Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design

ilustraciones, fotografías a color

Autores:
Castañeda Parra, Fahir Dario
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83700
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83700
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud
600 - Tecnología (Ciencias aplicadas)
Matriz extracelular
Ingeniería de tejidos
Extracellular Matrix
Tissue Engineering
Cellular materials
Generative design
Finite element method
Bone scaffold
Materiales celulares
Diseño generativo
Método de elementos finitos
Andamio óseo
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_14507e64ce6082bcc502c08817da8ba4
oai_identifier_str oai:repositorio.unal.edu.co:unal/83700
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
dc.title.translated.spa.fl_str_mv Diseño de scaffolds para regeneración de tejido óseo mediante imágenes diagnósticas y diseño generativo
title Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
spellingShingle Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
610 - Medicina y salud
600 - Tecnología (Ciencias aplicadas)
Matriz extracelular
Ingeniería de tejidos
Extracellular Matrix
Tissue Engineering
Cellular materials
Generative design
Finite element method
Bone scaffold
Materiales celulares
Diseño generativo
Método de elementos finitos
Andamio óseo
title_short Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
title_full Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
title_fullStr Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
title_full_unstemmed Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
title_sort Design of scaffolds for bone tissue regeneration through diagnostic imaging and generative design
dc.creator.fl_str_mv Castañeda Parra, Fahir Dario
dc.contributor.advisor.none.fl_str_mv Garzón Alvarado, Diego Alexander
dc.contributor.author.none.fl_str_mv Castañeda Parra, Fahir Dario
dc.contributor.researchgroup.spa.fl_str_mv Gnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.contributor.orcid.spa.fl_str_mv Castañeda Parra, Fahir Dario [0000-0002-7191-5940]
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud
600 - Tecnología (Ciencias aplicadas)
topic 610 - Medicina y salud
600 - Tecnología (Ciencias aplicadas)
Matriz extracelular
Ingeniería de tejidos
Extracellular Matrix
Tissue Engineering
Cellular materials
Generative design
Finite element method
Bone scaffold
Materiales celulares
Diseño generativo
Método de elementos finitos
Andamio óseo
dc.subject.decs.spa.fl_str_mv Matriz extracelular
Ingeniería de tejidos
dc.subject.decs.eng.fl_str_mv Extracellular Matrix
Tissue Engineering
dc.subject.proposal.eng.fl_str_mv Cellular materials
Generative design
Finite element method
Bone scaffold
dc.subject.proposal.spa.fl_str_mv Materiales celulares
Diseño generativo
Método de elementos finitos
Andamio óseo
description ilustraciones, fotografías a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-04-12T16:26:12Z
dc.date.available.none.fl_str_mv 2023-04-12T16:26:12Z
dc.date.issued.none.fl_str_mv 2023-03-31
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83700
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83700
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv M. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.
J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology. I: Structure, blood supply, cells, matrix, and mineralization.,” Instr Course Lect, vol. 45, pp. 371–86, 1996, doi: 10.3390/jfb1010022.
J. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos: una introducción Osseous Regeneration through Tissue Engineering :,” Redalyc.org, p. 13, 2009, [Online]. Available: http://www.redalyc.org/pdf/1792/179214945008.pdf
K. a Hing, “Bone repair in the twenty-first century: biology, chemistry or engineering?,” Philos Trans A Math Phys Eng Sci, vol. 362, no. 1825, pp. 2821–50, 2004, doi: 10.1098/rsta.2004.1466.
International Osteoporosis Foundation, “Osteoporosis en Colombia,” International Osteoporosis Foundation, p. 3, 2012, [Online]. Available: https://www.iofbonehealth.org/sites/default/files/media/PDFs/Regional Audits/2012- Latin_America_Audit-Colombia-ES_0_0.pdf
Elespectador.com, “En Colombia se realizan 10.000 reemplazos de cadera o rodilla al año - ELESPECTADOR.COM,” El Espectador, Bogotá, 2009. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elespectador.com/noticias/salud/articulo114216- colombia-se-realizan-10000-reemplazos-de-cadera-o-rodilla-al-ano
N. Ospina Vélez, “Reemplazo articular aumenta en personas jóvenes,” El Colombiano, 2012. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elcolombiano.com/historico/reemplazo_articular_aumenta_en_personas_ jovenes-EBEC_177333
D. Z. Amaro, “Regeneración de tejido : Una solución para la deficiencia ósea,” 2012.
L. J. Bonassar and C. a Vacanti, “Tissue engineering: the first decade and beyond.,” J Cell Biochem Suppl, vol. 30–31, no. September, pp. 297–303, 1998, doi: 10.1002/(SICI)1097- 4644(1998)72.
