Estudio de la plastificación del poliestireno por oleína de palma

ilustraciones

Autores:
Fajardo Ramírez, Santiago
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79690
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79690
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
Poliestireno
Oleína de palma
Plastificación
Cambio de fase
Polystyrene
Palm Olein
Plasticization
Sustancia bioquímica
Biochemicals
Deterioro ambiental
Environmental degradation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_164ada79e0d9f5d1ddafb0f8d81adf71
oai_identifier_str oai:repositorio.unal.edu.co:unal/79690
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la plastificación del poliestireno por oleína de palma
dc.title.translated.eng.fl_str_mv Study of the plasticization of polystyrene by palm olein
title Estudio de la plastificación del poliestireno por oleína de palma
spellingShingle Estudio de la plastificación del poliestireno por oleína de palma
660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
Poliestireno
Oleína de palma
Plastificación
Cambio de fase
Polystyrene
Palm Olein
Plasticization
Sustancia bioquímica
Biochemicals
Deterioro ambiental
Environmental degradation
title_short Estudio de la plastificación del poliestireno por oleína de palma
title_full Estudio de la plastificación del poliestireno por oleína de palma
title_fullStr Estudio de la plastificación del poliestireno por oleína de palma
title_full_unstemmed Estudio de la plastificación del poliestireno por oleína de palma
title_sort Estudio de la plastificación del poliestireno por oleína de palma
dc.creator.fl_str_mv Fajardo Ramírez, Santiago
dc.contributor.advisor.none.fl_str_mv Perilla Perilla, Jairo Ernesto
dc.contributor.author.none.fl_str_mv Fajardo Ramírez, Santiago
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Procesos Químicos y Bioquímicos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
topic 660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
Poliestireno
Oleína de palma
Plastificación
Cambio de fase
Polystyrene
Palm Olein
Plasticization
Sustancia bioquímica
Biochemicals
Deterioro ambiental
Environmental degradation
dc.subject.proposal.spa.fl_str_mv Poliestireno
Oleína de palma
Plastificación
Cambio de fase
dc.subject.proposal.eng.fl_str_mv Polystyrene
Palm Olein
Plasticization
dc.subject.unesco.none.fl_str_mv Sustancia bioquímica
Biochemicals
Deterioro ambiental
Environmental degradation
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-23T19:00:28Z
dc.date.available.none.fl_str_mv 2021-06-23T19:00:28Z
dc.date.issued.none.fl_str_mv 2021-06-18
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79690
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79690
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbott, S. (30 de 05 de 2021). https://www.stevenabbott.co.uk/. Obtenido de https://www.stevenabbott.co.uk/: https://www.stevenabbott.co.uk/practical-solubility/polymer-fox-equation.php Airton Germano Bispo-Jr, N. A. (2018). Red-light-emitting polymer composite based on PVDF membranes and Europium phosphor using Buriti Oil as plasticizer. Materials Chemistry and Physics, 160-167. Alejandra Agudelo Agudelo, A. C. (2017). Re-diseño de un proceso que permita el reciclaje del poliestireno expandido EPS. Cali: Pontificia Universidad Javeriana. Altan, M. (2017). Thermoplastic Foams: Processing, Manufacturing, and Characterization. Recent Research in Polymerization. ASTM. (2014). Standard Test Method for Tensile Properties of Plastics1 D638 − 14. ASTM International, 1-15. Avila, J. N. (2013). Nanopartículas de poliestireno como carreadores de surfactante para recuperação avançada de petróleo. Rio De Janeiro: Universidade Federal Do Rio De Janeiro. Brüster, B. (2016). Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: Multi-scale analysis and underlying mechanisms. Polymer Degradation and Stability, 132-144. Buong Woei Chieng, N. A. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. molecules, 6024-16038. C.H.Park, W. (2012). 3 - Compression molding in polymer matrix composites. En Manufacturing Techniques for Polymer Matrix Composites (PMCs) (págs. 47-94). Cambridge: Woodhead Publishing Series in Composites Science and Engineering. Carmen M. González-Henríquez, M. A.-V.-H. (2019). Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 94 , 57–116. Cedron, J. C. (2014). Alálisis de biodiesel preparado a partir de residuoas de aceite doméstico, mediante RMN. . Sociedad Química del Perú ,, 4-5. Daniela Schlemmer, E. R. (2007). Polystyrene/thermoplastic starch blends with different plasticizers Preparation and thermal characterization. Journal of Thermal Analysis and Calorimetry, 635–638. Daniele de A. Miranda, G. F.-S. (2016). Are we eating plastic-ingesting fish? Marine Pollution Bulletin, 103, 109–114. Darshan Ravoori, C. L. (2019). Experimental and theoretical investigation of heat transfer in platform bed during polymer extrusion based additive manufacturing. Polymer Testing, 73 , 439–446. Deepalekshmi Ponnamma et al. (2018). Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering. En Sneha Mohan Bhagyaraj et al., Front Matter (págs. i-iii). Kottayam: Applications of Nanomaterials. Dehaut, A. (2016). (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. ,. Environmental Pollution, 223-233. Diosdado de la Peña José Angel, P. M. (2011). Un nuevo método para producir probetas de poliestireno en laboratorio. . Memorias del XVII Congreso Internacional Anual de La Somim., 861-869. Domínguez, L. F. (2014). automatización de una extrusora monohusillo para trabajar materiales plásticos y compuestos. Cali: Universidad Autónoma De Occidente-Facultad De Ingeniería. Dominik Brecht, F. U. (2019). Thermogravimetry coupled to an atmospheric pressure photo ionization quadrupole mass spectrometry for the product control of pharmaceutical formulations and the analysis of plasticizers in polymers. Talanta , 198 , 440–446. Eduardo, N. I. (2015). Diseño y construcción de una máquina elaboradora de hilo PET. Quito: Universidad Internacional Del Ecuador . Emiliano M. Ciannamea, P. M. (2014). Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocolloids , 38, 193-204. Fabiania, C. (2020). Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. Journal of Energy Storage, 101-129. Fabio Previdia, S. M. (2006). Design of a feedback control system for real-time control of flow in a single-screw extruder. Control Engineering Practice , 14, 1111–1121. Fandiño, J. S. (2014). CARACTERIZACIÓN DE UN MATERIAL COMPUESTO A BASE DE ACIDO POLILÁCTICO (PLA) CON REFUERZOS DE FIBRA DE CABECINEGRO (MANICARIA SACCIFERA) A ALTAS TASAS DE DEFORMACIÓN UNITARIA EN EL BANCO DE PRUEBAS DE BARRA DIVIDIDA DE HOPKINSON. Bogotá D.C.: UNIVERSIDAD DE LOS ANDES. Fazli Wahid et al. (2018). Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. En A. M. Asiri, Applications of Nanocomposite Materials in Drug Delivery (págs. 701-735). Abbottabad: Woodhead Publishing Series in Biomaterials. G. Ji, P. Z. (2015). Shape memory polymer-based self-healing composites. En Recent Advances in Smart Self-healing Polymers and Composites (págs. 293-363). Baton Rouge: Woodhead Publishing Series in Composites Science and Engineering. Garcia, N. (2019). Evaluación del impácto ambiental de la aplicación de un plan de gestión posconsumo de poliestireno expandido (EPS) utilizado en el envase de alimentos en Colombia. Bogotá: Universidad EAN. Guido Grause, D. K. (2013). Impact of brominated flame retardants on the thermal degradation of high-impact polystyrene. Polymer Degradation and Stability , 98, 306-315. Guodong Liu, Y. Z. (2014 ). Study on enthalpy relaxation of polystyrene by assuming the existence of an intermediate aging plateau. Journal of Non-Crystalline Solids , 402 , 160–165. Gutiérrez, C. (2014). Preparation and characterization of polystyrene foams from limonene solutions. The Journal of Supercritical Fluids, 92–104. Halina Kaczmarek, A. F. (2008). Studies of photochemical transformations in polystyrene and styrene–maleic anhydride copolymer. Polymer Degradation and Stability , 93 , 1259–1266. HAZARD, E. S. (2013). Earth Materials-Lecture 13. GNH7/GG09/GEOL4002. Londres. Hee Jeung Oh, B. D. (2014). Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer , 55, 235-247. Hee Jeung Oh, B. D. (2014). Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer, 235-247. Houghton, R. J. (1990). Studies on the plasticization of polymeric tablet binders. Leicester : The Department of Pharmacy. Icoz, D. (2008). Understanding molecular and thermodynamic miscibility of carbohydrate biopolymers. New Brunswick: Rutgers, The State University of New Jersey. J.A. Durães, A. D. (2006). Absorption and photoluminescence of Buriti oil/polystyrene and Buriti oil/poly(methyl methacrylate) blends. EUROPEAN POLYMER JOURNAL, 42, 3324–3332. J.E. Martín-Alfonso, J. F. (2014). Ethylene-vinyl acetate copolymer (EVA)/sunflower vegetable oil polymer gels: Influence of vinyl acetate content. Polymer Testing, 37, 78–85. Jaíro E. Perilla, L. R. (1999). Mezclade MaterialesPoliméricosl.Evaluaciónde las mezclasde poliestirenovirgen y reciclado. RevistaIngenieríae Investigación, I(44), 80-83. Jihuai Tan, S. Z. (2019). Design and synthesis of ethoxylated esters derived from waste frying oil as anti-ultraviolet and efficient primary plasticizers for poly(vinyl chloride). Journal of Cleaner Production, 229, 1274-1282. Jimenez, R. (2012). Capítulo 2. En Señales (págs. 61-94). Líma: Universidad Nacional del Callao. Jinge Li, H. L. (2009). Morphologies, crystallinity and dynamic mechanical characterizations of polypropylene/polystyrene blends compatibilized with PP-g-PS copolymer: Effect of the side chain length. European Polymer Journal , 45, 2619–2628. Jorge Garcia-Ivars, X. W.-X.-I.-C. (2017). Application of post-consumer recycled high-impact polystyrene in the preparation of phase-inversion membranes for low-pressure membrane processes. Separation and Purification Technology, 175, 340-351. Juho Antti Sirviö, M. V. (2018). Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops & Products, 122, 513-521. Junsong Li, X. L. (2019). Creating orientated cellular structure in thermoplastic polyurethane through strong interfacial shear interaction and supercritical carbon dioxide foaming for largely improving the foam compression performance. The Journal of Supercritical Fluids, 153 , 104577. Kailong Jin, J. M. (2015). Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer, 65, 233-242. L. Rios-Guerrero, H. K. (2000). Deformation processes in high impact polystyrene as revealed by analysis of arrested cracks. Polymer , 5415–5421. M. Erber, U. G.-J. (2010). Polystyrene with different topologies: Study of the glass transition temperature in confined geometry of thin films. European Polymer Journal, 46, 2240–2246. M. Revellino, L. S. (2000). 2.22 - Compression Molding of SMCs. En Comprehensive Composite Materials (págs. 763-805). Devon: Cambridge University. M.D. Samper, D. G.-S. (2010). Recycling of Expanded Polystyrene from Packaging. ,. Progress in Rubber, Plastics and Recycling Technology, 83-91. Marius Chanhoun, S. P. (2018). Study of the implementation of waste wood, plastics and polystyrenes for various applications in the building industry. Construction and Building Materials , 167 , 936–941. Marta Sendra, E. S.-G. (2019). Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? Environmental Pollution, 249, 610-619. Meissner, J. (1983). Polymer melt flow measurements by laser doppler velocimetry. Polymer Testing, 3(4), 291-301. Mi Jang a, b. W. (2017). Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environmental Pollution, 231, 785-794. Mohammed A. Binhussain, M. M.-T. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47 , 1431–1435. Mohd. Izham Hassan, R. M. (2021). http://mpoc.org.my/. Obtenido de http://mpoc.org.my/: http://mpoc.org.my/overview-of-the-global-palm-oil-sector-in-2020-and-outlook-for-2021/ Moya, S. (2017). Thermal Modeling Techniques of Heat Assisted Single Point Incremental Forming in ANSYS Workbench. Clemson: TigerPrints. Nasrin Mehmandost, M. L. (2019). Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. Journal of Environmental Chemical Engineering, 7, 103424. Natalia Pérez-Peña, C. C. (2018). Simulation of Drying stresses in Eucalyptus nitens wood. Bioresources, 13(1), 1413-1424. Nhamo Chaukura, W. G. (2016). Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation and Recycling, 107, 57–165. Niranjan Patra, M. S. (2013). Surfactant-induced thermomechanical and morphological changes in TiO2-polystyrene nanocomposites. Journal of Colloid and Interface Science , 405 , 103–108. Nouha Bakaraki Turan, H. S. (2020). Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Safety and Environmental Protection, 77-84. Paola Rizzo, A. R. (2005 ). Polymorphism of syndiotactic polystyrene: g phase crystallization induced by bulky non-guest solvents. Polymer , 46 , 9549–9554. Patrick A. Leggieri, M. S. (2018). Cloud point and crystallization in fatty acid ethyl ester biodiesel mixtures with and without additives. Fuel, 222, 243–249. Pauline May Losaria, J.-H. Y. (2019). A highly stretchable large strain sensor based on PEDOT–thermoplastic polyurethane hybrid prepared via in situ vapor phase polymerization. Journal of Industrial and Engineering Chemistry, 108-117. Paulo César Narváez Rincón, J. A. (2005). Determinación por cromatografía de gases de alquil ésteres (metílico y etílico) de ácidos grasos, en presencia de mono-, di- y triglicéridos. Ingeniería e investicgación(57), 58-62. Peña, C. H. (2013). Reciclaje termo - mecánico del poliestireno expandido (Icopor), como una estrategia de mitigación de su impacto ambiental en rellenos sanitarios. Manizales: Universidad de Manizales. Poletto, M. (2014). EXPANDED POLYSTYRENE: THERMO-MECHANICAL. En C. LYNWOOD, POLYSTYRENE SYNTHESIS, CHARACTERISTICS AND APPLICATIONS (pág. 320). New York: Nova. Rakesh Kumar, P. S. (2021). Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Science of the Total Environment, 146695. Rameshwar Adhikari, G. H. (2004). Influence of molecular architecture on morphology and micromechanical behavior of styrene/butadiene block copolymer systems. Progress in Polymer Science. , 29, 949–986. Ramírez, S. F. (2015). Formulación de una técnica de reciclaje, para la obtención de un material oligomérico de uso comercial a partir de dos residuos: Poliestireno expandido de embalaje y aceite residual de cocina. Bogotá D.C.: Universidad el Bosque. Retrieval, w. t. (30 de 05 de 2021). http://polymerdatabase.com/. Obtenido de http://polymerdatabase.com/: http://polymerdatabase.com/polymer%20physics/Fox.html Rojas-Molina A, H.-R. G.-M.-L.-C.-R.