Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improve...
- Autores:
-
Cruz Roa, Angel Alfonso
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/55193
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/55193
http://bdigital.unal.edu.co/50510/
- Palabra clave:
- 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Digital pathology
Histopathology image analysis
Representation learning
Deep Learning
Whole slide images
Patología digital
Análisis de imágenes de histopatología
Aprendizaje de la representación
Aprendizaje profundo
Láminas virtuales de patología
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_156f5d9164d435df854fca40980e12ec |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/55193 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
title |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
spellingShingle |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Digital pathology Histopathology image analysis Representation learning Deep Learning Whole slide images Patología digital Análisis de imágenes de histopatología Aprendizaje de la representación Aprendizaje profundo Láminas virtuales de patología |
title_short |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
title_full |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
title_fullStr |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
title_full_unstemmed |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
title_sort |
Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis |
dc.creator.fl_str_mv |
Cruz Roa, Angel Alfonso |
dc.contributor.author.spa.fl_str_mv |
Cruz Roa, Angel Alfonso |
dc.contributor.spa.fl_str_mv |
González Osorio, Fabio Augusto |
dc.subject.ddc.spa.fl_str_mv |
61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering |
topic |
61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Digital pathology Histopathology image analysis Representation learning Deep Learning Whole slide images Patología digital Análisis de imágenes de histopatología Aprendizaje de la representación Aprendizaje profundo Láminas virtuales de patología |
dc.subject.proposal.spa.fl_str_mv |
Digital pathology Histopathology image analysis Representation learning Deep Learning Whole slide images Patología digital Análisis de imágenes de histopatología Aprendizaje de la representación Aprendizaje profundo Láminas virtuales de patología |
description |
Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improved early diagnosis, especially in developing countries, plays a crucial role in timely treatment and patient survival. Recent advances in scanner technology for the digitization of pathology slides and the growth of global initiatives to build databases for cancer research have enabled the emergence of digital pathology as a new approach to support pathology workflows. This has led to the development of many computational methods for automatic histopathology image analysis, which in turn has raised new computational challenges due to the high visual variability of histopathology slides, the difficulty in assessing the effectiveness of methods (considering the lack of annotated data from different pathologists and institutions), and the need of interpretable, efficient and feasible methods for practical use. On the other hand, machine learning techniques have focused on exploiting large databases to automatically extract and induce information and knowledge, in the form of patterns and rules, that allow to connect low-level content with its high-level meaning. Several approaches have emerged as opposed to traditional schemes based on handcrafted features for data representation, which nowadays are known as representation learning. The objective of this thesis is the exploration, development and validation of precise, interpretable and efficient computational machine learning methods for automatic representation learning from histopathology image databases to support diagnosis tasks of different types of cancer. The validation of the proposed methods during the thesis development allowed to corroborate their capability in several histopathology image analysis tasks of different types of cancer. These methods achieve good results in terms of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their potential practical application towards translational and personalized medicine. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-08-14 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T11:15:49Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T11:15:49Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/55193 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/50510/ |
url |
https://repositorio.unal.edu.co/handle/unal/55193 http://bdigital.unal.edu.co/50510/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Departamento de Ingeniería de Sistemas e Industrial |
dc.relation.references.spa.fl_str_mv |
Cruz Roa, Angel Alfonso (2015) Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/55193/1/86078374.2015.pdf https://repositorio.unal.edu.co/bitstream/unal/55193/2/86078374.2015.pdf.jpg |
bitstream.checksum.fl_str_mv |
