Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente

ilustraciones, diagramas, tablas

Autores:
Flórez Becerra, Gustavo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85952
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85952
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::515 - Análisis
610 - Medicina y salud::616 - Enfermedades
Varicela/epidemiología
Estudios Poblacionales en Salud Pública
Chickenpox/epidemiology
Population Studies in Public Health
Modelos matemáticos en epidemiología
Varicela
Estrategias de intervención
Control inteligente
Mathematical models in epidemiology
Varicella
Chickenpox
Intervention strategies
Intelligent control
Modelo matemático
Mathematical models
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_156745e050fe43174e9e952b3ab13e0b
oai_identifier_str oai:repositorio.unal.edu.co:unal/85952
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
dc.title.translated.eng.fl_str_mv Simulation model of chickenpox infection behavior in the city of Bogota based on dynamic systems and intelligent control
title Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
spellingShingle Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
510 - Matemáticas::515 - Análisis
610 - Medicina y salud::616 - Enfermedades
Varicela/epidemiología
Estudios Poblacionales en Salud Pública
Chickenpox/epidemiology
Population Studies in Public Health
Modelos matemáticos en epidemiología
Varicela
Estrategias de intervención
Control inteligente
Mathematical models in epidemiology
Varicella
Chickenpox
Intervention strategies
Intelligent control
Modelo matemático
Mathematical models
title_short Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
title_full Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
title_fullStr Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
title_full_unstemmed Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
title_sort Modelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligente
dc.creator.fl_str_mv Flórez Becerra, Gustavo
dc.contributor.advisor.spa.fl_str_mv Niño Vásquez, Luis Fernando
Colonia, Carol Bibiana
dc.contributor.author.spa.fl_str_mv Flórez Becerra, Gustavo
dc.contributor.researchgroup.spa.fl_str_mv laboratorio de Investigación en Sistemas Inteligentes Lisi
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::515 - Análisis
610 - Medicina y salud::616 - Enfermedades
topic 510 - Matemáticas::515 - Análisis
610 - Medicina y salud::616 - Enfermedades
Varicela/epidemiología
Estudios Poblacionales en Salud Pública
Chickenpox/epidemiology
Population Studies in Public Health
Modelos matemáticos en epidemiología
Varicela
Estrategias de intervención
Control inteligente
Mathematical models in epidemiology
Varicella
Chickenpox
Intervention strategies
Intelligent control
Modelo matemático
Mathematical models
dc.subject.decs.spa.fl_str_mv Varicela/epidemiología
Estudios Poblacionales en Salud Pública
dc.subject.decs.eng.fl_str_mv Chickenpox/epidemiology
Population Studies in Public Health
dc.subject.proposal.spa.fl_str_mv Modelos matemáticos en epidemiología
Varicela
Estrategias de intervención
Control inteligente
dc.subject.proposal.eng.fl_str_mv Mathematical models in epidemiology
Varicella
Chickenpox
Intervention strategies
Intelligent control
dc.subject.unesco.spa.fl_str_mv Modelo matemático
dc.subject.unesco.eng.fl_str_mv Mathematical models
description ilustraciones, diagramas, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-22T22:26:28Z
dc.date.available.none.fl_str_mv 2024-04-22T22:26:28Z
dc.date.issued.none.fl_str_mv 2024-04-18
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85952
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85952
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Coberturas de vacunación Bogotá, D.C. 2007-2021. https://saludata.saludcapital.gov.co/osb/wp-content/uploads/2023/01/Coberturas-de-Vacunacion.pdf. – Accessed: 2022-06-30
