Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis

Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improve...

Full description

Autores:
Cruz Roa, Angel Alfonso
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2015
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/55193
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/55193
http://bdigital.unal.edu.co/50510/
Palabra clave:
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Digital pathology
Histopathology image analysis
Representation learning
Deep Learning
Whole slide images
Patología digital
Análisis de imágenes de histopatología
Aprendizaje de la representación
Aprendizaje profundo
Láminas virtuales de patología
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_156f5d9164d435df854fca40980e12ec
oai_identifier_str oai:repositorio.unal.edu.co:unal/55193
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
title Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
spellingShingle Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Digital pathology
Histopathology image analysis
Representation learning
Deep Learning
Whole slide images
Patología digital
Análisis de imágenes de histopatología
Aprendizaje de la representación
Aprendizaje profundo
Láminas virtuales de patología
title_short Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
title_full Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
title_fullStr Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
title_full_unstemmed Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
title_sort Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis
dc.creator.fl_str_mv Cruz Roa, Angel Alfonso
dc.contributor.author.spa.fl_str_mv Cruz Roa, Angel Alfonso
dc.contributor.spa.fl_str_mv González Osorio, Fabio Augusto
dc.subject.ddc.spa.fl_str_mv 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
topic 61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Digital pathology
Histopathology image analysis
Representation learning
Deep Learning
Whole slide images
Patología digital
Análisis de imágenes de histopatología
Aprendizaje de la representación
Aprendizaje profundo
Láminas virtuales de patología
dc.subject.proposal.spa.fl_str_mv Digital pathology
Histopathology image analysis
Representation learning
Deep Learning
Whole slide images
Patología digital
Análisis de imágenes de histopatología
Aprendizaje de la representación
Aprendizaje profundo
Láminas virtuales de patología
description Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improved early diagnosis, especially in developing countries, plays a crucial role in timely treatment and patient survival. Recent advances in scanner technology for the digitization of pathology slides and the growth of global initiatives to build databases for cancer research have enabled the emergence of digital pathology as a new approach to support pathology workflows. This has led to the development of many computational methods for automatic histopathology image analysis, which in turn has raised new computational challenges due to the high visual variability of histopathology slides, the difficulty in assessing the effectiveness of methods (considering the lack of annotated data from different pathologists and institutions), and the need of interpretable, efficient and feasible methods for practical use. On the other hand, machine learning techniques have focused on exploiting large databases to automatically extract and induce information and knowledge, in the form of patterns and rules, that allow to connect low-level content with its high-level meaning. Several approaches have emerged as opposed to traditional schemes based on handcrafted features for data representation, which nowadays are known as representation learning. The objective of this thesis is the exploration, development and validation of precise, interpretable and efficient computational machine learning methods for automatic representation learning from histopathology image databases to support diagnosis tasks of different types of cancer. The validation of the proposed methods during the thesis development allowed to corroborate their capability in several histopathology image analysis tasks of different types of cancer. These methods achieve good results in terms of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their potential practical application towards translational and personalized medicine.
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015-08-14
dc.date.accessioned.spa.fl_str_mv 2019-07-02T11:15:49Z
dc.date.available.spa.fl_str_mv 2019-07-02T11:15:49Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/55193
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/50510/
url https://repositorio.unal.edu.co/handle/unal/55193
http://bdigital.unal.edu.co/50510/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial
Departamento de Ingeniería de Sistemas e Industrial
dc.relation.references.spa.fl_str_mv Cruz Roa, Angel Alfonso (2015) Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/55193/1/86078374.2015.pdf
https://repositorio.unal.edu.co/bitstream/unal/55193/2/86078374.2015.pdf.jpg
bitstream.checksum.fl_str_mv 0a95bb6b119ec3afb1bf75fd9ac0b873
342479e97dd84dee7c12e766a5deba2d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089661573758976
