter, E.J., Garcia-Galano, T., Rosas, C., Pascual, C., and Gaxiola, G. 2004. Growth, survival, quality and digestive enzyme activities of larval shrimp fed microencapsulated, mixed and live diets. Aquac. Nutr., 10: 167-173. https://doi.org/10.1111/j.1365-2095.2004.00284.x
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33: 290–295. https://doi.org/10.1038/nbt.3122
Phillips, N.E. 2002. Effects of nutrition-mediated larval conditions on juvenile performance in a marine mussel. Ecology, 83: 2562–2574. https://doi.org/10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2
Phillips, N.E. 2004. Variable timing of larval foods has consequences for early juvenile performance in a marine mussel. Ecology, 85: 2341–2346. https://doi.org/10.1890/03-3097
Pickart, C.M., and Eddins, M.J. 2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta Mol. Cell. Res., 1695: 55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019
Pletl, J.J. 1992. The growth and bioenergetics of Callinectes sapidus larvae and the effects of diet quality on larval physiology. PhD Thesis. Ocean & Earth Sciences. Old Dominion University, Virginia. 126 p. https://doi.org/10.25777/kk11-4n91
Plettner, E., Slessor, K.N., and Winston, M.L. 1998. Biosynthesis of mandibular acids in honey bees (Apis mellifera): De novo synthesis, route of fatty acid hydroxylation and caste selective β-Oxidation. Insect Biochem. Mol. Biol., 28: 31–42. https://doi.org/10.1016/S0965-1748(97)00079-9
Plough, L.V. 2017. Population genomic analysis of the blue crab Callinectes sapidus using genotyping-by-sequencing. J. Shellfish Res., 36: 249–261 https://doi.org/10.2983/035.036.0128
Prangnell, D.I., and Fotedar, R. 2005. The effect of potassium concentration in inland saline water on the growth and survival of the western king shrimp, Penaeus latisulcatus Kishinouye, 1896. J. Appl. Aquac., 17: 19–34. https://doi.org/10.1300/J028v17n02_02
Proespraiwong, P., Tassanakajon, A., and Rimphanitchayakit, V. 2010. Chitinases from the black tiger shrimp Penaeus monodon: Phylogenetics, expression and activities. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 156: 86–96. https://doi.org/10.1016/j.cbpb.2010.02.007
Qiao, Y., Wang, J., Mao, Y., Liu, M., Song, X., Su, Y., Wang, C., and Zheng, Z. 2017. Identification and molecular characterization of Cathepsin L gene and its expression analysis during early ontogenetic development of kuruma shrimp Marsupenaeus japonicus. Acta Oceanol. Sin., 36: 52–60. https://doi.org/10.1007/s13131-017-0983-5
Radhakrishnan, S., Saravana Bhavan, P., Seenivasan, C., Shanthi, R., and Muralisankar, T. 2014. Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic Appl. Zool., 67: 25–33. https://doi.org/10.1016/j.jobaz.2013.12.003
Raghuvaran, N., Parimal, S., Narottam, P., Shamna, N., Prasanta, J., Mritunjoy, P., Saiprasad, B., and Bhavatharaniya, U. 2023. Effect of L-carnitine supplemented diets with varying protein and lipid levels on growth, body composition, antioxidant status and physio-metabolic changes of white shrimp, Penaeus vannamei juveniles reared in inland saline water. Anim. Feed Sci. Technol., 296, 115548. https://doi.org/10.1016/j.anifeedsci.2022.115548
Raja, R., Coelho, A., Hemaiswarya, S., Kumar, P., Carvalho, I.S., and Alagarsamy, A. 2018. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni Suef Univ. J Basic Appl. Sci., 7: 740–747. https://doi.org/10.1016/j.bjbas.2018.10.004
Rambaut, A., Lam, T.T., Carvalho, L.M., and Pybus, O.G. 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol., 2. https://doi.org/10.1093/ve/vew007
Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar, F., and Manke, T. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res., 44: W160–W165. https://doi.org/10.1093/nar/gkw257
Redzuari, A., Azra, M., Abol-Munafi, A., Aizam, Z., Hii, Y., and Ikhwanuddin, M. 2012. Effects of feeding regimes on survival, development and growth of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) larvae. World Appl. Sci. J., 18: 472–478. https://www.researchgate.net/profile/Mohamad-Nor-Azra/publication/279922559_Effects_of_Feeding_Regimes_on_Survival_Development_and_Growth_of_Blue_Swimming_Crab_Portunus_pelagicus_Linnaeus_1758_Larvae/links/559e45a008aeb45d17160911/Effects-of-Feeding-Regimes-on-Survival-Development-and-Growth-of-Blue-Swimming-Crab-Portunus-pelagicus-Linnaeus-1758-Larvae.pdf
Rehberg-Haas, S., Meyer, S., Lippemeier, S., and Schulz, C. 2015. A comparison among different Pavlova sp. products for cultivation of Brachionus plicatilis. Aquaculture, 435: 424–430. https://doi.org/10.1016/j.aquaculture.2014.10.029
Rey, F., Alves, E., Melo, T., Domingues, P., Queiroga, H., Rosa, R., Domingues, M., and Calado, R. 2015. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep., 5: 1–13. https://doi.org/10.1038/srep14549
Rivera-Pérez, C., Navarrete del Toro, M.A., and García-Carreño, F. L. 2010. Digestive lipase activity through development and after fasting and re-feeding in the whiteleg shrimp Penaeus vannamei. Aquaculture, 300: 163–168. https://doi.org/10.1016/j.aquaculture.2009.12.030Lage
Rodríguez-Viera, L., Alpízar-Pedraza, D., Mancera, J. M., and Perera, E. 2021. Toward a more comprehensive view of α-amylase across decapods crustaceans. Biology, 10: 25. https://doi.org/10.3390/biology10100947
Rodriguez, A., Le Vay, L., Mourente, G., and Jones, D.A. 1994. Biochemical composition and digestive enzyme activity in larvae and postlarvae of Penaeus japonicus during herbivorous and carnivorous feeding. Mar. Biol., 118: 45–51. https://doi.org/10.1007/BF00699218
Rodríguez, C., Pérez, J.A., Izquierdo, M.S., Cejas, J.R., Bolaños, A., and Lorenzo, A. 1996. Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture, 147: 93–105. https://doi.org/10.1016/S0044-8486(96)01397-X
Rodríguez, J., Olsen, Y., and Rosenlund, G. 1989. The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture, 79: 157–161. https://doi.org/10.1016/0044-8486(89)90456-0
Rojo-Arreola, L., García-Carreño, F., Romero, R., and Díaz, L. 2020. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. Plos One, 15: e0239413. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239413
Rojo, L., Muhlia-Almazan, A., Saborowski, R., and García-Carreño, F. 2010. Aspartic Cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. Mar. Biotechnol., 12: 696–707. https://doi.org/10.1007/s10126-010-9257-3
Romero-Romero, S., and Yúfera, M. 2012. Contribution of gut content to the nutritional value of Brachionus plicatilis used as prey in larviculture. Aquaculture, 364–365: 124–129. https://doi.org/10.1016/j.aquaculture.2012.08.011
Rotllant, G., Guerao, G., Gras, N., and Estévez, A. 2014. Larval growth and biochemical composition of the protected Mediterranean spider crab Maja squinado (Brachyura, Majidae). Aquat. Biol., 20: 13–21. http://hdl.handle.net/10261/111832
Rotllant, G., Moyano, F.J., Andrés, M., Díaz, M., Estévez, A., and Gisbert, E. 2008. Evaluation of fluorogenic substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae. Aquaculture, 282: 90–96. https://doi.org/10.1016/j.aquaculture.2008.06.004
Roustaian, P., Kamarudin, M.S., Omar, H.B., Saad, C.R., and Ahmad, M.H. 2000. Amino acid composition of developing larval freshwater prawn Macrobrachium rosenbergii. J. World Aquac. Soc., 31: 130–136. https://doi.org/10.1111/j.1749-7345.2000.tb00708.x
Rueda, M., Bustos-Montes, D., Gómez-León, J., Viloria, E., Santos-Acevedo, M., Girón, A., Viaña, J., Rodríguez, A., Castillo, H., Sierra, J., Romero, J.A., Chávez, S., Angulo, G., Vivas-Aguas, L.J., Garcés, O., Sánchez, D., Arbeláez-Merizalde, N.M., Arteaga, E., Licero-Villanueva, L.V., Rodríguez-Rodríguez, J.A. 2015. Capítulo III. Causas y tensores del cambio en los ecosistemas marinos y costeros y sus servicios: Indicadores de presión. 70–116. En: INVEMAR (Ed.). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia Año 2014. Serie de Publicaciones Periódicas No. 3. Ediprint Ltda., Santa Marta. 176 p. http://www.invemar.org.co/redcostera1/invemar/docs/ier2014.pdf
Rueda, M., Escobar, F.D., Viaña, J., Navarro, H., and Romero, J. 2020. Causas y tensores del cambio en los ecosistemas marinos y costeros y sus servicios: indicadores de presión. 76–94. En: INVEMAR (Ed.). Informe del estado de los ambientes y recursos marinos y costeros en Colombia, 2019. Serie de publicaciones periódicas No. 3. Marquillas, S.A., Santa Marta. 183 p.
Ruscoe, I.M., Williams, G.R., and Shelley, C.C. 2004. Limiting the use of rotifers to the first zoeal stage in mud crab (Scylla serrata Forskål) larval rearing. Aquaculture, 231: 517–527. https://doi.org/10.1016/j.aquaculture.2003.11.021
Rust, J.D., and Carlson, F. 1960. Some observations on rearing blue crab larvae. Chesap. Sci. 1: 196–197. https://doi.org/10.2307/1350397
Saborowski, R. 2015. Nutrition and digestion. 285–319. In: Chang, E., and Thiel, M. (Eds). Physiology: the natural history of the crustacea, Oxford University Press, New York. 512 p.
Sainz, J.C., and Cordova, J.H. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290: 190–195. https://doi.org/10.1016/j.aquaculture Saborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K. 2006. Dig
Saborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K. 2006. Digestive enzymes in the ontogenetic stages of the southern king crab, Lithodes santolla. Mar. Biol., 149: 865–873. https://doi.org/10.1007/s00227-005-0240-x
Sainz, J.C., and Cordova, J.H. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290: 190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034
Sánchez-Paz, A., García-Carreño, F., Muhlia-Almazán, A., Peregrino-Uriarte, A.B., Hernández-López, J., and Yepiz-Plascencia, G. 2006. Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochem. Mol. Biol., 36: 241–249. https://doi.org/10.1016/j.ibmb.2006.01.002
Santamaría, M.E., Hernández-Crespo, P., Ortego, F., Grbic, V., Grbic, M., Diaz, I., and Martinez, M. 2012. Cysteine peptidases and their inhibitors in Tetranychus urticae: A comparative genomic approach. BMC Genom., 13: 1–13. https://doi.org/10.1186/1471-2164-13-307
Schembri, P.J. 1982. Locomotion, feeding, grooming and the behavioural responses to gravity, light and hydrostatic pressure in the stage I zoea larvae of Ebalia tuberosa (Crustacea: Decapoda: Leucosiidae). Mar. Biol., 72: 125–134. https://doi.org/10.1007/BF00396913 .
Schmitz, G., Langmann, T., and Heimerl, S. 2001. Role of ABCG1 and other ABCG family members in lipid metabolism. J. Lipid Res., 42: 1513–1520. https://doi.org/10.1016/S0022-2275(20)32205-7
Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. 2006. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol., 7: 1–14. https://doi.org/10.1186/1471-2199-7-3
Schubart, C.D., Deli, T., Mancinelli, G., Cilenti, L., Gil Fernández, A., Falco, S., and Berger, S. 2023. Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining origins and genetic connectivity of a large-scale invasion. Biology, 12: 35. https://doi.org/10.3390/biology12010035
Schulz, H. 1991. Beta oxidation of fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids BBA, 1081: 109–120. https://doi.org/10.1016/0005-2760(91)90015-A
Seary, R., Spencer, T., Bithell, M., and McOwen, C. 2021. Measuring mangrove-fishery benefits in the Peam Krasaop Fishing Community, Cambodia. Estuar. Coast. Shelf. Sci., 248 106918. https://doi.org/10.1016/j.ecss.2020.106918
Seear, P.J., Tarling, G.A., Burns, G., Goodall-Copestake, W. P., Gaten, E., Özkaya, Ö., and Rosato, E. 2010. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics, 11: 1–13. https://doi.org/10.1186/1471-2164-11-582
Serrano, A.E., Traifalgar, R.F., and Serrano, A.E. 2012. Ontogeny and induction of digestive enzymes in Scylla serrata larvae fed live or artificial feeds or their combination. AACL Bioflux, 5: 101–111. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1835442bd0fb7ee545391871277cf6f2c13f19f0
Seychelles, L.H., Ayala-Aguilar, J.A., Estrada, N., López, M., Ayala-Perez, V.O., Ludwig, M., and Mercier, L. 2022. Zootechnical performance, biochemical composition and gene expression of digestive enzymes in Litopenaeus vannamei post-larvae fed the nematode Panagrolaimus sp. (NFS 24–5). Aquac. Res., 53: 5325–5341. https://doi.org/10.1111/are.16016
Shan, X., and Lin, M. 2014. Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture, 428–429: 284–289. https://doi.org/10.1016/j.aquaculture.2014.03.021
Sheen, S.S. 2000. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture, 189: 277–285. https://doi.org/10.1016/S0044-8486(00)00379-3
Shi, B., Jin, M., Jiao, L., Betancor, M. B., Tocher, D. R., and Zhou, Q. 2020. Effects of dietary zinc level on growth performance, lipolysis and expression of genes involved in the calcium/calmodulin-dependent protein kinase kinase-β/AMP-activated protein kinase pathway in juvenile Pacific white shrimp. Br. J. Nutr., 124: 773–784. https://doi.org/10.1017/S0007114520001725
Shi, C., Zeng, T., Li, R., Wang, C., Ye, Y., and Mu, C. 2019. Dynamic metabolite alterations of Portunus trituberculatus during larval development. J. Ocean. Limnol., 37: 361–372. https://doi.org/10.1007/s00343-019-7268-0
Shiau, S.Y., and Peng, C.Y. 1992. Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon, reared in seawater. Aquaculture, 101: 241–250. https://doi.org/10.1016/0044-8486(92)90028-J
Skinner, D.M., Kumari, S.S., and O’brien, J.J. 1992. Proteins of the crustacean exoskeleton. American Zoologist, 32: 470–484. https://doi.org/10.1093/icb/32.3.470
Skottene, E., Tarrant, A.M., Olsen, A.J., Altin, D., Østensen, M.A., Hansen, B.H., Choquet, M., Jenssen, B.M., and Olsen, R.E. 2019. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci. Rep., 9: 1–13. https://doi.org/10.1038/s41598-019-53032-5
Smith, W.A., Lamattina, A., and Collins, M.K. 2014. Insulin signaling pathways in lepidopteran ecdysone secretion. Front. Physiol., 5: 63298. https://doi.org/10.3389/fphys.2014.00019
Smolenaars, M., Madsen, O., Rodenburg, K. W., and Van Der Horst, D.J. 2007. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res., 48: 489–502. https://doi.org/10.1194/jlr.R600028-JLR200
Snyder, M.J., and Chang, E.S. 2016. Effects of eyestalk ablation on larval molting rates and morphological development of the american lobster, Homarus americanus. Biol. Bull., 170: 232–243. https://www.journals.uchicago.edu/doi/abs/10.2307/1541805
Soh, W.T., Demir, F., Dall, E., Perrar, A., Dahms, S. O., Kuppusamy, M., Brandstetter, H., and Huesgen, P.F. 2020. ExteNDing proteome coverage with legumain as a highly specific digestion protease. Anal. Chem., 92: 2961–2971. https://doi.org/10.1021/acs.analchem.9b03604
Soyel, H., and Kumlu, M. 2003. The Effects of salinity on postlarval growth and survival of Penaeus semisulcatus (Decapoda: Penaeidae). Turk. J. Zool., 27: 221–225. https://journals.tubitak.gov.tr/zoology/vol27/iss3/7/
Spitznagel, M.I., Small, H.J., Lively, J.A., Shields, J.D., and Schott, E.J. 2019. Investigating risk factors for mortality and reovirus infection in aquaculture production of soft-shell blue crabs (Callinectes sapidus). Aquaculture, 502: 289–295. https://doi.org/10.1016/j.aquaculture.2018.12.051
Spitzner, F., Meth, R., Krüger, C., Nischik, E., Eiler, S., Sombke, A., Torres, G., and Harzsch, S. 2018. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front. Zool., 15: 1–39. https://doi.org/10.1186/s12983-018-0271-z
Srivastava, A., Stoss, J., and Hamre, K. 2011. A study on enrichment of the rotifer Brachionus “Cayman” with iodine and selected vitamins. Aquaculture, 319: 430–438. https://doi.org/10.1016/j.aquaculture.2011.07.027
Staton, J.L., and Sulkin, S.D. 1991. Nutritional requirements and starvation resistance in larvae of the brachyuran crabs Sesarma cinereum (Bosc) and S. reticulatum (Say). J. Exp. Mar. Biol. Ecol., 152: 271–284. https://doi.org/10.1016/0022-0981(91)90219-M
Stephens, A., Rojo, L., Araujo-Bernal, S., Garcia-Carreño, F., and Muhlia-Almazan, A. 2012. Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissues-specific expression and biological activity. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 161: 32–40. https://doi.org/10.1016/j.cbpb.2011.09.004
Stewart, J.M., Carlin, R.C., Macdonald, J.A., and Van Iderstine, S. 1994. Fatty acid binding proteins and fatty acid catabolism in marine invertebrates: Peroxisomal β-oxidation. Invertebr. Reprod. Dev., 25: 73–82. https://doi.org/10.1080/07924259.1994.9672370
Stincone, A., Prigione, A., Cramer, T., Wamelink, M., Campbell, K., Cheung, E., Olin-Sandoval, V., Grüning, N.M., Krüger, A., Tauqeer Alam, M., Keller, M.A., Breitenbach, M., Brindle, K.M., Rabinowitz, J.D., and Ralser, M. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev., 90: 927–963. https://doi.org/10.1111/brv.12140
Štrus, J., Žnidaršič, N., Mrak, P., Bogataj, U., and Vogt, G. 2019. Structure, function and development of the digestive system in malacostracan crustaceans and adaptation to different lifestyles. Cell Tissue Res., 377: 415–443. https://doi.org/10.1007/s00441-019-03056-0
Stuck, K., Perry, H., Graham, D., and Heard, R.W. 2009. Morphological characteristics of early life history stages of the blue crab, Callinectes sapidus Rathbun, from the Northern Gulf of Mexico with a comparison of studies from the Atlantic seaboard. Gulf Caribb. Res., 21: 37–55. https://aquila.usm.edu/gcr/vol21/iss1/5/
Subramoniam, T. 2010. Mechanisms and control of vitellogenesis in crustaceans. Fish. Sci., 77 1–21. https://doi.org/10.1007/s12562-010-0301-z
Sugumar, V., Vijayalakshmi, G., and Saranya, K. 2013. Molt cycle related changes and effect of short term starvation on the biochemical constituents of the blue swimmer crab Portunus pelagicus. Saudi J. Biol. Sci., 20: 93–103. https://doi.org/10.1016/j.sjbs.2012.10.003
Sui, L., Wille, M., Wu, X., Cheng, Y., and Sorgeloos, P. 2008. Effect of feeding scheme and prey density on survival and development of Chinese mitten crab Eriocheir sinensis zoea larvae. Aquac. Res., 39: 568–576. https://doi.org/10.1111/j.1365-2109.2008.01902.x
Sulkin, S.D., and Epifanio, C.E. 1975. Comparison of rotifers and other diets for rearing early larvae of the blue crab, Callinectes sapidus Rathbun. Estuar. Coast. Mar. Sci., 3: 109-113. https://doi.org/10.1016/0302-3524(75)90011-0
Sulkin, S.D. 1975. The significance of diet in the growth and development of larvae of the blue crab, Callinectes sapidus Rathbun, under laboratory conditions. J. Exp. Mar. Biol. Ecol., 20: 119–135. https://doi.org/10.1016/0022-0981(75)90019-2
Sulkin, S.D. 1978. Nutritional requirements during larval development of the portunid crab, Callinectes sapidus Rathbun. J. Exp. Mar. Biol. Ecol., 34: 29–41. https://doi.org/10.1016/0022-0981(78)90055-2
Sulkin, S. D., and Van Heukelem, W.F. 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapius Rathbun. Bull. Mar. Sci., 39: Sulkin, S.D., Branscomb, E.S., and Miller, R.E. 1976. Induced winter
Sulkin, S. D., and Van Heukelem, W.F. 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapius Rathbun. Bull. Mar. Sci., 39: 269–278. https://www.ingentaconnect.com/content/umrsmas/bullmar/1986/00000039/00000002/art00011
Sun, L., Wang, J., Li, X., and Cao, C. 2019. Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae. Ecotoxicology, 28: 754–762. https://doi.org/10.1007/s10646-019-02071-9
Suprayudi, M.., Takeuchi, T., and Hamasaki, K. 2012. Phospholipids effect on survival and molting synchronicity of larvae mud crab Scylla serrata. Hayati, 19: 163-168. https://doi.org/10.4308/hjb.19.4.163
Suprayudi, M., Takeuchi, T., and Hamasaki, K. 2004. Essential fatty acids for larval mud crab Scylla serrata: Implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture, 231: 403–416. https://doi.org/10.1016/S0044-8486(03)00542-8
Suprayudi, M.A., Takeuchi, T., Hamasaki, K., and Hirokawa, J. 2002. The effect of N-3 HUFA content in rotifers on the development and survival of mud crab, Scylla serrata, larvae. Aquac. Sci., 50: 205–212. https://doi.org/10.11233/aquaculturesci1953.50.205
Syafaat, M.N., Azra, M. N., Waiho, K., Fazhan, H., Abol-Munafi, A. B., Ishak, S. D., Syahnon, M., Ghazali, A., Ma, H., and Ikhwanuddin, M. 2021. A Review of the nursery culture of mud crabs, genus Scylla: Current progress and future directions. animals 11, 2034. https://doi.org/10.3390/ani11072034
Takeuchi, T., Nakamoto, Y., Hamasaki, K., Sekiya, S., and Watanabe, T. 1999. Requirement of N-3 highly unsaturated fatty acids for larval swimming crab Portunus trituberculatus. Nippon Suisan Gakkai., 65: 797–803. https://www.cabdirect.org/cabdirect/abstract/20001416426
Taufik, M., Bachok, Z., Azra, M.N., and Ikhwanuddin, M. 2016. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. IJMS, 45: 1512–1521. https://www.researchgate.net/publication/312059515
Taufik, M., Bachok, Z., Azra, M.N., and Ikhwanuddin, M. 2016. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. IJMS, 45: 1512–1521. https://www.researchgate.net/publication/312059515
Teschke, M., and Saborowski, R. 2005. Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J. Exp. Mar. Biol. Ecol., 316: 213–229. https://doi.org/10.1016/j.jembe.2004.11.007
The Galaxy Community 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50, W345–W351. https://doi.org/10.1093/nar/gkac247
Tian, H., Yang, C., Yu, Y., Yang, W., Lu, N., Wang, H., Liu, F., Wang, A., and Xu, X. 2020. Dietary cholesterol level affects growth, molting performance and ecdysteroid signal transduction in Procambarus clarkii. Aquaculture, 523: 735198. https://doi.org/10.1016/j.aquaculture.2020.735198
Tirumalai, R., and Subramoniam, T. 1992. Purification and characterization of vitellogenin and lipovitellins of the sand crab Emerita asiatica: Molecular aspects of crab yolk proteins. Mol. Reprod. Dev., 33: 16–26. https://doi.org/10.1002/mrd.1080330104T
Tomkinson, B. 1999. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci., 24: 355–359. https://doi.org/10.1016/S0968-0004(99)01435-8
Torres, G., and Giménez, L. 2020. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol., 34: 1564–1576. https://doi.org/10.1111/1365-2435.13607
Torres, G., Spitzner, F., Harzsch, S., and Giménez, L. 2019. Ecological developmental biology and global ocean change: brachyuran crustacean larvae as models. 283–306. In: Minelli, A., and Fusco, G. (Eds.). Perspectives on Evolutionary and Developmental Biology. Padova University Press, Italia. 420 p. https://www.padovauniversitypress.it/system/files/attachments_field/9788869381409-oa.pdf
Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S.L., Wold, B.J., and Pachter, L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28: 511–515. (2010). https://doi.org/10.1038/nbt.1621
Truong, H.H., Moss, A.F., Bourne, N.A., and Simon, C.J. 2020. Determining the Importance of macro and trace dietary minerals on growth and nutrient retention in juvenile Penaeus monodon. Animals, 10: 2086. https://doi.org/10.3390/ani10112086
Tucker, R.K., and Costlow, J.D. 1975. Free amino acid changes in normal and eyestalkless megalopa larvae of the blue crab, Callinectes sapidus, during the course of the molt cycle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 51: 75–78. https://doi.org/10.1016/0300-9629(75)90415-6
Vega-Villasante, F., Fernández, I., Preciado, R., Oliva, M., Tovar, D., and Nolasco, H. 1999. The activity of digestive enzymes during the molting stages of the arched swimming Callinectes arcuatus Ordway, 1863 (Crustacea: Decapoda: Portunidae). Bull. Mar. Sci., 65: 1–9. https://www.ingentaconnect.com/content/umrsmas/bullmar/1999/00000065/00000001/art00001
Voet, D., and Voet, J. 2004. Bioquímica. 3a edición. Editorial Médica Panamericana, Montevideo. 1680 p.
