Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial

ilustraciones, diagramas

Autores:
Duarte Aunta, Javier Eduardo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86066
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86066
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Flexibilidad de la demanda
Variabilidad de la demanda
Energía eléctrica
Respuesta de la demanda
Análisis de datos
Esquema tarifario diferencial
Infraestructura de medición avanzada (AMI)
Medición inteligente
Medidores inteligentes
Time-of-use (ToU)
Demand flexibility
Demand variability
Electric power
Demand response (DR)
Data analysis
Differential tariff scheme
Advanced Metering Infrastructure (AMI)
Smart metering
Smart meters
Energía eléctrica
Costes
Electric power
Costs
Demanda (economía)
demand
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_15765b9a684cf82d216d1f3be8877ca5
oai_identifier_str oai:repositorio.unal.edu.co:unal/86066
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
dc.title.translated.eng.fl_str_mv Determine the variability of electrical energy demand to evaluate the potential use of a differential tariff scheme
title Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
spellingShingle Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Flexibilidad de la demanda
Variabilidad de la demanda
Energía eléctrica
Respuesta de la demanda
Análisis de datos
Esquema tarifario diferencial
Infraestructura de medición avanzada (AMI)
Medición inteligente
Medidores inteligentes
Time-of-use (ToU)
Demand flexibility
Demand variability
Electric power
Demand response (DR)
Data analysis
Differential tariff scheme
Advanced Metering Infrastructure (AMI)
Smart metering
Smart meters
Energía eléctrica
Costes
Electric power
Costs
Demanda (economía)
demand
title_short Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
title_full Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
title_fullStr Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
title_full_unstemmed Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
title_sort Determinar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencial
dc.creator.fl_str_mv Duarte Aunta, Javier Eduardo
dc.contributor.advisor.spa.fl_str_mv Rosero Garcia, Javier Alveiro
Oscar German, Duarte Velasco
dc.contributor.author.spa.fl_str_mv Duarte Aunta, Javier Eduardo
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Flexibilidad de la demanda
Variabilidad de la demanda
Energía eléctrica
Respuesta de la demanda
Análisis de datos
Esquema tarifario diferencial
Infraestructura de medición avanzada (AMI)
Medición inteligente
Medidores inteligentes
Time-of-use (ToU)
Demand flexibility
Demand variability
Electric power
Demand response (DR)
Data analysis
Differential tariff scheme
Advanced Metering Infrastructure (AMI)
Smart metering
Smart meters
Energía eléctrica
Costes
Electric power
Costs
Demanda (economía)
demand
dc.subject.proposal.spa.fl_str_mv Flexibilidad de la demanda
Variabilidad de la demanda
Energía eléctrica
Respuesta de la demanda
Análisis de datos
Esquema tarifario diferencial
Infraestructura de medición avanzada (AMI)
Medición inteligente
Medidores inteligentes
dc.subject.proposal.eng.fl_str_mv Time-of-use (ToU)
Demand flexibility
Demand variability
Electric power
Demand response (DR)
Data analysis
Differential tariff scheme
Advanced Metering Infrastructure (AMI)
Smart metering
Smart meters
dc.subject.unesco.spa.fl_str_mv Energía eléctrica
Costes
dc.subject.unesco.eng.fl_str_mv Electric power
Costs
dc.subject.wikidata.spa.fl_str_mv Demanda (economía)
dc.subject.wikidata.eng.fl_str_mv demand
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12
dc.date.accessioned.none.fl_str_mv 2024-05-10T12:43:50Z
dc.date.available.none.fl_str_mv 2024-05-10T12:43:50Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86066
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86066
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., and Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE Access, 10:48419–48433
Anamika and Kumar, N. (2016). Market clearing price prediction using ann in indian electricity markets. pages 454–458. Institute of Electrical and Electronics Engineers Inc.
Anderson, O. and Yu, N. (2022). Learning to steal electricity in power distribution systems with deep reinforcement learning. Institute of Electrical and Electronics Engineers Inc.
Aro, M., Piira, K., and M aki, K. (2021). Business model for household flexibility- a case study. pages 20–23
Awan, M.B.andMa, Z.(2023). Building energy flexibility: definitions, sources, indicators, and quantification methods, pages 17–40. Elsevier.
Axpo, Energy, B., en microeconomia, D. R. D. C., Pool, E., iet energy, Energy, K., Energy, S., Sympower, Voltalis, and Cuerva (2022). Manifiesto para el desarrollo de la flexibilidad de la demanda en españa. Publicado por Energy Pool. El manifiesto aboga por el desarrollo de un marco legislativo y procedimental para la flexibilidad de la demanda en España, en linea con la Directiva (UE) 944/2019
Azam, M. F. and Younis, M. S. (2021). Multihorizon electricity load and price forecasting using an interpretable multihead self-attention and eemd-based framework. IEEE Access, 9:85918–85932.