Población de Bogotá D.C. y localidades 2005-2035. https://saludata.saludcapital.gov.co/osb/index.php/datos-desalud/ demografia/piramidepoblacional/. – Accessed: 2022-06-30
Tasa de mortalidad en menores de 5 años en Bogotá D.C. https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/demografia/tmninez/.– Accessed: 2022-06-30
Abdul Kuddus, M. ; McBryde, E.S. ; Adekunle, A.I. ; White, L.J. ; Meehan, M.T.: Mathematical analysis of a two-strain disease model with amplification. En: Chaos, Solitons Fractals. 143 (2021)
Abernethy, S. ; Gooding, R.J.: The importance of chaotic attractors in modelling tumour growth. En: Physica A: Statistical Mechanics and its Applications. 507 (2018)
Aminullah, E. ; Erman, E.: Policy innovation and emergence of innovative health technology: The system dynamics modelling of early COVID-19 handling in Indonesia. En: Agricultural Systems. 66 (2021)
Ansah, J.P. ; Inn, R.L.H. ; Ahmad, S.: An evaluation of the impact of aggressive hypertension, diabetes and smoking cessation management on CVD outcomes at the population level: a dynamic simulation analysis. BMC Public Health. En: General 19 (2019)
Barrero, L.A. ; Goult, E. ; Rodriguez, D. ; Hernandez, L.J. ; Kaufer, B. ; Kurth, T. ; Domenech de Cell`es, M.: Delineating the Seasonality of Varicella and Its Association With Climate in the Tropical Country of Colombia. En: J Infect Dis 15 (2023)
Berhe, H.W. ; Makinde, O.D.: Computational modelling and optimal control of measles epidemic in human population. En: Biosystems. 190 (2020)
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. New York: Plenum Press, 2021
Brisson, M. ; Melkonyan, G. ; Drolet, M. ; De Serres, G. ; Thibeault, R. ; De Wals, P.: Modeling the impact of one- and two-dose varicella vaccination on the epidemiology of varicella and zoster. En: Vaccine. 28 (2010)
Castellacci, F.: Co-evolutionary growth: A system dynamics model. En: Economic Modelling. 70 (2018)
Castillo, O. ; Soria, J. ; Cortes-Antonio, P.: Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Poland : Springer International Publishing, 2021
Chen, K. ; Pun, C.S. ; Wong, H.Y.: Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations. En: European Journal of Operational Research. 25 (2021)
Dias, S. ; Queiroz, K. ; Araujo, A.: Controlling epidemic diseases based only on social distancing level: General case. En: General 25 (2021)
Diekmann, O. ; Heesterbeek, J.A.P. ; Roberts, M.G.: The construction of nextgeneration matrices for compartmental epidemic models. En: J. R. Soc. Interface. 7 (2010), p. 873–885
Donatelli, M. ; Magarey, R.D. ; Bregaglio, S. ; Willocquet, L. ; Whish, J.P.M. ; Savary, S.: Modelling the impacts of pests and diseases on agricultural systems. En: Agricultural Systems. 155 (2017)
Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. En: PLOS. 3 (1973), p. 32–57
El Hajji, M. ; Alshaikh, D.M. ; Almuallem, N.A.: Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination. En: Applications of Differential Equations to Mathematical Biology. 11 (2023)
Fathabadi, H.: On Stability Analysis of Nonlinear Systems. En: General 25 (2021)
Gao, Z. ; Gidding, HF. ; Wood, J.G. ; MacIntyre, C.R.: Modelling the impact of one-dose vs. two-dose vaccination regimens on the epidemiology of varicella zoster virus in Australia. En: Vaccine. 138 (2010)
Gershon, A. ; Breuer, J. ; Cohen, J. ; Cohrs, R.J. ; Gershon, M.D. ; Gilden, D. ; Grose, C. ; Hambleton, S. ; Kennedy, P.G.E. ; Oxman, M.N. ; Seward, J.F. ; Yamanishi, K.: Varicella zoster virus infection. En: Nat Rev Dis Primers. 15016 (2015)
Gillis, M. ; Urban, R. ; Saif, A. ; Kamal, N. ; Murphy, M.: A simulation-optimization framework for optimizing response strategies to epidemics. En: Operations Research Perspectives. 25 (2021)
Guo, Y. ; Li, T.: Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China. En: Appl Math Comput. (2021)