-S. (2012). Diseño de tarjeta electrónica genérica para el control de motores trifásicos. Ingeniería Investigación y Tecnología. , XIII(1), 21-31. Rong Guan, B. X. (2006). The processing–structure relationships in thin microcellular PET sheet prepared by compression molding. European Polymer Journal , 42, 1022–1032. S. Myint, M. Z. (2010). Paints Based on Waste Expanded Polystyrene. ,. Progress in Rubber, Plastics and Recycling Technology, 1-10. S. Zeeb and S. Hijring, F. G. (1997 ). The influence of copolymerization and plasticization on the ab splitting behaviour of the glass transition in poly(n-aIkylmethacrylate)s . Polymer, 38(16), 4011-4018. S.M. Sapuana, D. B. (2012). Mechanical Properties of Sugar Palm Fibre Reinforced High Impact Polystyrene Composites. Procedia Chemistry , 4 , 101–106. Saido, K. (2015). Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollutio. Journal of Hazardous Materials, 359–367. Shiming Chena, L. T. (2004 ). The study of poly(styrene-co-p-(hexafluoro-2-hydroxylisopropyl)-a-methyl-styrene)/poly(propylene carbonate) blends by ESR spin probe and Raman. Polymer , 45 , 3045–3053. Sjollema, S. B. (2016). Do plastic particles affect microalgal photosynthesis and growth? . Aquatic Toxicology., 259–261. Sourbh Thakur, A. V. (2018). Recent developments in recycling of polystyrene. Green and Sustainable Chemistry, 13, 32–38. Tahar Masri, H. O. (2018). Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials, 164 , 410–418. Takumi Sako, J. D. (2019). Anomalous viscosity decrease of polycarbonate by addition of polystyrene. Polymer, 170 , 135–141. Tatara, R. A. (2017). 14 Compression Molding. En Applied Plastics Engineering Handbook (págs. 291-320). Illinois: Department of Technology. Ting Zheng, Z. W. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. Journal of Cleaner Production, 186, 1021-1030. UK, W. (2014). Disposal of Fats, Oils, Grease and Food Waste. Londres: London goverment. Vamsi Krishna Balla, K. H. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects . Composites Part B , 174 , 106956. Villarreal, C. d. (2005). Síntesis de oligómeros de PS funcionalizados con grupos peroxídicos a partir de un iniciador cíclico multifuncional: Potencial aplicación en la síntesis de IPNs parcialmente termodisociables. Saltillo: Centro de Investigación en Química Aplicada. Villarreal, C. d. (2005). Síntesis de oligómeros de PS funcionalizados con grupos peroxídicos a partir de un iniciador cíclico multifuncional: Potencial aplicación en la síntesis de IPNs parcialmente termodisociables. Coahuila: Centro de Investigación en Química Aplicada. Wei Liu, Y. P. (2019). Dependence of the foaming window of a polystyrene/poly(methyl methacrylate) blend on structural evolution driven by phase separation. Polymer, 166, 63–71. Wu, C. (2015). Accumulation of floating microplastics behind the Three Gorges Dam. Environmental Pollution, 117-123. Wypych, G. (2017). Handbook of Plasticizers. Toronto: ChemTec Publishing. Yohei Miwa, Y. K. (2018). The effects of local glass transition temperatures of ionic coreeshell structures on the tensile behavior of sodium-neutralized poly(ethylene-co-methacrylic acid) ionomer/lauric acid blends. Polymer , 148, 303-309.
dc.rights.spa.fl_str_mv Derechos Reservados al Autor, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2021
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 76 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica y Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79690/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79690/2/Tesis_FINAL.pdf
https://repositorio.unal.edu.co/bitstream/unal/79690/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79690/4/Tesis_FINAL.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
d971b294ba33625b7dfa1aa33f73548c
0175ea4a2d4caec4bbcc37e300941108
38a318ca7a677a4f73c651cab4c91ab2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089645482311680
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2021http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Perilla Perilla, Jairo Ernesto6da974f5d7b47336a5ddf3bb9482b009Fajardo Ramírez, Santiago52833c89bfaf99005e83300c608bacadGrupo de Investigación en Procesos Químicos y Bioquímicos2021-06-23T19:00:28Z2021-06-23T19:00:28Z2021-06-18https://repositorio.unal.edu.co/handle/unal/79690Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa necesidad de detener la contaminación desmesurada por los polímeros de un solo uso, como el Poliestireno Expandido (EPS), y la pérdida acelerada de la calidad del agua por parte del aceite usado de cocina han motivado el estudio de los mecanismos de cambio de fase, así como de las propiedades mecánicas y morfológicas del efecto plastificante de la Oleína de Palma (OP) en el poliestireno. La metodología para la producción y caracterización de muestras plastificadas con OP fue por medio de técnica Solvent-Casting, en las cuales se varió la concentración de OP en el poliestireno. Posteriormente, se utilizaron los equipos de calorimetría diferencial de barrido (DSC) y termogravimetría (TGA) con el fin de definir los cambios de la temperatura de transición vítrea (Tg) y el delta del calor específico (ΔCp) con el aumento de la concentración peso a peso (%p/p) de OP y la temperatura de degradación del compuesto. También se