Vogt, G. 2019. Functional cytology of the hepatopancreas of decapod crustaceans. J. Morphol., 280: 1405–1444. https://doi.org/10.1002/jmor.21040
Vogt, G. 2021. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. Zoology, 147: https://doi.org/10.1016/j.zool.2021.125945
von Zastrow, M., and Sorkin, A. 2007. Signaling on the endocytic pathway. COCEBI, 19: 436–445. https://doi.org/10.1016/j.ceb.2007.04.021
Waiho, K., Fazhan, H., Quinitio, E.T., Baylon, J.C., Fujaya, Y., Azmie, G., Wu, Q., Shi, X., Ikhwanuddin, M., and Ma, H. 2018. Larval rearing of mud crab (Scylla): What lies ahead. Aquaculture, 493: 37–50. https://doi.org/10.1016/j.aquaculture.2018.04.047
Wanders, R.J.A., Baes, M., Ribeiro, D., Ferdinandusse, S., and Waterham, H.R. 2023. The physiological functions of human peroxisomes. Physiol. Rev., 103: 957–1024. https://doi.org/10.1152/physrev.00051.2021
Wang, J., Shu, X., and Wang, W.X. 2019. Micro-elemental retention in rotifers and their trophic transfer to marine fish larvae: Influences of green algae enrichment. Aquaculture, 499: 374–380. https://doi.org/10.1016/j.aquaculture.2018.09.066
Wang, X., Jin, M., Cheng, X., Hu, X., Zhao, M., Yuan, Y., Sun, P., Jiao, L., Tocher, D.R., and Zhou, Q. 2022a. Hepatopancreas transcriptomic and lipidomic analyses reveal the molecular responses of mud crab (Scylla paramamosain) to dietary ratio of docosahexaenoic acid to eicosapentaenoic acid. Aquaculture, 551, 737903. https://doi.org/10.1016/j.aquaculture.2022.737903
Wang, X., Li, E., and Chen, L. 2016. A Review of carbohydrate nutrition and metabolism in crustaceans. N. Am. J. Aquac., 78: 178–187. https://doi.org/10.1080/15222055.2016.1141129
Wang, X., Wang, S., Li, C., Chen, K., Qin, J. G., Chen, L., and Li, E. 2015. Molecular pathway and gene responses of the pacific white shrimp Litopenaeus vannamei to acute low salinity stress. J. Shellfish Res., 34: 1037–1048. https://doi.org/10.2983/035.034.0330
Wang, Z., Zhang, Y., Yao, D., Zhao, Y., Tran, N. T., Li, S., Ma, H., and Aweya, J.J. 2022b. Metabolic reprogramming in crustaceans: A vital immune and environmental response strategy. Rev. Aquac., 14: 1094–1119. https://doi.org/10.1111/raq.12640
Waqalevu, V., Honda, A., Dossou, S., Khoa, T.N.D., Matsui, H., Mzengereza, K., Liu, H., Ishikawa, M., Shiozaki, K. Kotani, T. 2019. Effect of oil enrichment on Brachionus plicatilis rotifer and first feeding red sea bream (Pagrus major) and Japanese flounder (Paralichthys olivaceus). Aquaculture 510, 73–83. https://doi.org/10.1016/j.aquaculture.2019.05.039
Waycott, B. 2019. Aquaculture North America. Research project showing potential for farming Blue crab. https://www.aquaculturenorthamerica.com/research-project-showing-potential-for-farming-blue-crab-2383/
Webster, S.G., and Dircksen, H. 2016. Putative Molt-Inhibiting Hormone in larvae of the shore crab Carcinus maenas L.: An immunocytochemical approach. Biol. Bull., 180: 65–71. https://www.journals.uchicago.edu/doi/abs/10.2307/1542429
Wei, J., Zhang, X., Yu, Y., Huang, H., Li, F., Xiang, J. 2014a. Comparative transcriptomic characterization of the early development in Pacific white shrimp Litopenaeus vannamei. Plos One, 9: e106201. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106201
Wei, J., Zhang, X., Yu, Y., Li, F., and Xiang, J. 2014b. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei. Comp. Biochem. Physiol. - D: Genom. Proteom., 11: 37–44. https://doi.org/10.1016/j.cbd.2014.07.001
Weissburg, M.J., and Zimmer-Faust, R.K. 1991. Ontogeny Versus Phylogeny in Determining Patterns of Chemoreception: Initial Studies with Fiddler Crabs. Univ. Chicago Press. J., 181: 205–215. https://www.journals.uchicago.edu/doi/abs/10.2307/1542091
Weissburg, M.J., and Zimmer-Faust, R.K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol., 197: 349–375. https://doi.org/10.1242/jeb.197.1.349 Wheatly, M.G.,
Weissburg, M.J., and Zimmer-Faust, R.K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol., 197: 349–375. https://doi.org/10.1242/jeb.197.1.349
Wheatly, M.G., Zanotto, F.P., and Hubbard, M.G. 2002. Calcium homeostasis in crustaceans: subcellular Ca dynamics. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 132: 163–178. https://doi.org/10.1016/S1096-4959(01)00520-6
Williams, J.A., Chen, X., and Sabbatini, M.E. 2009. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am. J. Physiol. - Endocrinol. Metab., 296: 405–414. https://doi.org/10.1152/ajpendo.90874.2008
Williams, K.C. 2007. Nutritional requirements and feeds development for post-larval spiny lobster: A review. Aquaculture, 263: 1–14. https://doi.org/10.1016/j.aquaculture.2006.10.019
Williams, M.J., and Primavera, J.H. 2001. Choosing tropical portunid species for culture, domestication and stock enhancement in the Indo-Pacific. Asian Fish. Sci., 14: 121–142. https://repository.seafdec.org.ph/handle/10862/1916
Winarni, E.T., and Kusbiyanto, A.N. 2021. Estimating crustacean species utilize Segara Anakan Estuary Cilacap, Indonesia as nursery ground through DNA Barcoding. J. Hunan Univ. Nat. Sci., 48: 275–282. http://jonuns.com/index.php/journal/article/view/775
Wingett, S.W., and Andrews, S. 2018. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7: 1338. https://doi.org/10.12688/f1000research.15931.2 Wolcott, D.L., and O’connor, N.J. 1992. Herbivory in Crabs: Adaptations and Ecological Considerations 1. Amer. Zool., 32: 370–381.
Winnebeck, E.C., Millar, C.D., and Warman, G.R. 2010. Why does insect RNA look degraded? J. Insect Sci., 10: 159. https://doi.org/10.1673/031.010.14119
Wouters, R., Lavens, P., Nieto, J., and Sorgeloos, P. 2001. Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture, 202: 1–21. https://doi.org/10.1016/S0044-8486(01)00570-1
Wu, X.G., Fu, R.B., Cheng, Y.X., Chrn, S.L., Yang, X.Z., Wang, C.L., Zhu, D.F., and Luo, H.Z. 2006. Effect of starvation on the survival and the mainly biochemical composition of swimming crab (Portunus trituberculatus) freshly hatched larvae. Chinese J. Zool., 41: 7–13. http://www.cqvip.com/qk/94741x/200606/23449245.html
Wu, X.G., Zeng, C.S., and Southgate, P.C. 2014. Ontogenetic patterns of growth and lipid composition changes of blue swimmer crab larvae: Insights into larval biology and lipid nutrition. Mar. Freshw. Res., 65: 228–243. https://doi.org/10.1071/MF13078
Wu, X., Zeng, C., and Southgate, P.C. 2017. Effects of starvation on survival, biomass, and lipid composition of newly hatched larvae of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758). Aquacult. Int., 25: 447–461. https://doi.org/10.1007/s10499-016-0042-9
Xie, H., Li, B., Zhong, R., Qin, J., Zhu, Y., and Lin, B. 2008. Microfluidic device for integrated restriction digestion reaction and resulting DNA fragment analysis. Electrophoresis, 29: 4956–4963. https://doi.org/10.1002/elps.200800490
Xu, C., Li, E., Liu, Y., Wang, X., Qin, J.G., and Chen, L. 2017a. Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J. Proteomics, 162: 1–10. https://doi.org/10.1016/j.jprot.2017.04.013
Xu, R., Zheng, R., Wang, Y., Ma, R., Tong, G., Wei, X., Feng, D., and Hu, K. 2021. Transcriptome analysis to elucidate the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil on the hepatopancreas of Procambarus clarkii. Fish Shellfish Immunol., 116: 140–149. https://doi.org/10.1016/j.fsi.2021.07.004
Xu, Y., Li, X., Deng, Y., Lu, Q., Yang, Y., Pan, J., Ge, J., and Xu, Z. 2017b. Comparative transcriptome sequencing of the hepatopancreas reveals differentially expressed genes in the precocious juvenile Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda). Aquac. Res., 48: 3645–3656. https://doi.org/10.1111/are.13189
Yamauchi, M.M., Miya, M.U., and Nishida, M. 2003. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura). Gene, 311: 129–135. https://doi.org/10.1016/S0378-1119(03)00582-1
Yang, Y., Jin, F., Liu, W., Huo, G., Zhou, F., Yan, J., Zhou, K., and Li, P. 2023. Comparative transcriptome, digital gene expression and proteome profiling analyses provide insights into the brachyurization from the megalopa to the first juvenile in Eriocheir sinensis. Heliyon, 9: e12736. https://www.cell.com/heliyon/pdf/S2405-8440(22)04024-5.pdf
Yang, Y., Xu, W., Jiang, Q., Ye, Y., Tian, J., Huang, Y., Du, X., Li, Y., Zhao, Y., and Liu, Z. 2022. Effects of low temperature on antioxidant and heat shock protein expression profiles and transcriptomic responses in crayfish (Cherax destructor). Antioxidants, 11: 1779. https://doi.org/10.3390/antiox11091779
Yednock, B.K., Sullivan, T.J., and Neigel, J.E. 2015. De novo assembly of a transcriptome from juvenile blue crabs (Callinectes sapidus) following exposure to surrogate Macondo crude oil. BMC Genom., 16: 1–15. https://doi.org/10.1186/s12864-015-1739-2
Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L., and Shi, C. 2018. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res., 46: https://doi.org/10.1093/nar/gky400
Yuan, Y., Xu, F., Jin, M., Wang, X., Hu, X., Zhao, M., Cheng, X., Luo, J., Jiao, L., Betancor, M.B., Tocher, D.R., and Zhou, Q. 2021. Untargeted lipidomics reveals metabolic responses to different dietary n-3 PUFA in juvenile swimming crab (Portunus trituberculatus). Food Chem., 354: 129570 https://doi.org/10.1016/j.foodchem.2021.129570
Yúfera, M., Moyano, F.J., and Martínez-Rodríguez, G. 2018. The digestive function in developing fishm larvae and fry. From molecular gene expression to enzymatic activity. 51–86. In: Yúfera, M. (Ed.). Emerging Issues in Fish Larvae Research. Springer International Publishing, Cadiz. 296 p.
Zambonino-Infante, J., Gisbert, E., Sarasquete, C., Navarro, I., Gutierrez, J., and Cahu, C. L. 2008. Ontogeny and physiology of the digestive system of marine fish larvae. 277–344. In: Cyrino, J.E.P., Bureau, D.P., and Kapoor, B.G. (Eds.). Feeding and Digestive Functions in Fishes. Science Publishers, Boca Ratón. 589 p.
Zanotto, F.P., and Wheatly, M.G. 2002. Calcium balance in crustaceans: nutritional aspects of physiological regulation. Comp. Biochem. Physiol. Part A Mol. Integr., 133: 645–660. https://doi.org/10.1016/S1095-6433(02)00202-7
Zar, J.H. 2010. Bioestatistical analysis, 5th edition. Prentice Hall, New Jersey. 255 p.
Zeng, X., Wan, H., Zhong, J., Feng, Y., Zhang, Z., and Wang, Y. 2021. Large lipid transfer proteins in hepatopancreas of the mud crab Scylla paramamosain. Comp. Biochem. Physiol. Part D Genomics Proteomics, 38: 100801. https://doi.org/10.1016/j.cbd.2021.100801
Zhang, X., Huang, C., Guo, C., Xie, S., Luo, J., Zhu, T., Ye, Y., Jin, M., and Zhou, Q. 2021. Effect of dietary carbohydrate sources on the growth, glucose metabolism and insulin pathway for swimming crab, Portunus trituberculatus. Aquac. Rep., 21: 100967. https://doi.org/10.1016/j.aqrep.2021.100967
Zhang, X., Jin, M., Luo, J., Xie, S., Guo, C., Zhu, T., Hu, X., Yuan, Y., and Zhou, Q. 2022. Effects of dietary carbohydrate levels on the growth and glucose metabolism of juvenile swimming crab, Portunus trituberculatus. Aquac. Nutr., 2022: 1–15. https://doi.org/10.1155/2022/7110052
Zhang, X., Zhang, X., Yuan, J., Du, J., Li, F., and Xiang, J. 2018. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei. Mol. Genet. Genom., 293: 479–493. https://doi.org/10.1007/s00438-017-1397-y
Zhang, Z., and Hu, J. 2007. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by Quantitative Real-Time RT-PCR. Toxicol. Sci., 95: 356–368. https://doi.org/10.1093/toxsci/kfl161
Zheng, D., Pan, L., and Fang, B. 2011. Effects of different dietary lipid contents on growth and lipase activity of Eriocheir sinensis larvae. J. Ocean Univ. China, 10: 55–60. https://doi.org/10.1007/s11802-011-1695-7
Zhou, J., He, W. Y., Wang, W. N., Yang, C. W., Wang, L., Xin, Y., Wu, J., Cai, D., Liu, Y., and Wang, A.L. 2009. Molecular cloning and characterization of an ATP-binding cassette (ABC) transmembrane transporter from the white shrimp Litopenaeus vannamei. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 150: 450–458. https://doi.org/10.1016/j.cbpc.2009.06.012
Zhou, Z.K., Gu, W.B., Wang, C., Zhou, Y.L., Tu, D.D., Liu, Z.P., Zhu, Q.H., and Shu, M.A. 2018. Seven transcripts from the chitinase gene family of the mud crab Scylla paramamosain: Their expression profiles during development and moulting and under environmental stresses. Aquac. Res., 49: 3296–3308. https://doi.org/10.1111/are.13793
Zhu, B., Tang, L., Yu, Y., Yu, H., Wang, L., Qian, C., Wei, G., and Liu, C. 2017. Identification of ecdysteroid receptor-mediated signaling pathways in the hepatopancreas of the red swamp crayfish, Procambarus clarkii. Gen. Comp. Endocrinol., 246: 372–381. https://doi.org/10.1016/j.ygcen.2017.01.013
Zmora, O., Findiesen, A., Stubblefield, J., Frenkel, V., and Zohar, Y. 2005. Large-scale juvenile production of the blue crab Callinectes sapidus. Aquaculture, 244: 129–139. https://doi.org/10.1016/j.aquaculture.2004.11.012
Zohar, Y., Hines, A.H., Zmora, O., Johnson, E.G., Lipcius, R.N., Seitz, R. D., Eggleston, D.B., Place, A.R., Schott, E.J., Stubblefield, J.D., and Chung, J.S. 2008. The Chesapeake Bay blue crab (Callinectes sapidus): A multidisciplinary approach to responsible stock replenishment. Rev. Fish. Sci., 16: 24–34. https://doi.org/10.1080/10641260701681623
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv XIV, 189 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Caribe - Caribe - Doctorado en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Centro de estudios en Ciencias del mar-CECIMAR
dc.publisher.faculty.spa.fl_str_mv Facultad Caribe
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Caribe
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85728/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85728/4/52083076.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85728/5/52083076.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
b484b6712ced4b311641bb510db48a21
1f1c245bdf79891f3a42e5e1babc8535
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089603961847808
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zea, Sven343ce34377fec79ff43d77fe5e9f95d2600Miranda-Baeza, Anselmo8cd894b2b3d65c2ff2465cacde69e7ae600Ospina Salazar, Gloria Helenaccfcaee6ae9601b42c610ab0292ecfb0600Fauna Marina Colombiana: Biodiversidad y UsosOspina Salazar, Gloria Helena [0000-0001-7754-8304]2024-02-26T20:59:13Z2024-02-26T20:59:13Z2023https://repositorio.unal.edu.co/handle/unal/85728Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Se evaluó el efecto del alimento vivo enriquecido (rotífero Brachionus plicatilis) con siete proporciones de proteínas y lípidos (P/L): 100/0, 90/10, 80/20, 70/30, 60/40, 50/50 y 40/60, durante el desarrollo larval de la jaiba azul Callinectes sapidus. El contenido de lípidos aumentó significativamente de 100/0 a 40/60 (7,48 a 11,47 g 100 g-1), al igual que la energía (21,88 a 23,16 kJ g-1), y aparentemente el contenido de proteínas no fue un factor limitante (63,93 a 67,50 g 100 g-1). Las dietas 50/50 y 40/60 evidenciaron las mejores respuestas en todas las variables estudiadas. Se presentaron hasta ocho estadios de zoea, y la metamorfosis a megalopa ocurrió desde la quinta muda, entre 49 a 57 días. La supervivencia fluctuó entre 6 y 34 %, y el ciclo de muda fue haciéndose significativamente más corto de 100/0 a 40/60. Mediante RNA-seq se realizó un análisis transcriptómico de novo entre el primer (inicial) y segundo estadio de zoea, para observar el efecto de dos dietas con resultados opuestos durante el primer ensayo (80/20 y 40/60). En las rutas metabólicas relacionadas con la digestión y metabolismo de los nutrientes se identificaron 110 genes sobre-regulados en 40/60 vs inicial y 47 en 80/20 vs inicial. Las zoeas alimentadas con el mayor contenido de lípidos (40/60) mejoraron los niveles de expresión de los genes relacionados con este nutriente, influenciando el metabolismo de proteínas, carbohidratos, y la expresión de genes del sistema digestivo y transporte y catabolismo celular. Este estudio establece los cimientos básicos de dietas formuladas de composición bioquímica conocida, como suministro a las larvas de C. sapidus con el fin de optimizar y parametrizar su cultivo (Texto tomado de la fuente)DIET INFLUENCE ON LARVAL DEVELOPMENT OF BLUE CRAB CALLINECTES SAPIDUS (DECAPODA: BRACHYURA) The effect of enriched live food (rotifer Brachionus plicatilis) with seven proportions of proteins and lipids (P/L), was evaluated: 100/0, 90/10, 80/20, 70/30, 60/40, 50/50, and 40/60, during the larval development of the blue crab Callinectes sapidus. The lipid content increased significantly from 100/0 to 40/60 (7.48 to 11.47 g 100 g-1), as did the energy (21.88 to 23.16 kJ g-1), while apparently, the protein content was not a limiting factor (63.93 to 67.50 g 100 g-1). The 50/50 and 40/60 diets showed the best responses in all studied variables. Up to eight zoeal stages were present, and the metamorphosis to megalopa occurred from the fifth moult, between 49 to 57 days. Survival fluctuated between 6 % and 34 %, and the molt cycle became significantly shorter from 100/0 to 40/60. Using RNA-seq, a de novo transcriptomic analysis was performed between the first (initial) and second instars of zoea to observe the effect of the two diets with opposite results during the first trial (80/20 and 40/60). In the metabolic pathways related to digestion and metabolism of nutrients, 110 overregulated genes were identified in 40/60 vs. initial and 47 in 80/20 vs. initial. The zoeas fed with the highest lipid content (40/60) improved the expression levels of the genes related to this nutrient, influencing the metabolism of proteins, carbohydrates, and the expression of genes of the digestive system, and of transport and cellular catabolism. This study establishes the basic foundations of formulated diets of known biochemical composition as supply to C. sapidus larvae to optimize and parameterize their culture.Este trabajo pudo realizarse gracias a la financiación del Ministerio de Ciencia, Tecnología e Innovación de Colombia —Minciencias, bajo el marco del proyecto: “Influencia de la dieta en la actividad enzimática digestiva y su expresión génica durante el desarrollo larvario del cangrejo azul Callinectes sapidus Rathburn, 1895 (Crustacea: Decapoda: Portunidae)” (Referencia: 110171451096, contrato: 149-2016). Y por la Universidad de Bogotá Jorge Tadeo Lozano, Programa de Biología Marina, Facultad de Ciencias Naturales e Ingeniería, bajo la financiación del proyecto: “Evaluación del potencial de cultivo de larvas de cangrejo azul Callinectes sapidus (Decapoda: Brachyura), en condiciones de laboratorio, fase I” (código: 746 -13-16). Así como por la financiación como becaria de la convocatoria 617 de Minciencias, para conformar bancos de elegibles para formacion de alto nivel para la ciencia, la tecnologia y la innovacion (semilleros y jovenes investigadores, doctorados nacionales, en el exterior e insercion laboral).DoctoradoDoctora en Ciencias - BiologíaAcuiculturaBiologia molecularNutriciónOtra. Sede CaribeXIV, 189 páginasapplication/pdfspaUniversidad Nacional de ColombiaCaribe - Caribe - Doctorado en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad CaribeUniversidad Nacional de Colombia - Sede Caribe500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados570 - Biología::571 - Fisiología y temas relacionados570 - Biología::576 - Genética y evolución590 - Animales::592 - Invertebrados630 - Agricultura y tecnologías relacionadas::636 - Producción animalCallinectes sapidusdesarrollo larvalinfluencia de la dietaexpresión génicametabolismo de nutrienteslarval developmentdiet influencegene expressionnutrient metabolismInfluencia de la dieta en el desarrollo larval de la jaiba azul Callinectes sapidus (Decápoda: Brachyura)Diet influence on larval development of blue crab Callinectes sapidus (Decapoda: Brachyura)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAaqillah-Amr, M.A., Hidir, A., Azra, M.N., Ahmad-Ideris, A.R., Abualreesh, M.H., Noordiyana, M.N., and Ikhwanuddin, M. 2021. Use of pelleted diets in commercially farmed decapods during juvenile stages: A Review. Animals, 11: 1971. https://doi.org/10.3390/ani11061761Abrunhosa, F., and Melo, M. 2008. Development and functional morphology of the foreguts of larvae and postlarvae of three crustacean decapods. Braz. J. Biol., 68: 221–228. https://doi.org/10.1590/S1519-69842008000100032Abu-Rezq, T., Al-Abdul-Elah, K., Duremdez, R., Al-Marzouk, A., James, C. M., Al- Gharabally, H., Al-Shimmari, J. 2002. Studies on the effect of using the rotifer, Brachionus plicatilis, treated with different nutritional enrichment media and antibiotics on the growth and survival of blue-fin sea bream, Sparidentex hasta (Valenciennes), larvae. Aquac. Res., 33: 117–128. https://doi.org/10.1046/j.1365- 2109.2002.00658.xAcosta, E., and Gómez-León, J. 2013. Influence of larval density at the initial seeding and the concentration of food on Argopecten nucleus larviculture (Ostreoida: Pectiniidae). Bol. Investig. Mar. Cost., 42 (1): 73–90. http://boletin.invemar.org.co:8085/ojs/index.php/boletin/article/view/60Aggio, J.F., Tieu, R., Wei, A., and Derby, C.D. 2012. Oesophageal chemoreceptors of blue crabs, Callinectes sapidus, sense chemical deterrents and can block ingestion of food. J. Exp. Biol., 215: 1700–1710. https://doi.org/10.1523/ENEURO.0324- 17.2017AAgh, N., and Sorgeloos, P. 2005. Handbook of protocols and guidelines for culture and enrichment of live food for use in larviculture. Urmia, Iran. 61 p.Aguilar, R., Johnson, E.G., Hines, A.H., Kramer, M.A., and Goodison, M.R. 2008. Importance of blue crab life history for stock enhancement and spatial management of the fishery in Chesapeake Bay. Rev. Fish. Sci., 16: 117–124. https://doi.org/10.1080/10641260701681599Alagawany, M., Taha, A.E., Noreldin, A., El-Tarabily, K. A., and Abd El-Hack, M.E. 2021. Nutritional applications of species of Spirulina and Chlorella in farmed fish: A review. Aquaculture, 542 736841. https://doi.org/10.1016/j.aquaculture.2021.736841Alava, V.R., Quinitio, E.T., De Pedro, J.B., Orosco, Z.G.A., and Wille, M. 2007. Reproductive performance, lipids and fatty acids of mud crab Scylla serrata (Forsskål) fed dietary lipid levels. Aquac. Res., 38: 1442–1451. https://doi.org/10.1111/j.1365-2109.2007.01722.xAli, Y.B., Verger, R., and Abousalham, A. 2012. Lipases or esterases: Does it really matter? toward a new bio-physico-chemical classification. 31–51. In: Sandoval, G. (Ed.). Methods in Molecular Biology, Vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_2Allman, A.L., Williams, E.P., and Place, A.R. 2017. Growth and enzyme production in blue crabs (Callinectes sapidus) fed cellulose and chitin supplemented diets. J. Shellfish Res., 36: 283–291. https://doi.org/10.2983/035.036.0132Almeida, E.V., Cardoso, C.S., Souza, M.S., and Bonecker, S.L.C. 2021. Swimming behavior of newly hatched larvae of six decapod species (Crustacea: Decapoda). Nauplius, https://doi.org/10.1590/2358-2936e2021023Amaro, M.A., and Fiscarelli, A.G. 2009. Length-weight relationship and condition factor of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Crustacea, Brachyura, Ucididae). Braz. Arch. Biol., 52: 397–406. https://doi.org/10.1590/S1516-89132009000200017Amsler, M.O., and George, R.Y. 1984. Seasonal variation in the biochemical composition of the embryos of Callinectes sapidus Rathbun. J. Crustac. Biol., 4: 546–553. https://doi.org/10.2307/1548068Anastasia, J.R., Morgan, S.G., and Fisher, N.S. 1998. Tagging crustacean larvae: Assimilation and retention of trace elements. Limnol. Oceanogr., 43: 362–368. https://doi.org/10.4319/lo.1998.43.2.0362Andrés, M., Estévez, A., Anger, K., and Rotllant, G. 2008. Developmental patterns of larval growth in the edible spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol., 357: 35–40. https://doi.org/10.1016/j.jembe.2007.12.015Andrés, M., Estévez, A., Hontoria, F., and Rotllant, G. 2010a. Differential utilization of biochemical components during larval development of the spider crab Maja brachydactyla (Decapoda: Majidae). Mar. Biol., 157: 2329–2340. http://hdl.handle.net/10261/43429Andrés, M., Estévez, A., and Rotllant, G. 2007. Growth, survival and biochemical composition of spider crab Maja brachydactyla (Balss, 1922) (Decapoda: Majidae) larvae reared under different stocking densities, prey: larva ratios and diets. Aquaculture, 273: 494–502. https://doi.org/10.1016/j.aquaculture.2007.10.026Andrés, M., Gisbert, E., Díaz, M., Moyano, F. J., Estévez, A., and Rotllant, G. 2010b. Ontogenetic changes in digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). J. Exp. Mar. Biol. Ecol., 389: 75–84. https://doi.org/10.1016/j.jembe.2010.03.015Anger, K. 1983. Moult cycle and morphogenesis in Hyas araneus larvae (decapoda, majidae), reared in the laboratory. Helgolander Meeresun., 36: 285–302. https://doi.org/10.1007/BF01983632Anger, K. 1987. The D0 threshold: a critical point in the larval development of decapod crustaceans. J. Exp. Mar. Biol. Ecol., 108: 15–30. https://doi.org/10.1016/0022-0981(87)90128-6Anger, K. 2001. The Biology of Decapod Crustacean Larvae: Crustacean Issues Volume 14. A.A. Balkema Publishers, Pensilvania. 419 p. https://doi.org/10.1016/S0022-0981(02)00381-7Anger, K. 2006. Contributions of larval biology to crustacean research: a review. Invertebr. Reprod. Dev., 49: 175–205. https://doi.org/10.1080/07924259.2006.9652207Anger, K., and Dawirs, R.R. 1981. Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae). Helgolander Meeresun., 34: 287–311. https://doi.org/10.1007/BF02074124Anger, K., Dawirs, R.R., Anger, V., Goy, J.W., and Costlow, J.D. 1981. Starvation resistance in first stage zoeae of brachyuran crabs in relation to temperature. J. Crustac. Biol., 1: 518–525. https://doi.org/10.2307/1548128Anger, K., and Nair, K.K.C. 1979. Laboratory experiments on the larval development of Hyas araneus (Decapoda, Majidae). Helgoland. Wiss. Meer., 32: 36–54. https://doi.org/10.1007/BF02189891Anger, K., and Spindler, K.D. 1987. Energetics, moult cycle and ecdysteroid titers in spider crab (Hyas araneus) larvae starved after the D0 threshold. Mar. Biol., 94: 367–375. https://doi.org/10.1007/BF00428242Antipov, D., Korobeynikov, A., McLean, J.S., and Pevzner, P.A. 2016. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics, 32: 1009–1015. https://doi.org/10.1093/bioinformatics/btv688A.O.A.C. 1984. Official methods of Analysis of the Association of Official Agricultural Chemists. 13th ed. AOAC, Washington. 1038 p.A.O.A.C. 2000. Oficial methods of Analysis of the Asociation of Official Analytical Chemists. 17th ed. Sigma-Aldrich, Washington. 2200 p.A.O.A.C. 2005. Official methods of Analysis of the Asociation of Official Analytical Chemists. 18th ed. AOAC, ArlingtonArakane, Y., and Muthukrishnan, S. 2010. Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci., 67: 201–216. https://doi.org/10.1007/s00018-009-0161-9Arguelles, E. 2021. Biochemical composition and bioactive properties of Chlorella minutissima (Chm1) as a potential source of chemical compounds for nutritional feed supplement and disease control in aquaculture. Curr. Appl. Sci. Technol. 21: 65–77. https://li01.tci-thaijo.org/index.php/cast/article/view/245911Arias-Moscoso, J.L., Cuevas-Acuña, D.A., Rivas-Vega, M.E., Martínez-Córdova, L.R., Osuna-Amarilas, P., and Miranda-Baeza, A. 2016. Características físicas y químicas de biofloc liofilizado producido en cultivos de camarón blanco con diferente inclusión de harina de pescado en la dieta. Lat. Am. J. Aquat. Res., 44: 760-768. http://dx.doi.org/10.3856/vol44-issue4-fulltext-12Asadpour-Ousalou, Y.A. 2014. Application of shark liver oil for Artemia enrichment and its comparison with imported Selco oil. Glob. Vet., 13: 1037–1042. http://www.idosi.org/gv/gv13(6)14/13.pdfAshraf, M.Y., Javed Iqbal, M., and Naqvi, S.A. 2011. Replacement of expensive pure nutritive media with low cost commercial fertilizers for mass culture of freshwater algae, Chlorella vulgaris Intensive fish culture. Int. J. Agric. Biol., 13: 484–490. https://www.researchgate.net/profile/Muhammad-Iqbal-147/publication/288717170_Replacement_of_Expensive_Pure_Nutritive_Media_with_Low_Cost_Commercial_Fertilizers_for_Mass_Culture_of_Freshwater_Algae_Chlorella_vulgaris/links/58f21746aca27289c2167107/Replacement-of-Expensive-Pure-Nutritive-Media-with-Low-Cost-Commercial-Fertilizers-for-Mass-Culture-of-Freshwater-Algae-Chlorella-vulgaris.pdfAustin, E.L., and Moore, P.A. 2022. Influence of amino acid concentrations on foraging and feeding in the rusty crayfish Faxonius rusticus (Girard, 1852) (Decapoda: Astacidea: Cambaridae), assayed in flow-through mesocosms. J. Crustac. Biol., 42: https://doi.org/10.1093/jcbiol/ruac034Azra, M.N., Chen, J.C., Hsu, T.H., Ikhwanuddin, M., and Abol-Munafi, A.B. 2019. Growth, molting duration and carapace hardness of blue swimming crab, Portunus pelagicus, instars at different water temperatures. Aquac. Rep., 15: 100226. https://doi.org/10.1016/j.aqrep.2019.100226Bacab, F.J., Amador, L.E., Valdes, R., and Cabrera, P. 2002. Cultivo de larvas de la jaiba azul Callinectes sapidus en condiciones de laboratorio en la Isla del Carmen, Campeche, México. I Congreso Iberoamericano Virtual de Acuicultura - Civa, 122–128. https://www.researchgate.net/profile/Luis-Enrique-Amador-Del-Angel/publication/235256039_Cultivo_de_larvas_de_la_jaiba_azul_Callinectes_sapidus_en_condiciones_de_laboratorio_en_la_Isla_del_Carmen_Campeche_Mexico_Mexico/links/0deec52a8ee312ec10000000/Cultivo-de-larvas-de-la-jaiba-azul-Callinectes-sapidus-en-condiciones-de-laboratorio-en-la-Isla-del-Carmen-Campeche-Mexico-Mexico.pdfBallabio, A. 2016. The awesome lysosome. EMBO Mol. Med., 8: 73–76. https://pubmed.ncbi.nlm.nih.gov/26787653/BangHong, W., ZhiGang, Y., YongXu, C., Hang, Y., and XiaoZhen, Y. 2019. Gene cloning and expression analysis of pancreatic lipase in Chinese mitten crab (Eriocheir sinensis). Gen. Appl. Biol., 38: 2466–2475. https://www.cabdirect.org/cabdirect/abstract/20193351306Bartlett, K., and Eaton, S. 2004. Mitochondrial β-oxidation. European J. Mol. Biol. Biochem., 271: 462–469. https://doi.org/10.1046/j.1432-1033.2003.03947.xBarrett, A.J. 1994. [1] Classification of peptidases. Meth. Enzymol., 244: 1–15. https://doi.org/10.1016/0076-6879(94)44003-4Barrett, A.J., Rawlings, N.D., and Woessner, J.F. 2004. Handbook of proteolytic enzymes. Elsevier Academic Press. Miami. 984 p.Basford, A.J., Makings, N., Mos, B., White, C.A., and Dworjanyn, S. 2021. Greenwater, but not live feed enrichment, promotes development, survival, and growth of larval Portunus armatus. Aquaculture, 534: 736331. https://doi.org/10.1016/j.aquaculture.2020.736331Baylon, J.C. 2009. Appropriate food type, feeding schedule and Artemia density for the zoea larvae of the mud crab, Scylla tranquebarica (Crustacea: Decapoda: Portunidae). Aquaculture, 288, 190–195. https://doi.org/10.1016/j.aquaculture.2008.11.028Baylon, J.C., Bravo, M.E.A., and Maningo, N.C. 2004. Ingestion of Brachionus plicatilis and Artemia salina nauplii by mud crab Scylla serrata larvae. Aquac. Res., 35: 62–70. https://doi.org/10.1111/j.1365-2109.2004.00987.xBegum, N., Mamun Siddiky, M.N.S., Ahmmed, S. 2021. Comparison of growth performance of live feed microalgae and rotifer (Brachionus sp.) under different feeding medium in outdoor culture condition. World J. Biol. Pharm. Health Sci. 5: 025–032. https://doi.org/10.30574/wjbphs.2021.5.2.0008Belgrad, B.A., and Griffen, B.D. 2016. The influence of diet composition on fitness of the blue crab, Callinectes sapidus. Plos One, 11: e0145481. https://pubmed.ncbi.nlm.nih.gov/26784581/Bell, J.D., Leber, K.M., Blankenship, H.L., Loneragan, N.R., and Masuda, R. 2008. A new era for restocking, stock enhancement and sea ranching of coastal fisheries resources. Rev. Fish. Sci., 16: 1–9. https://doi.org/10.1080/10641260701776951Bembe, S., Liang, D., and Chung, J.S. 2017. Optimal temperature and photoperiod for the spawning of blue crab, Callinectes sapidus, in captivity. Aquac. Res., 48: 5498–5505. https://doi.org/10.1111/are.13366Bhavan, P.S., Devi, V.G., Shanti, R., Radhakrishnan, S., and Poongodi, R. 2010. Basic biochemical constituents and profiles of amino acids in the post larvae of Macrobrachium rosenbergii fed with spirulina and yeast enriched Artemia. J. Sci. Res., 2 539–539. https://api.semanticscholar.org/CorpusID:83716180Biesiot, P.M., and Capuzzo, J.M.D. 1990. Changes in digestive enzyme activities during early development of the American lobster Homarus americanus Milne Edwards. J. Exp. Mar. Biol. Ecol., 136: 107–122. https://doi.org/10.1016/0022-0981(90)90190-NBolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170Bonilla-Gómez, J.L., Chiappa-Carrara, X., Galindo, C., Cuzón, G., and Gaxiola, G. 2013. Effects of adaptation to laboratory conditions on growth, molting, and food consumption of juvenile Farfantepenaeus duorarum (Decapoda: Penaeidae). J. Crustac. Biol., 33: 191–197. https://doi.org/10.1163/1937240X-00002125Bookhout, C., and Costlow, J.D. 1977. Larval development of Callinectes similis reared in the laboratory. Bull. Mar. Sci., 27: 704–728. https://www.ingentaconnect.com/content/umrsmas/bullmar/1977/00000027/00000004/art00006Bown, D.P., and Gatehouse, J.A. 2004. Characterization of a digestive carboxypeptidase from the insect pest corn earworm (Helicoverpa armigera) with novel specificity towards C-terminal glutamate residues. Eur. J. Biochem., 271: 2000–2011. https://doi.org/10.1111/j.1432-1033.2004.04113.xBrandão, M.C., Freire, A.S., and Burton, R.S. 2016. Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Syst. Biodivers., 14: 288–302. https://doi.org/10.1080/14772000.2016.1140245Brito, R., Rosas, C., Chimal, M.E., Gaxiola, G. 2001. Effect of different diets on growth and digestive enzyme activity in Litopenaeus vannamei (Boone, 1931) early post-larvae. Aquac. Res., 32: 257-266. https://doi.org/10.1046/j.1365-2109.2001.00548.xBrooks, W.K. 1882. Handbook of invertebrate zoology for laboratories and seaside work. Bradlee Whidden, Boston. 392 p.Brucet, S., Boix, D., López-Flores, R., Badosa, A., and Quintana, X.D. 2005. Ontogenic changes of amino acid composition in planktonic crustacean species. Mar. Biol., 148: 131–139. https://doi.org/10.1007/s00227-005-0068-4Bu, X., Wang, X., Lin, Z., Wang, C., Li, L., Liu, S., Shi, Q., Qin, J.G., and Chen, L. 2022. Myo-inositol improves growth performance and regulates lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Br. J. Nutr., 127: 666–678. https://doi.org/10.1017/S0007114521001409Calado, R., Carvalho, L., Rodrigues, A.C.M., Abe, F., Patrício, S.A.L., Soares, A.M.V.M., and Gravato, C. 2022. The physiological consequences of delaying metamorphosis in the marine ornamental shrimp Lysmata seticaudata and its implications for aquaculture. Aquaculture, 546: 737391. https://doi.org/10.1016/j.aquaculture.2021.737391Cantalapiedra, C.P., Hern̗andez-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. 2021. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol., 38: 5825–5829. https://doi.org/10.1093/molbev/msab293Caracappa, J.C., and Munroe, D.M. 2018. Morphological variability among broods of first-stage blue crab (Callinectes sapidus) zoeae. Biol. Bull., 235: 123–133. https://www.journals.uchicago.edu/doi/abs/10.1086/699922Cardona, E., Lorgeoux, B., Geffroy, C., Richard, P., Saulnier, D., Gueguen, Y., Guillou, G., and Chim, L. 2015. Relative contribution of natural productivity and compound feed to tissue growth in blue shrimp (Litopenaeus stylirostris) reared in biofloc: Assessment by C and N stable isotope ratios and effect on key digestive enzymes. Aquaculture, 448: 288–297. https://doi.org/10.1016/j.aquaculture.2015.05.035Carić, M., Sanko-Njire, J., and Skaramuca, B. 1993. Dietary effects of different feeds on the biochemical composition of the rotifer (Brachionus plicatilis Müller). Aquaculture, 110: 141–150. https://doi.org/10.1016/0044-8486(93)90268-4Carneiro, W.F., Castro, T.F.D., Orlando, T.M., Meurer, F., Paula, D.A.J., Virote, B.C.R., Vianna, A.R.C.B., and Murgas, L.D.S. 2020. Replacing fish meal by Chlorella sp. meal: Effects on zebrafish growth, reproductive performance, biochemical parameters and digestive enzymes. Aquaculture, 528: 735612. https://doi.org/10.1016/j.aquaculture.2020.735612Carrillo-Farnés, O., Forrellat-Barrios, A., Guerrero-Galván, S., and Vega-Villasante, F. 2007. A review of digestive enzyme activity in penaeid shrimps. Crustaceana, 80: 257–275. https://www.jstor.org/stable/20107805Carter, C.G. 2015. Feeding in hatcheries. 317-348. In: Davis, D.A. (Ed.). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Oxford. 432 p. https://doi.org/10.1016/B978-0-08-100506-4.00013-1Carter, C.G., and Codabaccus, M.B. 2022. Feeding in hatcheries. 355–398. In: Davis, D.A. (Ed.). Feed and Feeding Practices in Aquaculture. Woodhead Publishing, Cambridge. 403 p.Carter, C.G., and Mente, E. 2014. Protein synthesis in crustaceans: A review focused on feeding and nutrition. Cent. Eur. J. Biol., 9: 1–10. https://doi.org/10.2478/s11535-013-0134-0Castejón, D., Rotllant, G., Alba-Tercedor, J., Font-i-Furnols, M., Ribes, E., Durfort, M., and Guerao, G. 2019. Morphology and ultrastructure of the midgut gland (“hepatopancreas”) during ontogeny in the common spider crab Maja brachydactyla Balss, 1922 (Brachyura, Majidae). Arthropod Struct. Dev., 49: 137–151. https://doi.org/10.1016/j.asd.2018.11.013Ceccaldi, H.J. 1997. Anatomy and phisiology of the digestive system. 261–291. In: D´Abramo, L., Conklin, D., and Akiyama, D. (Eds.). Crustacean nutrition. The World Aquaculture Society, Louisiana. 587 p.Cha, G.H., Wang, W.N., Peng, T., Huang, M.Z., and Liu, Y. 2015. A Rac1 GTPase is a critical factor in the immune response of shrimp (Litopenaeus vannamei) to Vibrio alginolyticus infection. Dev. Com. Immunol., 51: 226–237. https://doi.org/10.1016/j.dci.2015.04.004Chakraborty, K., Chakraborty, R.D., Radhakrishnan, E.V., and Vijayan, K.K. 2010. Fatty acid profiles of spiny lobster (Panulirus homarus) phyllosoma fed enriched Artemia. Aquac. Res., 41: e393–e403. https://doi.org/10.1111/j.1365-2109.2009.02469.xChandhini, S., and Kumar, R. 2019. Transcriptomics in aquaculture: current status and applications. Rev. Aquac., 11: 1379–1397. https://doi.org/10.1111/raq.12298Chang, E.S., and Mykles, D.L. 2011. Regulation of crustacean molting: A review and our perspectives. Gen. Comp. Endocrinol., 172: 323–330. https://doi.org/10.1016/j.ygcen.2011.04.003Chaoruangrit, L., Tapaneeyaworawong, P., Powtongsook, S., and Sanoamuang, L. 2018. Alternative microalgal diets for cultivation of the fairy shrimp Branchinella thailandensis (Branchiopoda: Anostraca). Aquacult. Int., 26: 37–47. https://doi.org/10.1007/s10499-017-0191-5Chen, B., Zheng, J., Chen, C., Wu, K., Lin, F., Ning, L., Rong, H., Chen, C., Xiao, F., Zhang, H., and Wen, X. 2023. Differences in lipid accumulation and mobilization in the hepatopancreas and ovary of female mud crab (Scylla paramamosain, Estampador, 1949) during ovarian development. Aquaculture, 564: 739046. https://doi.org/10.1016/j.aquaculture.2022.739046Chen, L., and Yang, G. 2014. PPARs integrate the mammalian clock and energy metabolism. PPAR Res., 2014: 653017. https://doi.org/10.1155/2014/653017Chi, Y., Li, F., Sun, Y., Wen, R., and Li, S. 2013. Expression and function analysis of Rac1 homolog in Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol., 35: 927–932. https://doi.org/10.1016/j.fsi.2013.07.006Chiu, T.T., Jensen, T.E., Sylow, L., Richter, E.A., and Klip, A. 2011. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell. Signal., 23: 1546–1554. https://doi.org/10.1016/j.cellsig.2011.05.022Christiansen, M.E., and Costlow, J.D. 1982. Ultrastructural study of the exoskeleton of the estuarine crab Rhithropanopeus harrisii: Effect of the insect growth regulator Dimilin® (diflubenzuron) on the formation of the larval cuticle. Mar. Biol., 66: 217–226. https://doi.org/10.1007/BF00397025Chung, J.S. 2010. Hemolymph ecdysteroids during the last three molt cycles of the blue crab, Callinectes sapidus: quantitative and qualitative analyses and regulation. Arch. Insect. Biochem. Physiol., 73: 1–13. https://doi.org/10.1002/arch.20327CChung, J.S. 2020. Role of hepatopancreas trehalose-6-phosphate synthase in carbohydrate levels of the blue crab Callinectes sapidus in feeding and emersion. J. Shellfish Res., 39: 449–459. https://doi.org/10.2983/035.039.0226Churchill, E.R. 1942. The zoeal stages of the blue crab, Callinectes sapidus Rathbun. Ches. Biol. Lab. Pub. 49. 26 p.Cock, P.J.A., Grüning, B.A., Paszkiewicz, K., and Pritchard, L. 2013. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology. PeerJ, e167. https://doi.org/10.7717/peerj.167Codabaccus, B.M., Carter, C.G., Fitzgibbon, Q.P., Trotter, A.J., and Smith, G.G. 2020. Growth and biochemical composition of hatchery reared Scyllaridae lobster (Thenus australiensis) larval stages, nisto and juvenile first stage. Aquaculture, 524: 735262. https://doi.org/10.1016/j.aquaculture.2020.735262Côrtes, G., and Tsuzuki, M.Y. 2012. Effect of different live food on survival and growth of first feeding barber goby, Elacatinus figaro (Sazima, Moura & Rosa 1997) larvae. Aquac. Res., 43: 831–834. https://doi.org/10.1111/j.1365-2109.2011.02896.xCostlow, J.D. 1965. Variability in larval stages of the blue crab, Callinectes sapidus. Biol. Bull., 128: 58–66. https://www.journals.uchicago.edu/doi/abs/10.2307/1539389?journalCode=bblCostlow, J.D. 1967. The effect of salinity and temperature on survival and metamorphosis of megalops of the blue crab Callinectes sapidus. Elgoland. Wiss. Meer., 15: 84–97. https://doi.org/10.1007/BF01618611Costlow, J.D., and Bookhout, C.G. 1959a. Preliminary note on the complete larval development of Callinectes sapidus Rathbun under laboratory conditions. Limnol. Oceanogr. 4: 222–223. https://aslopubs.onlinelibrary.wiley.com/doi/pdf/10.4319/lo.1959.4.2.0222Costlow, J.D., and Bookhout, C.G. 1959b. The larval development of Callinectes sapidus Rathbun reared in the laboratory. Biol. Bull. 116: 373–396. https://www.journals.uchicago.edu/doi/abs/10.2307/1538947?journalCode=bblCruz-Suárez, L.E., Ricque-Marie, D., Pinal-Mansilla, J.D., and Wesche-Ebelling, P. 1994. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact. Aquaculture, 123: 349–360. https://doi.org/10.1016/0044-8486(94)90070-1Cruz-Suárez, L.E., Ricque-Marie, D., Pinal-Mansilla, J.D., and Wesche-Ebelling, P. 1994. Effect of different carbohydrate sources on the growth of Penaeus vannamei: economical impact. Aquaculture, 123: 349–360. https://doi.org/10.1016/0044-8486(94)90070-1da Silva, U.A.T., Cottens, K., Ventura, R., Boeger, W. A., and Ostrensky, A. 2012. Different pathways in the larval development of the crab Ucides cordatus (Decapoda, Ocypodidae) and their relation with high mortality rates by the end of massive larvicultures. Pesquisa Vet. Brasil., 32: 284–288. https://doi.org/10.1590/S0100-736X2012000400002Dai, T., Zhang, X., Li, M., Tao, X., Jin, M., Sun, P., Zhou, Q., and Jiao, L. 2022. Dietary vitamin K3 activates mitophagy, improves antioxidant capacity, immunity and affects glucose metabolism in Litopenaeus vannamei. Food Funct., 13: 6362–6372. https://doi.org/10.1039/D2FO00865CDai, Y., Wang, T.T., Wang, Y.F., Gong, X.J., and Yue, C.F. 2009. Activities of digestive enzymes during embryonic development in the crayfish Procambarus clarkii (Decapoda). Aquac. Res., 40: 1394–1399. https://doi.org/10.1111/j.1365-2109.2009.02237.xDaly, B.J., Eckert, G.L., and Long, W.C. 2020. Moulding the ideal crab: implications of phenotypic plasticity for crustacean stock enhancement. ICES J. Mar. Sci., 78: 421-434. https://doi.org/10.1093/icesjms/fsaa043Dan, S., and Koiso, M. 2008. Effect of microalgal addition on stability of n-3HUFA contents in enriched rotifer Brachionus plicatilis in large tank for seed production. Aquac. Sci., 56: 603-604. https://doi.org/10.11233/aquaculturesci.56.603Dan, S., and Hamasaki, K. 2011. Effects of salinity and dietary n-3 highly unsaturated fatty acids on the survival, development, and morphogenesis of the larvae of laboratory-reared mud crab Scylla serrata (Decapoda, Portunidae). Aquac. Int., 19: 323–338. https://doi.org/10.1007/s10499-010-9374-zDan, S., Ashidate, M., and Hamasaki, K. 2015. Improved method for culturing the swimming crab Portunus trituberculatus larvae to prevent mass mortality during seed production. Fish. Sci., 82: 113–126. https://doi.org/10.1007/s12562-015-0935-yDavis, J.A. 2003. Development of hatchery techniques for the mud crab Scylla serrata (Forskǻl) in South Africa. Tesis Ph.D. in Applied Biological Sciences, Universiteit Gent, Bélgica. 165 p. https://biblio.ugent.be/publication/521739/file/1875443.pdf#page=101Dawirs, R.R. 1984. Influence of starvation on larval development of Carcinus maenas L. (Decapoda : Portunidae). J. Exp. Mar. Biol. Ecol., 80: 47–66. https://doi.org/10.1016/0022-0981(84)90093-5Deleo, D.M., Pérez-Moreno, J.L., Vázquez-Miranda, H., and Bracken-Grissom, H.D. 2018. RNA profile diversity across arthropoda: guidelines, methodological artifacts, and expected outcomes. Biol. Methods Protoc., 3: bpy012. https://doi.org/10.1093/biomethods/bpy012De Silva, S.S., and Anderson, T.A. 1994. Fish Nutrition in Aquaculture. Aquaculture Series. Chapman y Hall, London. 320 p.De Walsche, C., Mertens, J., and Dumont, H.J. 1991. Observations on temperature optimum, cyst production, and survival of Streptocephalus proboscideus (Frauenfeld, 1873) (Crustacea: Anostraca), fed different diets. Hydrobiologia, 212: 21–26. https://doi.org/10.1007/BF00025983Dendinger, J.E. 1987. Digestive proteases in the midgut gland of the atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol., 88: 503–506. https://doi.org/10.1016/0305-0491(87)90334-8Dendinger, J.E., and Alterman, A. 1983. Mechanical properties in relation to chemical constituents of postmolt cuticle of the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. Part A: Phys., 75: 421–424. http://biomimetic.pbworks.com/f/MECHANICAL+PROPERTIES+IN+RELATION+TODendinger.pdfDendinger, J.E., and O’Connor, K.L. 1990. Purification and characterization of a trypsin-like enzyme from the midgut gland of the Atlantic blue crab, Callinectes sapidus. Comp. Biochem. Physiol. - B Biochem. Mol. Biol., 95: 525–530. https://doi.org/10.1016/0305-0491(90)90014-KDhert, P., King, N., and O’Brien, E. 2014. Stand-alone live food diets, an alternative to culture and enrichment diets for rotifers. Aquaculture, 431: 59–64. https://doi.org/10.1016/j.aquaculture.2014.04.021Dhert, P., Rombaut, G., Suantika, G., and Sorgeloos, P. 2001. Advancement of rotifer culture and manipulation techniques in Europe. Aquaculture, 200: 129–146. https://doi.org/10.1016/S0044-8486(01)00697-4Díaz-Tenorio, L.M., García-Carreño, F.L., and Navarrete del Toro, M.A. 2006. Characterization and comparison of digestive proteinases of the Cortez swimming crab, Callinectes bellicosus, and the arched swimming crab, Callinectes arcuatus. Invertebr. Biol., 125: 125–135. https://doi.org/10.1111/j.1744-7410.2006.00047.xDomingues, P.M., Turk, P.E., Andrade, J.P., and Lee, P.G. 2001. Effects of enriched Artemia nauplii on production, survival and growth of the mysid shrimp Mysidopsis almyra Bowman 1964 (Crustacea: Mysidacea). Aquac. Res., 32: 599–603. https://doi.org/10.1046/j.1365-2109.2001.00608.xDDonnelly, J.M. 2009. Blue crab farming on Maryland’s eastern shore. Doctoral Thesis. University of Maryland, College Park, Maryland. 102 p. https://drum.lib.umd.edu/handle/1903/10054DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28: 350–356. https://doi.org/10.1021/ac60111a017Engel, D. W., and Brouwer, M. 1993. Crustaceans as models for metal metabolism: I. Effects of the molt cycle on Blue Crab Metal Metabolism and MetallothioneinMar. Environ. Res., 35, 1–5. https://doi.org/10.1016/0141-1136(93)90004-JEpelbaum, A., and Borisov, R. 2006. Feeding behaviour and functional morphology of the feeding appendages of red king crab Paralithodes camtschaticus larvae. Mar. Biol. Res., 2: 77–88. https://doi.org/10.1080/17451000600672529Epifanio, C.E. 2019. Early life history of the blue crab Callinectes sapidus: A Review. J. Shellfish Res., 38: 1–22. https://doi.org/10.2983/035.038.0101Estudillo-del Castillo, C., Gapasin, R.S., and Leaño, E.M. 2009. Enrichment potential of HUFA-rich thraustochytrid Schizochytrium mangrovei for the rotifer Brachionus plicatilis. Aquaculture, 293: 57–61. doi:10.1016/j.aquaculture.2009.04.008. https://doi.org/10.1016/j.aquaculture.2009.04.008Factor, J.R. 1982. Development and metamorphosis of the feeding apparatus of the stone crab, Menippe mercenaria (brachyura, xanthidae). J. Morphol., 172: 299–312. https://doi.org/10.1002/jmor.1051720305Fang, F., Yuan, Y., Jin, M., Shi, B., Zhu, T., Luo, J., Lu, J., Wang, X., Jiao, L., and Zhou, Q. 2021. Hepatopancreas transcriptome analysis reveals the molecular responses to different dietary n-3 PUFA lipid sources in the swimming crab Portunus trituberculatus. Aquaculture, 543: 737016. https://doi.org/10.1016/j.aquaculture.2021.737016Fan, L., Wang, A., Miao, Y., Liao, S., Ye, C., and Lin, Q. 2016. Comparative proteomic identification of the hepatopancreas response to cold stress in white shrimp, Litopenaeus vannamei. Aquaculture, 454: 27–34. https://doi.org/10.1016/j.aquaculture.2015.10.016Fan, L., Wang, L., and Wang, Z. 2019. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. Fish Shellfish Immunol., 92: 438–449. https://doi.org/10.1016/j.fsi.2019.06.037Fantle, M.S., Dittel, A.I., Schwalm, S.M., Epifanio, C.E., and Fogel, M.L. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus, using stable isotopes in whole animals and individual amino acids. Oecologia, 120: 416–426. https://doi.org/10.1007/s004420050874FAO 2020. FAO Yearbook. Fishery and Aquaculture Statistics 2018/FAO annuaire. Statistiques des pêches et de l’aquaculture 2018/ FAO anuario. Estadísticas de pesca y acuicultura 2018. Food and Agriculture Organization of the United Nations, Roma. 110 p. https://www.fao.org/fishery/en/publications/269665Fassatoui, C., Hatira, S., and Romdhane, M.S. 2021. Size-weight relationships and condition factor of the invasive Atlantic blue crab Callinectes sapidus Rathbun, 1896 (Decapoda: Brachyura: Portunidae) from northern Tunisia: a preliminary investigation. J. Crustac. Biol., 41: ruab039. https://doi.org/10.1093/jcbiol/ruab039Felgenhauer, A., Thistle, B., and Watling, L. 1989. Functional Morphology of Feeding and Grooming in Crustacea. Crustacean Issues 6. A.A. Balkema, Netherlands. 224 p.Ferreira, M., Cortina-Burgueño, Á., Freire, I., and Otero, A. 2018. Effect of nutritional status and concentration of Nannochloropsis gaditana as enrichment diet for the marine rotifer Brachionus sp. Aquaculture, 491: 351–357. https://doi.org/10.1016/j.aquaculture.2018.03.024 .Fiore, D.R., and Tlusty, M.F. 2005. Use of commercial Artemia replacement diets in culturing larval American lobsters (Homarus americanus). Aquaculture, 243: 291–303. https://doi.org/10.1016/j.aquaculture.2004.10.009Fischer, S., Thatje, S., and Brey, T. 2009. Early egg traits in Cancer setosus (Decapoda, Brachyura): effects of temperature and female size. Mar. Ecol. Prog. Ser., 377: 193–202. https://doi.org/10.3354/meps07845Flowers, E.M., Johnson, A.F., Aguilar, R., and Schott, E.J. 2018. Prevalence of the pathogenic crustacean virus Callinectes sapidus reovirus 1 near flow-through blue crab aquaculture in Chesapeake Bay, USA. Dis. Aquat. Organ., 129: 135–144. https://doi.org/10.3354/dao03232Forbes, M.S. 2012. Cell Structure. 67–83. In: Sperelakis, N. (Ed.). Cell Physiology Source Book: Essentials of Membrane Biophysics, Academic Press, Canada. 1235 p.Francis, R., Bryan, M., Aguilar, R., Watkins, E., Lindquist, M., and Hemingway, A. 2021. The influence of blue crab movement on mark-recapture estimates of recreational harvest and exploitation. Can. J. Fish. Aquat. Sci., 78: 371–385. https://doi.org/10.1139/cjfas-2020-0112Frank, J.R., Sulkin, S.D., and Morgan, R.P. 1975. Biochemical changes during larval development of the xanthid crab Rhithropanopeus harrisii. I. Protein, total lipid, alkaline phosphatase, and glutamic oxaloacetic transaminase. Mar. Biol., 32: 105–111. https://doi.org/10.1007/BF00388503Frolova, A., Muffett, K., and Miglietta, M.P. 2022. Multiple occurrences of Callinectes sapidus larvae on Gulf of Mexico Chrysaora chesapeakei. J. Plankton Res., 44: 966-969. https://doi.org/10.1093/plankt/fbac053Frolov, A.V., Pankov, S.L., Geradze, K.N., Pankova, S.A., and Spektorova, L.V. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture, 97: 181-202. https://doi.org/10.1016/0044-8486(91)90264-8Fuzita, F.J., Pinkse, M.W.H., Patane, J.S.L., Juliano, M.A., Verhaert, P., and Lopes, A.R. 2015. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: Insights into function and evolution of digestion in an ancient arthropod. Plos One 10: e0123841. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0123841Fu, Z., Yang, R., Zhou, S., Ma, Z., and Zhang, T. 2021. Effects of rotifers enriched with different enhancement products on larval performance and jaw deformity of golden Pompano larvae Trachinotus ovatus (Linnaeus, 1758). Front. Mar. Sci., 7. https://doi.org/10.3389/fmars.2020.626071Gamboa-Delgado, J., Morales-Navarro, Y.I., Nieto-López, M.G., Villarreal-Cavazos, D.A., and Cruz-Suárez, L.E. 2019. Assimilation of dietary nitrogen supplied by fish meal and microalgal biomass from Spirulina (Arthrospira platensis) and Nannochloropsis oculata in shrimp Litopenaeus vannamei fed compound diets. J. Appl. Phycol., 31: 2379–2389. https://doi.org/10.1007/s10811-019-1732-2Gao, Q., Liu, B., Shan, F., Gu, Z., Song, C., Sun, C., and Zhou, Q. 2022. Effects of oxidized fish oil on digestive enzyme activity and antioxidant system in Macrobrachium rosenbergii post-larvae. Aquac. Rep., 23: 101062. https://doi.org/10.1016/j.aqrep.2022.101062Garcia, A.S., Parrish, C.C., and Brown, J.A. 2008. Use of enriched rotifers and Artemia during larviculture of Atlantic cod (Gadus morhua Linnaeus, 1758): Effects on early growth, survival and lipid composition. Aquac. Res., 39: 406–419. https://doi.org/10.1111/j.1365-2109.2007.01816.xGebauer, P., Giménez, L., Hinojosa, I.A., and Paschke, K. 2020. Settlement and metamorphosis in barnacles and decapods. 223–253. In: Anger, K., Harzsch, S., and Thiel, M.(Eds.). Developmental Biology and Larval Ecology. Vol. 7. Oxford University Press, New York. 836 p.Gebauer, P., Paschke, K., and Anger, K. 1999. Costs of delayed metamorphosis: reduced growth and survival in early juveniles of an estuarine grapsid crab, Chasmagnathus granulata. J. Exp. Mar. Biol. Ecol., 238: 271–281. https://doi.org/10.1016/S0022-0981(98)00219-6Gebauer, P., Paschke, K., and Anger, K. 2003. Delayed metamorphosis in decapod crustaceans: evidence and consequences. Rev. Chil. Hist. Nat., 76: 169–175. https://epic.awi.de/id/eprint/9112/Genodepa, J., Zeng, C., and Southgate, P.C. 2004. Preliminary assessment of a microbound diet as an Artemia replacement for mud crab, Scylla serrata, megalopa. Aquaculture, 236: 497-509. https://doi.org/10.1016/j.aquaculture.2004.02.007Genodepa, J., Zeng, C., Militz, T.A., and Southgate, P.C. 2022a. Ontogenetic variation in digestive enzyme activities within embryos and newly-hatched larvae of the tropical spiny lobster, Panulirus ornatus. Aquaculture, 548: 737595. https://doi.org/10.1016/j.aquaculture.2021.737595Genodepa, J., Zeng, C., Militz, T.A., and Southgate, P.C. 2022b. Responses of digestive enzyme profiles to various scenarios of food availability in newly-hatched Stage I phyllosoma larvae of the tropical spiny lobster Panulirus ornatus. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 261: 110751. https://doi.org/10.1016/j.cbpb.2022.110751Giménez, L. 2003. Potential effects of physiological plastic responses to salinity on population networks of the estuarine crab Chasmagnathus granulata. Helgol. Mar. Res., 56: 265–273. https://doi.org/10.1007/s10152-002-0127-xGiménez, L. 2006. Phenotypic links in complex life cycles: conclusions from studies with decapod crustaceans. Integr. Comp. Biol., 46: 615–622. https://doi.org/10.1093/icb/icl010Giménez, L. 2010. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology, 91: 1401–1413. https://doi.org/10.1890/09-1028.1Gimenez, L., and Anger, K. 2005. Effects of temporary food limitation on survival and development of brachyuran crab larvae. J. Plankton. Res., 27: 485–494. https://doi.org/10.1093/plankt/fbi024Giménez, L., and Anger, K. 2001. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana, 1851. J. Exp. Mar. Biol. Ecol., 260: 241–257. https://doi.org/10.1016/S0022-0981(01)00258-1Goh, J., Tan, L., Law, J., Khaw, K., Zengin, G., Chan, K., Letchumanan, V., Lee, L., and Goh, B. 2023. Probiotics: comprehensive exploration of the growth promotion mechanisms in shrimps. Prog. Microbes Mol. Biol., 6 (1): a0000324. https://doi.org/10.36877/pmmb.a0000324Goncalves, R., Gesto, M., Rodríguez, C., Reis, D.B., Pérez, J.A., and Lund, I. 2022. Ontogenetic changes in digestive enzyme activity and biochemical indices of larval and postlarval European lobster (Homarus gammarus, L). Mar. Biol., 169: 53. https://doi.org/10.1007/s00227-022-04034-xGoptar, I.A., Shagin, D.A., Shagina, I.A., Mudrik, E.S., Smirnova, Y.A., Zhuzhikov, D.P., Belozersky, M.A., Dunaevsky, Y.E., Oppert, B., Filippova, I.Y., and Elpidina, E.N. 2013. A digestive prolyl carboxypeptidase in Tenebrio molitor larvae. Insect Biochem. Mol. Biol., 43: https://doi.org/10.1016/j.ibmb.2013.02.009Gore, R.H. 1985. Molting and growth in decapod larvae. 1–66. In: Wenner, A.M. (Ed.). Crustacean Issues 2: Larval Growth. A.A. Balkema Publishers, Rotterdam. 252 p.Guarizo, M., Costa, T.M., and Marochi, M.Z. 2020. Effect of diet during larval development of Menippe nodifrons Stimpson, 1859 and Callinectes danae Smith, 1869. Aquac. Int., 28: 1969–1980. https://doi.org/10.1007/s10499-020-00569-2Guillaume, J. 1997. Protein and aminoacids. 26-50. In: D'Abramo, R., Douglas, E., Conklin, D., and Akiyama, M. (Eds.). Crustacean Nutrition. World Aquaculture Society, Bator Rouge. 587 p.Gulf Coast Research Laboratory. 2021. The University of Souther Mississipi. Blue Crab Aquaculture. https://gcrl.usm.edu/research/blue.crab.aquaculture.phpGul, I., Abbas, M.N., Kausar, S., Luo, J., Gao, X., Mu, Y., Fan, W., and Cui, H. 2023. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. Fish Shellfish Immunol., 139: 108852. https://doi.org/10.1016/j.fsi.2023.108852Guo, H., Tang, D., Shi, X., Wu, Q., Liu, R., Tang, B., and Wang, Z. 2019a. Comparative transcriptome analysis reveals the expression and characterization of digestive enzyme genes in the hepatopancreas of the Chinese mitten crab. Fish. Sci., 85: 979–989. https://doi.org/10.1080/07420528.2023.2189481Guo, Q., Chen, Z., Santhanam, R. K., Xu, L., Gao, X., Ma, Q., Xue, Z., and Chen, H. 2019b. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. Int. J. Biol. Macromol., 121: 981–988. https://doi.org/10.1016/j.ijbiomac.2018.10.100Gu, X., Fu, H., Sun, S., Qiao, H., Zhang, W., Jiang, S., Xiong, Y., Jin, S., Gong, Y., and Wu, Y. 2017. Dietary cholesterol-induced transcriptome differences in the intestine, hepatopancreas, and muscle of Oriental River prawn Macrobrachium nipponense. Comp. Biochem. Physiol. Part D Genomics Proteomics, 23: 39–48. https://doi.org/10.1016/j.cbd.2017.06.001Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T.,Dewey, C.N., Henschel, R.,,Leduc, R.D., Friedman, N., and Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc., 8: 1494– https://doi.org/10.1038/nprot.2013.084Haché, R., and Plante, S. 2011. The relationship between enrichment, fatty acid profiles and bacterial load in cultured rotifers (Brachionus plicatilis L-strain) and Artemia (Artemia salina strain Franciscana). Aquaculture, 311: 201–208. https://doi.org/10.1016/j.aquaculture.2010.11.034Hamasaki, K., Suprayudi, M.A., and Takeuchi, T. 2002. Effects of dietary N-3 HUFA on larval morphogenesis and metamorphosis to megalops in the seed production of the mud crab, Scylla serrata (Brachyura: Portunidae). Aquac. Sci., 50: 333–340. https://doi.org/10.11233/aquaculturesci1953.50.333Hammer, H.S., Bishop, C.D., and Watts, S.A. 2000. Activities of three digestive enzymes during development in the crayfish Procambarus clarkii (Decapoda). J. Crustac. Biol., 20: 614–620. https://doi.org/10.1163/20021975-99990084Hamre, K. 2016. Nutrient profiles of rotifers (Brachionus sp.) and rotifer diets from four different marine fish hatcheries. Aquaculture, 450: 136–142. https://doi.org/10.1016/j.aquaculture.2015.07.016Hamre, K., Srivastava, A., Ronnestad, I., Mangor-Jensen, A., and Stoss, J. 2008. Several micronutrients in the rotifer Brachionus sp. may not fulfil the nutritional requirements of marine fish larvae. Aquac. Nutr., 14: 51–60. https://doi.org/10.1111/j.1365-2095.2007.00504.xHan, W., Sun, Y., Liu, J., Zhang, Y., Lu, Z., and Cheng, Y. 2021. Effect of different feeding modes on the growth, biochemical composition, and living environment of the juvenile Chinese mitten crab Eriocheir sinensis. Aquaculture, 541: 736687. https://doi.org/10.1016/j.aquaculture.2021.736687Harms, J., Anger, K., Klaus, S., and Seeger, B. 1991. Nutritional effects on ingestion rate, digestive enzyme activity, growth, and biochemical composition of Hyas araneus L. (Decapoda: Majidae) larvae. J. Exp. Mar. Biol. Ecol.,145: 233–265. https://doi.org/10.1016/0022-0981(91)90178-YHarms, J., Meyer-Harms, B., Dawirs, R.R., and Anger, K. 1994. Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments. Mar. Ecol. Prog. Ser., 108: 107–118. https://www.int-res.com/articles/meps/108/m108p107.pdfHaunerland, N.H. 1997. Transport and utilization of lipids in insect flight muscles. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 117: 475–482. https://doi.org/10.1016/S0305-0491(97)00185-5Hewitt, D.R. 1992. Response of protein turnover in the brown tiger prawn Penaeus esculentus to variation in dietary protein content. Comp. Biochem. Physiol. Part A Physiol., 103: 183–187. https://doi.org/10.1016/0300-9629(92)90261-NHill, J., Fowler, D.L., and Van Den Avyle, M.J. 1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic) - blue crab. Biological Report - US Fish & Wildlife Service 82, 18 p. https://apps.dtic.mil/sti/pdfs/ADA210181.pdfHirche, H.J., and Anger, K. 1987. Digestive enzyme activities during larval development of Hyas araneus (Decapoda, Majidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 87: 297–302. https://epic.awi.de/id/eprint/1387/Hoeger, U., and Schenk, S. 2023. Crustacean yolk proteins: structure, function and diversity. 38-69. In: Zupo, V. (Ed.). Crustaceans: Endocrinology, Biology and Aquaculture. CRS Press Taylor & Francis Group, Boca Ratón. 308 p.Holme, M.H., Southgate, P.C., and Zeng, C. 2007. Survival, development and growth response of mud crab, Scylla serrata, megalopae fed semi-purified diets containing various fish oil:corn oil ratios. Aquaculture, 269: 427–435. https://doi.org/10.1016/j.aquaculture.2007.05.024Holme, M.H., Zeng, C., and Southgate, P. 2009. A review of recent progress toward development of a formulated microbound diet for mud crab, Scylla serrata, larvae and their nutritional requirements. Aquaculture, 286: 164–175. https://doi.org/10.1016/j.aquaculture.2008.09.021Hopkins, S.H. 1944. the external morphology of the third and fourth zoeal stages of the blue crab, Callinectes sapidus Rathbun. Biol. Bull., 87: 145–152. https://www.journals.uchicago.edu/doi/abs/10.2307/1538344?journalCode=bblHorst, M.N. 1990. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs. J. Exp. Zool., 256: 242–254. https://doi.org/10.1002/jez.1402560303Hosain, M.E., Amin, S.M.N., Kamarudin, M.S., Arshad, A., Karim, M., and Romano, N. 2021. Effect of salinity on growth, survival, and proximate composition of Macrobrachium rosenbergii post larvae as well as zooplankton composition reared in a maize starch based biofloc system. Aquaculture, 533: 736235. https://doi.org/10.1016/j.aquaculture.2020.736235Huang, Y., Wang, G., Liu, J., Zhang, L., Huang, S., Wang, Y., Yang, Z., and Ge, H. 2021. Analysis of transcriptome difference between rapid-growing and slow-growing in Penaeus vannamei. Gene, 787: 145642. https://doi.org/10.1016/j.gene.2021.145642Hu, K.J., and Leung, P.C. 2007. Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 146: 69–80. https://doi.org/10.1016/j.cbpb.2006.09.010Hu, S., Wang, J., Han, T., Li, X., Jiang, Y., and Wang, C. 2017. Effects of dietary DHA/EPA ratios on growth performance, survival and fatty acid composition of juvenile swimming crab (Portunus trituberculatus). Aquac. Res., 48: 1291–1301. https://doi.org/10.1111/are.12971Huang, X., and Madan, A. 1999. CAP3: A DNA Sequence Assembly Program. Genome Res., 9: 868–877. https://genome.cshlp.org/content/9/9/868.shortInbakandan, D. 2020. Transcriptomics in Aquaculture. 1919–1936. In: Se-Kwon, K. (ed.). Encyclopedia of Marine Biotechnology, Volume III. John Wiley & Sons, New Jersey. 649 p. https://doi.org/10.1002/9781119143802.ch84INVE-Aquaculture TC-SPRESSO-EN-0212 Technical card S.Presso: complete liquid enrichment for Artemia and rotifers.Invitrogen 2016. Trizol reagent invitrogen user guide. Catalog Numbers 15596026 and 15596018 Doc. Part No. 15596026.PPS Pub. No. MAN0001271 Rev. A.0. 4 p.Invitrogen 2019. Quant-iT RiboGreeen RNA reagent and kit user guide. Catalog Numbers R11490, R11491, T11493 Pub. No. MAN0002073 Rev. A.0. 6 p.Jahn, C.E., Charkowski, A.O., and Willis, D.K. 2008. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J. Microbiol. Methods, 75: 318–324. https://doi.org/10.1016/j.mimet.2008.07.004Jeffs, A., and O´Rorke, R. 2020. Feeding and nutrition of crustacean larvae. 309–331. In: Anger, K., Harzsch, S., and Thiel, M. (Eds.). The Natural History of the Crustacea: Developmental Biology and Larval Ecology, Volume 7. Oxford University Press, New York. 437 p.Jeong, C.B., Kim, B.M., Lee, J.S., and Rhee, J.S. 2014. Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicus. BMC Genom., 15: 1–15. https://doi.org/10.1186/1471-2164-15-651Jiang, K., Zhang, F., Zhang, D., Tao, Q., Zhang, Y., Pi, Y., Qiao, Z., and Ma, L. 2011. Identification of a trypsin gene from Scylla paramamosain and its expression profiling during larval development. Afr. J. Agric. Res., 6: 6613–6621. https://doi.org/10.5897/AJAR11.784Jiang, S., Xiong, Y., Zhang, W., Zhu, J., Cheng, D., Gong, Y., Wu, Y., Qiao, H., and Fu, H. 2022. A Novel legumain-like protease in Macrobrachium nipponense: Identification, characterization, and function analysis in ovary maturation. Front. Endocrinol., 13: 858726. https://doi.org/10.3389/fendo.2022.858726Jiang, X., Yang, Y., Cheng, Y., and Wu, X. 2021. Feeding history affects the crabseed quality and subsequent culture performance of juvenile Chinese mitten crab Eriocheir sinensis H. Milne Edwards, 1853 (Brachyura, Varunidae). Crustaceana, 94: 97–114. https://brill.com/view/journals/cr/94/1/article-p97_6.xmlJimenez-Gutierrez, S., Cadena-Caballero, C.E., Barrios-Hernandez, C., Perez-Gonzalez, R., Martinez-Perez, F., and Jimenez-Gutierrez, L.R. 2019. Crustacean vitellogenin: a systematic and experimental analysis of their genes, genomes, mRNAs and proteins; and perspective to Next Generation Sequencing. Crustaceana, 92: 1169–1205. https://doi.org/10.1163/15685403-00003930Jones, D.A., Kumlu, M., Le Vay, L., and Fletcher, D.J. 1997a. The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: A review. Aquaculture, 155: 285–295. https://doi.org/10.1016/S0044-8486(97)00129-4Jones, D.A., Yule, A.B., and Holland, D.L. 1997b. Larval nutrition. 353-389. In: D’Abramo, L.R., Conklin, D.E., and Akiyama, D.M. (Eds). Crustacean nutrition. World Aquaculture Society, 587 p.Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., and Jermiin, L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods, 14: 587–589. https://doi.org/10.1038/nmeth.4285Kamarudin, M.S., Jones, D.A., le Vay, L., and Abidin, A.Z. 1994. Ontogenetic change in digestive enzyme activity during larval development of Macrobrachium rosenbergii. Aquaculture, 123: 323–333. https://doi.org/10.1016/0044-8486(94)90068-XKent, M., Browdy, C.L., and Leffler, J.W. 2011. Consumption and digestion of suspended microbes by juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture, 319: 363–368. https://doi.org/10.1016/j.aquaculture.2011.06.048Kerr, M.S. 1969. The hemolymph proteins of the blue crab, Callinectes sapidus: II. A lipoprotein serologically identical to oocyte lipovitellin. Dev. Biol., 20: 1–17. https://doi.org/10.1016/0012-1606(69)90002-5Keller, T.A., Powell, I., and Weissburg, M.J. 2003. Role of olfactory appendages in chemically mediated orientation of blue crabs. Mar. Ecol. Prog. Ser., 261: 217–231. https://www.int-res.com/abstracts/meps/v261/p217-231Keskin, E., and Atar, H.H. 2013. DNA barcoding commercially important aquatic invertebrates of Turkey. Mitochondrial DNA, 24: 440–450. https://doi.org/10.3109/19401736.2012.762576Khoa, T.N.D., Waqalevu, V., Honda, A., Matsui, H., Truong, N.X., Sakaguchi, K., Kawaji, H., Ishikawa, M., and Shiozaki, K. 2021. Enrichment effects of fermented by-product of Shochu distillery on Brachionus plicatilis sp. rotifer and larviculture performance in Japanese flounder (Paralichthys olivaceus). Aquaculture, 535: 736352. https://doi.org/10.1016/j.aquaculture.2021.736352Khudyi, O., Khuda, L., Kushniryk, O., Prusinska, M., Kolman, R., Marchenko, M. 2017. An effectiveness of Artemia nauplii enrichment with polyunsaturated fatty acids using a supplement easy dha selco. Acta Biol. Univ. Daugavp., 17: 169–183. https://du.lv/wp-content/uploads/2022/02/Khudyi.pdfKibria, G. 1993. Studies on molting, molting frequency and growth of shrimp Penaeus monodon fed on natural and compounded diets. Asian Fish. Sci., 6: 203–211. https://cir.nii.ac.jp/crid/1571417125960508032Kim, D., Langmead, B., and Salzberg, S.L. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, https://doi.org/10.1038/nmeth.3317Klee, C.B., and Vanaman, T.C. 1982. Calmodulin. Adv. Protein Chem., 35: 213–321. https://doi.org/10.1016/S0065-3233(08)60470-2Kobayashi, T., Nagase, T., Hino, A., and Takeuchi, T. 2008. Effect of combination feeding of Nannochloropsis and freshwater Chlorella on the fatty acid composition of rotifer Brachionus plicatilis in a continuous culture. Fisheries Sci., 74: 649–656. https://doi.org/10.1111/j.1444-2906.2008.01570.xKoopman, H.N., and Siders, Z.A. 2013. Variation in egg quality in blue crabs, Callinectes sapidus, from North Carolina: Does female size matter? J. Crustac. Biol., 33: 481–487. https://doi.org/10.1163/1937240X-00002152Kovaka, S., Zimin, A.V., Pertea, G.M., Razaghi, R., Salzberg, S.L., and Pertea, M. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol., 20: 1–13. https://doi.org/10.1186/s13059-019-1910-1Kumari, S.S., and Skinner, D.M. 1993. Proteins of crustacean exoskeleton II: Immunological evidence for their relatedness to cuticular proteins of two insects. J. Exp. Zool., 265: 195–210. https://doi.org/10.1002/jez.1402650302Kumar, V., Sinha, A.K., Romano, N., Allen, K.M., Bowman, B.A., Thompson, K.R., and Tidwell, J.H. 2018. Metabolism and nutritive role of cholesterol in the growth, gonadal development, and reproduction of crustaceans. Rev. Fish. Sci. Aquac., 26: 254–273. https://doi.org/10.1080/23308249.2018.1429384Kurmaly, K., Jones, D.A., and Yule, A.B. 1990. Acceptability and digestion of diets fed to larval stages of Homarus gammarus and the role of dietary conditioning behaviour. Mar. Biol., 106: 181–190. https://doi.org/10.1007/BF01314799Kurmaly, K., Yule, A.B., and Jones, D.A. 1989. An energy budget for the larvae of Penaeus monodon (Fabricius). Aquaculture, 81: 13–25. https://doi.org/10.1016/0044-8486(89)90227-5Lage, L.P.A., Plagnes-Juan, E., Putrino, S.M., Baron, F., Weissman, D., Guyonvarch, A., Brugger, R., Nunes, A.J.P., and Panserat, S. 2017. Ontogenesis of metabolic gene expression in whiteleg shrimp (Litopenaeus vannamei): New molecular tools for programming in the future. Aquaculture, 479: 142–149. https://doi.org/10.1016/j.aquaculture.2017.05.030Lakshmanasenthil, S., Vinothkumar, T., Geetharamani, D., and Maruthupandi, T. 2013. Influence of Micro algae in enrichment of Artemia salina for aquaculture feed enhancement Research Article J. Algal Biomass Utln., 4: 67–73. http://www.jalgalbiomass.com/vol4-2Lavarías, S., Pasquevich, M.Y., Dreon, M. S., and Heras, H. 2009. Partial characterization of a malonyl-CoA-sensitive carnitine O-palmitoyltransferase I from Macrobrachium borellii (Crustacea: Palaemonidae). Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 152: 364–369. https://doi.org/10.1016/j.cbpb.2009.01.004Lavens, P., and Sorgeloos, P. 2000. Experiences on importance of diet for shrimp postlarval quality. Aquaculture, 191: 169-176. https://doi.org/10.1016/S0044-8486(00)00426-9Lavens, P., and Sorgeloos, P. 1996. Manual of the production and use of live food for aquaculture. Food and agriculture organization on the United Nations – FAO, Rome. http://www.fao.org/3/w3732e03.htm#2Le Cren, E.D. 1951. The length-weight relationship and seasonal cycle in gonad weight and condition in the Perch (Perca fluviatilis). J. Anim. Ecol., 20: 201-219. https://www.jstor.org/stable/1540Le, D.V.B., Nguyen, P.N., Dierckens, K., Nguyen, D.V., De Schryver, P., Hagiwara, A., and Bossier, P. 2017. Growth performance of the very small rotifer Proales similis is more dependent on proliferating bacterial community than the bigger rotifer Brachionus rotundiformis. Aquaculture, 476: 185–193. https://doi.org/10.1016/j.aquaculture.2017.03.046Lee, M.H., Lu, K., Hazard, S., Yu, H., Shulenin, S., Hidaka, H., Kojima, H., Allikmets, R., Sakuma, N., Pegoraro, R., Srivastava, A.K., Salen, G., Dean, M., and Patel, S.B. 2001. Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat. Genet., 27: 79–83. https://doi.org/10.1038/83799Lee, P.G., and Meyers, S.P. 1997. Chemoattraction and feeding stimulation, 292–352. In: D´Abramo, L.R., Conklin, D. E. and Akiyama, D.M. (Eds.). Crustacean nutrition. The World Aquaculture Society; Louisiana. 587 p.Lee, S.Y., Kim, D.S., and Nam, Y.K. 2012. Molecular characterization of cytoskeletal beta-actin and its promoter in the javanese ricefish Oryzias javanicus. Fish. Aquatic Sci., 15: 317–324. https://oak.go.kr/central/journallist/journaldetail.do?article_seq=12011Lemos, D., Garcia-Carreño, F.L., Hernández, P., and Navarrete del Toro, A. 2002. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture, 214: 363–380. https://doi.org/10.1016/S0044-8486(02)00253-3Lemos, D., and Weissman, D. 2020. Moulting in the grow-out of farmed shrimp: a review. Rev. Aquac., 13: 5–17. https://doi.org/10.1111/raq.12461Le Moullac, G., Klein, B., Sellos, D., and Van Wormhoud, A. 1997. Adaptation of trypsin, chymotrypsin and α-amylase to casein level and protein source in Penaeus vannamei (Crustacea Decapoda). J. Exp. Mar. Biol. Ecol., 208: 107–125. https://doi.org/10.1016/S0022-0981(96)02671-8Le Moullac, G., and Van Wormhoudt, A. 1994. Adaptation of digestive enzymes to dietary protein, carbohydrate and fibre levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat. Living Resour., 7: 203–210. https://doi.org/10.1051/alr:1994022Le Vay, L., Jones, D.A., Puello-Cruz, A.C., Sangha, R.S., and Ngamphongsai, C. 2001. Digestion in relation to feeding strategies exhibited by crustacean larvae. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 128: 621–628. https://doi.org/10.1016/S1095-6433(00)00339-1Li, K., Kjørsvik, E., Bergvik, M., and Olsen, Y. 2015a. Manipulation of the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine in rotifers Brachionus nevada and Brachionus cayman. Aquac. Nut., 21: 85–97. https://doi.org/10.1111/anu.12140Li, K., and Olsen, Y. 2015. Effect of enrichment time and dietary DHA and non-highly unsaturated fatty acid composition on the efficiency of DHA enrichment in phospholipid of rotifer (Brachionus cayman). Aquaculture, 446: 310–317. https://doi.org/10.1016/j.aquaculture.2015.05.005Li, S., Cheng, Y., Zhou, B., and Hines, A.H. 2012. Changes in biochemical composition of newly spawned eggs, prehatching embryos and newly hatched larvae of the blue crab Callinectes sapidus. J. Shellfish Res., 31: 941–946. https://doi.org/10.2983/035.031.0405Li, W., Chiu, K.H., Tien, Y.C., Tsai, S.F., Shih, L.J., Lee, C.H., Toullec, J.Y., and Lee, C.Y. 2017. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii. Plos One, 12: e0172557. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172557Li, X., Han, T., Zheng, S., and Wu, G. 2021. Nutrition and Functions of Amino Acids in Aquatic Crustaceans. Adv. Exp. Med. Biol., 1285: 169–198. https://pubmed.ncbi.nlm.nih.gov/33770407/Li, Y., Min, H., Cui, Z., Liu, Y., Song, C., and Shi, G. 2015b. Comparative transcriptomic analysis provides insights into the molecular basis of the metamorphosis and nutrition metabolism change from zoeae to megalopae in Eriocheir sinensis. Comp. Biochem. Physiol. - D: Genom. Proteom., 13: 1–9. https://doi.org/10.1016/j.cbd.2014.10.002Li, Y., Xue, H., and Li, X. 2018. Transcriptome analysis of the Chinese grass shrimp Palaemonetes sinensis (Sollaud 1911) and its predicted feeding habit. J. Oceanol. Limnol., 36: 1778–1787. https://doi.org/10.1007/s00343-019-7189-yLiao, Y., Smyth, G.K., and Shi, W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30: 923–930. https://doi.org/10.1093/bioinformatics/btt656Lin, Z., Wang, X., Bu, X., Jia, Y., Shi, Q., Du, Z., Qin, J., and Chen, L. 2021. Dietary phosphatidylcholine affects growth performance, antioxidant capacity and lipid metabolism of Chinese mitten crab (Eriocheir sinensis). Aquaculture, 541: 736814. https://doi.org/10.1016/j.aquaculture.2021.736814Liu, J.D., Liu, W.B., Zhang, D.D., Xu, C.Y., Zhang, C.Y., Zheng, X. C., and Chi, C. 2020. Dietary reduced glutathione supplementation can improve growth, antioxidant capacity, and immunity on Chinese mitten crab, Eriocheir sinensis. Fish Shellfish Immunol., 100: 300– https://doi.org/10.1016/j.fsi.2020.02.064Liu, Q., Wen, B., Li, X., Jiang, Y., Liang, Z., and Zuo, R. 2021a. An investigation on the effects of dietary protein level in juvenile Chinese mitten crab (Eriocheir sinensis) reared at three salinities: survival, growth performance, digestive enzyme activities, antioxidant capacity and body composition. Aquac. Res., 52: 2580-2592. https://doi.org/10.1111/are.15106Liu, S., Wang, X., Bu, X., Zhang, C., Qiao, F., Qin, C., Li, E., Qin, J.G., and Chen, L. 2021b. Influences of dietary vitamin D3 on growth, antioxidant capacity, immunity and molting of Chinese mitten crab (Eriocheir sinensis) larvae. J. Steroid Biochem. Mol. Biol., 210: 105862. https://doi.org/10.1016/j.jsbmb.2021.105862Lloret, J., Shulman, G., and Love, R.M. 2013. Condition and health indicators of exploited marine fishes. John Wiley & Sons, Oxford. 247 p.Loose, G.J., Vogt, G., Charmantier-Daures, M., Charmantier, G., and Harzsch, S. 2020. Organogenesis. 80-112. In: Klaus, A., Harzsch, S., and Thiel, M. (Eds.). Developmental Biology and Larval Ecology: The Natural History of the Crustacea, Volume 7. University Press, Oxford., https://doi.org/10.1093/oso/9780190648954.003.0003Love M.I., Huber W., and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15: 550. http://bioconductor.org/packages/DESeq2/Lovett, D.L., and Felder, D.L. 1990. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Aquaculture, 178: 144–159. https://www.journals.uchicago.edu/doi/pdf/10.2307/1541973Lucía-Pavón, E., Sarma, S.S.S., and Nandin, S. 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev. Biol. Trop., 49:, 895–902. https://revistas.ucr.ac.cr/index.php/rbt/article/view/18037/18222Luo, W., Zhao, Y., Zhou, Z., An, C., and Ma, Q. 2008. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus. Chin. J. Oceanol. Limnol., 26: 62–68. https://doi.org/10.1007/s00343-008-0062-zLuo, W., Zhao, Y., Zhou, Z., An, C., and Ma, Q. 2008. Digestive enzyme activity and mRNA level of trypsin in embryonic redclaw crayfish, Cherax quadricarnatus. Chin. J. Oceanol. Limnol., 26: 62–68. https://doi.org/10.1007/s00343-008-0062-zMahmoud, N., Mozanzadeh, M., Agh, N., Ahmadi, A., and Yaghoubi, M. 2018. Enriched Artemia with L-lysine and DL-methionine on growth performance, stress resistance, and fatty acid profile of Litopenaeus vannamei postlarvae. J. Appl. Aquac., 30: 325–336. https://doi.org/10.1080/10454438.2018.1484838Maliwat, G.C.F., Velasquez, S.F., Buluran, S.M.D., Tayamen, M.M., and Ragaza, J.A. 2020. Growth and immune response of pond-reared giant freshwater prawn Macrobrachium rosenbergii post larvae fed diets containing Chlorella vulgaris. Aquac. Fish., 6: 465-470. https://doi.org/10.1016/j.aaf.2020.07.002Maliwat, G.C., Velasquez, S., Robil, J.L., Chan, M., Traifalgar, R.F.,and Tayamen, M. 2017. Growth and immune response of giant freshwater prawn Macrobrachium rosenbergii (De Man) postlarvae fed diets containing Chlorella vulgaris (Beijerinck). Aquac. Res., 48: 1666–1676 https://doi.org/10.1111/are.13004Mansour, A.T., Ashry, O.A., El-Neweshy, M.S., Alsaqufi, A.S., Dighiesh, H.S., Ashour, M., Kelany, M.S., El-Sawy, M.A., Mabrouk, M.M., and Abbas, E.M. 2022. Effect of agricultural by-products as a carbon source in a biofloc-based system on growth performance, digestive enzyme activities, hepatopancreas histology, and gut bacterial load of Litopenaeus vannamei post larvae. J. Mar. Sci. Eng., 10: 1333. https://doi.org/10.3390/jmse10101333Mantelatto, F.L., Reigada, A.L.D., Gatti, A.C.R., and Cuesta, J.A. 2014. Morphology of the first zoeal stages of five species of the portunid genus Callinectes (Decapoda, Brachyura) hatched at the laboratory. An. Acad. Bras., 86: 755–767. https://www.scielo.br/j/aabc/a/TqKbh5yVGwPndMrXpLLnVpm/?lang=en&format=htmlMartin, S.A.M., and Król, E. 2017. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev. Comp. Immunol., 75: 86–98. https://doi.org/10.1016/j.dci.2017.02.024Martínez-Alarcón, D., Hagen, W., Held, C., and Saborowski, R. 2020. Molecular aspects of lipid metabolism in the midgut gland of the brown shrimp Crangon crangon. Comp. Biochem. Physiol. B, Biochem. Mol. Biol.. 248–249: 110465. https://doi.org/10.1016/j.cbpb.2020.110465Martínez-Alarcón, D., Saborowski, R., Rojo-Arreola, L., and García-Carreño, F. 2018. Is digestive cathepsin D the rule in decapod crustaceans? Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 215: 31–38. https://doi.org/10.1016/j.cbpb.2017.09.006Martínez-Barrio, A., Lagercrantz, E., Sperber, G.O., Blomberg, J., and Bongcam-Rudloff, E. 2009. Annotation and visualization of endogenous retroviral sequences using the Distributed Annotation System (DAS) and eBioX. BMC Bioinformatics, 10: https://doi.org/10.1186/1471-2105-10-S6-S18Maruyama, I., and Hirayama, K. 1993. The Culture of the rotifer Brachionus plicatilis with Chlorella vulgaris containing vitamin B12 in its cells. J. World Aquacult. Soc., 24: 194–198. https://doi.org/10.1111/j.1749-7345.1993.tb00008.xMaruyama, I., Nakao, T., Shigeno, I., Ando, Y., and Hirayama, K. 1997. Application of unicellular algae Chlorella vulgaris for the mass-culture of marine rotifer Brachionus. 133-138. In: Hagiwara, A., Snell, T.W., Lubzens, E., Tamaru, C.S. (Eds.). Live Food in Aquaculture. Developments in Hydrobiology, vol 124. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2097-7_20Maurer, L., Liang, D., and Chung, J.S. 2017. Effects of prey densities and dietary supplementation on the larval development of the blue crab Callinectes sapidus Rathbun, 1896 (Brachyura: Portunidae). J. Crustac. Biol., 37: 674–682. https://doi.org/10.1093/jcbiol/rux079McCarthy, J.F. 1979. Ponasterone A: A new ecdysteroid from the embyros and serum of brachyuran crustaceans. Steroids, 34: 799–806. https://doi.org/10.1016/0039-128X(79)90092-8McCarthy, S.D., Dugon, M.M., and Power, A.M. 2015. “Degraded” RNA profiles in Arthropoda and beyond. PeerJ., 2015: e1436. https://doi.org/10.7717/peerj.1436 McClintock, J.B., Klinger, T.S., Marion, K., and Hsueh, P. 1991. Digestive carbohydrases of the blue crab Callinectes sapidus (Rathbun): implications in utilization of plant-derived detritus as a trophic resource. J. Exp. Mar. Biol. Ecol., 148: 233–239. https://doi.org/10.1016/0022-0981(91)90084-AMcConaugha, J.R. 1985. Nutrition and larval growth, chapter 3. 1-28. In: Shram, F.R. (Ed.). Crustacean Issues 2. A.A. Balkema Publishers, Boston. 252 p.Mente, E., Coutteau, P., Houlihan, D., Davidson, I., and Sorgeloos, P. 2002. Protein turnover, amino acid profile and amino acid flux in juvenile shrimp Litopenaeus vannamei: effects of dietary protein source. J. Exp. Biol., 205: 3107–3122. https://doi.org/10.1242/jeb.205.20.3107Mente, E., Houlihan, D.F., and Smith, K. 2001. Growth, feeding frequency, protein turnover, and amino acid metabolism in European lobster Homarus gammarus L. J. Exp. Zool., 289: https://doi.org/10.1002/jez.1023Miandare, H.K., Mirghaed, A.T., Hosseini, M., Mazloumi, N., Zargar, A., and Nazari, S. 2017. Dietary Immunogen® modulated digestive enzyme activity and immune gene expression in Litopenaeus vannamei post larvae. Fish Shellfish Immunol., 70: 621–627. https://doi.org/10.1016/j.fsi.2017.09.048Miandare, H.K., Yarahmadi, P., and Abbasian, M. 2016. Immune related transcriptional responses and performance of Litopenaeus vannamei post-larvae fed on dietary probiotic PrimaLac®. Fish Shellfish Immunol., 55: 671–678. https://doi.org/10.1016/j.fsi.2016.06.053Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K., and Relyea, R.A. 2005. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol., 20: 685–692. https://doi.org/10.1016/j.tree.2005.08.002Mirbakhsh, M., Mahjoub, M., Afsharnasab, M., Kakoolaki, S., Sayyadi, M., and Hosseinzadeh, S. 2021. Effects of Bacillus subtilis on the water quality, stress tolerance, digestive enzymes, growth performance, immune gene expression, and disease resistance of white shrimp (Litopenaeus vannamei) during the early hatchery period. Aquac. Int., 29: 2489–2506. https://doi.org/10.1007/s10499-021-00758-7Möller, L., Vainstein, Y., Wöhlbrand, L., Dörries, M., Meyer, B., Sohn, K., and Rabus, R. 2022. Transcriptome–proteome compendium of the Antarctic krill (Euphausia superba): Metabolic potential and repertoire of hydrolytic enzymes. Proteomics, 22: 2100404. https://doi.org/10.1002/pmic.202100404Moller, O.S., Anger, K., and Guerao, G. 2020. Patterns of larval development. 165–194. In: Anger, K., Harzsch, S., and Thiel, M. (Eds.). Developmental Biology and Larval Ecology. Vol. 7. Oxford University Press, New York. 449 p.Moller, T.H. 1978. Feeding behaviour of larvae and postlarvae of Macrobrachium rosenbergii (de Man) (Crustacea: palaemonidae). J. Exp. Mar. Biol. Ecol., 35: 251–258. https://doi.org/10.1016/0022-0981(78)90078-3Montu, M., Anger, K., and Bakker, C. 1990. Variability in the larval development of Metasesarma rubripes (Decapoda, Grapsidae) reared in the laboratory. Neritica, 5: 113–118. https://epic.awi.de/id/eprint/5327/Montú, M., Anger, K., and de Bakker, C. 1996. Larval development of the Chinese mitten crab Eriocheir sinensis H. Milne-Edwards (Decapoda: Grapsidae) reared in the laboratory. Helgolander Meeresun., 50: 223–252. https://doi.org/10.1007/BF02367153Moran, A.L., and McAlister, J.S. 2009. Egg size as a life history character of marine invertebrates: Is it all it’s cracked up to be?. Biol. Bull., 216: 226–242. https://doi.org/10.1086/BBLv216n3p226Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., and Kanehisa, M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res., 35: W182–W185. https://doi.org/10.1093/nar/gkm321Mostary, S., Rahman, M., Mandal, A., Hasan, K., Rehena, Z., and Basar, S. 2010. Culture of Brachionus plicatilis feeding with powdered dried Chlorella. Bangladesh Vet., 27: 91–98. https://www.researchgate.net/profile/Md-Safiul-Basar/publication/266880015_Culture_of_Brachionus_plicatilis_feeding_with_powdered_dried_Chlorella/links/6381c2d67b0e356feb86181b/Culture-of-Brachionus-plicatilis-feeding-with-powdered-dried-Chlorella.pdfMuangyao, P., Fukami, K., Songsangjinda, P., and Predalumpaburt, Y. 2020. Stimulation by gutweed to increase the abundance of insect larvae as food for shrimp aquaculture in Thailand. Aquaculture, 519: 734740. https://doi.org/10.1016/j.aquaculture.2019.734740Mugnier, C., and Justou, C. 2004. Combined effect of external ammonia and molt stage on the blue shrimp Litopenaeus stylirostris physiological response. J. Exp. Mar. Biol. Ecol., 309: 35–46. https://doi.org/10.1016/j.jembe.2004.03.008Muhlia-Almazán, A.T., and Fernández-Gimenez, A.V. 2022. Understanding the digestive peptidases from crustaceans: from their biochemical basis and classical perspective to the biotechnological approach. Mar. Biotechnol., 24: 480–491. https://doi.org/10.1007/s10126-022-10122-2Nates, S.F., and McKenney, C.L. 2000. Ontogenetic changes in biochemical composition during larval and early postlarval development of Lepidophthalmus louisianensis, a ghost shrimp with abbreviated development. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 127: 459–468. https://doi.org/10.1016/S0305-0491(00)00283-2Navarrete del Toro, M.A., and García-Carreño, F. 2019. The toolbox for protein digestion in decapod crustaceans: a review. Rev. Aquac., 11: 1005–1021. https://doi.org/10.1111/raq.12276Navarrete Del Toro, M., García-Carreño, F., López, M., Celis-Guerrero, L., and Saborowski, R. 2006. Aspartic proteinases in the digestive tract of marine decapod crustaceans. J. Exp. Zool. A, Com. Exp. Biol., 305A: 645–654. https://doi.org/10.1002/jez.a.318Nelson, M.M., Crear, B.J., Nichols, P.D., and Ritz, D.A. 2004. Growth and lipid composition of phyllosomata of the southern rock lobster, Jasus edwardsii, fed enriched Artemia. Aquac. Nutr., 10: 237–246. https://doi.org/10.1111/j.1365-2095.2004.00295.xNeori, A. 2011. Green water microalgae: The leading sector in world aquaculture. Journal of Applied Phycology 23. https://doi.org/10.1007/s10811-010-9531-9Nghia, T.T., Wille, M., Vandendriessche, S., Vinh, Q.T., and Sorgeloos, P. 2007. Influence of highly unsaturated fatty acids in live food on larviculture of mud crab Scylla paramamosain (Estampador 1949). Aquac. Res., 38 (4): 1512–1528. https://doi.org/10.1111/j.1365-2109.2007.01815.xNieves-Soto, M., Lozano-Huerta, R., López-Peraza, D.J., Medina-Jasso, M.A., Hurtado-Oliva, M.A., and Bermudes-Lizárraga, J.F. 2021. Effect of the enrichment time with the tuna orbital oil emulsion on the fatty acids profile of juveniles of Artemia franciscana. Aquac. Fish., 6: 69–74. https://doi.org/10.1016/j.aaf.2020.03.008Niță, V., and Nenciu, M. 2021. Laboratory testing of the American blue crab’s (Callinectes sapidus Rathbun, 1896) capacity of adaptation to aquaculture systems at the Romanian coast. Sci. Papers Ser. D, Anim. Sci. Vol. LXIV, No. 1: 560- 568. https://www.animalsciencejournal.usamv.ro/pdf/2021/issue_1/Art78.pdfNordgreen, A., Penglase, S., and Hamre, K. 2013. Increasing the levels of the essential trace elements Se, Zn, Cu and Mn in rotifers (Brachionus plicatilis) used as live feed. Aquaculture, 380–383: 120–129. https://doi.org/10.1016/j.aquaculture.2012.11.032Oliphant, A., and Thatje, S. 2013. Per offspring investment implications for crustacean larval development: evolutionary insights into endotrophy and abbreviated development. Mar. Ecol. Prog. Ser., 493: 207–217 https://doi.org/10.3354/meps10496Olvera, M.A., Martínez-Palacios, C.A., and Real de León, E. 1993. Manual de tecnicas para laboratorio de nutricion de peces y crustaceos. Documento de campo No.7. Organizacion de las Naciones Unidas para la Agricultura y la Alimentacion FAO, México. http://www.fao.org/3/AB489S/AB489S00.htmOrbea, A., Fahimi, H.D., and Cajaraville, M.P. 2000. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem. Cell Biol., 114: 393–404. https://doi.org/10.1007/s004180000207Ospina-Salazar, G.H., Santos-Acevedo, M., López-Navarro, J., Gómez-López, D.I., Álvarez-Barrera, J.E., and Gómez-León, J. 2011. Avances en la reproducción y mantenimiento de peces marinos ornamentales. Santa Marta: Serie de Publicaciones Generales del INVEMAR No. 46 http://hdl.handle.net/1834/8269Palm, H., Sörensen, H., and Knaus, U. 2015. Montmorillonite clay minerals with or without microalgaeb as a feed additive in larval white leg shrimp (Litopenaeus vannamei). Ann. Aquac. Res., 2: 1008. https://doi.org/10.47739/2379-0881/1008Paran, B.C., Jeyagobi, B., Kizhakedath, V.K., Antony, J., Francis, B., Anand, P.S.S., Radhakrishnapillai, A., Lalramchhani, C., Kannappan, S., Marimuthu, R.D., and Paulpandi, S. 2022. Production of juvenile mud crabs, Scylla serrata: Captive breeding, larviculture and nursery production. Aquac. Rep., 22: 101003. https://doi.org/10.1016/j.aqrep.2021.101003Park, H.G., and Brown, J. 2004. Biochemical composition of rotifer, Brachionus plicatilis enriched with different commercial enrichments. J. Aquac., 17: 187–196. Available at: https://www.koreascience.or.kr/article/JAKO200411922608006.pagePedroza-Islas, R., Gallardo, P., Vernon-Carter, E.J., Garcia-Galano, T., Rosas, C., Pascual, C., and Gaxiola, G. 2004. Growth, survival, quality and digestive enzyme activities of larval shrimp fed microencapsulated, mixed and live diets. Aquac. Nutr. 10: 167–173. https://doi.org/10.1111/j.1365-2095.2004.00284.xPeñaflorida, V.D. 2004. Amino acid profiles in the midgut, ovary, developing eggs and zoes of the mud crab, Scylla serrata. Isr. J. Aquac. – Bamidgeh, 56: 111–123. https://evols.library.manoa.hawaii.edu/items/f8e34477-5db6-4357-b792-a55eea7dda7aPerera, E., Moyano, F.J., Díaz, M., Perdomo-Morales, R., Montero-Alejo, V., Rodriguez-Viera, L., Alonso, E., Carrillo, O., and Galich, G.S. 2008. Changes in digestive enzymes through developmental and molt stages in the spiny lobster, Panulirus argus. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 151: 250–256. https://doi.org/10.1016/j.cbpb.2008.07.005Pedroza-Islas, R., Gallardo, P., Vernon-Carter, E.J., Garcia-Galano, T., Rosas, C., Pascual, C., and Gaxiola, G. 2004. Growth, survival, quality and digestive enzyme activities of larval shrimp fed microencapsulated, mixed and live diets. Aquac. Nutr., 10: 167-173. https://doi.org/10.1111/j.1365-2095.2004.00284.xPertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33: 290–295. https://doi.org/10.1038/nbt.3122Phillips, N.E. 2002. Effects of nutrition-mediated larval conditions on juvenile performance in a marine mussel. Ecology, 83: 2562–2574. https://doi.org/10.1890/0012-9658(2002)083[2562:EONMLC]2.0.CO;2Phillips, N.E. 2004. Variable timing of larval foods has consequences for early juvenile performance in a marine mussel. Ecology, 85: 2341–2346. https://doi.org/10.1890/03-3097Pickart, C.M., and Eddins, M.J. 2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta Mol. Cell. Res., 1695: 55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019Pletl, J.J. 1992. The growth and bioenergetics of Callinectes sapidus larvae and the effects of diet quality on larval physiology. PhD Thesis. Ocean & Earth Sciences. Old Dominion University, Virginia. 