Hariharan, S. ; Shangerganesh, L. ; Debbouche, A. ; Antonov, V.: Stability analysis of spatiotemporal reaction-diffusion mathematical model incorporating the varicella virus transmission. En: The European Physical Journal Plus 138 (2023)
Heininger, U ; Seward, J.F.: Varicella. En: The Lancet. 368 (2006), p. 1365–1376
Hekimoglu, M.: Sensitivity Analysis of System Dynamics Models By Behavior Pattern Measures. En: General (2015)
Hernández-Mejía, G. ; Alanis, A.Y. ; Hernández-Vargas, E.A.: Neural inverse optimal control for discrete-time impulsive systems. En: Neurocomputing. 314 (2018)
Jia, S. ; Liu, X. ; Yan, G.: Environmental, economic and health cobenefits of the combination strategy for alleviating traffic and emission pressure. En: Energy Reports. 6 (2020)
Karsai, J. ; Csuma-Kovács, R. ; Dánielisz, et a.: Modeling the transmission dynamics of varicella in Hungary. En: J.Math.Industry 10 (2020)
Kermack, F. ; McKendrick, D.: A contribution to the mathematical theory of epidemics. En: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 115 (1927), p. 700–721
Khajanchi, S. ; Sarkar, K. ; Sooppy, Nisar ; S.F., Abdelwahab: Mathematical modeling of the COVID-19 pandemic with intervention strategies. En: Results in Physics 25 (2012)
Khajji, B. ; Kouidere, A. ; Elhia, M. ; Balatif, O. ; Rachik, M.: Fractional optimal control problem for an age-structured model of COVID-19 transmission. En: Chaos, Solitons Fractals. 143 (2021)
Kretzschmar, M.: Disease modeling for public health: added value, challenges, and institutional constraints. En: J Public Health. 41 (2020), p. 39–51
Kuniya, T. ; Siegenfeld, A.F. ; Kollepara, P.K. ; Bar-Yam, Y.: Modeling Complex Systems: A Case Study of Compartmental Models in Epidemiology. En: Complexity. 2022 (2022)
Marangi, L. ; Mirinaviciute, G. ; Flem, E. ; Scalia Tomba, G. ; Guzzetta, G. ; Freiesleben de Blasio, B. ; Manfredi, P.: The natural history of varicella zoster virus infection in Norway: Further insights on exogenous boosting and progressive immunity to herpes zoster. En: PLOS. 12 (2017)
Mat Daud, A.A. ; Toh, C.Q. ; Saidun, S.: Mathematical modeling and analysis of anemia during pregnancy and postpartum. En: General 140 (2021), p. 87–95
Meng, W.U. ; Shengxi, L.: Optimal fuzzy control of SIR epidemic with state dependent cost function. En: 2017 International Conference on Fuzzy Theory and Its Applications (iFUZZY), 2017, p. 1–6
Michael, E. ; Madon, S.: Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control. En: Infect Dis Poverty 6 (2017)
Mohallem Paiva, H. ; Magalhães Afonso, R.J. ; Scarpelli de Lima Alvarenga Caldeira, F.M. ; De Andrade Velasquez, E.: A computational tool for trend analysis and forecast of the COVID-19 pandemic. En: Applied Soft Computing. (2021)
Ngoteya, F.N. ; Nkansah-Gyekye, Y.: Sensitivity Analysis of Parameters in a Competition Model. En: Complexity. 4 (2015), p. 363–368
Paul, S. ; Venkateswaran, J.: Designing robust policies under deep uncertainty for mitigating epidemics. En: Computers Industrial Engineering. 140 (2020)
Péni, T. ; Csutak, B. ; Szederkényi, G.: Nonlinear model predictive control with logic constraints for COVID-19 management. En: Nonlinear Dyn. 102 (2020), p. 1965–1986
De Salud y Protección Social, Ministerio. Sistema Integrado de Información de la Protección Social. 2022
Reluga, T.C. ; Smith, R.A. ; Hughes, D.P.: Dynamic and game theory of infectious disease stigmas. En: Journal of Theoretical Biology. 476 (2019)
Shirazi, H. ; Kia, R. ; Ghasemi, P.: A stochastic bi-objective simulation optimization model for plasma supply chain in case of COVID-19 outbreak. En: Applied Soft Computing. 112 (2021)
Siddique, N.: Intelligent Control A Hybrid Approach Based On Fuzzy Logic, Neural Networks and Genetic Algorithms. Poland : Springer International Publishing Switzerland, 2014
Takagi, T. ; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. En: IEEE Trans Syst Man Cybern. 15 (1985), p. 116–132