Barai, G. R., Krishnan, S., and Venkatesh, B. (2015). Smart metering and functionalities of smart meters in smart grid- a review. pages 138–145
Barragan, D. E. C., Archilli, G. B., and Silva, L. C. P. D. (2020). Data-driven indicators applied to power distribution systems
Bebic, J. Z., Berry, I. M., James, A. N., and Lee, D. O. (2019). Quantifying electric load flexibility using smart meter data
Belton, C. A. and Lunn, P. D. (2020). Smart choices? an experimental study of smart meters and time-of-use tariffs in ireland. Energy Policy, 140:111243
Canizes, B., Mota, B., Ribeiro, P., and Vale, Z. (2022). Demand response driven by distribution network voltage limit violation: A genetic algorithm approach for load shifting. IEEE Access, 10:62183–62193
Carmon, D., Navon, A., Machlev, R., Belikov, J., and Levron, Y. (2020). Readiness of small energy markets and electric power grids to global health crises: Lessons from the covid-19 pandemic. IEEE Access, 8:127234–127243
(CASIO), C. I. S. O. (2016). What the duck curve tells us about managing a green grid
CEPAL, N. (2019). La agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para america latina y el caribe. objetivos, metas e indicadores mundiales. Publicacion de la CEPAL que aborda la Agenda 2030 para el Desarrollo Sostenible y su relevancia para America Latina y el Caribe, incluyendo objetivos, metas e indicadores mundiales
Chebbo, L., Bazzi, A. M., Yassine, A., Karaki, S. H., and Ghaddar, N.(2021). Tou tariff system using data from smart meters. In 2021 IEEE Power and Energy Conference at Illinois (PECI), pages 1–5
Chen, Z., Amani, A. M., Yu, X., and Jalili, M. (2023). Control and optimisation of power grids using smart meter data: A review. Sensors, 23
Comision de Regulacion de Energia y Gas (2022). Respuesta de la demanda en el sistema interconectado nacional- hoja de ruta documento de consulta publica
Comision Europea (2022). Una transicion hacia una energia limpia
Deng, H., Yan, F., Wang, H., Fang, L., Zhou, Z., Zhang, F., Xu, C., and Jiang, H. (2021). Electricity price prediction based on lstm and lightgbm. pages 286–290. Institute of Electrical and Electronics Engineers Inc
Departamento Nacional de Planeacion, Ministerio del Trabajo and Ministerio de Minas y Energia, Ministerio de Comercio Industria y Turismo and Ministerio de Ambiente y Desarrollo Sostenible, and Ministerio de Transporte and Ministerio de Ciencia Tecnologia e Innovacion (2022). Documento conpes 4075- politica de transicion energetica
Approximating nash equilibrium in day-ahead electricity market bidding with multi-agent deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 9:534–544
Duan, N., Huang, C., Sun, C. C., and Min, L. (2022). Smart meters enabling voltage monitoring and control: The last mile voltage stability issue. IEEE Transactions on Industrial Informatics, 18:677–687
ENELX (2023). ¿como funciona la respuesta a la demanda y por que es importante?
Facultad de Ciencias Fisicas y Matematicas Universidad de Chile, de la Energia, C., Nacional, S. E., Palma, R., Matus, M., Torres, ., Benavides, C., Sierra, E., Sepulveda, R., and Riquelme, F. (2019). Concepto de flexibilidad en el sistema electrico nacional
Fraija, A., Agbossou, K., Henao, N., Kelouwani, S., Fournier, M., and Hosseini, S. S. (2022). A discount-based time-of-use electricity pricing strategy for demand response with minimum information using reinforcement learning. IEEE Access, 10:5401854028
Fu, Y., Zhang, Z., and Li, T. (2021). Electricity market price prediction based on differential evolutionary algorithm and neural network. pages 999–1004. Institute of Electrical and Electronics Engineers Inc
Gao, H. X., Kuenzel, S., and Zhang, X. Y. (2022). A hybrid convlstm based anomaly detection approach for combating energy theft. IEEE Transactions on Instrumentation and Measurement, 71
Gao, S., Song, T. E., Liu, S., Zhou, C., Xu, C., Guo, H., Li, X., Li, Z., Liu, Y., Jiang, W., Wang, J., and Wang, S. (2021). Joint optimization of planning and operation in multi-region integrated energy systems considering flexible demand response. IEEE Access, 9:75840–75863
Guerrero-Prado, J. S., Alfonso-Morales, W., and Caicedo Bravo, E. F. (2021). A data analytics/big data framework for advanced metering in frastructure data. Sensors, 21
Gyamfi, S., Krumdieck, S., and Urmee, T. (2013). Residential peakelectricity demand response—highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25:71–77
Heghedus, C., Segarra, S., Chakravorty, A., and Chunming, R. (2019). Neural network architectures for electricity consumption forecasting
Honarmand, M. E., Hosseinnezhad, V., Hayes, B., Shafie-Khah, M., and Siano, P. (2021). An overview of demand response: From its origins to the smart energy community. IEEE Access, 9:96851–9687
Imani, M. H., Bompard, E., Colella, P., and Huang, T. Predictive methods of electricity price: an application to the italian electricity market
Kitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process research in software engineering