W. M. Saltzman and T. R. Kyriakides, Cell interactions with polymers_Lanza19.pdf, Third Edit. Elsevier Inc., 2014. doi: 10.1016/B978-0-12-370615-7.50024-X
L. J. Gibson and M. F. Ashby, Cellular Solids, vol. 22, no. 4. Cambridge: Cambridge University Press, 1997. doi: 10.1017/CBO9781139878326.
M. Scheffler and P. Colombo, Cellular Ceramics. Wiley, 2005. doi: 10.1002/3527606696.
L. J. Gibson, M. F. Ashby, G. N. Karam, U. Wegst, and H. R. Shercliff, “The Mechanical Properties of Natural Materials. II. Microstructures for Mechanical Efficiency,” Proceedings: Mathematical and Physical Sciences, vol. 450. Royal Society, pp. 141–162. doi: 10.2307/52663.
J. G. Skedros and S. L. Baucom, “Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur,” J Theor Biol, vol. 244, no. 1, pp. 15–45, Jan. 2007, doi: 10.1016/j.jtbi.2006.06.029.
C. H. Turner, “On Wolff’s law of trabecular architecture,” J Biomech, vol. 25, no. 1, pp. 1– 9, Jan. 1992, doi: 10.1016/0021-9290(92)90240-2.
L. Esteban-Tejeda et al., “Bone tissue scaffolds based on antimicrobial SiO2-Na2OAl2O3-CaO-B2O3 glass,” J Non Cryst Solids, vol. 432, pp. 73–80, 2016, doi: 10.1016/j.jnoncrysol.2015.05.040.
Q. Fu, Bioactive Glass Scaffolds for Bone Tissue Engineering. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00015-x.
Y. Kim, J. Y. Lim, G. H. Yang, J.-H. Seo, H.-S. Ryu, and G. Kim, “3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration,” Journal of Industrial and Engineering Chemistry, 2019, doi: 10.1016/j.jiec.2019.06.027.
Z. Khurshid et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00018-5.
A. M. Deliormanli, “Size-dependent degradation and bioactivity of borate bioactive glass,” Ceram Int, vol. 39, no. 7, pp. 8087–8095, 2013, doi: 10.1016/j.ceramint.2013.03.081.
J. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J Mech Behav Biomed Mater, vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.
D. W. Rosen, S. Johnston, M. Reed, and H. Wang, “Design of General Lattice Structures for Lightweight and Compliance Applications,” Rapid Manufacturing Conference, no. March, pp. 1–14, 2006.
S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.
M. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.
C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.
Y. Wang, “Periodic surface modeling for computer aided nano design,” CAD Computer Aided Design, vol. 39, no. 3, pp. 179–189, Mar. 2007, doi: 10.1016/j.cad.2006.09.005.
I. Maskery et al., “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing,” Polymer (Guildf), vol. 152, pp. 62–71, Sep. 2018, doi: 10.1016/J.POLYMER.2017.11.049.
O. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, Dec. 2013, doi: 10.1007/s00158-013-0978-6.
J. Wang and R. Rai, “Classification of Bio-Inspired Periodic Cubic Cellular Materials Based on Compressive Deformation Behaviors of 3D Printed Parts and FE Simulations,” in Volume 7: 28th International Conference on Design Theory and Methodology, ASME, Aug. 2016, p. V007T06A003. doi: 10.1115/DETC2016-59729.
S. J. Hollister, R. A. Levy, T.-M. Chu, J. W. Halloran, and S. E. Feinberg, “An image-based approach for designing and manufacturing craniofacial scaffolds,” Int J Oral Maxillofac Surg, vol. 29, no. 1, pp. 67–71, 2000, doi: 10.1034/j.1399-0020.2000.290115.x.
M. Fantini and M. Curto, “Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 12, no. 2, pp. 585–596, May 2018, doi: 10.1007/s12008-017-0416-x.
S. Krish and Sivam, “A practical generative design method,” Computer-Aided Design, vol. 43, no. 1, pp. 88–100, Jan. 2011, doi: 10.1016/j.cad.2010.09.009.
G. Marchiori et al., “Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA,” Med Eng Phys, vol. 69, pp. 92–99, 2019, doi: 10.1016/j.medengphy.2019.04.009.
A. Di Luca et al., “Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds,” Sci Rep, vol. 6, no. February, pp. 1–13, 2016, doi: 10.1038/srep22898.
G. Staffa et al., “Custom made bioceramic implants in complex and large cranial reconstruction: A two-year follow-up,” Journal of Cranio-Maxillofacial Surgery, vol. 40, no. 3, 2012, doi: 10.1016/j.jcms.2011.04.014.
A. R. Smith, “Alpha and the history of digital compositing,” Microsoft Tech Memo 7, vol. 24, pp. 1–10, 1995.
D.-S. Kim and K. Sugihara, “New trends in Voronoi diagrams for CAD/CAM/CAE,” Computer-Aided Design, vol. 41, no. 5, pp. 325–326, May 2009, doi: 10.1016/J.CAD.2008.10.001.
S. Fortune, “Voronoi diagrams and delaunay triangulations,” in Handbook of Discrete and Computational Geometry, Third Edition, 2017, pp. 705–721. doi: 10.1201/9781315119601.
Fred A. Mettler.r., Essentials of Radiology, vol. 1. 2005. doi: 10.1136/bmj.1.4647.229-a.
S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/j.tibtech.2012.07.005.
J. P. Bilezikian, L. G. Raisz, and T. J. Martin, Principles of Bone Biology 3, vol. 1, no. 9. Academic Press, 2008. doi: 10.3174/ajnr.A1712.
D. Alfredo and Q. Rodríguez, “MODELO COMPUTACIONAL DE REMODELAMIENTO ÓSEO MEDIANTE ESTRUCTURAS DISCRETAS,” Universidad Nacional de Colombia, Bogotá, 2021.
M. P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-05086-6.
M. P. Bendsøe, “Optimal shape design as a material distribution problem,” Structural Optimization, vol. 1, no. 4, pp. 193–202, 1989, doi: 10.1007/BF01650949.
M. Yliperttula, B. G. Chung, A. Navaladi, A. Manbachi, and A. Urtti, “High-throughput screening of cell responses to biomaterials,” European Journal of Pharmaceutical Sciences, vol. 35, no. 3. pp. 151–160, Oct. 02, 2008. doi: 10.1016/j.ejps.2008.04.012.
R. Dimitriou, E. Jones, D. McGonagle, and P. v Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med, vol. 9, no. 1, p. 66, Dec. 2011, doi: 10.1186/1741-7015-9-66.
V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.
S. Hofmann et al., “Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds,” Biomaterials, vol. 28, no. 6, pp. 1152– 1162, Feb. 2007, doi: 10.1016/j.biomaterials.2006.10.019.
A. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt, “The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth,” Biomaterials, vol. 30, no. 7, pp. 1440–1451, Mar. 2009, doi: 10.1016/j.biomaterials.2008.10.056.
Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, vol. 26, no. 34, pp. 7082–7094, Dec. 2005, doi: 10.1016/j.biomaterials.2005.05.022.
L. Meinel et al., “Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds,” J Biomed Mater Res A, vol. 71, no. 1, pp. 25–34, Oct. 2004, doi: 10.1002/jbm.a.30117.
L. Meinel et al., “Silk implants for the healing of critical size bone defects,” Bone, vol. 37, no. 5, pp. 688–698, 2005, doi: 10.1016/j.bone.2005.06.010.