Tang, X. ; Zhao, S. ; Chiu, A.P.Y. ; Ma, H. ; Xie, X. ; Mei, S. ; Kong, D. ; Qin, Y. ; Chen, Z. ; Wang, X. ; He, D.: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China. En: PLOS. 12 (2017)
Toro-Zapata, H. D. ; Mesa-Mazo, M. J. ; Prieto-Medellín, D.A.: Modelo de simulación para la transmisión del VIH y estrategias de control basadas en diagnóstico. En: Revista de Salud Pública. 16 (2014), p. 139–152
Zadeh, L.A.: Fuzzy Sets. En: Information Control. 8 (1965), p. 338–353
Zadeh, L.A.: Fuzzy algorithms. En: Information Control. 12 (1968), p. 94–102
Zha, W. ; Pang, F. ; Zhou, N. ; Wu, B. ; Liu, Y. ; Du, Y. ; Hong, X ; Lv, Y.: Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: Based on an SEIR dynamic model. En: Epidemiology Infection. 148 (2020)
Zhang, F. ; Liu, X. ; Zhang, J. ; Wu, R. ; Ma, Q. ; Chen, Y.: Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China. En: Ecological Modelling. 349 (2017)
Zhang, L. ; Ullah, S. ; Al Alwan, B. ; Alshehri, A. ; Sumelka, W.: Mathematical assessment of constant and time-dependent control measures on the dynamics of the novel coronavirus: An application of optimal control theory. En: Results in Physics 25 (2021)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xii, 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.spa.fl_str_mv Bogotá
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Cundinamarca
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000838
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85952/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85952/2/80108311.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/85952/3/80108311.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
5db15c751ce8099ea063c8ac93ea743a
3f47116d6d418c53c611485291ca9e27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089867042226176
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Niño Vásquez, Luis Fernandobc784b82735e16fe53653c3f5c8f3bbeColonia, Carol Bibianac83e61e5741b51c95244d257402dc305600Flórez Becerra, Gustavo2c9f48dad06e47565d93a6cf2c195d84laboratorio de Investigación en Sistemas Inteligentes Lisi2024-04-22T22:26:28Z2024-04-22T22:26:28Z2024-04-18https://repositorio.unal.edu.co/handle/unal/85952Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, tablasEl modelo matemático SVEIR (Susceptibles, Vacunados, Expuestos, Infectados, Recuperados) propuesto para representar el contagio de varicela en el contexto de la ciudad de Bogotá, incluye la utilización de una función periódica para representar el comportamiento estacional por semana epidemiológica, el cual fue identificado en los casos históricos de varicela individual reportados por el INS de Colombia entre los años 2007 y 2020. Como resultado de los análisis de sensibilidad y las simulaciones realizadas sobre el modelo matemático, se identificó que el parámetro de tasa de vacunación tiene un impacto negativo sobre el número básico de reproducción R0. Se realizó la implementación en ambiente computacional, de un controlador basado en lógica difusa que permita adaptar el valor de cada parámetro en relación con la desviación del comportamiento del modelo respecto a un comportamiento deseado en términos del número de individuos infectados. El sistema de inferencia difusa propuesto permitió identificar que una tasa adaptativa de vacunación cercana al 94 % durante la finalización de cada pico de inferior de contagio (semanas 16 y 38), logra un comportamiento inferior al valor de referencia definido. (Texto tomado de la fuente).The SVEIR mathematical model (Susceptible, Vaccinated, Exposed, Infected, Recovered) proposed to represent the spread of varicella (chickenpox) in the context of Bogota city, includes the use of a periodical function to represent the seasonal behavior by epidemiological week, which was identified in the historical cases of individual varicella reported by the INS of Colombia between 2007 and 