Kumar, R., Ranjan, R., and Verma, M. C. (2021). A new approach for long term electricity load forecasting for uttarakhand state power utilities using artificial neural network. Institute of Electrical and Electronics Engineers Inc
Lepolesa, L. J., Achari, S., and Cheng, L. (2022). Electricity theft detection in smart grids based on deep neural network. IEEE Access, 10:39638–39655
Li, Y., Li, J., Shang, Y., and Qian, H. (2020). Risk forecast to electricity retail market based multiple risk factors of electricity retail companies. pages 95–100. Institute of Electrical and Electronics Engineers Inc
Li, Z., Wanwei, L., and Dehghaion, P. (2023). Auto-encoder neural network based monthly electricity consumption forecasting method using hourly data
Liu, L., Li, F., Cheng, Z., Zhou, Y., Shen, J., Li, R., and Xiong, S. (2022). Non-intrusive load monitoring method considering the time-segmented state probability. IEEE Access, 10:39627–39637
Malbasic, B. and Pandzic, H. (2022). Requirements, challenges and experiences of practical demand response in households. pages 81–86. Institute of Electrical and Electronics Engineers Inc
Mamun, A. A., Sohel, M., Mohammad, N., Sunny, M. S. H., Dipta, D. R., and Hossain, E. (2020). A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access, 8:134911–134939
Ministerio de Minas y Energia, U. (2022). Plan de accion indicativo (pai)– para el desarrollo del programa de uso de racional y eficiente de la energia – proure 2022-2030
Mittal, D. A., Liu, S., and Xu, G. (2020). Electricity price forecasting using convolution and lstm models. Institute of Electrical and Electronics Engineers Inc
Mortensen, L. K., Shaker, H. R., Santos, A. Q., and Veje, C. T. (2021). Fault area location in electrical distribution system using smart meter data. Institute of Electrical and Electronics Engineers Inc
Munem, M., Bashar, T. M. R., Roni, M. H., Shahriar, M., Shawkat, T. B., and Rahaman, H. (2020). Electric power load forecasting based on multivariate lstm neural network using bayesian optimization. Institute of Electrical and Electronics Engineers Inc
Naciones Unidas (1997). Protocolo de kioto de la convencion marco de las naciones unidas sobre el cambio climatico
Naciones Unidas (2015). Acuerdo de paris. Convencion Marco de las Naciones Unidas sobre el Cambio Climatico
Nawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., and Wadud, Z. (2020). An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid. IEEE Access, 8:132551–132581
Naz, A., Javaid, N., Asif, M., Javed, M. U., Ahmed, A., Gulfam, S. M., Shafiq, M., and Choi, J. G. (2021). Electricity consumption forecasting using gated-fcn with ensemble strategy. IEEE Access, 9:131365–131381
Nicolson, M. L., Fell, M. J., and Huebner, G. M. (2018). Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. Renewable and Sustainable Energy Reviews, 97:276–289
Othman, M. S. M., Johari, D., Musirin, I., Rahman, T. K. A., and Ismail, N. F. N. (2010). Artificial neural network-based forecast for electricity consumption in malaysia. pages 24–28
Ott, R. L. and Longnecker, M. (2016). An Introduction to Statistical Methods and Data Analysis. Cengage Learning, Australia; Brazil; Mexico; Singapore; United Kingdom; United States, 7 edition
Parizad, A. and Hatziadoniu, C. J. (2021). Using prophet algorithm for pattern recognition and short term forecasting of load demand based on seasonality and exogenous features. Institute of Electrical and Electronics Engineers Inc
Parkash, B., Lie, T. T., Li, W., and Tito, S. R. (2022). Hierarchical structure based energy consumption forecasting in top-down approach. pages 1732–1737. Institute of Electrical and Electronics Engineers Inc
Pawar, S. and Momin, B. F. (2017). Smart electricity meter data analytics: A brief review. In 2017 IEEE Region 10 Symposium (TENSYMP), pages 1–5, Cochin, India. IEEE
Pinto, T., Sousa, T. M., and Vale, Z. (2012). Dynamic artificial neural network for electricity market prices forecast. pages 311–316
Programa de las Naciones Unidas para el Desarrollo (2015). Objetivo 13- acci´on por el clima, objetivos de desarrollo sostenible
Rajabi, A., Eskandari, M., Ghadi, M. J., Li, L., Zhang, J., and Siano, P. (2020). A comparative study of clustering techniques for electrical load pattern segmentation. Renewable and Sustainable Energy Reviews, 120:109628
Restrepo, J. A., Sierra, S. E., and Rosero, J. A. (2018). Load curve characterization based on real time measurements: Case of study in colombia. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America(T&D-LA), Lima, Peru
Rosero Garcia, J., Zambrano P, A. A., and Duarte, O. (2018).Implementation of an energy demand forecasting model under a smart grids environment. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America (T&D-LA), Lima, Peru. IEEE
Ruensukon, R., Tephiruk, N., Hongesombut, K., and Romphochai, S. (2021). Effects of covid-19 on electrical energy demand based on spatial analysis a case study of phetchaburi, thailand. In 2021 9th International Electrical Engineering Congress (iEECON), pages 137–140, Pattaya, Thailand