evaluaron los parámetros de producción de muestras físicas para la valoración de las propiedades mecánicas mediante la norma ASTM 638D y su comparación con el material recuperado. Por último, se realizó la microscopia electrónica de barrido (SEM) con el fin de observar la distribución de la OP en la matriz de PS. El hallazgo de dos fases presentes en el material de manera posterior a una concentración de OP de 5 %p/p se modeló mediante las ecuaciones planteadas por Fox al realizar la TGA a diferentes muestras de PS/OP, se halló una temperatura de degradación del compuesto fue mayor a los 300 °C, el flujo de extrusión osciló entre 5 y 28 g/L, la corriente de 5 a 10 A, las velocidades angulares del tornillo mantuvieron un promedio de 22,63 Hz y algunas temperaturas variaron entre 148 °C y 200 °C. Para las propiedades mecánicas, se obtuvo que el módulo de Young aumentó al incrementar la concentración de OP %p/p y alcanzó los 11,06 MPa. Finalmente, se obtuvo la morfología del compuesto PS / OP, que se encuentra disperso de manera discontinua en forma de cavidades esféricas. (Texto tomado de la fuente)The need to stop excessive contamination by single-use polymers, such as expanded polystyrene (EPS), and the accelerated loss of water quality due to used cooking oil has fostered the study of the mechanisms of phase change, as well as of the mechanical and morphological properties of the plasticizing effect of palm oil in polystyrene. For the study of phase changes, films were made using the solvent-casting technique, where the concentration of palm olein (PO) in the polystyrene was varied DSC and TGA equipment were used to define the changes in glass transition temperature (Tg) and delta of heat capacity (ΔCp) with the increase in PO and the degradation temperature of the compound. The production parameters of physical samples were also evaluated for the study of mechanical properties using the ASTM 638D standard and their comparison with the recovered material. Scanning electron microscopy (SEM) was performed in order to observe the distribution of the PO in the PS matrix. Before of 5%wt of PO in the matrix of polystyrene, show´s two phases; a hard phase and soft phase, was modeled of the equations proposed by Fox to get a theorical Tg. When performing the TGA on different PS/PO samples, a degradation temperature was higher than 300 °C, the extrusion flow varied between 5 and 28 g/L, the current from 5 to 10 A, the angular velocities of the screw were maintained an average of 22,63 Hz and temperatures ranged from 148 °C to 200 °C. For the mechanical properties, Young's modulus increased by increasing the concentration of PO%wt, thus reaching 11,06 MPa. Finally, it was obtained the morphology of the compound PS/OP, which is dispersed in a discontinuous manner in the form of spherical cavities. (Texto tomado de la fuente)Creación de laboratorio de reciclaje a partir de la tesisMaestríaMagíster en Ingeniería - Materiales y ProcesosExperimental y exploratoriaBiomateriales76 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosDepartamento de Ingeniería Mecánica y MecatrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::668 - Tecnología de otros productos orgánicosPoliestirenoOleína de palmaPlastificaciónCambio de fasePolystyrenePalm OleinPlasticizationSustancia bioquímicaBiochemicalsDeterioro ambientalEnvironmental degradationEstudio de la plastificación del poliestireno por oleína de palmaStudy of the plasticization of polystyrene by palm oleinTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbott, S. (30 de 05 de 2021). https://www.stevenabbott.co.uk/. Obtenido de https://www.stevenabbott.co.uk/: https://www.stevenabbott.co.uk/practical-solubility/polymer-fox-equation.php Airton Germano Bispo-Jr, N. A. (2018). Red-light-emitting polymer composite based on PVDF membranes and Europium phosphor using Buriti Oil as plasticizer. Materials Chemistry and Physics, 160-167. Alejandra Agudelo Agudelo, A. C. (2017). Re-diseño de un proceso que permita el reciclaje del poliestireno expandido EPS. Cali: Pontificia Universidad Javeriana. Altan, M. (2017). Thermoplastic Foams: Processing, Manufacturing, and Characterization. Recent Research in Polymerization. ASTM. (2014). Standard Test Method for Tensile Properties of Plastics1 D638 − 14. ASTM International, 1-15. Avila, J. N. (2013). Nanopartículas de poliestireno como carreadores de surfactante para recuperação avançada de petróleo. Rio De Janeiro: Universidade Federal Do Rio De Janeiro. Brüster, B. (2016). Thermo-mechanical degradation of plasticized poly(lactide) after multiple reprocessing to simulate recycling: Multi-scale analysis and underlying mechanisms. Polymer Degradation and Stability, 132-144. Buong Woei Chieng, N. A. (2014). Epoxidized Vegetable Oils Plasticized Poly(lactic acid) Biocomposites: Mechanical, Thermal and Morphology Properties. molecules, 6024-16038. C.H.Park, W. (2012). 