2020. As a result of sensitivity analyses and simulations performed on the mathematical model, it was identified that the vaccination rate parameter has a negative impact on the basic reproductive number R0. We implemented in a computational environment, a controller based on fuzzy logic that allows us to adapt the value of each parameter in relation to the deviation of the behavior of the model, regarding a desired behavior in terms of the number of infected individuals. The proposed fuzzy inference system identified that an adaptive vaccination rate close to 94 % during the termination of each peak of lower contagion (weeks 16 y 38), achieves a behavior lower than the defined reference value.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónComputación aplicadaxii, 78 páginasapplication/pdfspa510 - Matemáticas::515 - Análisis610 - Medicina y salud::616 - EnfermedadesVaricela/epidemiologíaEstudios Poblacionales en Salud PúblicaChickenpox/epidemiologyPopulation Studies in Public HealthModelos matemáticos en epidemiologíaVaricelaEstrategias de intervenciónControl inteligenteMathematical models in epidemiologyVaricellaChickenpoxIntervention strategiesIntelligent controlModelo matemáticoMathematical modelsModelo de simulación del comportamiento de contagios de varicela en la ciudad de Bogotá basado en sistemas dinámicos y control inteligenteSimulation model of chickenpox infection behavior in the city of Bogota based on dynamic systems and intelligent controlTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáBogotáColombiaCundinamarcahttp://vocab.getty.edu/page/tgn/1000838BiremeCoberturas de vacunación Bogotá, D.C. 2007-2021. https://saludata.saludcapital.gov.co/osb/wp-content/uploads/2023/01/Coberturas-de-Vacunacion.pdf. – Accessed: 2022-06-30Población de Bogotá D.C. y localidades 2005-2035. https://saludata.saludcapital.gov.co/osb/index.php/datos-desalud/ demografia/piramidepoblacional/. – Accessed: 2022-06-30Tasa de mortalidad en menores de 5 años en Bogotá D.C. https://saludata.saludcapital.gov.co/osb/index.php/datos-de-salud/demografia/tmninez/.– Accessed: 2022-06-30Abdul Kuddus, M. ; McBryde, E.S. ; Adekunle, A.I. ; White, L.J. ; Meehan, M.T.: Mathematical analysis of a two-strain disease model with amplification. En: Chaos, Solitons Fractals. 143 (2021)Abernethy, S. ; Gooding, R.J.: The importance of chaotic attractors in modelling tumour growth. En: Physica A: Statistical Mechanics and its Applications. 507 (2018)Aminullah, E. ; Erman, E.: Policy innovation and emergence of innovative health technology: The system dynamics modelling of early COVID-19 handling in Indonesia. En: Agricultural Systems. 66 (2021)Ansah, J.P. ; Inn, R.L.H. ; Ahmad, S.: An evaluation of the impact of aggressive hypertension, diabetes and smoking cessation management on CVD outcomes at the population level: a dynamic simulation analysis. BMC Public Health. En: General 19 (2019)Barrero, L.A. ; Goult, E. ; Rodriguez, D. ; Hernandez, L.J. ; Kaufer, B. ; Kurth, T. ; Domenech de Cell`es, M.: Delineating the Seasonality of Varicella and Its Association With Climate in the Tropical Country of Colombia. En: J Infect Dis 15 (2023)Berhe, H.W. ; Makinde, O.D.: Computational modelling and optimal control of measles epidemic in human population. En: Biosystems. 190 (2020)Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algoritms. New York: Plenum Press, 2021Brisson, M. ; Melkonyan, G. ; Drolet, M. ; De Serres, G. ; Thibeault, R. ; De Wals, P.: Modeling the impact of one- and two-dose varicella vaccination on the epidemiology of varicella and zoster. En: Vaccine. 28 (2010)Castellacci, F.: Co-evolutionary growth: A system dynamics model. En: Economic Modelling. 70 (2018)Castillo, O. ; Soria, J. ; Cortes-Antonio, P.: Fuzzy Logic Hybrid Extensions of Neural and Optimization Algorithms: Theory and Applications. Poland : Springer International Publishing, 2021Chen, K. ; Pun, C.S. ; Wong, H.Y.: Efficient social distancing during the COVID-19 pandemic: Integrating economic and public health considerations. En: European Journal of Operational Research. 25 (2021)Dias, S. ; Queiroz, K. ; Araujo, A.: Controlling epidemic diseases based only on social distancing level: General case. En: General 25 (2021)Diekmann, O. ; Heesterbeek, J.A.P. ; Roberts, M.G.: The construction of nextgeneration matrices for compartmental epidemic models. En: J. R. Soc. Interface. 7 (2010), p. 873–885Donatelli, M. ; Magarey, R.D. ; Bregaglio, S. ; Willocquet, L. ; Whish, J.P.M. ; Savary, S.: Modelling the impacts of pests and diseases on agricultural systems. En: Agricultural Systems. 155 (2017)Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. En: PLOS. 3 (1973), p. 32–57El Hajji, M. ; Alshaikh, D.M. ; Almuallem, N.A.: Periodic Behaviour of an Epidemic in a Seasonal Environment with Vaccination. En: Applications of Differential Equations to Mathematical Biology. 11 (2023)Fathabadi, H.: On Stability Analysis of Nonlinear Systems. En: General 25 (2021)Gao, Z. ; Gidding, HF. ; Wood, J.G. ; MacIntyre, C.R.: Modelling the impact of one-dose vs. two-dose vaccination regimens on the epidemiology of varicella zoster virus in Australia. En: Vaccine. 138 (2010)Gershon, A. ; Breuer, J. ; Cohen, J. ; Cohrs, R.J. ; Gershon, M.D. ; Gilden, D. ; Grose, C. ; Hambleton, S. ; Kennedy, P.G.E. ; Oxman, M.N. ; Seward, J.F. ; Yamanishi, K.: Varicella zoster virus infection. En: Nat Rev Dis Primers. 15016 (2015)Gillis, M. ; Urban, R. ; Saif, A. ; Kamal, N. ; Murphy, M.: A simulation-optimization framework for optimizing response strategies to epidemics. En: Operations Research Perspectives. 25 (2021)Guo, Y. ; Li, T.: Modeling and dynamic analysis of novel coronavirus pneumonia (COVID-19) in China. En: Appl Math Comput. (2021)Hariharan, S. ; Shangerganesh, L. ; Debbouche, A. ; Antonov, V.: Stability analysis of spatiotemporal reaction-diffusion mathematical model incorporating the varicella virus transmission. En: The European Physical Journal Plus 138 (2023)Heininger, U ; Seward, J.F.: Varicella. En: The Lancet. 368 (2006), p. 1365–1376Hekimoglu, M.: Sensitivity Analysis of System Dynamics Models By Behavior Pattern Measures. En: General (2015)Hernández-Mejía, G. ; Alanis, A.Y. ; Hernández-Vargas, E.A.: Neural inverse optimal control for discrete-time impulsive systems. En: Neurocomputing. 314 (2018)Jia, S. ; Liu, X. ; Yan, G.: Environmental, economic and health cobenefits of the combination strategy for alleviating traffic and emission pressure. En: Energy Reports. 6 (2020)Karsai, J. ; Csuma-Kovács, R. ; Dánielisz, et a.: Modeling the transmission dynamics of varicella in Hungary. En: J.Math.Industry 10 (2020)Kermack, F. ; McKendrick, D.: A contribution to the mathematical theory of epidemics. En: Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 115 (1927), p. 700–721Khajanchi, S. ; Sarkar, K. ; Sooppy, Nisar ; S.F., Abdelwahab: Mathematical modeling of the COVID-19 pandemic with intervention strategies. En: Results in Physics 25 (2012)Khajji, B. ; Kouidere, A. ; Elhia, M. ; Balatif, O. ; Rachik, M.: Fractional optimal control problem for an age-structured model of COVID-19 transmission. En: Chaos, Solitons Fractals. 143 (2021)Kretzschmar, M.: Disease modeling for public health: added value, challenges, and institutional constraints. En: J Public Health. 41 (2020), p. 39–51Kuniya, T. ; Siegenfeld, A.F. ; Kollepara, P.K. ; Bar-Yam, Y.: Modeling Complex Systems: A Case Study of Compartmental Models in Epidemiology. En: Complexity. 