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio AugustoCruz Roa, Angel Alfonso15e59f29-e322-4487-8dec-afaab4fc97363002019-07-02T11:15:49Z2019-07-02T11:15:49Z2015-08-14https://repositorio.unal.edu.co/handle/unal/55193http://bdigital.unal.edu.co/50510/Cancer research is a major public health priority in the world due to its high incidence, diversity and mortality. Despite great advances in this area during recent decades, the high incidence and lack of specialists have proven that one of the major challenges is to achieve early diagnosis. Improved early diagnosis, especially in developing countries, plays a crucial role in timely treatment and patient survival. Recent advances in scanner technology for the digitization of pathology slides and the growth of global initiatives to build databases for cancer research have enabled the emergence of digital pathology as a new approach to support pathology workflows. This has led to the development of many computational methods for automatic histopathology image analysis, which in turn has raised new computational challenges due to the high visual variability of histopathology slides, the difficulty in assessing the effectiveness of methods (considering the lack of annotated data from different pathologists and institutions), and the need of interpretable, efficient and feasible methods for practical use. On the other hand, machine learning techniques have focused on exploiting large databases to automatically extract and induce information and knowledge, in the form of patterns and rules, that allow to connect low-level content with its high-level meaning. Several approaches have emerged as opposed to traditional schemes based on handcrafted features for data representation, which nowadays are known as representation learning. The objective of this thesis is the exploration, development and validation of precise, interpretable and efficient computational machine learning methods for automatic representation learning from histopathology image databases to support diagnosis tasks of different types of cancer. The validation of the proposed methods during the thesis development allowed to corroborate their capability in several histopathology image analysis tasks of different types of cancer. These methods achieve good results in terms of accuracy, robustness, reproducibility, interpretability and feasibility suggesting their potential practical application towards translational and personalized medicine.Resumen. La investigación en cáncer es una de las principales prioridades de salud pública en el mundo debido a su alta incidencia, diversidad y mortalidad. A pesar de los grandes avances en el área en las últimas décadas, la alta incidencia y la falta de especialistas ha llevado a que una de las principales problemáticas sea lograr su detección temprana, en especial en países en vías de desarrollo, como quiera a que de ello depende las posibilidades de un tratamiento oportuno y las oportunidades de supervivencia de los pacientes. Los recientes avances en tecnología de escáneres para digitalización de láminas de patología y el crecimiento de iniciativas mundiales para la construcción de bases de datos para la investigación en cáncer, han permitido el surgimiento de la patología digital como un nuevo enfoque para soportar los flujos de trabajo en patología. Esto ha llevado al desarrollo de una gran variedad de métodos computacionales para el análisis automático de imágenes de histopatología, lo cual ha planteado nuevos desafíos computacionales debido a la alta variabilidad visual de las láminas de histopatología; la dificultad para evaluar la efectividad de los métodos por la falta de datos de diferentes instituciones que cuenten con anotaciones por parte de los patólogos, y la necesidad de métodos interpretables, eficientes y factibles para su uso práctico. Por otro lado, el aprendizaje de máquina se ha enfocado en explotar las grandes bases de datos para extraer e inducir de manera automática información y conocimiento, en forma de patrones y reglas, que permita conectar el contenido de bajo nivel con su significado. Diferentes técnicas han surgido en contraposición a los esquemas tradicionales basados en diseño manual de la representación de los datos, en lo que se conoce como aprendizaje de la representación. El propósito de esta tesis fue la exploración, desarrollo y validación de métodos computacionales de aprendizaje de máquina precisos, interpretables y eficientes a partir de bases de datos de imágenes de histopatología para el aprendizaje automático de la representación en tareas de apoyo al diagnóstico de distintos tipos de cáncer. La validación de los distintos métodos propuestos durante el desarrollo de la tesis permitieron corroborar la capacidad de cada uno de ellos en distintivas tareas de análisis de imágenes de histopatología, en diferentes tipos de cáncer, con buenos resultados en términos de exactitud, robustez, reproducibilidad, interpretabilidad y factibilidad, lo cual sugiere su potencial aplicación práctica hacia la medicina traslacional y personalizada.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e IndustrialDepartamento de Ingeniería de Sistemas e IndustrialCruz Roa, Angel Alfonso (2015) Data-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology Analysis. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringDigital pathologyHistopathology image analysisRepresentation learningDeep LearningWhole slide imagesPatología digitalAnálisis de imágenes de histopatologíaAprendizaje de la representaciónAprendizaje profundoLáminas virtuales de patologíaData-driven Representation Learning from Histopathology Image Databases to Support Digital Pathology AnalysisTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL86078374.2015.pdfapplication/pdf5110449https://repositorio.unal.edu.co/bitstream/unal/55193/1/86078374.2015.pdf0a95bb6b119ec3afb1bf75fd9ac0b873MD51THUMBNAIL86078374.2015.pdf.jpg86078374.2015.pdf.jpgGenerated Thumbnailimage/jpeg4475https://repositorio.unal.edu.co/bitstream/unal/55193/2/86078374.2015.pdf.jpg342479e97dd84dee7c12e766a5deba2dMD52unal/55193oai:repositorio.unal.edu.co:unal/551932023-03-11 23:09:45.433Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co