Safhi, H. M., Frikh, B., and Ouhbi, B. (2020). Energy load forecasting in big data context
Sajjad, I. A., Chicco, G., Aziz, M., and Rasool, A. (2014). Potential of residential demand flexibility- italian scenario. IEEE Computer Society
Salamanca, W. M., Alvarez, D. L., Garcia, J. A., Marin, J. S., and Gomez-Luna, E. (2019). State estimator assessment platform in distribution systems with advanced metering infrastructure and distributed generation using real time simulations. Institute of Electrical and Electronics Engineers Inc
Schirmer, P. A. and Mporas, I. (2023). Non-intrusive load monitoring: A review. IEEE Transactions on Smart Grid, 14:769–784
Shafiei, M., Golestaneh, F., Ledwich, G., Nourbakhsh, G., Gooi, H. B., and Arefi, A. (2020). Fault detection for low-voltage residential distribution systems with low-frequency measured data. IEEE Systems Journal, 14:5265–5273
Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., and Ben Yahia, S. (2019). Data quality in etl process: A preliminary study. Procedia Computer Science, 159:676–687. Presented at the 23rd International Conference on Knowledge-Based and Intelligent Information and Engineering Systems
Tan, M., Yuan, S., Li, S., Su, Y., Li, H., and He, F. H. (2020). Ultra-short term industrial power demand forecasting using lstm based hybrid ensemble learning. IEEE Transactions on Power Systems, 35:2937–2948
Tao, Y., Qiu, J., Lai, S., Wang, Y., and Sun, X. (2023). Reserve evaluation and energy management of micro-grids in joint electricity markets based on non-intrusive load monitoring. IEEE Transactions on Industry Applications, 59:207–219
U.S. Energy Information Administration (2022). How many smart meters are installed in the united states, and who has them? Frequently Asked Questions (FAQs). [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=108&t=3
Vassiliadis, P. and Simitsis, A. (2002). Conceptual modeling for etl processes. In Proceedings of the 2002 ACM CIKM International Conference on Information and Knowledge Management, pages 14–21, McLean, Virginia, USA. ACM. DOLAP’02
Vitiello, S., Andreadou, N., Ardelean, M., and Fulli, G. (2022). Smart metering roll-out in europe: Where do we stand? cost benefit analyses in the clean energy package and research trends in the green deal. Energies, 15(7)
Wang, F., Li, K., Dui´ c, N., Mi, Z., Hodge, B.-M., Shafie-khah, M., and Catalao, J. P. (2018). Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns. Energy Conversion and Management, 171:839–854
Wang, S., Duan, J., Shi, D., Xu, C., Li, H., Diao, R., and Wang, Z. (2020). A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning. IEEE Transactions on Power Systems, 35:4644–4654
Welikala, S., Dinesh, C., Ekanayake, M. P. B., Godaliyadda, R. I., and Ekanayake, J. (2019). Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting. IEEE Transactions on Smart Grid, 10:448–461
Historicos de demanda, curva de demanda promedio en Colombia. Consumo– historico. [Online]. Available: https://www.xm.com.co/consumo/historicos-de-demanda
Xue, L., Cheng, L., Li, Y., and Mao, Y. (2021). Quantum machine learning for electricity theft detection: an initial investigation. pages 204–208. IEEE
Zheng, Z., Yang, Y., Niu, X., Dai, H. N., and Zhou, Y. (2018). Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics, 14:1606–1615
Zhou, Y., Zhang, X., Tang, Y., Mu, Z., Shao, X., Li, Y., and Cai, Q.(2021). Convolutional neural network and data augmentation method for electricity theft detection. pages 1525–1530. Institute of Electrical and Electronics Engineers Inc
Zhu, C., Zhu, L., and Liu, B. (2022). A prediction method of anti electricity stealing based on big data of electric power. pages 939–945. Institute of Electrical and Electronics Engineers Inc
Zor, K., Timur, O., and Teke, A. (2017). A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting. Institute of Electrical and Electronics Engineers Inc
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 70 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86066/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86066/2/1015456255.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86066/3/1015456255.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
aa7e1199a3a32382980c0c6d656980df
f48f96ab1747bce8980de3327a3f44ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886456728223744
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rosero Garcia, Javier Alveiro275208baaebbfda7d303f6baf775f000600Oscar German, Duarte Velasco66b487fc24622f05070692476e6315bcDuarte Aunta, Javier Eduardof5d8b3b91bfbf50c2e2f26874a7e0a9b2024-05-10T12:43:50Z2024-05-10T12:43:50Z2023-12https://repositorio.unal.edu.co/handle/unal/86066Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEste estudio introduce una metodología para el análisis de la variabilidad en la demanda eléctrica, con el objetivo de estimar la flexibilidad del consumo energético en Colombia. Esta evaluación es clave para la posible implementación de esquemas tarifarios diferenciados, en particular tarifas Time-of-use (ToU). La metodología comienza con un pre-procesamiento de datos, centrado en la organización y limpieza de registros individuales de consumo. Seguidamente, se realiza un procesamiento y clasificación de los datos mediante técnicas de análisis de variabilidad y clustering. Los clusters representativos son seleccionados para identificar intervalos de tiempo con alta variabilidad en el consumo de energía eléctrica. El paso final consiste en analizar el potencial de flexibilidad energética en estos intervalos, tanto para usuarios con alta variabilidad como para el conjunto total de usuarios estudiados. Esta metodología fue aplicada utilizando datos reales de medidores inteligentes del sistema eléctrico colombiano, logrando identificar con éxito las franjas horarias con potencial para establecer tarifas de ToU. Este trabajo, surge como una iniciativa del grupo de investigación Electrical Machines and Drives de la Universidad Nacional – Sede Bogotá, que aspira a fomentar la implementación de estrategias de respuesta de la demanda que promuevan la sostenibilidad y faciliten la transición hacia un panorama energético resiliente a nivel nacional e internacional. Se espera que los hallazgos aquí presentados contribuyan significativamente en la formulación de esquemas tarifarios que incentiven una modificación consciente en los patrones de consumo de energía eléctrica. (Texto tomado de la fuente).This study introduces a methodology for analyzing the variability in electrical demand, aimed at estimating the flexibility of energy consumption in Colombia. This assessment is crucial for the potential implementation of differentiated tariff schemes, particularly Time-of-Use (ToU) rates. The methodology begins with data preprocessing, focusing on the organization and cleaning of individual consumption records. Subsequently, data processing and classification are carried out using variability analysis techniques and clustering. Representative clusters are selected to identify time intervals with high variability in electrical energy consumption. The final step involves analyzing the potential for energy flexibility in these intervals, for both users with high variability and the entire cohort of studied users. This methodology was applied using real data from smart meters in the Colombian electrical system, successfully identifying time slots with potential for establishing ToU tariffs. This work, initiated by the Electrical Machines and Drives research group at the Universidad Nacional - Bogotá Campus, aims to promote the implementation of demand response strategies that encourage sustainability and facilitate the transition to a resilient energy landscape at both national and international levels. The findings presented here are expected to contribute significantly to the development of tariff schemes that encourage a conscious modification in the patterns of electricity consumption.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónComputación aplicadaxiii, 70 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresFlexibilidad de la demandaVariabilidad de la demandaEnergía eléctricaRespuesta de la demandaAnálisis de datosEsquema tarifario diferencialInfraestructura de medición avanzada (AMI)Medición inteligenteMedidores inteligentesTime-of-use (ToU)Demand flexibilityDemand variabilityElectric powerDemand response (DR)Data analysisDifferential tariff schemeAdvanced Metering Infrastructure (AMI)Smart meteringSmart metersEnergía eléctricaCostesElectric powerCostsDemanda (economía)demandDeterminar la variabilidad de la demanda de energía eléctrica que permita evaluar el potencial uso de un esquema tarifario diferencialDetermine the variability of electrical energy demand to evaluate the potential use of a differential tariff schemeTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlquthami, T., Zulfiqar, M., Kamran, M., Milyani, A. H., and Rasheed, M. B. (2022). A performance comparison of machine learning algorithms for load forecasting in smart grid. IEEE Access, 10:48419–48433Anamika and Kumar, N. (2016). Market clearing price prediction using ann in indian electricity markets. pages 454–458. Institute of Electrical and Electronics Engineers Inc.Anderson, O. and Yu, N. (2022). Learning to steal electricity in power distribution systems with deep reinforcement learning. Institute of Electrical and Electronics Engineers Inc.Aro, M., Piira, K., and M aki, K. (2021). Business model for household flexibility- a case study. pages 20–23Awan, M.B.andMa, Z.(2023). Building energy flexibility: definitions, sources, indicators, and quantification methods, pages 17–40. Elsevier.Axpo, Energy, B., en microeconomia, D. R. D. C., Pool, E., iet energy, Energy, K., Energy, S., Sympower, Voltalis, and Cuerva (2022). Manifiesto para el desarrollo de la flexibilidad de la demanda en españa. Publicado por Energy Pool. El manifiesto aboga por el desarrollo de un marco legislativo y procedimental para la flexibilidad de la demanda en España, en linea con la Directiva (UE) 944/2019Azam, M. F. and Younis, M. S. (2021). Multihorizon electricity load and price forecasting using an interpretable multihead self-attention and eemd-based framework. IEEE Access, 9:85918–85932.Barai, G. R., Krishnan, S., and Venkatesh, B. (2015). Smart metering and functionalities of smart meters in smart grid- a review. pages 138–145Barragan, D. E. C., Archilli, G. B., and Silva, L. C. P. D. (2020). Data-driven indicators applied to power distribution systemsBebic, J. Z., Berry, I. M., James, A. N., and Lee, D. O. (2019). Quantifying electric load flexibility using smart meter dataBelton, C. A. and Lunn, P. D. (2020). Smart choices? an experimental study of smart meters and time-of-use tariffs in ireland. Energy Policy, 140:111243Canizes, B., Mota, B., Ribeiro, P., and Vale, Z. (2022). Demand response driven by distribution network voltage limit violation: A genetic algorithm approach for load shifting. IEEE Access, 10:62183–62193Carmon, D., Navon, A., Machlev, R., Belikov, J., and Levron, Y. (2020). Readiness of small energy markets and electric power grids to global health crises: Lessons from the covid-19 pandemic. IEEE Access, 8:127234–127243(CASIO), C. I. S. O. (2016). What the duck curve tells us about managing a green gridCEPAL, N. (2019). La agenda 2030 y los objetivos de desarrollo sostenible: una oportunidad para america latina y el caribe. objetivos, metas e indicadores mundiales. Publicacion de la CEPAL que aborda la Agenda 2030 para el Desarrollo Sostenible y su relevancia para America Latina y el Caribe, incluyendo objetivos, metas e indicadores mundialesChebbo, L., Bazzi, A. M., Yassine, A., Karaki, S. H., and Ghaddar, N.(2021). Tou tariff system using data from smart meters. In 2021 IEEE Power and Energy Conference at Illinois (PECI), pages 1–5Chen, Z., Amani, A. M., Yu, X., and Jalili, M. (2023). Control and optimisation of power grids using smart meter data: A review. Sensors, 23Comision de Regulacion de Energia y Gas (2022). Respuesta de la demanda en el sistema interconectado nacional- hoja de ruta documento de consulta publicaComision Europea (2022). Una transicion hacia una energia limpiaDeng, H., Yan, F., Wang, H., Fang, L., Zhou, Z., Zhang, F., Xu, C., and Jiang, H. (2021). Electricity price prediction based on lstm and lightgbm. pages 286–290. Institute of Electrical and Electronics Engineers IncDepartamento Nacional de Planeacion, Ministerio del Trabajo and Ministerio de Minas y Energia, Ministerio de Comercio Industria y Turismo and Ministerio de Ambiente y Desarrollo Sostenible, and Ministerio de Transporte and Ministerio de Ciencia Tecnologia e Innovacion (2022). Documento conpes 4075- politica de transicion energeticaApproximating nash equilibrium in day-ahead electricity market bidding with multi-agent deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 9:534–544Duan, N., Huang, C., Sun, C. C., and Min, L. (2022). Smart meters enabling voltage monitoring and control: The last mile voltage stability issue. IEEE Transactions on Industrial Informatics, 18:677–687ENELX (2023). ¿como funciona la respuesta a la demanda y por que es importante?Facultad de Ciencias Fisicas y Matematicas Universidad de Chile, de la Energia, C., Nacional, S. E., Palma, R., Matus, M., Torres, ., Benavides, C., Sierra, E., Sepulveda, R., and Riquelme, F. (2019). Concepto de flexibilidad en el sistema electrico nacionalFraija, A., Agbossou, K., Henao, N., Kelouwani, S., Fournier, M., and Hosseini, S. S. (2022). A discount-based time-of-use electricity pricing strategy for demand response with minimum information using reinforcement learning. IEEE Access, 10:5401854028Fu, Y., Zhang, Z., and Li, T. (2021). Electricity market price prediction based on differential evolutionary algorithm and neural network. pages 999–1004. Institute of Electrical and Electronics Engineers IncGao, H. X., Kuenzel, S., and Zhang, X. Y. (2022). A hybrid convlstm based anomaly detection approach for combating energy theft. IEEE Transactions on Instrumentation and Measurement, 71Gao, S., Song, T. E., Liu, S., Zhou, C., Xu, C., Guo, H., Li, X., Li, Z., Liu, Y., Jiang, W., Wang, J., and Wang, S. (2021). Joint optimization of planning and operation in multi-region integrated energy systems considering flexible demand response. IEEE Access, 9:75840–75863Guerrero-Prado, J. S., Alfonso-Morales, W., and Caicedo Bravo, E. F. (2021). A data analytics/big data framework for advanced metering in frastructure data. Sensors, 21Gyamfi, S., Krumdieck, S., and Urmee, T. (2013). Residential peakelectricity demand response—highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25:71–77Heghedus, C., Segarra, S., Chakravorty, A., and Chunming, R. (2019). Neural network architectures for electricity consumption forecastingHonarmand, M. E., Hosseinnezhad, V., Hayes, B., Shafie-Khah, M., and Siano, P. (2021). An overview of demand response: From its origins to the smart energy community. IEEE Access, 9:96851–9687Imani, M. H., Bompard, E., Colella, P., and Huang, T. Predictive methods of electricity price: an application to the italian electricity marketKitchenham, B. and Brereton, P. (2013). A systematic review of systematic review process research in software engineeringKumar, R., Ranjan, R., and Verma, M. C. (2021). A new approach for long term electricity load forecasting for uttarakhand state power utilities using artificial neural network. Institute of Electrical and Electronics Engineers IncLepolesa, L. J., Achari, S., and Cheng, L. (2022). Electricity theft detection in smart grids based on deep neural network. IEEE Access, 10:39638–39655Li, Y., Li, J., Shang, Y., and Qian, H. (2020). Risk forecast to electricity retail market based multiple risk factors of electricity retail companies. pages 95–100. Institute of Electrical and Electronics Engineers IncLi, Z., Wanwei, L., and Dehghaion, P. (2023). Auto-encoder neural network based monthly electricity consumption forecasting method using hourly dataLiu, L., Li, F., Cheng, Z., Zhou, Y., Shen, J., Li, R., and Xiong, S. (2022). Non-intrusive load monitoring method considering the time-segmented state probability. IEEE Access, 10:39627–39637Malbasic, B. and Pandzic, H. (2022). Requirements, challenges and experiences of practical demand response in households. pages 81–86. Institute of Electrical and Electronics Engineers IncMamun, A. A., Sohel, M., Mohammad, N., Sunny, M. S. H., Dipta, D. R., and Hossain, E. (2020). A comprehensive review of the load forecasting techniques using single and hybrid predictive models. IEEE Access, 8:134911–134939Ministerio de Minas y Energia, U. (2022). Plan de accion indicativo (pai)– para el desarrollo del programa de uso de racional y eficiente de la energia – proure 2022-2030Mittal, D. A., Liu, S., and Xu, G. (2020). Electricity price forecasting using convolution and lstm models. Institute of Electrical and Electronics Engineers IncMortensen, L. K., Shaker, H. R., Santos, A. Q., and Veje, C. T. (2021). Fault area location in electrical distribution system using smart meter data. Institute of Electrical and Electronics Engineers IncMunem, M., Bashar, T. M. R., Roni, M. H., Shahriar, M., Shawkat, T. B., and Rahaman, H. (2020). Electric power load forecasting based on multivariate lstm neural network using bayesian optimization. Institute of Electrical and Electronics Engineers IncNaciones Unidas (1997). Protocolo de kioto de la convencion marco de las naciones unidas sobre el cambio climaticoNaciones Unidas (2015). Acuerdo de paris. Convencion Marco de las Naciones Unidas sobre el Cambio ClimaticoNawaz, A., Hafeez, G., Khan, I., Jan, K. U., Li, H., Khan, S. A., and Wadud, Z. (2020). An intelligent integrated approach for efficient demand side management with forecaster and advanced metering infrastructure frameworks in smart grid. IEEE Access, 8:132551–132581Naz, A., Javaid, N., Asif, M., Javed, M. U., Ahmed, A., Gulfam, S. M., Shafiq, M., and Choi, J. G. (2021). Electricity consumption forecasting using gated-fcn with ensemble strategy. IEEE Access, 9:131365–131381Nicolson, M. L., Fell, M. J., and Huebner, G. M. (2018). Consumer demand for time of use electricity tariffs: A systematized review of the empirical evidence. Renewable and Sustainable Energy Reviews, 97:276–289Othman, M. S. M., Johari, D., Musirin, I., Rahman, T. K. A., and Ismail, N. F. N. (2010). Artificial neural network-based forecast for electricity consumption in malaysia. pages 24–28Ott, R. L. and Longnecker, M. (2016). An Introduction to Statistical Methods and Data Analysis. Cengage Learning, Australia; Brazil; Mexico; Singapore; United Kingdom; United States, 7 editionParizad, A. and Hatziadoniu, C. J. (2021). Using prophet algorithm for pattern recognition and short term forecasting of load demand based on seasonality and exogenous features. Institute of Electrical and Electronics Engineers IncParkash, B., Lie, T. T., Li, W., and Tito, S. R. (2022). Hierarchical structure based energy consumption forecasting in top-down approach. pages 1732–1737. Institute of Electrical and Electronics Engineers IncPawar, S. and Momin, B. F. (2017). Smart electricity meter data analytics: A brief review. In 2017 IEEE Region 10 Symposium (TENSYMP), pages 1–5, Cochin, India. IEEEPinto, T., Sousa, T. M., and Vale, Z. (2012). Dynamic artificial neural network for electricity market prices forecast. pages 311–316Programa de las Naciones Unidas para el Desarrollo (2015). Objetivo 13- acci´on por el clima, objetivos de desarrollo sostenibleRajabi, A., Eskandari, M., Ghadi, M. J., Li, L., Zhang, J., and Siano, P. (2020). A comparative study of clustering techniques for electrical load pattern segmentation. Renewable and Sustainable Energy Reviews, 120:109628Restrepo, J. A., Sierra, S. E., and Rosero, J. A. (2018). Load curve characterization based on real time measurements: Case of study in colombia. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America(T&D-LA), Lima, PeruRosero Garcia, J., Zambrano P, A. A., and Duarte, O. (2018).Implementation of an energy demand forecasting model under a smart grids environment. In 2018 IEEE PES Transmission & Distribution Conference and Exposition- Latin America (T&D-LA), Lima, Peru. IEEERuensukon, R., Tephiruk, N., Hongesombut, K., and Romphochai, S. (2021). Effects of covid-19 on electrical energy demand based on spatial analysis a case study of phetchaburi, thailand. In 2021 9th International Electrical Engineering Congress (iEECON), pages 137–140, Pattaya, ThailandSafhi, H. M., Frikh, B., and Ouhbi, B. (2020). Energy load forecasting in big data contextSajjad, I. A., Chicco, G., Aziz, M., and Rasool, A. (2014). Potential of residential demand flexibility- italian scenario. IEEE Computer SocietySalamanca, W. M., Alvarez, D. L., Garcia, J. A., Marin, J. S., and Gomez-Luna, E. (2019). State estimator assessment platform in distribution systems with advanced metering infrastructure and distributed generation using real time simulations. Institute of Electrical and Electronics Engineers IncSchirmer, P. A. and Mporas, I. (2023). Non-intrusive load monitoring: A review. IEEE Transactions on Smart Grid, 14:769–784Shafiei, M., Golestaneh, F., Ledwich, G., Nourbakhsh, G., Gooi, H. B., and Arefi, A. (2020). Fault detection for low-voltage residential distribution systems with low-frequency measured data. IEEE Systems Journal, 14:5265–5273Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., and Ben Yahia, S. (2019). Data quality in etl process: A preliminary study. Procedia Computer Science, 159:676–687. Presented at the 23rd International Conference on Knowledge-Based and Intelligent Information and Engineering SystemsTan, M., Yuan, S., Li, S., Su, Y., Li, H., and He, F. H. (2020). Ultra-short term industrial power demand forecasting using lstm based hybrid ensemble learning. IEEE Transactions on Power Systems, 35:2937–2948Tao, Y., Qiu, J., Lai, S., Wang, Y., and Sun, X. (2023). Reserve evaluation and energy management of micro-grids in joint electricity markets based on non-intrusive load monitoring. IEEE Transactions on Industry Applications, 59:207–219U.S. Energy Information Administration (2022). How many smart meters are installed in the united states, and who has them? Frequently Asked Questions (FAQs). [Online]. Available: https://www.eia.gov/tools/faqs/faq.php?id=108&t=3Vassiliadis, P. and Simitsis, A. (2002). Conceptual modeling for etl processes. In Proceedings of the 2002 ACM CIKM International Conference on Information and Knowledge Management, pages 14–21, McLean, Virginia, USA. ACM. DOLAP’02Vitiello, S., Andreadou, N., Ardelean, M., and Fulli, G. (2022). Smart metering roll-out in europe: Where do we stand? cost benefit analyses in the clean energy package and research trends in the green deal. Energies, 15(7)Wang, F., Li, K., Dui´ c, N., Mi, Z., Hodge, B.-M., Shafie-khah, M., and Catalao, J. P. (2018). Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns. Energy Conversion and Management, 171:839–854Wang, S., Duan, J., Shi, D., Xu, C., Li, H., Diao, R., and Wang, Z. (2020). A data-driven multi-agent autonomous voltage control framework using deep reinforcement learning. IEEE Transactions on Power Systems, 35:4644–4654Welikala, S., Dinesh, C., Ekanayake, M. P. B., Godaliyadda, R. I., and Ekanayake, J. (2019). Incorporating appliance usage patterns for non-intrusive load monitoring and load forecasting. IEEE Transactions on Smart Grid, 10:448–461Historicos de demanda, curva de demanda promedio en Colombia. Consumo– historico. [Online]. Available: https://www.xm.com.co/consumo/historicos-de-demandaXue, L., Cheng, L., Li, Y., and Mao, Y. (2021). Quantum machine learning for electricity theft detection: an initial investigation. pages 204–208. IEEEZheng, Z., Yang, Y., Niu, X., Dai, H. N., and Zhou, Y. (2018). Wide and deep convolutional neural networks for electricity-theft detection to secure smart grids. IEEE Transactions on Industrial Informatics, 14:1606–1615Zhou, Y., Zhang, X., Tang, Y., Mu, Z., Shao, X., Li, Y., and Cai, Q.(2021). Convolutional neural network and data augmentation method for electricity theft detection. pages 1525–1530. Institute of Electrical and Electronics Engineers IncZhu, C., Zhu, L., and Liu, B. (2022). A prediction method of anti electricity stealing based on big data of electric power. pages 939–945. Institute of Electrical and Electronics Engineers IncZor, K., Timur, O., and Teke, A. (2017). A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting. Institute of Electrical and Electronics Engineers IncEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86066/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015456255.2024.pdf1015456255.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf1220536https://repositorio.unal.edu.co/bitstream/unal/86066/2/1015456255.2024.pdfaa7e1199a3a32382980c0c6d656980dfMD52THUMBNAIL1015456255.2024.pdf.jpg1015456255.2024.pdf.jpgGenerated Thumbnailimage/jpeg4898https://repositorio.unal.edu.co/bitstream/unal/86066/3/1015456255.2024.pdf.jpgf48f96ab1747bce8980de3327a3f44baMD53unal/86066oai:repositorio.unal.edu.co:unal/860662024-05-10 23:04:25.595Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=