126 p. https://doi.org/10.25777/kk11-4n91Plettner, E., Slessor, K.N., and Winston, M.L. 1998. Biosynthesis of mandibular acids in honey bees (Apis mellifera): De novo synthesis, route of fatty acid hydroxylation and caste selective β-Oxidation. Insect Biochem. Mol. Biol., 28: 31–42. https://doi.org/10.1016/S0965-1748(97)00079-9Plough, L.V. 2017. Population genomic analysis of the blue crab Callinectes sapidus using genotyping-by-sequencing. J. Shellfish Res., 36: 249–261 https://doi.org/10.2983/035.036.0128Prangnell, D.I., and Fotedar, R. 2005. The effect of potassium concentration in inland saline water on the growth and survival of the western king shrimp, Penaeus latisulcatus Kishinouye, 1896. J. Appl. Aquac., 17: 19–34. https://doi.org/10.1300/J028v17n02_02Proespraiwong, P., Tassanakajon, A., and Rimphanitchayakit, V. 2010. Chitinases from the black tiger shrimp Penaeus monodon: Phylogenetics, expression and activities. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 156: 86–96. https://doi.org/10.1016/j.cbpb.2010.02.007Qiao, Y., Wang, J., Mao, Y., Liu, M., Song, X., Su, Y., Wang, C., and Zheng, Z. 2017. Identification and molecular characterization of Cathepsin L gene and its expression analysis during early ontogenetic development of kuruma shrimp Marsupenaeus japonicus. Acta Oceanol. Sin., 36: 52–60. https://doi.org/10.1007/s13131-017-0983-5Radhakrishnan, S., Saravana Bhavan, P., Seenivasan, C., Shanthi, R., and Muralisankar, T. 2014. Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic Appl. Zool., 67: 25–33. https://doi.org/10.1016/j.jobaz.2013.12.003Raghuvaran, N., Parimal, S., Narottam, P., Shamna, N., Prasanta, J., Mritunjoy, P., Saiprasad, B., and Bhavatharaniya, U. 2023. Effect of L-carnitine supplemented diets with varying protein and lipid levels on growth, body composition, antioxidant status and physio-metabolic changes of white shrimp, Penaeus vannamei juveniles reared in inland saline water. Anim. Feed Sci. Technol., 296, 115548. https://doi.org/10.1016/j.anifeedsci.2022.115548Raja, R., Coelho, A., Hemaiswarya, S., Kumar, P., Carvalho, I.S., and Alagarsamy, A. 2018. Applications of microalgal paste and powder as food and feed: An update using text mining tool. Beni Suef Univ. J Basic Appl. Sci., 7: 740–747. https://doi.org/10.1016/j.bjbas.2018.10.004Rambaut, A., Lam, T.T., Carvalho, L.M., and Pybus, O.G. 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol., 2. https://doi.org/10.1093/ve/vew007Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., Heyne, S., Dündar, F., and Manke, T. 2016. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res., 44: W160–W165. https://doi.org/10.1093/nar/gkw257Redzuari, A., Azra, M., Abol-Munafi, A., Aizam, Z., Hii, Y., and Ikhwanuddin, M. 2012. Effects of feeding regimes on survival, development and growth of blue swimming crab, Portunus pelagicus (Linnaeus, 1758) larvae. World Appl. Sci. J., 18: 472–478. https://www.researchgate.net/profile/Mohamad-Nor-Azra/publication/279922559_Effects_of_Feeding_Regimes_on_Survival_Development_and_Growth_of_Blue_Swimming_Crab_Portunus_pelagicus_Linnaeus_1758_Larvae/links/559e45a008aeb45d17160911/Effects-of-Feeding-Regimes-on-Survival-Development-and-Growth-of-Blue-Swimming-Crab-Portunus-pelagicus-Linnaeus-1758-Larvae.pdfRehberg-Haas, S., Meyer, S., Lippemeier, S., and Schulz, C. 2015. A comparison among different Pavlova sp. products for cultivation of Brachionus plicatilis. Aquaculture, 435: 424–430. https://doi.org/10.1016/j.aquaculture.2014.10.029Rey, F., Alves, E., Melo, T., Domingues, P., Queiroga, H., Rosa, R., Domingues, M., and Calado, R. 2015. Unravelling polar lipids dynamics during embryonic development of two sympatric brachyuran crabs (Carcinus maenas and Necora puber) using lipidomics. Sci. Rep., 5: 1–13. https://doi.org/10.1038/srep14549Rivera-Pérez, C., Navarrete del Toro, M.A., and García-Carreño, F. L. 2010. Digestive lipase activity through development and after fasting and re-feeding in the whiteleg shrimp Penaeus vannamei. Aquaculture, 300: 163–168. https://doi.org/10.1016/j.aquaculture.2009.12.030LageRodríguez-Viera, L., Alpízar-Pedraza, D., Mancera, J. M., and Perera, E. 2021. Toward a more comprehensive view of α-amylase across decapods crustaceans. Biology, 10: 25. https://doi.org/10.3390/biology10100947Rodriguez, A., Le Vay, L., Mourente, G., and Jones, D.A. 1994. Biochemical composition and digestive enzyme activity in larvae and postlarvae of Penaeus japonicus during herbivorous and carnivorous feeding. Mar. Biol., 118: 45–51. https://doi.org/10.1007/BF00699218Rodríguez, C., Pérez, J.A., Izquierdo, M.S., Cejas, J.R., Bolaños, A., and Lorenzo, A. 1996. Improvement of the nutritional value of rotifers by varying the type and concentration of oil and the enrichment period. Aquaculture, 147: 93–105. https://doi.org/10.1016/S0044-8486(96)01397-XRodríguez, J., Olsen, Y., and Rosenlund, G. 1989. The effect of enrichment diets on the fatty acid composition of the rotifer Brachionus plicatilis. Aquaculture, 79: 157–161. https://doi.org/10.1016/0044-8486(89)90456-0Rojo-Arreola, L., García-Carreño, F., Romero, R., and Díaz, L. 2020. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. Plos One, 15: e0239413. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239413Rojo, L., Muhlia-Almazan, A., Saborowski, R., and García-Carreño, F. 2010. Aspartic Cathepsin D endopeptidase contributes to extracellular digestion in clawed lobsters Homarus americanus and Homarus gammarus. Mar. Biotechnol., 12: 696–707. https://doi.org/10.1007/s10126-010-9257-3Romero-Romero, S., and Yúfera, M. 2012. Contribution of gut content to the nutritional value of Brachionus plicatilis used as prey in larviculture. Aquaculture, 364–365: 124–129. https://doi.org/10.1016/j.aquaculture.2012.08.011Rotllant, G., Guerao, G., Gras, N., and Estévez, A. 2014. Larval growth and biochemical composition of the protected Mediterranean spider crab Maja squinado (Brachyura, Majidae). Aquat. Biol., 20: 13–21. http://hdl.handle.net/10261/111832Rotllant, G., Moyano, F.J., Andrés, M., Díaz, M., Estévez, A., and Gisbert, E. 2008. Evaluation of fluorogenic substrates in the assessment of digestive enzymes in a decapod crustacean Maja brachydactyla larvae. Aquaculture, 282: 90–96. https://doi.org/10.1016/j.aquaculture.2008.06.004Roustaian, P., Kamarudin, M.S., Omar, H.B., Saad, C.R., and Ahmad, M.H. 2000. Amino acid composition of developing larval freshwater prawn Macrobrachium rosenbergii. J. World Aquac. Soc., 31: 130–136. https://doi.org/10.1111/j.1749-7345.2000.tb00708.xRueda, M., Bustos-Montes, D., Gómez-León, J., Viloria, E., Santos-Acevedo, M., Girón, A., Viaña, J., Rodríguez, A., Castillo, H., Sierra, J., Romero, J.A., Chávez, S., Angulo, G., Vivas-Aguas, L.J., Garcés, O., Sánchez, D., Arbeláez-Merizalde, N.M., Arteaga, E., Licero-Villanueva, L.V., Rodríguez-Rodríguez, J.A. 2015. Capítulo III. Causas y tensores del cambio en los ecosistemas marinos y costeros y sus servicios: Indicadores de presión. 70–116. En: INVEMAR (Ed.). Informe del Estado de los Ambientes y Recursos Marinos y Costeros en Colombia Año 2014. Serie de Publicaciones Periódicas No. 3. Ediprint Ltda., Santa Marta. 176 p. http://www.invemar.org.co/redcostera1/invemar/docs/ier2014.pdfRueda, M., Escobar, F.D., Viaña, J., Navarro, H., and Romero, J. 2020. Causas y tensores del cambio en los ecosistemas marinos y costeros y sus servicios: indicadores de presión. 76–94. En: INVEMAR (Ed.). Informe del estado de los ambientes y recursos marinos y costeros en Colombia, 2019. Serie de publicaciones periódicas No. 3. Marquillas, S.A., Santa Marta. 183 p.Ruscoe, I.M., Williams, G.R., and Shelley, C.C. 2004. Limiting the use of rotifers to the first zoeal stage in mud crab (Scylla serrata Forskål) larval rearing. Aquaculture, 231: 517–527. https://doi.org/10.1016/j.aquaculture.2003.11.021Rust, J.D., and Carlson, F. 1960. Some observations on rearing blue crab larvae. Chesap. Sci. 1: 196–197. https://doi.org/10.2307/1350397Saborowski, R. 2015. Nutrition and digestion. 285–319. In: Chang, E., and Thiel, M. (Eds). Physiology: the natural history of the crustacea, Oxford University Press, New York. 512 p.Sainz, J.C., and Cordova, J.H. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290: 190–195. https://doi.org/10.1016/j.aquaculture Saborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K. 2006. DigSaborowski, R., Thatje, S., Calcagno, J.A., Lovrich, G.A., and Anger, K. 2006. Digestive enzymes in the ontogenetic stages of the southern king crab, Lithodes santolla. Mar. Biol., 149: 865–873. https://doi.org/10.1007/s00227-005-0240-xSainz, J.C., and Cordova, J.H. 2009. Activity of trypsin from Litopenaeus vannamei. Aquaculture, 290: 190–195. https://doi.org/10.1016/j.aquaculture.2009.02.034Sánchez-Paz, A., García-Carreño, F., Muhlia-Almazán, A., Peregrino-Uriarte, A.B., Hernández-López, J., and Yepiz-Plascencia, G. 2006. Usage of energy reserves in crustaceans during starvation: Status and future directions. Insect Biochem. Mol. Biol., 36: 241–249. https://doi.org/10.1016/j.ibmb.2006.01.002Santamaría, M.E., Hernández-Crespo, P., Ortego, F., Grbic, V., Grbic, M., Diaz, I., and Martinez, M. 2012. Cysteine peptidases and their inhibitors in Tetranychus urticae: A comparative genomic approach. BMC Genom., 13: 1–13. https://doi.org/10.1186/1471-2164-13-307Schembri, P.J. 1982. Locomotion, feeding, grooming and the behavioural responses to gravity, light and hydrostatic pressure in the stage I zoea larvae of Ebalia tuberosa (Crustacea: Decapoda: Leucosiidae). Mar. Biol., 72: 125–134. https://doi.org/10.1007/BF00396913 .Schmitz, G., Langmann, T., and Heimerl, S. 2001. Role of ABCG1 and other ABCG family members in lipid metabolism. J. Lipid Res., 42: 1513–1520. https://doi.org/10.1016/S0022-2275(20)32205-7Schroeder, A., Mueller, O., Stocker, S., Salowsky, R., Leiber, M., Gassmann, M., Lightfoot, S., Menzel, W., Granzow, M., and Ragg, T. 2006. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol., 7: 1–14. https://doi.org/10.1186/1471-2199-7-3Schubart, C.D., Deli, T., Mancinelli, G., Cilenti, L., Gil Fernández, A., Falco, S., and Berger, S. 2023. Phylogeography of the Atlantic Blue Crab Callinectes sapidus (Brachyura: Portunidae) in the Americas versus the Mediterranean Sea: Determining origins and genetic connectivity of a large-scale invasion. Biology, 12: 35. https://doi.org/10.3390/biology12010035Schulz, H. 1991. Beta oxidation of fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids BBA, 1081: 109–120. https://doi.org/10.1016/0005-2760(91)90015-ASeary, R., Spencer, T., Bithell, M., and McOwen, C. 2021. Measuring mangrove-fishery benefits in the Peam Krasaop Fishing Community, Cambodia. Estuar. Coast. Shelf. Sci., 248 106918. https://doi.org/10.1016/j.ecss.2020.106918Seear, P.J., Tarling, G.A., Burns, G., Goodall-Copestake, W. P., Gaten, E., Özkaya, Ö., and Rosato, E. 2010. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba). BMC Genomics, 11: 1–13. https://doi.org/10.1186/1471-2164-11-582Serrano, A.E., Traifalgar, R.F., and Serrano, A.E. 2012. Ontogeny and induction of digestive enzymes in Scylla serrata larvae fed live or artificial feeds or their combination. AACL Bioflux, 5: 101–111. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1835442bd0fb7ee545391871277cf6f2c13f19f0Seychelles, L.H., Ayala-Aguilar, J.A., Estrada, N., López, M., Ayala-Perez, V.O., Ludwig, M., and Mercier, L. 2022. Zootechnical performance, biochemical composition and gene expression of digestive enzymes in Litopenaeus vannamei post-larvae fed the nematode Panagrolaimus sp. (NFS 24–5). Aquac. Res., 53: 5325–5341. https://doi.org/10.1111/are.16016Shan, X., and Lin, M. 2014. Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture, 428–429: 284–289. https://doi.org/10.1016/j.aquaculture.2014.03.021Sheen, S.S. 2000. Dietary cholesterol requirement of juvenile mud crab Scylla serrata. Aquaculture, 189: 277–285. https://doi.org/10.1016/S0044-8486(00)00379-3Shi, B., Jin, M., Jiao, L., Betancor, M. B., Tocher, D. R., and Zhou, Q. 2020. Effects of dietary zinc level on growth performance, lipolysis and expression of genes involved in the calcium/calmodulin-dependent protein kinase kinase-β/AMP-activated protein kinase pathway in juvenile Pacific white shrimp. Br. J. Nutr., 124: 773–784. https://doi.org/10.1017/S0007114520001725Shi, C., Zeng, T., Li, R., Wang, C., Ye, Y., and Mu, C. 2019. Dynamic metabolite alterations of Portunus trituberculatus during larval development. J. Ocean. Limnol., 37: 361–372. https://doi.org/10.1007/s00343-019-7268-0Shiau, S.Y., and Peng, C.Y. 1992. Utilization of different carbohydrates at different dietary protein levels in grass prawn, Penaeus monodon, reared in seawater. Aquaculture, 101: 241–250. https://doi.org/10.1016/0044-8486(92)90028-JSkinner, D.M., Kumari, S.S., and O’brien, J.J. 1992. Proteins of the crustacean exoskeleton. American Zoologist, 32: 470–484. https://doi.org/10.1093/icb/32.3.470Skottene, E., Tarrant, A.M., Olsen, A.J., Altin, D., Østensen, M.A., Hansen, B.H., Choquet, M., Jenssen, B.M., and Olsen, R.E. 2019. The β-oxidation pathway is downregulated during diapause termination in Calanus copepods. Sci. Rep., 9: 1–13. https://doi.org/10.1038/s41598-019-53032-5Smith, W.A., Lamattina, A., and Collins, M.K. 2014. Insulin signaling pathways in lepidopteran ecdysone secretion. Front. Physiol., 5: 63298. https://doi.org/10.3389/fphys.2014.00019Smolenaars, M., Madsen, O., Rodenburg, K. W., and Van Der Horst, D.J. 2007. Molecular diversity and evolution of the large lipid transfer protein superfamily. J. Lipid Res., 48: 489–502. https://doi.org/10.1194/jlr.R600028-JLR200Snyder, M.J., and Chang, E.S. 2016. Effects of eyestalk ablation on larval molting rates and morphological development of the american lobster, Homarus americanus. Biol. Bull., 170: 232–243. https://www.journals.uchicago.edu/doi/abs/10.2307/1541805Soh, W.T., Demir, F., Dall, E., Perrar, A., Dahms, S. O., Kuppusamy, M., Brandstetter, H., and Huesgen, P.F. 2020. ExteNDing proteome coverage with legumain as a highly specific digestion protease. Anal. Chem., 92: 2961–2971. https://doi.org/10.1021/acs.analchem.9b03604Soyel, H., and Kumlu, M. 2003. The Effects of salinity on postlarval growth and survival of Penaeus semisulcatus (Decapoda: Penaeidae). Turk. J. Zool., 27: 221–225. https://journals.tubitak.gov.tr/zoology/vol27/iss3/7/Spitznagel, M.I., Small, H.J., Lively, J.A., Shields, J.D., and Schott, E.J. 2019. Investigating risk factors for mortality and reovirus infection in aquaculture production of soft-shell blue crabs (Callinectes sapidus). Aquaculture, 502: 289–295. https://doi.org/10.1016/j.aquaculture.2018.12.051Spitzner, F., Meth, R., Krüger, C., Nischik, E., Eiler, S., Sombke, A., Torres, G., and Harzsch, S. 2018. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front. Zool., 15: 1–39. https://doi.org/10.1186/s12983-018-0271-zSrivastava, A., Stoss, J., and Hamre, K. 2011. A study on enrichment of the rotifer Brachionus “Cayman” with iodine and selected vitamins. Aquaculture, 319: 430–438. https://doi.org/10.1016/j.aquaculture.2011.07.027Staton, J.L., and Sulkin, S.D. 1991. Nutritional requirements and starvation resistance in larvae of the brachyuran crabs Sesarma cinereum (Bosc) and S. reticulatum (Say). J. Exp. Mar. Biol. Ecol., 152: 271–284. https://doi.org/10.1016/0022-0981(91)90219-MStephens, A., Rojo, L., Araujo-Bernal, S., Garcia-Carreño, F., and Muhlia-Almazan, A. 2012. Cathepsin B from the white shrimp Litopenaeus vannamei: cDNA sequence analysis, tissues-specific expression and biological activity. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 161: 32–40. https://doi.org/10.1016/j.cbpb.2011.09.004Stewart, J.M., Carlin, R.C., Macdonald, J.A., and Van Iderstine, S. 1994. Fatty acid binding proteins and fatty acid catabolism in marine invertebrates: Peroxisomal β-oxidation. Invertebr. Reprod. Dev., 25: 73–82. https://doi.org/10.1080/07924259.1994.9672370Stincone, A., Prigione, A., Cramer, T., Wamelink, M., Campbell, K., Cheung, E., Olin-Sandoval, V., Grüning, N.M., Krüger, A., Tauqeer Alam, M., Keller, M.A., Breitenbach, M., Brindle, K.M., Rabinowitz, J.D., and Ralser, M. 2015. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol. Rev., 90: 927–963. https://doi.org/10.1111/brv.12140Štrus, J., Žnidaršič, N., Mrak, P., Bogataj, U., and Vogt, G. 2019. Structure, function and development of the digestive system in malacostracan crustaceans and adaptation to different lifestyles. Cell Tissue Res., 377: 415–443. https://doi.org/10.1007/s00441-019-03056-0Stuck, K., Perry, H., Graham, D., and Heard, R.W. 2009. Morphological characteristics of early life history stages of the blue crab, Callinectes sapidus Rathbun, from the Northern Gulf of Mexico with a comparison of studies from the Atlantic seaboard. Gulf Caribb. Res., 21: 37–55. https://aquila.usm.edu/gcr/vol21/iss1/5/Subramoniam, T. 2010. Mechanisms and control of vitellogenesis in crustaceans. Fish. Sci., 77 1–21. https://doi.org/10.1007/s12562-010-0301-zSugumar, V., Vijayalakshmi, G., and Saranya, K. 2013. Molt cycle related changes and effect of short term starvation on the biochemical constituents of the blue swimmer crab Portunus pelagicus. Saudi J. Biol. Sci., 20: 93–103. https://doi.org/10.1016/j.sjbs.2012.10.003Sui, L., Wille, M., Wu, X., Cheng, Y., and Sorgeloos, P. 2008. Effect of feeding scheme and prey density on survival and development of Chinese mitten crab Eriocheir sinensis zoea larvae. Aquac. Res., 39: 568–576. https://doi.org/10.1111/j.1365-2109.2008.01902.xSulkin, S.D., and Epifanio, C.E. 1975. Comparison of rotifers and other diets for rearing early larvae of the blue crab, Callinectes sapidus Rathbun. Estuar. Coast. Mar. Sci., 3: 109-113. https://doi.org/10.1016/0302-3524(75)90011-0Sulkin, S.D. 1975. The significance of diet in the growth and development of larvae of the blue crab, Callinectes sapidus Rathbun, under laboratory conditions. J. Exp. Mar. Biol. Ecol., 20: 119–135. https://doi.org/10.1016/0022-0981(75)90019-2Sulkin, S.D. 1978. Nutritional requirements during larval development of the portunid crab, Callinectes sapidus Rathbun. J. Exp. Mar. Biol. Ecol., 34: 29–41. https://doi.org/10.1016/0022-0981(78)90055-2Sulkin, S. D., and Van Heukelem, W.F. 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapius Rathbun. Bull. Mar. Sci., 39: Sulkin, S.D., Branscomb, E.S., and Miller, R.E. 1976. Induced winterSulkin, S. D., and Van Heukelem, W.F. 1986. Variability in the length of the megalopal stage and its consequence to dispersal and recruitment in the portunid crab Callinectes sapius Rathbun. Bull. Mar. Sci., 39: 269–278. https://www.ingentaconnect.com/content/umrsmas/bullmar/1986/00000039/00000002/art00011Sun, L., Wang, J., Li, X., and Cao, C. 2019. Effects of phenol on glutathione S-transferase expression and enzyme activity in Chironomus kiiensis larvae. Ecotoxicology, 28: 754–762. https://doi.org/10.1007/s10646-019-02071-9Suprayudi, M.., Takeuchi, T., and Hamasaki, K. 2012. Phospholipids effect on survival and molting synchronicity of larvae mud crab Scylla serrata. Hayati, 19: 163-168. https://doi.org/10.4308/hjb.19.4.163Suprayudi, M., Takeuchi, T., and Hamasaki, K. 2004. Essential fatty acids for larval mud crab Scylla serrata: Implications of lack of the ability to bioconvert C18 unsaturated fatty acids to highly unsaturated fatty acids. Aquaculture, 231: 403–416. https://doi.org/10.1016/S0044-8486(03)00542-8Suprayudi, M.A., Takeuchi, T., Hamasaki, K., and Hirokawa, J. 2002. The effect of N-3 HUFA content in rotifers on the development and survival of mud crab, Scylla serrata, larvae. Aquac. Sci., 50: 205–212. https://doi.org/10.11233/aquaculturesci1953.50.205Syafaat, M.N., Azra, M. N., Waiho, K., Fazhan, H., Abol-Munafi, A. B., Ishak, S. D., Syahnon, M., Ghazali, A., Ma, H., and Ikhwanuddin, M. 2021. A Review of the nursery culture of mud crabs, genus Scylla: Current progress and future directions. animals 11, 2034. https://doi.org/10.3390/ani11072034Takeuchi, T., Nakamoto, Y., Hamasaki, K., Sekiya, S., and Watanabe, T. 1999. Requirement of N-3 highly unsaturated fatty acids for larval swimming crab Portunus trituberculatus. Nippon Suisan Gakkai., 65: 797–803. https://www.cabdirect.org/cabdirect/abstract/20001416426Taufik, M., Bachok, Z., Azra, M.N., and Ikhwanuddin, M. 2016. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. IJMS, 45: 1512–1521. https://www.researchgate.net/publication/312059515Taufik, M., Bachok, Z., Azra, M.N., and Ikhwanuddin, M. 2016. Effects of various microalgae on fatty acid composition and survival rate of the blue swimming crab Portunus pelagicus larvae. IJMS, 45: 1512–1521. https://www.researchgate.net/publication/312059515Teschke, M., and Saborowski, R. 2005. Cysteine proteinases substitute for serine proteinases in the midgut glands of Crangon crangon and Crangon allmani (Decapoda: Caridea). J. Exp. Mar. Biol. Ecol., 316: 213–229. https://doi.org/10.1016/j.jembe.2004.11.007The Galaxy Community 2022. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Research 50, W345–W351. https://doi.org/10.1093/nar/gkac247Tian, H., Yang, C., Yu, Y., Yang, W., Lu, N., Wang, H., Liu, F., Wang, A., and Xu, X. 2020. Dietary cholesterol level affects growth, molting performance and ecdysteroid signal transduction in Procambarus clarkii. Aquaculture, 523: 735198. https://doi.org/10.1016/j.aquaculture.2020.735198Tirumalai, R., and Subramoniam, T. 1992. Purification and characterization of vitellogenin and lipovitellins of the sand crab Emerita asiatica: Molecular aspects of crab yolk proteins. Mol. Reprod. Dev., 33: 16–26. https://doi.org/10.1002/mrd.1080330104TTomkinson, B. 1999. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci., 24: 355–359. https://doi.org/10.1016/S0968-0004(99)01435-8Torres, G., and Giménez, L. 2020. Temperature modulates compensatory responses to food limitation at metamorphosis in a marine invertebrate. Funct. Ecol., 34: 1564–1576. https://doi.org/10.1111/1365-2435.13607Torres, G., Spitzner, F., Harzsch, S., and Giménez, L. 2019. Ecological developmental biology and global ocean change: brachyuran crustacean larvae as models. 283–306. In: Minelli, A., and Fusco, G. (Eds.). Perspectives on Evolutionary and Developmental Biology. Padova University Press, Italia. 420 p. https://www.padovauniversitypress.it/system/files/attachments_field/9788869381409-oa.pdfTrapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S.L., Wold, B.J., and Pachter, L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28: 511–515. (2010). https://doi.org/10.1038/nbt.1621Truong, H.H., Moss, A.F., Bourne, N.A., and Simon, C.J. 2020. Determining the Importance of macro and trace dietary minerals on growth and nutrient retention in juvenile Penaeus monodon. Animals, 10: 2086. https://doi.org/10.3390/ani10112086Tucker, R.K., and Costlow, J.D. 1975. Free amino acid changes in normal and eyestalkless megalopa larvae of the blue crab, Callinectes sapidus, during the course of the molt cycle. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol., 51: 75–78. https://doi.org/10.1016/0300-9629(75)90415-6Vega-Villasante, F., Fernández, I., Preciado, R., Oliva, M., Tovar, D., and Nolasco, H. 1999. The activity of digestive enzymes during the molting stages of the arched swimming Callinectes arcuatus Ordway, 1863 (Crustacea: Decapoda: Portunidae). Bull. Mar. Sci., 65: 1–9. https://www.ingentaconnect.com/content/umrsmas/bullmar/1999/00000065/00000001/art00001Voet, D., and Voet, J. 2004. Bioquímica. 3a edición. Editorial Médica Panamericana, Montevideo. 1680 p.Vogt, G. 2019. Functional cytology of the hepatopancreas of decapod crustaceans. J. Morphol., 280: 1405–1444. https://doi.org/10.1002/jmor.21040Vogt, G. 2021. Synthesis of digestive enzymes, food processing, and nutrient absorption in decapod crustaceans: a comparison to the mammalian model of digestion. Zoology, 147: https://doi.org/10.1016/j.zool.2021.125945von Zastrow, M., and Sorkin, A. 2007. Signaling on the endocytic pathway. COCEBI, 19: 436–445. https://doi.org/10.1016/j.ceb.2007.04.021Waiho, K., Fazhan, H., Quinitio, E.T., Baylon, J.C., Fujaya, Y., Azmie, G., Wu, Q., Shi, X., Ikhwanuddin, M., and Ma, H. 2018. Larval rearing of mud crab (Scylla): What lies ahead. Aquaculture, 493: 37–50. https://doi.org/10.1016/j.aquaculture.2018.04.047Wanders, R.J.A., Baes, M., Ribeiro, D., Ferdinandusse, S., and Waterham, H.R. 2023. The physiological functions of human peroxisomes. Physiol. Rev., 103: 957–1024. https://doi.org/10.1152/physrev.00051.2021Wang, J., Shu, X., and Wang, W.X. 2019. Micro-elemental retention in rotifers and their trophic transfer to marine fish larvae: Influences of green algae enrichment. Aquaculture, 499: 374–380. https://doi.org/10.1016/j.aquaculture.2018.09.066Wang, X., Jin, M., Cheng, X., Hu, X., Zhao, M., Yuan, Y., Sun, P., Jiao, L., Tocher, D.R., and Zhou, Q. 2022a. Hepatopancreas transcriptomic and lipidomic analyses reveal the molecular responses of mud crab (Scylla paramamosain) to dietary ratio of docosahexaenoic acid to eicosapentaenoic acid. Aquaculture, 551, 737903. https://doi.org/10.1016/j.aquaculture.2022.737903Wang, X., Li, E., and Chen, L. 2016. A Review of carbohydrate nutrition and metabolism in crustaceans. N. Am. J. Aquac., 78: 178–187. https://doi.org/10.1080/15222055.2016.1141129Wang, X., Wang, S., Li, C., Chen, K., Qin, J. G., Chen, L., and Li, E. 2015. Molecular pathway and gene responses of the pacific white shrimp Litopenaeus vannamei to acute low salinity stress. J. Shellfish Res., 34: 1037–1048. https://doi.org/10.2983/035.034.0330Wang, Z., Zhang, Y., Yao, D., Zhao, Y., Tran, N. T., Li, S., Ma, H., and Aweya, J.J. 2022b. Metabolic reprogramming in crustaceans: A vital immune and environmental response strategy. Rev. Aquac., 14: 1094–1119. https://doi.org/10.1111/raq.12640Waqalevu, V., Honda, A., Dossou, S., Khoa, T.N.D., Matsui, H., Mzengereza, K., Liu, H., Ishikawa, M., Shiozaki, K. Kotani, T. 2019. Effect of oil enrichment on Brachionus plicatilis rotifer and first feeding red sea bream (Pagrus major) and Japanese flounder (Paralichthys olivaceus). Aquaculture 510, 73–83. https://doi.org/10.1016/j.aquaculture.2019.05.039Waycott, B. 2019. Aquaculture North America. Research project showing potential for farming Blue crab. https://www.aquaculturenorthamerica.com/research-project-showing-potential-for-farming-blue-crab-2383/Webster, S.G., and Dircksen, H. 2016. Putative Molt-Inhibiting Hormone in larvae of the shore crab Carcinus maenas L.: An immunocytochemical approach. Biol. Bull., 180: 65–71. https://www.journals.uchicago.edu/doi/abs/10.2307/1542429Wei, J., Zhang, X., Yu, Y., Huang, H., Li, F., Xiang, J. 2014a. Comparative transcriptomic characterization of the early development in Pacific white shrimp Litopenaeus vannamei. Plos One, 9: e106201. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106201Wei, J., Zhang, X., Yu, Y., Li, F., and Xiang, J. 2014b. RNA-Seq reveals the dynamic and diverse features of digestive enzymes during early development of Pacific white shrimp Litopenaeus vannamei. Comp. Biochem. Physiol. - D: Genom. Proteom., 11: 37–44. https://doi.org/10.1016/j.cbd.2014.07.001Weissburg, M.J., and Zimmer-Faust, R.K. 1991. Ontogeny Versus Phylogeny in Determining Patterns of Chemoreception: Initial Studies with Fiddler Crabs. Univ. Chicago Press. J., 181: 205–215. https://www.journals.uchicago.edu/doi/abs/10.2307/1542091Weissburg, M.J., and Zimmer-Faust, R.K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol., 197: 349–375. https://doi.org/10.1242/jeb.197.1.349 Wheatly, M.G.,Weissburg, M.J., and Zimmer-Faust, R.K. 1994. Odor plumes and how blue crabs use them in finding prey. J. Exp. Biol., 197: 349–375. https://doi.org/10.1242/jeb.197.1.349Wheatly, M.G., Zanotto, F.P., and Hubbard, M.G. 2002. Calcium homeostasis in crustaceans: subcellular Ca dynamics. Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 132: 163–178. https://doi.org/10.1016/S1096-4959(01)00520-6Williams, J.A., Chen, X., and Sabbatini, M.E. 2009. Small G proteins as key regulators of pancreatic digestive enzyme secretion. Am. J. Physiol. - Endocrinol. Metab., 296: 405–414. https://doi.org/10.1152/ajpendo.90874.2008Williams, K.C. 2007. Nutritional requirements and feeds development for post-larval spiny lobster: A review. Aquaculture, 263: 1–14. https://doi.org/10.1016/j.aquaculture.2006.10.019Williams, M.J., and Primavera, J.H. 2001. Choosing tropical portunid species for culture, domestication and stock enhancement in the Indo-Pacific. Asian Fish. Sci., 14: 121–142. https://repository.seafdec.org.ph/handle/10862/1916Winarni, E.T., and Kusbiyanto, A.N. 2021. Estimating crustacean species utilize Segara Anakan Estuary Cilacap, Indonesia as nursery ground through DNA Barcoding. J. Hunan Univ. Nat. Sci., 48: 275–282. http://jonuns.com/index.php/journal/article/view/775Wingett, S.W., and Andrews, S. 2018. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 7: 1338. https://doi.org/10.12688/f1000research.15931.2 Wolcott, D.L., and O’connor, N.J. 1992. Herbivory in Crabs: Adaptations and Ecological Considerations 1. Amer. Zool., 32: 370–381.Winnebeck, E.C., Millar, C.D., and Warman, G.R. 2010. Why does insect RNA look degraded? J. Insect Sci., 10: 159. https://doi.org/10.1673/031.010.14119Wouters, R., Lavens, P., Nieto, J., and Sorgeloos, P. 2001. Penaeid shrimp broodstock nutrition: an updated review on research and development. Aquaculture, 202: 1–21. https://doi.org/10.1016/S0044-8486(01)00570-1Wu, X.G., Fu, R.B., Cheng, Y.X., Chrn, S.L., Yang, X.Z., Wang, C.L., Zhu, D.F., and Luo, H.Z. 2006. Effect of starvation on the survival and the mainly biochemical composition of swimming crab (Portunus trituberculatus) freshly hatched larvae. Chinese J. Zool., 41: 7–13. http://www.cqvip.com/qk/94741x/200606/23449245.htmlWu, X.G., Zeng, C.S., and Southgate, P.C. 2014. Ontogenetic patterns of growth and lipid composition changes of blue swimmer crab larvae: Insights into larval biology and lipid nutrition. Mar. Freshw. Res., 65: 228–243. https://doi.org/10.1071/MF13078Wu, X., Zeng, C., and Southgate, P.C. 2017. Effects of starvation on survival, biomass, and lipid composition of newly hatched larvae of the blue swimmer crab, Portunus pelagicus (Linnaeus, 1758). Aquacult. Int., 25: 447–461. https://doi.org/10.1007/s10499-016-0042-9Xie, H., Li, B., Zhong, R., Qin, J., Zhu, Y., and Lin, B. 2008. Microfluidic device for integrated restriction digestion reaction and resulting DNA fragment analysis. Electrophoresis, 29: 4956–4963. https://doi.org/10.1002/elps.200800490Xu, C., Li, E., Liu, Y., Wang, X., Qin, J.G., and Chen, L. 2017a. Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J. Proteomics, 162: 1–10. https://doi.org/10.1016/j.jprot.2017.04.013Xu, R., Zheng, R., Wang, Y., Ma, R., Tong, G., Wei, X., Feng, D., and Hu, K. 2021. Transcriptome analysis to elucidate the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil on the hepatopancreas of Procambarus clarkii. Fish Shellfish Immunol., 116: 140–149. https://doi.org/10.1016/j.fsi.2021.07.004Xu, Y., Li, X., Deng, Y., Lu, Q., Yang, Y., Pan, J., Ge, J., and Xu, Z. 2017b. Comparative transcriptome sequencing of the hepatopancreas reveals differentially expressed genes in the precocious juvenile Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda). Aquac. Res., 48: 3645–3656. https://doi.org/10.1111/are.13189Yamauchi, M.M., Miya, M.U., and Nishida, M. 2003. Complete mitochondrial DNA sequence of the swimming crab, Portunus trituberculatus (Crustacea: Decapoda: Brachyura). Gene, 311: 129–135. https://doi.org/10.1016/S0378-1119(03)00582-1Yang, Y., Jin, F., Liu, W., Huo, G., Zhou, F., Yan, J., Zhou, K., and Li, P. 2023. Comparative transcriptome, digital gene expression and proteome profiling analyses provide insights into the brachyurization from the megalopa to the first juvenile in Eriocheir sinensis. Heliyon, 9: e12736. https://www.cell.com/heliyon/pdf/S2405-8440(22)04024-5.pdfYang, Y., Xu, W., Jiang, Q., Ye, Y., Tian, J., Huang, Y., Du, X., Li, Y., Zhao, Y., and Liu, Z. 2022. Effects of low temperature on antioxidant and heat shock protein expression profiles and transcriptomic responses in crayfish (Cherax destructor). Antioxidants, 11: 1779. https://doi.org/10.3390/antiox11091779Yednock, B.K., Sullivan, T.J., and Neigel, J.E. 2015. De novo assembly of a transcriptome from juvenile blue crabs (Callinectes sapidus) following exposure to surrogate Macondo crude oil. BMC Genom., 16: 1–15. https://doi.org/10.1186/s12864-015-1739-2Ye, J., Zhang, Y., Cui, H., Liu, J., Wu, Y., Cheng, Y., Xu, H., Huang, X., Li, S., Zhou, A., Zhang, X., Bolund, L., Chen, Q., Wang, J., Yang, H., Fang, L., and Shi, C. 2018. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res., 46: https://doi.org/10.1093/nar/gky400Yuan, Y., Xu, F., Jin, M., Wang, X., Hu, X., Zhao, M., Cheng, X., Luo, J., Jiao, L., Betancor, M.B., Tocher, D.R., and Zhou, Q. 2021. Untargeted lipidomics reveals metabolic responses to different dietary n-3 PUFA in juvenile swimming crab (Portunus trituberculatus). Food Chem., 354: 129570 https://doi.org/10.1016/j.foodchem.2021.129570Yúfera, M., Moyano, F.J., and Martínez-Rodríguez, G. 2018. The digestive function in developing fishm larvae and fry. From molecular gene expression to enzymatic activity. 51–86. In: Yúfera, M. (Ed.). Emerging Issues in Fish Larvae Research. Springer International Publishing, Cadiz. 296 p.Zambonino-Infante, J., Gisbert, E., Sarasquete, C., Navarro, I., Gutierrez, J., and Cahu, C. L. 2008. Ontogeny and physiology of the digestive system of marine fish larvae. 277–344. In: Cyrino, J.E.P., Bureau, D.P., and Kapoor, B.G. (Eds.). Feeding and Digestive Functions in Fishes. Science Publishers, Boca Ratón. 589 p.Zanotto, F.P., and Wheatly, M.G. 2002. Calcium balance in crustaceans: nutritional aspects of physiological regulation. Comp. Biochem. Physiol. Part A Mol. Integr., 133: 645–660. https://doi.org/10.1016/S1095-6433(02)00202-7Zar, J.H. 2010. Bioestatistical analysis, 5th edition. Prentice Hall, New Jersey. 255 p.Zeng, X., Wan, H., Zhong, J., Feng, Y., Zhang, Z., and Wang, Y. 2021. Large lipid transfer proteins in hepatopancreas of the mud crab Scylla paramamosain. Comp. Biochem. Physiol. Part D Genomics Proteomics, 38: 100801. https://doi.org/10.1016/j.cbd.2021.100801Zhang, X., Huang, C., Guo, C., Xie, S., Luo, J., Zhu, T., Ye, Y., Jin, M., and Zhou, Q. 2021. Effect of dietary carbohydrate sources on the growth, glucose metabolism and insulin pathway for swimming crab, Portunus trituberculatus. Aquac. Rep., 21: 100967. https://doi.org/10.1016/j.aqrep.2021.100967Zhang, X., Jin, M., Luo, J., Xie, S., Guo, C., Zhu, T., Hu, X., Yuan, Y., and Zhou, Q. 2022. Effects of dietary carbohydrate levels on the growth and glucose metabolism of juvenile swimming crab, Portunus trituberculatus. Aquac. Nutr., 2022: 1–15. https://doi.org/10.1155/2022/7110052Zhang, X., Zhang, X., Yuan, J., Du, J., Li, F., and Xiang, J. 2018. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei. Mol. Genet. Genom., 293: 479–493. https://doi.org/10.1007/s00438-017-1397-yZhang, Z., and Hu, J. 2007. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by Quantitative Real-Time RT-PCR. Toxicol. Sci., 95: 356–368. https://doi.org/10.1093/toxsci/kfl161Zheng, D., Pan, L., and Fang, B. 2011. Effects of different dietary lipid contents on growth and lipase activity of Eriocheir sinensis larvae. J. Ocean Univ. China, 10: 55–60. https://doi.org/10.1007/s11802-011-1695-7Zhou, J., He, W. Y., Wang, W. N., Yang, C. W., Wang, L., Xin, Y., Wu, J., Cai, D., Liu, Y., and Wang, A.L. 2009. Molecular cloning and characterization of an ATP-binding cassette (ABC) transmembrane transporter from the white shrimp Litopenaeus vannamei. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 150: 450–458. https://doi.org/10.1016/j.cbpc.2009.06.012Zhou, Z.K., Gu, W.B., Wang, C., Zhou, Y.L., Tu, D.D., Liu, Z.P., Zhu, Q.H., and Shu, M.A. 2018. Seven transcripts from the chitinase gene family of the mud crab Scylla paramamosain: Their expression profiles during development and moulting and under environmental stresses. Aquac. Res., 49: 3296–3308. https://doi.org/10.1111/are.13793Zhu, B., Tang, L., Yu, Y., Yu, H., Wang, L., Qian, C., Wei, G., and Liu, C. 2017. Identification of ecdysteroid receptor-mediated signaling pathways in the hepatopancreas of the red swamp crayfish, Procambarus clarkii. Gen. Comp. Endocrinol., 246: 372–381. https://doi.org/10.1016/j.ygcen.2017.01.013Zmora, O., Findiesen, A., Stubblefield, J., Frenkel, V., and Zohar, Y. 2005. Large-scale juvenile production of the blue crab Callinectes sapidus. Aquaculture, 244: 129–139. https://doi.org/10.1016/j.aquaculture.2004.11.012Zohar, Y., Hines, A.H., Zmora, O., Johnson, E.G., Lipcius, R.N., Seitz, R. D., Eggleston, D.B., Place, A.R., Schott, E.J., Stubblefield, J.D., and Chung, J.S. 2008. The Chesapeake Bay blue crab (Callinectes sapidus): A multidisciplinary approach to responsible stock replenishment. Rev. Fish. Sci., 16: 24–34. https://doi.org/10.1080/10641260701681623MincienciasUniversidad de Bogotá Jorge Tadeo LozanoUniversidad Nacional de ColombiaUniversidad Estatal de Sonora, MéxicoInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85728/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL52083076.2023.pdf52083076.2023.pdfTesis de Doctorado en Ciencias Biologíaapplication/pdf4807660https://repositorio.unal.edu.co/bitstream/unal/85728/4/52083076.2023.pdfb484b6712ced4b311641bb510db48a21MD54THUMBNAIL52083076.2023.pdf.jpg52083076.2023.pdf.jpgGenerated Thumbnailimage/jpeg5812https://repositorio.unal.edu.co/bitstream/unal/85728/5/52083076.2023.pdf.jpg1f1c245bdf79891f3a42e5e1babc8535MD55unal/85728oai:repositorio.unal.edu.co:unal/857282024-08-21 23:14:15.614Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=