0a95bb6b119ec3afb1bf75fd9ac0b873 342479e97dd84dee7c12e766a5deba2d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089661573758976 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio AugustoCruz Roa, Angel Alfonso15e59f29-e322-4487-8dec-afaab4fc97363002019-07-02T11:15:49Z2019-07-02T11:15:49Z2015-08-14https://repositorio.unal.edu.co/handle/unal/55193http://bdigital.unal.edu.co/50510/Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improved early diagnosis, especially in developing countries, plays a crucial role in timely treatment and patient survival. Recent advances in scanner technology for the digitization of pathology slides and the growth of global initiatives to build databases for cancer research have enabled the emergence of digital pathology as a new approach to support pathology workflows. This has led to the development of many computational methods for automatic histopathology image analysis, which in turn has raised new computational challenges due to the high visual variability of histopathology slides, the difficulty in assessing the effectiveness of methods (considering the lack of annotated data from different pathologists and institutions), and the need of interpretable, efficient and feasible methods for practical use. On the other hand, machine learning techniques have focused on exploiting large databases to automatically extract and induce information and knowledge, in the form of patterns and rules, that allow to connect low-level content with its high-level meaning. Several approaches have emerged as opposed to traditional schemes based on handcrafted features for data representation, which nowadays are known as representation learning. The objective of this thesis is the exploration, development and validation of precise, interpretable and efficient computational machine learning methods for automatic representation learning from histopathology image databases to support diagnosis tasks of different types of cancer. The validation of the proposed methods during the thesis development allowed to corroborate their capability in several histopathology image analysis tasks of different types of cancer. These methods achieve good results in terms of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their potential practical application towards translational and personalized medicine.Resumen. La investigación en cáncer es una de las principales prioridades de salud pública en el mundo debido a su alta incidencia, diversidad y mortalidad. A pesar de los grandes avances en el área en las últimas décadas, la alta incidencia y la falta de especialistas ha llevado a que una de las principales problemáticas sea lograr su detección temprana, en especial en países en vías de desarrollo, como quiera a que de ello depende las posibilidades de un tratamiento oportuno y las oportunidades de supervivencia de los pacientes. Los recientes avances en tecnología de escáneres para digitalización de láminas de patología y el crecimiento de iniciativas mundiales para la construcción de bases de datos para la investigación en cáncer, han permitido el surgimiento de la patología digital como un nuevo enfoque para soportar los flujos de trabajo en patología. Esto ha llevado al desarrollo de una gran variedad de métodos computacionales para el análisis automático de imágenes de histopatología, lo cual ha planteado nuevos desafíos computacionales debido a la alta variabilidad visual de las láminas de histopatología; la dificultad para evaluar la efectividad de los métodos por la falta de datos de diferentes instituciones que cuenten con anotaciones por parte de los patólogos, y la necesidad de métodos interpretables, eficientes y factibles para su uso práctico. Por otro lado, el aprendizaje de máquina se ha enfocado en explotar las grandes bases de datos para extraer e inducir de manera automática información y conocimiento, en forma de patrones y reglas, que permita conectar el contenido de bajo nivel con su significado. Diferentes técnicas han surgido en contraposición a los esquemas tradicionales basados en diseño manual de la representación de los datos, en lo que se conoce como aprendizaje de la representación. El propósito de esta tesis fue la exploración, desarrollo y validación de métodos computacionales de aprendizaje de máquina precisos, interpretables y eficientes a partir de bases de datos de imágenes de histopatología para el aprendizaje automático de la representación en tareas de apoyo al diagnóstico de distintos tipos de cáncer. La validación de los distintos métodos propuestos durante el desarrollo de la tesis permitieron corroborar la capacidad de cada uno de ellos en distintivas tareas de análisis de imágenes de histopatología, en diferentes tipos de cáncer, con buenos resultados en términos de exactitud, robustez, reproducibilidad, interpretabilidad y factibilidad, lo cual sugiere su potencial aplicación práctica hacia la medicina traslacional y personalizada.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialCruz Roa, Angel Alfonso (2015) Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringDigital pathologyHistopathology image analysisRepresentation learningDeep LearningWhole slide imagesPatología digitalAnálisis de imágenes de histopatologíaAprendizaje de la representaciónAprendizaje profundoLáminas virtuales de patologíaData-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology AnalysisTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL86078374.2015.pdfapplication/pdf5110449https://repositorio.unal.edu.co/bitstream/unal/55193/1/86078374.2015.pdf0a95bb6b119ec3afb1bf75fd9ac0b873MD51THUMBNAIL86078374.2015.pdf.jpg86078374.2015.pdf.jpgGenerated Thumbnailimage/jpeg4475https://repositorio.unal.edu.co/bitstream/unal/55193/2/86078374.2015.pdf.jpg342479e97dd84dee7c12e766a5deba2dMD52unal/55193oai:repositorio.unal.edu.co:unal/551932023-03-11 23:09:45.433Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |