Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas

ilustraciones, diagramas

Autores:
Niño Hernández, Angélica Beatriz
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86667
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86667
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
RECEPTORES SENSORIALES
LOBULO PARIETAL
GENERALIZACION DEL ESTIMULO
Sensory receptors
Parietal lobes
Stimulus generalization
Sistema de las vibrisas
Corteza motora de las vibrisas
Corteza de los barriles
Integración sensoriomotora
Whisker system
Vibrissal motor cortex
Barrel cortex
Sensorimotor integration
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_14735f34e8bd4885c306928bf8fb3f5e
oai_identifier_str oai:repositorio.unal.edu.co:unal/86667
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
dc.title.translated.eng.fl_str_mv Interaction of peripheral and cortical somatosensory stimulation on somatosensory information processing in the vibrissal primary motor cortex in rats
title Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
spellingShingle Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
RECEPTORES SENSORIALES
LOBULO PARIETAL
GENERALIZACION DEL ESTIMULO
Sensory receptors
Parietal lobes
Stimulus generalization
Sistema de las vibrisas
Corteza motora de las vibrisas
Corteza de los barriles
Integración sensoriomotora
Whisker system
Vibrissal motor cortex
Barrel cortex
Sensorimotor integration
title_short Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
title_full Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
title_fullStr Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
title_full_unstemmed Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
title_sort Interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratas
dc.creator.fl_str_mv Niño Hernández, Angélica Beatriz
dc.contributor.advisor.none.fl_str_mv Múnera Galarza, Francisco Alejandro
dc.contributor.author.none.fl_str_mv Niño Hernández, Angélica Beatriz
dc.contributor.researchgroup.spa.fl_str_mv Neurofisiología comportamental
dc.contributor.cvlac.spa.fl_str_mv Angelica Beatriz Niño
dc.subject.ddc.spa.fl_str_mv 570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
topic 570 - Biología::571 - Fisiología y temas relacionados
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
RECEPTORES SENSORIALES
LOBULO PARIETAL
GENERALIZACION DEL ESTIMULO
Sensory receptors
Parietal lobes
Stimulus generalization
Sistema de las vibrisas
Corteza motora de las vibrisas
Corteza de los barriles
Integración sensoriomotora
Whisker system
Vibrissal motor cortex
Barrel cortex
Sensorimotor integration
dc.subject.lemb.spa.fl_str_mv RECEPTORES SENSORIALES
LOBULO PARIETAL
GENERALIZACION DEL ESTIMULO
dc.subject.lemb.eng.fl_str_mv Sensory receptors
Parietal lobes
Stimulus generalization
dc.subject.proposal.spa.fl_str_mv Sistema de las vibrisas
Corteza motora de las vibrisas
Corteza de los barriles
Integración sensoriomotora
dc.subject.proposal.eng.fl_str_mv Whisker system
Vibrissal motor cortex
Barrel cortex
Sensorimotor integration
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-31T16:51:40Z
dc.date.available.none.fl_str_mv 2024-07-31T16:51:40Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86667
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86667
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbott, L., & Regehr, W. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010
Achury, M., & Múnera, A. (2015). Interacción funcional entre hipocampo y corteza motora primaria de las vibrisas en el procesamiento de información somatosensorial en ratas [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.
Adibi, M. (2019). Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Frontiers in Systems Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnsys.2019.00040
Ahissar, E., & Knutsen, P. M. (2016). Vibrissal Location Coding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 725–735). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_53
Ahrens, K. F., & Kleinfeld, D. (2004). Current Flow in Vibrissa Motor Cortex Can Phase-Lock With Exploratory Rhythmic Whisking in Rat. Journal of Neurophysiology, 92(3), 1700–1707. https://doi.org/10.1152/jn.00020.2004
Akin, M. (2002). Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals. Journal of medical systems, 26, 241–247. https://doi.org/10.1023/A:1015075101937
Alder, G., Signal, N., Olsen, S., & Taylor, D. (2019). A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Frontiers in Neuroscience, 13, 895. https://doi.org/10.3389/fnins.2019.00895
Arabzadeh, E., Heimendahl, M. von, & Diamond, M. (2016). Vibrissal Texture Decoding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 737–749). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_54
Arkley, K., Grant, R. A., Mitchinson, B., & Prescott, T. J. (2014). Strategy Change in Vibrissal Active Sensing during Rat Locomotion. Current Biology, 24(13), 1507–1512. https://doi.org/10.1016/j.cub.2014.05.036
Bellingham, M. C., & Walmsley, B. (1999). A Novel Presynaptic Inhibitory Mechanism Underlies Paired Pulse Depression at a Fast Central Synapse. Neuron, 23(1), 159–170. https://doi.org/10.1016/S0896-6273(00)80762-X
Bokor, H., Acsády, L., & Deschênes, M. (2008). Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area. Journal of Neuroscience, 28(20), 5169–5177. https://doi.org/10.1523/JNEUROSCI.0490-08.2008
Bosman, L. W. J., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H. T., Ju, C., Gong, W., Koekkoek, S. K. E., & De Zeeuw, C. I. (2011). Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 5. https://doi.org/10.3389/fnint.2011.00053
Bray, I. E., Clarke, S. E., Casey, K., Nuyujukian, P., & Laboratory, the B. I. (2022). Neuroelectrophysiology-Compatible Electrolytic Lesioning (p. 2022.11.10.516056). bioRxiv. https://doi.org/10.1101/2022.11.10.516056
Brecht, M., Grinevich, V., Jin, T.-E., Margrie, T., & Osten, P. (2006). Cellular mechanisms of motor control in the vibrissal system. Pflügers Archiv, 453(3), 269–281. https://doi.org/10.1007/s00424-006-0101-6
Brecht, M., Schneider, M., Sakmann, B., & Margrie, T. W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976), 704–710. https://doi.org/10.1038/nature02266
Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science (New York, N.Y.), 304, 1926–1929. https://doi.org/10.1126/science.1099745
Carpenter, R. H. S. (1997). Sensorimotor processing: Charting the frontier. Current Biology, 7(6), R348–R351. https://doi.org/10.1016/S0960-9822(06)00171-0
Castro-Alamancos, M. A. (2013). The motor cortex: A network tuned to 7-14 Hz. Frontiers in Neural Circuits, 7, 21. https://doi.org/10.3389/fncir.2013.00021
Castro-Alamancos, M. A., & Rigas, P. (2002). Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. The Journal of Physiology, 542(2), 567–581. https://doi.org/10.1113/jphysiol.2002.019059
Castro-Alamancos, M. A., & Tawara-Hirata, Y. (2007). Area-specific resonance of excitatory networks in neocortex: Control by outward currents. Epilepsia, 48(8), 1572–1584. https://doi.org/10.1111/j.1528-1167.2007.01113.x
Chakrabarti, S., & Schwarz, C. (2015). The Rodent Vibrissal System as a Model to Study Motor Cortex Function. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 129–148). Springer. https://doi.org/10.1007/978-1-4939-2975-7_6
Council, N. R. (2011). Guía para el cuidado y uso de animales de laboratorio. Ediciones UC.
David-Jürgens, M., & Dinse, H. R. (2010). Effects of Aging on Paired-Pulse Behavior of Rat Somatosensory Cortical Neurons. Cerebral Cortex (New York, NY), 20(5), 1208–1216. https://doi.org/10.1093/cercor/bhp185
Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1996). Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. The Journal of Physiology, 491(Pt 1), 163–176.
Deschênes, M., & Kleinfeld, D. (2022). The Vibrissa Sensorimotor System of Rodents: A View from the Sensory Thalamus. En M. M. Halassa (Ed.), The Thalamus (pp. 214–220). Cambridge University Press. https://doi.org/10.1017/9781108674287.012
Deschênes, M., Takatoh, J., Kurnikova, A., Moore, J. D., Demers, M., Elbaz, M., Furuta, T., Wang, F., & Kleinfeld, D. (2016). Inhibition, Not Excitation, Drives Rhythmic Whisking. Neuron, 90(2), 374–387. https://doi.org/10.1016/j.neuron.2016.03.007
Deschenes, M., & Urbain, N. (2016). Vibrissal Afferents from Trigeminus to Cortices. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 657–672). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_49
Deschênes, M., Veinante, P., & Zhang, Z. W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research. Brain Research Reviews, 28(3), 286–308. https://doi.org/10.1016/s0165-0173(98)00017-4
Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews Neuroscience, 9(8), Article 8. https://doi.org/10.1038/nrn2411
Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18(6), 995–1008. https://doi.org/10.1016/s0896-6273(00)80338-4
Domanski, A. P. F., Booker, S. A., Wyllie, D. J. A., Isaac, J. T. R., & Kind, P. C. (2019). Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-12736-y
Dörfl, J. (1985). The innervation of the mystacial region of the white mouse. Journal of Anatomy, 142, 173–184.
Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J., & Rice, F. (2002). Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. The Journal of comparative neurology, 449, 103–119. https://doi.org/10.1002/cne.10277
Erzurumlu, R. S., & Gaspar, P. (2020). How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. The Journal of Neuroscience, 40(34), 6460–6473. https://doi.org/10.1523/JNEUROSCI.0582-20.2020
Ferezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., & Petersen, C. C. H. (2007). Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. Neuron, 56(5), 907–923. https://doi.org/10.1016/j.neuron.2007.10.007
Forero, A., & Múnera, A. (2016). Interaccion entre el estriado y la corteza motora primaria de las vibrisas durante el procesamiento de informacion somatosensorial [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.
Friedman, W. A., Jones, L. M., Cramer, N. P., Kwegyir-Afful, E. E., Zeigler, H. P., & Keller, A. (2006). Anticipatory Activity of Motor Cortex in Relation to Rhythmic Whisking. Journal of Neurophysiology, 95(2), 1274–1277. https://doi.org/10.1152/jn.00945.2005
Fukui, A., Osaki, H., Ueta, Y., Kobayashi, K., Muragaki, Y., Kawamata, T., & Miyata, M. (2020). Layer-specific sensory processing impairment in the primary somatosensory cortex after motor cortex infarction. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60662-7
Gao, P., Hattox, A. M., Jones, L. M., Keller, A., & Zeigler, H. P. (2003). Whisker motor cortex ablation and whisker movement patterns. Somatosensory & Motor Research, 20(3–4), 191–198. https://doi.org/10.1080/08990220310001622924
Gauthier-Umaña, C., Valderrama, M., Múnera, A., & Nava-Mesa, M. O. (2023). BOARD-FTD-PACC: A graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1), 12. https://doi.org/10.1186/s40708-023-00191-x
Ghanbari, A., Malyshev, A., Volgushev, M., & Stevenson, I. H. (2017). Estimating short-term synaptic plasticity from pre- and postsynaptic spiking (p. 156687). bioRxiv. https://doi.org/10.1101/156687
Grinevich, V., Brecht, M., & Osten, P. (2005). Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing. The Journal of Neuroscience, 25(36), 8250–8258. https://doi.org/10.1523/JNEUROSCI.2235-05.2005
Guic-Robles, E., Jenkins, W. M., & Bravo, H. (1992). Vibrissal roughness discrimination is barrelcortex-dependent. Behavioural Brain Research, 48(2), 145–152. https://doi.org/10.1016/S0166-4328(05)80150-0
Haidarliu, S. (2016). Whisking Musculature. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 627–639). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_47
Haiss, F., & Schwarz, C. (2005). Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex. The Journal of Neuroscience, 25(6), 1579–1587. https://doi.org/10.1523/JNEUROSCI.3760-04.2005
Harding, S. (2017). Somatotopic Precision of Whisker Tuning in Layer 2/3 of Rat Barrel Cortex [Doctoral Thesis]. University of California.
Hartmann, M. (2016). Vibrissa Mechanical Properties. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 591–614). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_45
Hooks, B. M. (2017). Sensorimotor Convergence in Circuitry of the Motor Cortex. The Neuroscientist, 23(3), 251–263. https://doi.org/10.1177/1073858416645088
Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(2), 748–760. https://doi.org/10.1523/JNEUROSCI.4338-12.2013
Hramov, A. E., Koronovskii, A. A., Makarov, V. A., Maksimenko, V. A., Pavlov, A. N., & Sitnikova, E. (2021). Wavelet Approach to the Study of Rhythmic Neuronal Activity. En A. E. Hramov, A. A. Koronovskii, V. A. Makarov, V. A. Maksimenko, A. N. Pavlov, & E. Sitnikova (Eds.), Wavelets in Neuroscience (pp. 211–242). Springer International Publishing. https://doi.org/10.1007/978-3-030-75992-6_6
Ibarra-Lecue, I., Haegens, S., & Harris, A. Z. (2022). Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Frontiers in Neural Circuits, 16. https://doi.org/10.3389/fncir.2022.846905
Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., & Fukai, T. (2013). A θ–γ Oscillation Code for Neuronal Coordination during Motor Behavior. Journal of Neuroscience, 33(47), 18515–18530. https://doi.org/10.1523/JNEUROSCI.2126-13.2013
Izraeli, R., & Porter, L. L. (1995). Vibrissal motor cortex in the rat: Connections with the barrel field. Experimental Brain Research, 104(1), 41–54. https://doi.org/10.1007/BF00229854
Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186
Jones, M. S., & Barth, D. S. (1999). Spatiotemporal Organization of Fast (>200 Hz) Electrical Oscillations in Rat Vibrissa/Barrel Cortex. Journal of Neurophysiology, 82(3), 1599–1609. https://doi.org/10.1152/jn.1999.82.3.1599
Kahanovitch, U., Berlin, S., & Dascal, N. (2017). Collision coupling in the GABAB receptor–G protein–GIRK signaling cascade. FEBS Letters, 591(18), 2816–2825. https://doi.org/10.1002/1873-3468.12756
Katz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. The Journal of Physiology, 195(2), Article 2. https://doi.org/10.1113/jphysiol.1968.sp008469
Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486. https://doi.org/10.1093/cercor/7.6.476
Kirischuk, S., Clements, J. D., & Grantyn, R. (2002). Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. The Journal of Physiology, 543(Pt 1), 99–116. https://doi.org/10.1113/jphysiol.2002.021576
Kleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: Insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444. https://doi.org/10.1016/j.conb.2006.06.009
Kleinfeld, D., & Deschênes, M. (2011). Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System. Neuron, 72(3), 455–468. https://doi.org/10.1016/j.neuron.2011.10.009
Knutsen, P. M. (2015). Whisking Kinematics. En Scholarpedia of Touch (pp. 615–625). https://doi.org/10.2991/978-94-6239-133-8_46
Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G., & Rudy, B. (2013). A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 16(11), 1662–1670. https://doi.org/10.1038/nn.3544
Lefort, S., Tomm, C., Floyd Sarria, J.-C., & Petersen, C. C. H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316. https://doi.org/10.1016/j.neuron.2008.12.020
Li, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157–1167. https://doi.org/10.1016/j.neubiorev.2009.02.001
Lüscher, C., & Slesinger, P. A. (2010). Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature reviews. Neuroscience, 11(5), 301–315. https://doi.org/10.1038/nrn2834
Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., & Svoboda, K. (2011). Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex. Neuron, 72(1), 111–123. https://doi.org/10.1016/j.neuron.2011.07.029
Martínez, A. (2024). Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial [Tesis de maestría]. Universidad Nacional de Colombia.
Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C. C. H. (2010). Motor Control by Sensory Cortex. Science, 330(6008), 1240–1243. https://doi.org/10.1126/science.1195797
Miller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits. The Journal of Neuroscience, 28(51), 13716–13726. https://doi.org/10.1523/JNEUROSCI.2940-08.2008
Mitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274(1613), 1035–1041. https://doi.org/10.1098/rspb.2006.0347
Múnera, A. (2023). Interacciones funcionales de la corteza motora primaria de las vibrisas [Conferencia]. COLNE-XIII Congreso Nacional – XIV Seminario Internacional de Neurociencias, Cali, Colombia. https://colne.org.co/congreso-neurociencias-colne-ibro/
Múnera, A., Nava-Mesa, M. O., Gauthier-Umaña, C., & M, V. (2018). Interacciones tálamo-corticales en el sistema motor de las vibrisas [Conferencia]. XI Congreso Nacional - XII Seminario Internacional de Neurociencias, Bogotá, Colombia.
Nava-Mesa, M. O., Jimenez-Diaz, L., Yajeya, J., & Navarro-Lopez, J. D. (2013). Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00117
Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., & Slutzky, M. W. (2023). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. bioRxiv, 2023.02.13.528325. https://doi.org/10.1101/2023.02.13.528325
Nolan, M., Scott, C., Hof, Patrick. R., & Ansorge, O. (2024). Betz cells of the primary motor cortex. Journal of Comparative Neurology, 532(1), e25567. https://doi.org/10.1002/cne.25567
O’Connor, D. H., Krubitzer, L., & Bensmaia, S. (2021). Of mice and monkeys: Somatosensory processing in two prominent animal models. Progress in Neurobiology, 201, 102008. https://doi.org/10.1016/j.pneurobio.2021.102008
Okun, M., & Lampl, I. (2016). Balance of Excitation and Inhibition. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 577–590). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_44
Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PloS One, 3(12), e3990. https://doi.org/10.1371/journal.pone.0003990
Patestas, M. A., & Gartner, L. P. (2016). A Textbook of Neuroanatomy. John Wiley & Sons.
Paxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier.
Penttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145–152. https://doi.org/10.1017/S1472928803000074
Petersen, C. C. H. (2007). The Functional Organization of the Barrel Cortex. Neuron, 56(2), 339–355. https://doi.org/10.1016/j.neuron.2007.09.017
Petersen, C. C. H. (2014). Cortical Control of Whisker Movement. Annual Review of Neuroscience, 37(Volume 37, 2014), 183–203. https://doi.org/10.1146/annurev-neuro-062012-170344
Petersen, C. C. H. (2019). Sensorimotor processing in the rodent barrel cortex. Nature reviews. Neuroscience, 20(9), 533–546. https://doi.org/10.1038/s41583-019-0200-y
Pierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids. Journal of Neuroscience, 20(19), 7455–7462. https://doi.org/10.1523/JNEUROSCI.20-19-07455.2000
Prescott, T., Ahissar, E., & Izhikevich, E. (Eds.). (2016). Scholarpedia of Touch. Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8
Radnikow, G., Qi, G., & Feldmeyer, D. (2015). Synaptic Microcircuits in the Barrel Cortex. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 59–108). Springer. https://doi.org/10.1007/978-1-4939-2975-7_4
Ramírez, E. (2021). Estimulación cortical motora contralateral como mecanismo para inducir plasticidad sinaptica en la corteza motora primaria de las vibrisas en ratas [Tesis de maestría]. Universidad Nacional de Colombia.
Santschi, L. A., & Stanton, P. K. (2003). A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Research, 962(1–2), Article 1–2. https://doi.org/10.1016/s0006-8993(02)03846-5
Schwarz, C., & Chakrabarti, S. (2016). Whisking Control by Motor Cortex. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 751–769). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_55
Sert, N. P. du, Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411
Sreenivasan, V., Esmaeili, V., Kiritani, T., Galan, K., Crochet, S., & Petersen, C. (2016). Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron, 92, 1368–1382. https://doi.org/10.1016/j.neuron.2016.12.001
Stüttgen, M. C., Kullmann, S., & Schwarz, C. (2008). Responses of Rat Trigeminal Ganglion Neurons to Longitudinal Whisker Stimulation. Journal of Neurophysiology, 100(4), 1879–1884. https://doi.org/10.1152/jn.90511.2008
Tahmasebi, L., Komaki, A., Karamian, R., Shahidi, S., Sarihi, A., & Komaki, H. (2016). Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus. Brain Research, 1643, 27–34. https://doi.org/10.1016/j.brainres.2016.04.058
Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292. https://doi.org/10.1016/j.neuron.2016.06.033
Troncoso, J., Múnera, A., & Delgado-García, J. M. (2007). Learning-dependent potentiation in the vibrissal motor cortex is closely related to the acquisition of conditioned whisker responses in behaving mice. Learning & Memory, 14(1–2), 84–93. https://doi.org/10.1101/lm.341807
Trussell, L. O., Zhang, S., & Ramant, I. M. (1993). Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron, 10(6), 1185–1196. https://doi.org/10.1016/0896-6273(93)90066-Z
Urbain, N., & Deschênes, M. (2007). A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex. Journal of Neuroscience, 27(45), 12407–12412. https://doi.org/10.1523/JNEUROSCI.2914-07.2007
Vatsyayan, R., Lee, J., Bourhis, A., Tchoe, Y., Cleary, D., Tonsfeldt, K., Lee, K., Montgomery-Walsh, R., Paulk, A., U, H., Cash, S., & Dayeh, S. (2023). Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS Bulletin, 48. https://doi.org/10.1557/s43577-023-00537-0
Vincent, S. B. (2010). The Functions Of The Vibrissae In The Behavior Of The White Rat. Kessinger Publishing.
Wagner, J., Makeig, S., Hoopes, D., & Gola, M. (2019). Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00263
Welker, W. I. (1964). Analysis of Sniffing of the Albino Rat. Behaviour, 22(3/4), 223–244.
Wilson, S. P., & Moore, C. (2016). S1 Somatotopic Maps. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 565–576). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_43
Yamashita, T., Vavladeli, A., Pala, A., Galan, K., Crochet, S., Petersen, S. S. A., & Petersen, C. C. H. (2018). Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex. Frontiers in Neuroanatomy, 12, 33. https://doi.org/10.3389/fnana.2018.00033
Yang, Y., & Calakos, N. (2013). Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 5. https://www.frontiersin.org/articles/10.3389/fnsyn.2013.00008
Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N., Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural Networks of the Mouse Neocortex. Cell, 156(5), 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023
Zucker, R. S., & Regehr, W. G. (2002). Short-Term Synaptic Plasticity. Annual Review of Physiology, 64(1), 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 96 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86667/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86667/2/1024543251.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86667/3/1024543251.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
ec5b738955ec1280ef17b9413482c51b
f936261789c2eeb68604d5d9b9a84fad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089471666159616
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Múnera Galarza, Francisco Alejandro8eaff4d83985b7abb5f6eda6c8090c13Niño Hernández, Angélica Beatrizf166eb675511e869b3e7cd88556d12b9Neurofisiología comportamentalAngelica Beatriz Niño2024-07-31T16:51:40Z2024-07-31T16:51:40Z2024https://repositorio.unal.edu.co/handle/unal/86667Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl sistema de las vibrisas en roedores constituye un modelo de investigación de gran importancia para entender el proceso de integración sensoriomotora. Esto se debe a su bien definida representación somatotópica en la corteza somatosensorial de los barriles (S1b) y a la extensa investigación sobre las vías de transducción de estímulos táctiles a señales eléctricas. En este trabajo, se estudió la interacción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de esta información en la corteza motora primaria de las vibrisas (vM1). Para ello, se emplearon protocolos de pares de pulsos, pre-estimulación y se evaluó el comportamiento oscilatorio en el dominio de tiempo y frecuencia. En este contexto, se amplió la caracterización de la respuesta en vM1 y S1b ante estímulos únicos en el parche de vibrisas (WP). Además, se caracterizó por primera vez en ratas la respuesta provocada en vM1 ante estimulación en S1b. Los hallazgos indican que la información somatosensorial de las vibrisas llega simultáneamente a S1b y vM1. Mediante protocolos de pares de pulsos en WP, se evidenció activación sostenida de circuitos inhibidores en vM1 y S1b por parte de las entradas tálamo-corticales, asociada con oscilaciones gamma. Al administrar pares de pulsos en S1b, se evidenció la naturaleza monosináptica de las proyecciones desde S1b a vM1, que tienen un efecto temprano excitador y uno tardío inhibidor. Finalmente, para evaluar las interacciones funcionales de vM1 con S1b, se utilizó el protocolo de pre-estimulación. La estimulación en S1b antecediendo la estimulación en WP, desfacilitó las oscilaciones lentas del potencial provocado en vM1 en dos ventanas de tiempo asociado con una actividad en la banda theta y gamma alta. Por otro lado, la administración de estímulos en WP antecediendo la estimulación en S1b, facilitó las oscilaciones lentas del potencial provocado en vM1 a intervalos entre estímulos (IEEs) cortos, relacionado con la coincidencia de entradas excitadoras cortico-corticales desde S1b con las entradas intracorticales de vM1 procedentes de la activación tálamo-cortical. Sin embargo, en IEEs mayores, esta pre-estimulación incrementa la actividad inhibitoria en la banda theta y gamma. Este estudio complementa el conocimiento previo sobre la respuesta provocada en vM1 ante estimulación periférica y revela, por primera vez en ratas, la caracterización de la respuesta provocada en vM1 ante estimulación en S1b mediante un enfoque electrofisiológico y de análisis espectral en el dominio del tiempo y frecuencia (Texto tomado de la fuente).The whisker system in rodents constitutes a research model of great importance for understanding the process of sensorimotor integration. Its significance lies in the well-defined somatotopic representation in the barrel cortex (S1b) and to the extensive research on the transduction pathways of tactile stimuli to electrical signals. In this study, the interaction of peripheral and cortical somatosensory stimulation on the processing of this information in the vibrissal primary motor cortex (vM1) was examined. For this aim, paired-pulse, pre-stimulation protocols and oscillatory behavior in the time and frequency domain were used. In this context, the characterization of the response in vM1 and S1b to single stimuli in the whisker pad (WP) was extended. In addition, the response evoked in vM1 to stimulation in S1b was characterized for the first time in rats. The findings indicate that somatosensory information from the whiskers simultaneously reaches both S1b and vM1. Using paired-pulse protocols in WP, sustained activation of inhibitory circuits in vM1 and S1b by thalamocortical inputs, associated with gamma oscillations, was evidenced. When administering paired pulses in S1b, the monosynaptic nature of the projections from S1b to vM1, which have an early excitatory and a late inhibitory effect, was evidenced. Finally, to evaluate the functional interactions of vM1 with S1b, the pre-stimulation protocol was used. S1b stimulation preceding WP stimulation defacilitated slow oscillations of the evoked potential in vM1 in two-time windows associated with theta and high gamma activity. On the other hand, WP stimulus preceding S1b stimulation facilitated slow oscillations of the evoked potential in vM1 at short interstimulus intervals (ISIs), related to the coincidence of cortico-cortical excitatory inputs from S1b and intracortical inputs vM1 from thalamocortical activation. However, at longer ISIs, this pre-stimulation increased inhibitory activity in the theta and gamma bands. This study complements prior knowledge on the evoked response in vM1 to peripheral stimulation and reveals, for the first time in rats, the characterization of the evoked response in vM1 to stimulation in S1b by an electrophysiological approach and spectral analysis in the time and frequency domain.MaestríaMagister en Ciencias - BiologíaSe emplearon nueve ratas macho Wistar adultas, con un peso entre 300 g y 400 g. Estos animales fueron obtenidos del Bioterio Central de la Universidad Nacional de Colombia, sede Bogotá, en la Facultad de Medicina Veterinaria y Zootecnia. En el bioterio, los sujetos experimentales fueron mantenidos en una sala con atenuación de ruido, con control de humedad (40 ± 5%) y temperatura (20 ± 1 °C), con ciclo de luz / oscuridad de 12 horas y con suministro de alimento y agua fresca potable ad libitum. Minutos antes de iniciar cada experimento, el animal fue trasladado al laboratorio de Neurofisiología Comportamental de la Facultad de Medicina de la Universidad Nacional de Colombia. Para ello, se utilizaron cajas de policarbonato (38 x 32 x 18 cm) con una capa de viruta de madera en el fondo y cubierta de una tela negra para evitar estrés del animal durante su traslado.Fisiología del control motor facial96 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::571 - Fisiología y temas relacionados570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesRECEPTORES SENSORIALESLOBULO PARIETALGENERALIZACION DEL ESTIMULOSensory receptorsParietal lobesStimulus generalizationSistema de las vibrisasCorteza motora de las vibrisasCorteza de los barrilesIntegración sensoriomotoraWhisker systemVibrissal motor cortexBarrel cortexSensorimotor integrationInteracción de la estimulación somatosensorial periférica y cortical sobre el procesamiento de la información somatosensorial en la corteza motora primaria de las vibrisas en ratasInteraction of peripheral and cortical somatosensory stimulation on somatosensory information processing in the vibrissal primary motor cortex in ratsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbott, L., & Regehr, W. (2004). Synaptic computation. Nature, 431, 796–803. https://doi.org/10.1038/nature03010Achury, M., & Múnera, A. (2015). Interacción funcional entre hipocampo y corteza motora primaria de las vibrisas en el procesamiento de información somatosensorial en ratas [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.Adibi, M. (2019). Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Frontiers in Systems Neuroscience, 13. https://www.frontiersin.org/articles/10.3389/fnsys.2019.00040Ahissar, E., & Knutsen, P. M. (2016). Vibrissal Location Coding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 725–735). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_53Ahrens, K. F., & Kleinfeld, D. (2004). Current Flow in Vibrissa Motor Cortex Can Phase-Lock With Exploratory Rhythmic Whisking in Rat. Journal of Neurophysiology, 92(3), 1700–1707. https://doi.org/10.1152/jn.00020.2004Akin, M. (2002). Comparison of Wavelet Transform and FFT Methods in the Analysis of EEG Signals. Journal of medical systems, 26, 241–247. https://doi.org/10.1023/A:1015075101937Alder, G., Signal, N., Olsen, S., & Taylor, D. (2019). A Systematic Review of Paired Associative Stimulation (PAS) to Modulate Lower Limb Corticomotor Excitability: Implications for Stimulation Parameter Selection and Experimental Design. Frontiers in Neuroscience, 13, 895. https://doi.org/10.3389/fnins.2019.00895Arabzadeh, E., Heimendahl, M. von, & Diamond, M. (2016). Vibrissal Texture Decoding. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 737–749). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_54Arkley, K., Grant, R. A., Mitchinson, B., & Prescott, T. J. (2014). Strategy Change in Vibrissal Active Sensing during Rat Locomotion. Current Biology, 24(13), 1507–1512. https://doi.org/10.1016/j.cub.2014.05.036Bellingham, M. C., & Walmsley, B. (1999). A Novel Presynaptic Inhibitory Mechanism Underlies Paired Pulse Depression at a Fast Central Synapse. Neuron, 23(1), 159–170. https://doi.org/10.1016/S0896-6273(00)80762-XBokor, H., Acsády, L., & Deschênes, M. (2008). Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area. Journal of Neuroscience, 28(20), 5169–5177. https://doi.org/10.1523/JNEUROSCI.0490-08.2008Bosman, L. W. J., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H. T., Ju, C., Gong, W., Koekkoek, S. K. E., & De Zeeuw, C. I. (2011). Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements. Frontiers in Integrative Neuroscience, 5. https://doi.org/10.3389/fnint.2011.00053Bray, I. E., Clarke, S. E., Casey, K., Nuyujukian, P., & Laboratory, the B. I. (2022). Neuroelectrophysiology-Compatible Electrolytic Lesioning (p. 2022.11.10.516056). bioRxiv. https://doi.org/10.1101/2022.11.10.516056Brecht, M., Grinevich, V., Jin, T.-E., Margrie, T., & Osten, P. (2006). Cellular mechanisms of motor control in the vibrissal system. Pflügers Archiv, 453(3), 269–281. https://doi.org/10.1007/s00424-006-0101-6Brecht, M., Schneider, M., Sakmann, B., & Margrie, T. W. (2004). Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature, 427(6976), 704–710. https://doi.org/10.1038/nature02266Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science (New York, N.Y.), 304, 1926–1929. https://doi.org/10.1126/science.1099745Carpenter, R. H. S. (1997). Sensorimotor processing: Charting the frontier. Current Biology, 7(6), R348–R351. https://doi.org/10.1016/S0960-9822(06)00171-0Castro-Alamancos, M. A. (2013). The motor cortex: A network tuned to 7-14 Hz. Frontiers in Neural Circuits, 7, 21. https://doi.org/10.3389/fncir.2013.00021Castro-Alamancos, M. A., & Rigas, P. (2002). Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. The Journal of Physiology, 542(2), 567–581. https://doi.org/10.1113/jphysiol.2002.019059Castro-Alamancos, M. A., & Tawara-Hirata, Y. (2007). Area-specific resonance of excitatory networks in neocortex: Control by outward currents. Epilepsia, 48(8), 1572–1584. https://doi.org/10.1111/j.1528-1167.2007.01113.xChakrabarti, S., & Schwarz, C. (2015). The Rodent Vibrissal System as a Model to Study Motor Cortex Function. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 129–148). Springer. https://doi.org/10.1007/978-1-4939-2975-7_6Council, N. R. (2011). Guía para el cuidado y uso de animales de laboratorio. Ediciones UC.David-Jürgens, M., & Dinse, H. R. (2010). Effects of Aging on Paired-Pulse Behavior of Rat Somatosensory Cortical Neurons. Cerebral Cortex (New York, NY), 20(5), 1208–1216. https://doi.org/10.1093/cercor/bhp185Debanne, D., Guérineau, N. C., Gähwiler, B. H., & Thompson, S. M. (1996). Paired-pulse facilitation and depression at unitary synapses in rat hippocampus: Quantal fluctuation affects subsequent release. The Journal of Physiology, 491(Pt 1), 163–176.Deschênes, M., & Kleinfeld, D. (2022). The Vibrissa Sensorimotor System of Rodents: A View from the Sensory Thalamus. En M. M. Halassa (Ed.), The Thalamus (pp. 214–220). Cambridge University Press. https://doi.org/10.1017/9781108674287.012Deschênes, M., Takatoh, J., Kurnikova, A., Moore, J. D., Demers, M., Elbaz, M., Furuta, T., Wang, F., & Kleinfeld, D. (2016). Inhibition, Not Excitation, Drives Rhythmic Whisking. Neuron, 90(2), 374–387. https://doi.org/10.1016/j.neuron.2016.03.007Deschenes, M., & Urbain, N. (2016). Vibrissal Afferents from Trigeminus to Cortices. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 657–672). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_49Deschênes, M., Veinante, P., & Zhang, Z. W. (1998). The organization of corticothalamic projections: Reciprocity versus parity. Brain Research. Brain Research Reviews, 28(3), 286–308. https://doi.org/10.1016/s0165-0173(98)00017-4Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D., & Ahissar, E. (2008). “Where” and “what” in the whisker sensorimotor system. Nature Reviews Neuroscience, 9(8), Article 8. https://doi.org/10.1038/nrn2411Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18(6), 995–1008. https://doi.org/10.1016/s0896-6273(00)80338-4Domanski, A. P. F., Booker, S. A., Wyllie, D. J. A., Isaac, J. T. R., & Kind, P. C. (2019). Cellular and synaptic phenotypes lead to disrupted information processing in Fmr1-KO mouse layer 4 barrel cortex. Nature Communications, 10(1), Article 1. https://doi.org/10.1038/s41467-019-12736-yDörfl, J. (1985). The innervation of the mystacial region of the white mouse. Journal of Anatomy, 142, 173–184.Ebara, S., Kumamoto, K., Matsuura, T., Mazurkiewicz, J., & Rice, F. (2002). Similarities and differences in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: A confocal microscopic study. The Journal of comparative neurology, 449, 103–119. https://doi.org/10.1002/cne.10277Erzurumlu, R. S., & Gaspar, P. (2020). How the Barrel Cortex Became a Working Model for Developmental Plasticity: A Historical Perspective. The Journal of Neuroscience, 40(34), 6460–6473. https://doi.org/10.1523/JNEUROSCI.0582-20.2020Ferezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., & Petersen, C. C. H. (2007). Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice. Neuron, 56(5), 907–923. https://doi.org/10.1016/j.neuron.2007.10.007Forero, A., & Múnera, A. (2016). Interaccion entre el estriado y la corteza motora primaria de las vibrisas durante el procesamiento de informacion somatosensorial [Póster]. X Congreso Nacional - XI Seminario Internacional de Neurociencias.Friedman, W. A., Jones, L. M., Cramer, N. P., Kwegyir-Afful, E. E., Zeigler, H. P., & Keller, A. (2006). Anticipatory Activity of Motor Cortex in Relation to Rhythmic Whisking. Journal of Neurophysiology, 95(2), 1274–1277. https://doi.org/10.1152/jn.00945.2005Fukui, A., Osaki, H., Ueta, Y., Kobayashi, K., Muragaki, Y., Kawamata, T., & Miyata, M. (2020). Layer-specific sensory processing impairment in the primary somatosensory cortex after motor cortex infarction. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-60662-7Gao, P., Hattox, A. M., Jones, L. M., Keller, A., & Zeigler, H. P. (2003). Whisker motor cortex ablation and whisker movement patterns. Somatosensory & Motor Research, 20(3–4), 191–198. https://doi.org/10.1080/08990220310001622924Gauthier-Umaña, C., Valderrama, M., Múnera, A., & Nava-Mesa, M. O. (2023). BOARD-FTD-PACC: A graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1), 12. https://doi.org/10.1186/s40708-023-00191-xGhanbari, A., Malyshev, A., Volgushev, M., & Stevenson, I. H. (2017). Estimating short-term synaptic plasticity from pre- and postsynaptic spiking (p. 156687). bioRxiv. https://doi.org/10.1101/156687Grinevich, V., Brecht, M., & Osten, P. (2005). Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing. The Journal of Neuroscience, 25(36), 8250–8258. https://doi.org/10.1523/JNEUROSCI.2235-05.2005Guic-Robles, E., Jenkins, W. M., & Bravo, H. (1992). Vibrissal roughness discrimination is barrelcortex-dependent. Behavioural Brain Research, 48(2), 145–152. https://doi.org/10.1016/S0166-4328(05)80150-0Haidarliu, S. (2016). Whisking Musculature. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 627–639). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_47Haiss, F., & Schwarz, C. (2005). Spatial Segregation of Different Modes of Movement Control in the Whisker Representation of Rat Primary Motor Cortex. The Journal of Neuroscience, 25(6), 1579–1587. https://doi.org/10.1523/JNEUROSCI.3760-04.2005Harding, S. (2017). Somatotopic Precision of Whisker Tuning in Layer 2/3 of Rat Barrel Cortex [Doctoral Thesis]. University of California.Hartmann, M. (2016). Vibrissa Mechanical Properties. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 591–614). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_45Hooks, B. M. (2017). Sensorimotor Convergence in Circuitry of the Motor Cortex. The Neuroscientist, 23(3), 251–263. https://doi.org/10.1177/1073858416645088Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., & Shepherd, G. M. G. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(2), 748–760. https://doi.org/10.1523/JNEUROSCI.4338-12.2013Hramov, A. E., Koronovskii, A. A., Makarov, V. A., Maksimenko, V. A., Pavlov, A. N., & Sitnikova, E. (2021). Wavelet Approach to the Study of Rhythmic Neuronal Activity. En A. E. Hramov, A. A. Koronovskii, V. A. Makarov, V. A. Maksimenko, A. N. Pavlov, & E. Sitnikova (Eds.), Wavelets in Neuroscience (pp. 211–242). Springer International Publishing. https://doi.org/10.1007/978-3-030-75992-6_6Ibarra-Lecue, I., Haegens, S., & Harris, A. Z. (2022). Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Frontiers in Neural Circuits, 16. https://doi.org/10.3389/fncir.2022.846905Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., & Fukai, T. (2013). A θ–γ Oscillation Code for Neuronal Coordination during Motor Behavior. Journal of Neuroscience, 33(47), 18515–18530. https://doi.org/10.1523/JNEUROSCI.2126-13.2013Izraeli, R., & Porter, L. L. (1995). Vibrissal motor cortex in the rat: Connections with the barrel field. Experimental Brain Research, 104(1), 41–54. https://doi.org/10.1007/BF00229854Jensen, O., & Mazaheri, A. (2010). Shaping Functional Architecture by Oscillatory Alpha Activity: Gating by Inhibition. Frontiers in Human Neuroscience, 4. https://doi.org/10.3389/fnhum.2010.00186Jones, M. S., & Barth, D. S. (1999). Spatiotemporal Organization of Fast (>200 Hz) Electrical Oscillations in Rat Vibrissa/Barrel Cortex. Journal of Neurophysiology, 82(3), 1599–1609. https://doi.org/10.1152/jn.1999.82.3.1599Kahanovitch, U., Berlin, S., & Dascal, N. (2017). Collision coupling in the GABAB receptor–G protein–GIRK signaling cascade. FEBS Letters, 591(18), 2816–2825. https://doi.org/10.1002/1873-3468.12756Katz, B., & Miledi, R. (1968). The role of calcium in neuromuscular facilitation. The Journal of Physiology, 195(2), Article 2. https://doi.org/10.1113/jphysiol.1968.sp008469Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6), 476–486. https://doi.org/10.1093/cercor/7.6.476Kirischuk, S., Clements, J. D., & Grantyn, R. (2002). Presynaptic and postsynaptic mechanisms underlie paired pulse depression at single GABAergic boutons in rat collicular cultures. The Journal of Physiology, 543(Pt 1), 99–116. https://doi.org/10.1113/jphysiol.2002.021576Kleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: Insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444. https://doi.org/10.1016/j.conb.2006.06.009Kleinfeld, D., & Deschênes, M. (2011). Neuronal Basis for Object Location in the Vibrissa Scanning Sensorimotor System. Neuron, 72(3), 455–468. https://doi.org/10.1016/j.neuron.2011.10.009Knutsen, P. M. (2015). Whisking Kinematics. En Scholarpedia of Touch (pp. 615–625). https://doi.org/10.2991/978-94-6239-133-8_46Lee, S., Kruglikov, I., Huang, Z. J., Fishell, G., & Rudy, B. (2013). A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nature Neuroscience, 16(11), 1662–1670. https://doi.org/10.1038/nn.3544Lefort, S., Tomm, C., Floyd Sarria, J.-C., & Petersen, C. C. H. (2009). The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron, 61(2), 301–316. https://doi.org/10.1016/j.neuron.2008.12.020Li, L., Du, Y., Li, N., Wu, X., & Wu, Y. (2009). Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neuroscience & Biobehavioral Reviews, 33(8), 1157–1167. https://doi.org/10.1016/j.neubiorev.2009.02.001Lüscher, C., & Slesinger, P. A. (2010). Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nature reviews. Neuroscience, 11(5), 301–315. https://doi.org/10.1038/nrn2834Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., & Svoboda, K. (2011). Long-Range Neuronal Circuits Underlying the Interaction between Sensory and Motor Cortex. Neuron, 72(1), 111–123. https://doi.org/10.1016/j.neuron.2011.07.029Martínez, A. (2024). Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial [Tesis de maestría]. Universidad Nacional de Colombia.Matyas, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C. C. H. (2010). Motor Control by Sensory Cortex. Science, 330(6008), 1240–1243. https://doi.org/10.1126/science.1195797Miller, M. N., Okaty, B. W., & Nelson, S. B. (2008). Region-Specific Spike-Frequency Acceleration in Layer 5 Pyramidal Neurons Mediated by Kv1 Subunits. The Journal of Neuroscience, 28(51), 13716–13726. https://doi.org/10.1523/JNEUROSCI.2940-08.2008Mitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274(1613), 1035–1041. https://doi.org/10.1098/rspb.2006.0347Múnera, A. (2023). Interacciones funcionales de la corteza motora primaria de las vibrisas [Conferencia]. COLNE-XIII Congreso Nacional – XIV Seminario Internacional de Neurociencias, Cali, Colombia. https://colne.org.co/congreso-neurociencias-colne-ibro/Múnera, A., Nava-Mesa, M. O., Gauthier-Umaña, C., & M, V. (2018). Interacciones tálamo-corticales en el sistema motor de las vibrisas [Conferencia]. XI Congreso Nacional - XII Seminario Internacional de Neurociencias, Bogotá, Colombia.Nava-Mesa, M. O., Jimenez-Diaz, L., Yajeya, J., & Navarro-Lopez, J. D. (2013). Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse. Frontiers in Cellular Neuroscience, 7. https://doi.org/10.3389/fncel.2013.00117Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., & Slutzky, M. W. (2023). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. bioRxiv, 2023.02.13.528325. https://doi.org/10.1101/2023.02.13.528325Nolan, M., Scott, C., Hof, Patrick. R., & Ansorge, O. (2024). Betz cells of the primary motor cortex. Journal of Comparative Neurology, 532(1), e25567. https://doi.org/10.1002/cne.25567O’Connor, D. H., Krubitzer, L., & Bensmaia, S. (2021). Of mice and monkeys: Somatosensory processing in two prominent animal models. Progress in Neurobiology, 201, 102008. https://doi.org/10.1016/j.pneurobio.2021.102008Okun, M., & Lampl, I. (2016). Balance of Excitation and Inhibition. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 577–590). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_44Osipova, D., Hermes, D., & Jensen, O. (2008). Gamma power is phase-locked to posterior alpha activity. PloS One, 3(12), e3990. https://doi.org/10.1371/journal.pone.0003990Patestas, M. A., & Gartner, L. P. (2016). A Textbook of Neuroanatomy. John Wiley & Sons.Paxinos, G., & Watson, C. (2006). The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition. Elsevier.Penttonen, M., & Buzsáki, G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus & Related Systems, 2, 145–152. https://doi.org/10.1017/S1472928803000074Petersen, C. C. H. (2007). The Functional Organization of the Barrel Cortex. Neuron, 56(2), 339–355. https://doi.org/10.1016/j.neuron.2007.09.017Petersen, C. C. H. (2014). Cortical Control of Whisker Movement. Annual Review of Neuroscience, 37(Volume 37, 2014), 183–203. https://doi.org/10.1146/annurev-neuro-062012-170344Petersen, C. C. H. (2019). Sensorimotor processing in the rodent barrel cortex. Nature reviews. Neuroscience, 20(9), 533–546. https://doi.org/10.1038/s41583-019-0200-yPierret, T., Lavallée, P., & Deschênes, M. (2000). Parallel Streams for the Relay of Vibrissal Information through Thalamic Barreloids. Journal of Neuroscience, 20(19), 7455–7462. https://doi.org/10.1523/JNEUROSCI.20-19-07455.2000Prescott, T., Ahissar, E., & Izhikevich, E. (Eds.). (2016). Scholarpedia of Touch. Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8Radnikow, G., Qi, G., & Feldmeyer, D. (2015). Synaptic Microcircuits in the Barrel Cortex. En P. Krieger & A. Groh (Eds.), Sensorimotor Integration in the Whisker System (pp. 59–108). Springer. https://doi.org/10.1007/978-1-4939-2975-7_4Ramírez, E. (2021). Estimulación cortical motora contralateral como mecanismo para inducir plasticidad sinaptica en la corteza motora primaria de las vibrisas en ratas [Tesis de maestría]. Universidad Nacional de Colombia.Santschi, L. A., & Stanton, P. K. (2003). A paired-pulse facilitation analysis of long-term synaptic depression at excitatory synapses in rat hippocampal CA1 and CA3 regions. Brain Research, 962(1–2), Article 1–2. https://doi.org/10.1016/s0006-8993(02)03846-5Schwarz, C., & Chakrabarti, S. (2016). Whisking Control by Motor Cortex. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 751–769). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_55Sert, N. P. du, Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology, 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411Sreenivasan, V., Esmaeili, V., Kiritani, T., Galan, K., Crochet, S., & Petersen, C. (2016). Movement Initiation Signals in Mouse Whisker Motor Cortex. Neuron, 92, 1368–1382. https://doi.org/10.1016/j.neuron.2016.12.001Stüttgen, M. C., Kullmann, S., & Schwarz, C. (2008). Responses of Rat Trigeminal Ganglion Neurons to Longitudinal Whisker Stimulation. Journal of Neurophysiology, 100(4), 1879–1884. https://doi.org/10.1152/jn.90511.2008Tahmasebi, L., Komaki, A., Karamian, R., Shahidi, S., Sarihi, A., & Komaki, H. (2016). Interaction between paired-pulse facilitation and long-term potentiation during the stimulation of the cannabinoid and vanilloid systems in the dentate gyrus. Brain Research, 1643, 27–34. https://doi.org/10.1016/j.brainres.2016.04.058Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 91(2), 260–292. https://doi.org/10.1016/j.neuron.2016.06.033Troncoso, J., Múnera, A., & Delgado-García, J. M. (2007). Learning-dependent potentiation in the vibrissal motor cortex is closely related to the acquisition of conditioned whisker responses in behaving mice. Learning & Memory, 14(1–2), 84–93. https://doi.org/10.1101/lm.341807Trussell, L. O., Zhang, S., & Ramant, I. M. (1993). Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron, 10(6), 1185–1196. https://doi.org/10.1016/0896-6273(93)90066-ZUrbain, N., & Deschênes, M. (2007). A New Thalamic Pathway of Vibrissal Information Modulated by the Motor Cortex. Journal of Neuroscience, 27(45), 12407–12412. https://doi.org/10.1523/JNEUROSCI.2914-07.2007Vatsyayan, R., Lee, J., Bourhis, A., Tchoe, Y., Cleary, D., Tonsfeldt, K., Lee, K., Montgomery-Walsh, R., Paulk, A., U, H., Cash, S., & Dayeh, S. (2023). Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS Bulletin, 48. https://doi.org/10.1557/s43577-023-00537-0Vincent, S. B. (2010). The Functions Of The Vibrissae In The Behavior Of The White Rat. Kessinger Publishing.Wagner, J., Makeig, S., Hoopes, D., & Gola, M. (2019). Can Oscillatory Alpha-Gamma Phase-Amplitude Coupling be Used to Understand and Enhance TMS Effects? Frontiers in Human Neuroscience, 13. https://doi.org/10.3389/fnhum.2019.00263Welker, W. I. (1964). Analysis of Sniffing of the Albino Rat. Behaviour, 22(3/4), 223–244.Wilson, S. P., & Moore, C. (2016). S1 Somatotopic Maps. En T. Prescott, E. Ahissar, & E. Izhikevich (Eds.), Scholarpedia of Touch (pp. 565–576). Atlantis Press. https://doi.org/10.2991/978-94-6239-133-8_43Yamashita, T., Vavladeli, A., Pala, A., Galan, K., Crochet, S., Petersen, S. S. A., & Petersen, C. C. H. (2018). Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex. Frontiers in Neuroanatomy, 12, 33. https://doi.org/10.3389/fnana.2018.00033Yang, Y., & Calakos, N. (2013). Presynaptic long-term plasticity. Frontiers in Synaptic Neuroscience, 5. https://www.frontiersin.org/articles/10.3389/fnsyn.2013.00008Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N., Yamashita, S., Bowman, I., Toga, A. W., & Dong, H.-W. (2014). Neural Networks of the Mouse Neocortex. Cell, 156(5), 1096–1111. https://doi.org/10.1016/j.cell.2014.02.023Zucker, R. S., & Regehr, W. G. (2002). Short-Term Synaptic Plasticity. Annual Review of Physiology, 64(1), 355–405. https://doi.org/10.1146/annurev.physiol.64.092501.114547InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86667/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1024543251.2024.pdf1024543251.2024.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf4074354https://repositorio.unal.edu.co/bitstream/unal/86667/2/1024543251.2024.pdfec5b738955ec1280ef17b9413482c51bMD52THUMBNAIL1024543251.2024.pdf.jpg1024543251.2024.pdf.jpgGenerated Thumbnailimage/jpeg4683https://repositorio.unal.edu.co/bitstream/unal/86667/3/1024543251.2024.pdf.jpgf936261789c2eeb68604d5d9b9a84fadMD53unal/86667oai:repositorio.unal.edu.co:unal/866672024-08-27 23:11:04.725Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=