3 - Compression molding in polymer matrix composites. En Manufacturing Techniques for Polymer Matrix Composites (PMCs) (págs. 47-94). Cambridge: Woodhead Publishing Series in Composites Science and Engineering. Carmen M. González-Henríquez, M. A.-V.-H. (2019). Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progress in Polymer Science, 94 , 57–116. Cedron, J. C. (2014). Alálisis de biodiesel preparado a partir de residuoas de aceite doméstico, mediante RMN. . Sociedad Química del Perú ,, 4-5. Daniela Schlemmer, E. R. (2007). Polystyrene/thermoplastic starch blends with different plasticizers Preparation and thermal characterization. Journal of Thermal Analysis and Calorimetry, 635–638. Daniele de A. Miranda, G. F.-S. (2016). Are we eating plastic-ingesting fish? Marine Pollution Bulletin, 103, 109–114. Darshan Ravoori, C. L. (2019). Experimental and theoretical investigation of heat transfer in platform bed during polymer extrusion based additive manufacturing. Polymer Testing, 73 , 439–446. Deepalekshmi Ponnamma et al. (2018). Carbon Nanotube Tube Filled Polymer Nanocomposites and Their Applications in Tissue Engineering. En Sneha Mohan Bhagyaraj et al., Front Matter (págs. i-iii). Kottayam: Applications of Nanomaterials. Dehaut, A. (2016). (2016). Microplastics in seafood: Benchmark protocol for their extraction and characterization. ,. Environmental Pollution, 223-233. Diosdado de la Peña José Angel, P. M. (2011). Un nuevo método para producir probetas de poliestireno en laboratorio. . Memorias del XVII Congreso Internacional Anual de La Somim., 861-869. Domínguez, L. F. (2014). automatización de una extrusora monohusillo para trabajar materiales plásticos y compuestos. Cali: Universidad Autónoma De Occidente-Facultad De Ingeniería. Dominik Brecht, F. U. (2019). Thermogravimetry coupled to an atmospheric pressure photo ionization quadrupole mass spectrometry for the product control of pharmaceutical formulations and the analysis of plasticizers in polymers. Talanta , 198 , 440–446. Eduardo, N. I. (2015). Diseño y construcción de una máquina elaboradora de hilo PET. Quito: Universidad Internacional Del Ecuador . Emiliano M. Ciannamea, P. M. (2014). Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocolloids , 38, 193-204. Fabiania, C. (2020). Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. Journal of Energy Storage, 101-129. Fabio Previdia, S. M. (2006). Design of a feedback control system for real-time control of flow in a single-screw extruder. Control Engineering Practice , 14, 1111–1121. Fandiño, J. S. (2014). CARACTERIZACIÓN DE UN MATERIAL COMPUESTO A BASE DE ACIDO POLILÁCTICO (PLA) CON REFUERZOS DE FIBRA DE CABECINEGRO (MANICARIA SACCIFERA) A ALTAS TASAS DE DEFORMACIÓN UNITARIA EN EL BANCO DE PRUEBAS DE BARRA DIVIDIDA DE HOPKINSON. Bogotá D.C.: UNIVERSIDAD DE LOS ANDES. Fazli Wahid et al. (2018). Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. En A. M. Asiri, Applications of Nanocomposite Materials in Drug Delivery (págs. 701-735). Abbottabad: Woodhead Publishing Series in Biomaterials. G. Ji, P. Z. (2015). Shape memory polymer-based self-healing composites. En Recent Advances in Smart Self-healing Polymers and Composites (págs. 293-363). Baton Rouge: Woodhead Publishing Series in Composites Science and Engineering. Garcia, N. (2019). Evaluación del impácto ambiental de la aplicación de un plan de gestión posconsumo de poliestireno expandido (EPS) utilizado en el envase de alimentos en Colombia. Bogotá: Universidad EAN. Guido Grause, D. K. (2013). Impact of brominated flame retardants on the thermal degradation of high-impact polystyrene. Polymer Degradation and Stability , 98, 306-315. Guodong Liu, Y. Z. (2014 ). Study on enthalpy relaxation of polystyrene by assuming the existence of an intermediate aging plateau. Journal of Non-Crystalline Solids , 402 , 160–165. Gutiérrez, C. (2014). Preparation and characterization of polystyrene foams from limonene solutions. The Journal of Supercritical Fluids, 92–104. Halina Kaczmarek, A. F. (2008). Studies of photochemical transformations in polystyrene and styrene–maleic anhydride copolymer. Polymer Degradation and Stability , 93 , 1259–1266. HAZARD, E. S. (2013). Earth Materials-Lecture 13. GNH7/GG09/GEOL4002. Londres. Hee Jeung Oh, B. D. (2014). Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer , 55, 235-247. Hee Jeung Oh, B. D. (2014). Thermal analysis of disulfonated poly(arylene ether sulfone) plasticized with poly(ethylene glycol) for membrane formation. Polymer, 235-247. Houghton, R. J. (1990). Studies on the plasticization of polymeric tablet binders. Leicester : The Department of Pharmacy. Icoz, D. (2008). Understanding molecular and thermodynamic miscibility of carbohydrate biopolymers. New Brunswick: Rutgers, The State University of New Jersey. J.A. Durães, A. D. (2006). Absorption and photoluminescence of Buriti oil/polystyrene and Buriti oil/poly(methyl methacrylate) blends. EUROPEAN POLYMER JOURNAL, 42, 3324–3332. J.E. Martín-Alfonso, J. F. (2014). Ethylene-vinyl acetate copolymer (EVA)/sunflower vegetable oil polymer gels: Influence of vinyl acetate content. Polymer Testing, 37, 78–85. Jaíro E. Perilla, L. R. (1999). Mezclade MaterialesPoliméricosl.Evaluaciónde las mezclasde poliestirenovirgen y reciclado. RevistaIngenieríae Investigación, I(44), 80-83. Jihuai Tan, S. Z. (2019). Design and synthesis of ethoxylated esters derived from waste frying oil as anti-ultraviolet and efficient primary plasticizers for poly(vinyl chloride). Journal of Cleaner Production, 229, 1274-1282. Jimenez, R. (2012). Capítulo 2. En Señales (págs. 61-94). Líma: Universidad Nacional del Callao. Jinge Li, H. L. (2009). Morphologies, crystallinity and dynamic mechanical characterizations of polypropylene/polystyrene blends compatibilized with PP-g-PS copolymer: Effect of the side chain length. European Polymer Journal , 45, 2619–2628. Jorge Garcia-Ivars, X. W.-X.-I.-C. (2017). Application of post-consumer recycled high-impact polystyrene in the preparation of phase-inversion membranes for low-pressure membrane processes. Separation and Purification Technology, 175, 340-351. Juho Antti Sirviö, M. V. (2018). Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films. Industrial Crops & Products, 122, 513-521. Junsong Li, X. L. (2019). Creating orientated cellular structure in thermoplastic polyurethane through strong interfacial shear interaction and supercritical carbon dioxide foaming for largely improving the foam compression performance. The Journal of Supercritical Fluids, 153 , 104577. Kailong Jin, J. M. (2015). Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer, 65, 233-242. L. Rios-Guerrero, H. K. (2000). Deformation processes in high impact polystyrene as revealed by analysis of arrested cracks. Polymer , 5415–5421. M. Erber, U. G.-J. (2010). Polystyrene with different topologies: Study of the glass transition temperature in confined geometry of thin films. European Polymer Journal, 46, 2240–2246. M. Revellino, L. S. (2000). 2.22 - Compression Molding of SMCs. En Comprehensive Composite Materials (págs. 763-805). Devon: Cambridge University. M.D. Samper, D. G.-S. (2010). Recycling of Expanded Polystyrene from Packaging. ,. Progress in Rubber, Plastics and Recycling Technology, 83-91. Marius Chanhoun, S. P. (2018). Study of the implementation of waste wood, plastics and polystyrenes for various applications in the building industry. Construction and Building Materials , 167 , 936–941. Marta Sendra, E. S.-G. (2019). Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum? Environmental Pollution, 249, 610-619. Meissner, J. (1983). Polymer melt flow measurements by laser doppler velocimetry. Polymer Testing, 3(4), 291-301. Mi Jang a, b. W. (2017). Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environmental Pollution, 231, 785-794. Mohammed A. Binhussain, M. M.-T. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47 , 1431–1435. Mohd. Izham Hassan, R. M. (2021). http://mpoc.org.my/. Obtenido de http://mpoc.org.my/: http://mpoc.org.my/overview-of-the-global-palm-oil-sector-in-2020-and-outlook-for-2021/ Moya, S. (2017). Thermal Modeling Techniques of Heat Assisted Single Point Incremental Forming in ANSYS Workbench. Clemson: TigerPrints. Nasrin Mehmandost, M. L. (2019). Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. Journal of Environmental Chemical Engineering, 7, 103424. Natalia Pérez-Peña, C. C. (2018). Simulation of Drying stresses in Eucalyptus nitens wood. Bioresources, 13(1), 1413-1424. Nhamo Chaukura, W. G. (2016). Potential uses and value-added products derived from waste polystyrene in developing countries: A review. Resources, Conservation and Recycling, 107, 57–165. Niranjan Patra, M. S. (2013). Surfactant-induced thermomechanical and morphological changes in TiO2-polystyrene nanocomposites. Journal of Colloid and Interface Science , 405 , 103–108. Nouha Bakaraki Turan, H. S. (2020). Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Safety and Environmental Protection, 77-84. Paola Rizzo, A. R. (2005 ). Polymorphism of syndiotactic polystyrene: g phase crystallization induced by bulky non-guest solvents. Polymer , 46 , 9549–9554. Patrick A. Leggieri, M. S. (2018). Cloud point and crystallization in fatty acid ethyl ester biodiesel mixtures with and without additives. Fuel, 222, 243–249. Pauline May Losaria, J.