2022 (2022)Marangi, L. ; Mirinaviciute, G. ; Flem, E. ; Scalia Tomba, G. ; Guzzetta, G. ; Freiesleben de Blasio, B. ; Manfredi, P.: The natural history of varicella zoster virus infection in Norway: Further insights on exogenous boosting and progressive immunity to herpes zoster. En: PLOS. 12 (2017)Mat Daud, A.A. ; Toh, C.Q. ; Saidun, S.: Mathematical modeling and analysis of anemia during pregnancy and postpartum. En: General 140 (2021), p. 87–95Meng, W.U. ; Shengxi, L.: Optimal fuzzy control of SIR epidemic with state dependent cost function. En: 2017 International Conference on Fuzzy Theory and Its Applications (iFUZZY), 2017, p. 1–6Michael, E. ; Madon, S.: Socio-ecological dynamics and challenges to the governance of Neglected Tropical Disease control. En: Infect Dis Poverty 6 (2017)Mohallem Paiva, H. ; Magalhães Afonso, R.J. ; Scarpelli de Lima Alvarenga Caldeira, F.M. ; De Andrade Velasquez, E.: A computational tool for trend analysis and forecast of the COVID-19 pandemic. En: Applied Soft Computing. (2021)Ngoteya, F.N. ; Nkansah-Gyekye, Y.: Sensitivity Analysis of Parameters in a Competition Model. En: Complexity. 4 (2015), p. 363–368Paul, S. ; Venkateswaran, J.: Designing robust policies under deep uncertainty for mitigating epidemics. En: Computers Industrial Engineering. 140 (2020)Péni, T. ; Csutak, B. ; Szederkényi, G.: Nonlinear model predictive control with logic constraints for COVID-19 management. En: Nonlinear Dyn. 102 (2020), p. 1965–1986De Salud y Protección Social, Ministerio. Sistema Integrado de Información de la Protección Social. 2022Reluga, T.C. ; Smith, R.A. ; Hughes, D.P.: Dynamic and game theory of infectious disease stigmas. En: Journal of Theoretical Biology. 476 (2019)Shirazi, H. ; Kia, R. ; Ghasemi, P.: A stochastic bi-objective simulation optimization model for plasma supply chain in case of COVID-19 outbreak. En: Applied Soft Computing. 112 (2021)Siddique, N.: Intelligent Control A Hybrid Approach Based On Fuzzy Logic, Neural Networks and Genetic Algorithms. Poland : Springer International Publishing Switzerland, 2014Takagi, T. ; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. En: IEEE Trans Syst Man Cybern. 15 (1985), p. 116–132Tang, X. ; Zhao, S. ; Chiu, A.P.Y. ; Ma, H. ; Xie, X. ; Mei, S. ; Kong, D. ; Qin, Y. ; Chen, Z. ; Wang, X. ; He, D.: Modelling the transmission and control strategies of varicella among school children in Shenzhen, China. En: PLOS. 12 (2017)Toro-Zapata, H. D. ; Mesa-Mazo, M. J. ; Prieto-Medellín, D.A.: Modelo de simulación para la transmisión del VIH y estrategias de control basadas en diagnóstico. En: Revista de Salud Pública. 16 (2014), p. 139–152Zadeh, L.A.: Fuzzy Sets. En: Information Control. 8 (1965), p. 338–353Zadeh, L.A.: Fuzzy algorithms. En: Information Control. 12 (1968), p. 94–102Zha, W. ; Pang, F. ; Zhou, N. ; Wu, B. ; Liu, Y. ; Du, Y. ; Hong, X ; Lv, Y.: Research about the optimal strategies for prevention and control of varicella outbreak in a school in a central city of China: Based on an SEIR dynamic model. En: Epidemiology Infection. 148 (2020)Zhang, F. ; Liu, X. ; Zhang, J. ; Wu, R. ; Ma, Q. ; Chen, Y.: Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China. En: Ecological Modelling. 349 (2017)Zhang, L. ; Ullah, S. ; Al Alwan, B. ; Alshehri, A. ; Sumelka, W.: Mathematical assessment of constant and time-dependent control measures on the dynamics of the novel coronavirus: An application of optimal control theory. En: Results in Physics 25 (2021)Grupos comunitariosInvestigadoresPadres y familiasPersonal de apoyo escolarPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85952/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL80108311.2024.pdf80108311.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf3487933https://repositorio.unal.edu.co/bitstream/unal/85952/2/80108311.2024.pdf5db15c751ce8099ea063c8ac93ea743aMD52THUMBNAIL80108311.2024.pdf.jpg80108311.2024.pdf.jpgGenerated Thumbnailimage/jpeg4024https://repositorio.unal.edu.co/bitstream/unal/85952/3/80108311.2024.pdf.jpg3f47116d6d418c53c611485291ca9e27MD53unal/85952oai:repositorio.unal.edu.co:unal/859522024-04-22 23:13:07.611Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=