-H. Y. (2019). A highly stretchable large strain sensor based on PEDOT–thermoplastic polyurethane hybrid prepared via in situ vapor phase polymerization. Journal of Industrial and Engineering Chemistry, 108-117. Paulo César Narváez Rincón, J. A. (2005). Determinación por cromatografía de gases de alquil ésteres (metílico y etílico) de ácidos grasos, en presencia de mono-, di- y triglicéridos. Ingeniería e investicgación(57), 58-62. Peña, C. H. (2013). Reciclaje termo - mecánico del poliestireno expandido (Icopor), como una estrategia de mitigación de su impacto ambiental en rellenos sanitarios. Manizales: Universidad de Manizales. Poletto, M. (2014). EXPANDED POLYSTYRENE: THERMO-MECHANICAL. En C. LYNWOOD, POLYSTYRENE SYNTHESIS, CHARACTERISTICS AND APPLICATIONS (pág. 320). New York: Nova. Rakesh Kumar, P. S. (2021). Abundance, interaction, ingestion, ecological concerns, and mitigation policies of microplastic pollution in riverine ecosystem: A review. Science of the Total Environment, 146695. Rameshwar Adhikari, G. H. (2004). Influence of molecular architecture on morphology and micromechanical behavior of styrene/butadiene block copolymer systems. Progress in Polymer Science. , 29, 949–986. Ramírez, S. F. (2015). Formulación de una técnica de reciclaje, para la obtención de un material oligomérico de uso comercial a partir de dos residuos: Poliestireno expandido de embalaje y aceite residual de cocina. Bogotá D.C.: Universidad el Bosque. Retrieval, w. t. (30 de 05 de 2021). http://polymerdatabase.com/. Obtenido de http://polymerdatabase.com/: http://polymerdatabase.com/polymer%20physics/Fox.html Rojas-Molina A, H.-R. G.-M.-L.-C.-R.-S. (2012). Diseño de tarjeta electrónica genérica para el control de motores trifásicos. Ingeniería Investigación y Tecnología. , XIII(1), 21-31. Rong Guan, B. X. (2006). The processing–structure relationships in thin microcellular PET sheet prepared by compression molding. European Polymer Journal , 42, 1022–1032. S. Myint, M. Z. (2010). Paints Based on Waste Expanded Polystyrene. ,. Progress in Rubber, Plastics and Recycling Technology, 1-10. S. Zeeb and S. Hijring, F. G. (1997 ). The influence of copolymerization and plasticization on the ab splitting behaviour of the glass transition in poly(n-aIkylmethacrylate)s . Polymer, 38(16), 4011-4018. S.M. Sapuana, D. B. (2012). Mechanical Properties of Sugar Palm Fibre Reinforced High Impact Polystyrene Composites. Procedia Chemistry , 4 , 101–106. Saido, K. (2015). Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollutio. Journal of Hazardous Materials, 359–367. Shiming Chena, L. T. (2004 ). The study of poly(styrene-co-p-(hexafluoro-2-hydroxylisopropyl)-a-methyl-styrene)/poly(propylene carbonate) blends by ESR spin probe and Raman. Polymer , 45 , 3045–3053. Sjollema, S. B. (2016). Do plastic particles affect microalgal photosynthesis and growth? . Aquatic Toxicology., 259–261. Sourbh Thakur, A. V. (2018). Recent developments in recycling of polystyrene. Green and Sustainable Chemistry, 13, 32–38. Tahar Masri, H. O. (2018). Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials, 164 , 410–418. Takumi Sako, J. D. (2019). Anomalous viscosity decrease of polycarbonate by addition of polystyrene. Polymer, 170 , 135–141. Tatara, R. A. (2017). 14 Compression Molding. En Applied Plastics Engineering Handbook (págs. 291-320). Illinois: Department of Technology. Ting Zheng, Z. W. (2018). Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. Journal of Cleaner Production, 186, 1021-1030. UK, W. (2014). Disposal of Fats, Oils, Grease and Food Waste. Londres: London goverment. Vamsi Krishna Balla, K. H. (2019). Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects . Composites Part B , 174 , 106956. Villarreal, C. d. (2005). Síntesis de oligómeros de PS funcionalizados con grupos peroxídicos a partir de un iniciador cíclico multifuncional: Potencial aplicación en la síntesis de IPNs parcialmente termodisociables. Saltillo: Centro de Investigación en Química Aplicada. Villarreal, C. d. (2005). Síntesis de oligómeros de PS funcionalizados con grupos peroxídicos a partir de un iniciador cíclico multifuncional: Potencial aplicación en la síntesis de IPNs parcialmente termodisociables. Coahuila: Centro de Investigación en Química Aplicada. Wei Liu, Y. P. (2019). Dependence of the foaming window of a polystyrene/poly(methyl methacrylate) blend on structural evolution driven by phase separation. Polymer, 166, 63–71. Wu, C. (2015). Accumulation of floating microplastics behind the Three Gorges Dam. Environmental Pollution, 117-123. Wypych, G. (2017). Handbook of Plasticizers. Toronto: ChemTec Publishing. Yohei Miwa, Y. K. (2018). The effects of local glass transition temperatures of ionic coreeshell structures on the tensile behavior of sodium-neutralized poly(ethylene-co-methacrylic acid) ionomer/lauric acid blends. Polymer , 148, 303-309.Proyecto 37454Universidad Nacional de Colombia sede Bogotá.LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79690/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALTesis_FINAL.pdfTesis_FINAL.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf1068381https://repositorio.unal.edu.co/bitstream/unal/79690/2/Tesis_FINAL.pdfd971b294ba33625b7dfa1aa33f73548cMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79690/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAILTesis_FINAL.pdf.jpgTesis_FINAL.pdf.jpgGenerated Thumbnailimage/jpeg4295https://repositorio.unal.edu.co/bitstream/unal/79690/4/Tesis_FINAL.pdf.jpg38a318ca7a677a4f73c651cab4c91ab2MD54unal/79690oai:repositorio.unal.edu.co:unal/796902024-07-22 23:40:02.808Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==