L. Meinel et al., “Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds,” Biotechnol Bioeng, vol. 88, no. 3, pp. 379–391, Nov. 2004, doi: 10.1002/bit.20252.
L. Uebersax et al., “Effect of Scaffold Design on Bone Morphology In Vitro.”
X. Liu and P. X. Ma, “Polymeric Scaffolds for Bone Tissue Engineering,” 2004.
W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds,” 2002.
K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, 2000, doi: 10.1016/S0142- 9612(00)00102-2.
D. W. Hutmacher, “Sca!olds in tissue engineering bone and cartilage,” 2000.
J. Raghunath, J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian, “Biomaterials and scaffold design: key to tissue-engineering cartilage,” Biotechnol Appl Biochem, vol. 46, no. 2, p. 73, Feb. 2007, doi: 10.1042/ba20060134.
K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18. pp. 3413–3431, Jun. 2006. doi: 10.1016/j.biomaterials.2006.01.039.
Y. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, “Stem cell-based tissue engineering with silk biomaterials,” Biomaterials, vol. 27, no. 36. pp. 6064–6082, Dec. 2006. doi: 10.1016/j.biomaterials.2006.07.008.
C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 991–1007, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.013.
Y. Wang et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24–25, pp. 3415–3428, Aug. 2008, doi: 10.1016/j.biomaterials.2008.05.002.
L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 762–798, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.017.
E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2. pp. 215–228, Jan. 14, 2008. doi: 10.1016/j.addr.2007.08.037.
C. A. Gersbach, J. E. Phillips, and A. J. García, “Genetic engineering for skeletal regenerative medicine,” Annual Review of Biomedical Engineering, vol. 9. pp. 87–119, 2007. doi: 10.1146/annurev.bioeng.9.060906.151949.
S. Cartmell, “Controlled release scaffolds for bone tissue engineering,” J Pharm Sci, vol. 98, no. 2, pp. 430–441, 2009, doi: 10.1002/jps.21431.
F. Ben-Hatira, K. Saidane, and A. Mrabet, “A finite element modeling of the human lumbar unit including the spinal cord,” J Biomed Sci Eng, vol. 05, no. 03, pp. 146–152, 2012, doi: 10.4236/jbise.2012.53019.
F. A. Pintar N Yoganandan M Pesigan J Reinartz A Sances and J. J. F Cusick, “Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading,” 1995. [Online]. Available: http://biomechanical.asmedigitalcollection.asme.org/
M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nat Biotechnol, vol. 23, no. 1, pp. 47–55, 2005.
B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996.
B. A. C. Harley, H.-D. Kim, M. H. Zaman, I. V Yannas, D. A. Lauffenburger, and L. J. Gibson, “Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions,” Biophys J, vol. 95, no. 8, p. 4013—4024, 2008, doi: 10.1529/biophysj.107.122598.
S.-W. Choi, Y. Zhang, M. R. Macewan, and Y. Xia, “Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes,” Adv Healthc Mater, vol. 2, no. 1, p. 145—154, 2013, doi: 10.1002/adhm.201200106.
S. J. Hollister, “Porous scaffold design for tissue engineering,” vol. 4, no. July, 2005.
L. R. Madden et al., “Proangiogenic scaffolds as functional templates for cardiac tissue engineering,” Proc Natl Acad Sci U S A, vol. 107, no. 34, p. 15211—15216, 2010, doi: 10.1073/pnas.1006442107.
F. Bai et al., “The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo Biomed.” Mater, 2011.
A. P. Roberts and E. J. Garboczi, “ELASTIC MODULI OF MODEL RANDOM THREEDIMENSIONAL CLOSED-CELL CELLULAR SOLIDS,” 2001. [Online]. Available: www.elsevier.com/locate/actamat
Y. X. Gan, C. Chen, and Y. P. Shen, “Three-dimensional modeling of the mechanical property of linearly elastic open cell foams,” Int J Solids Struct, vol. 42, no. 26, pp. 6628– 6642, Dec. 2005, doi: 10.1016/j.ijsolstr.2005.03.002.
B. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, p. 110224, 2021, doi: 10.1016/j.matdes.2021.110224.
S. Gómez, M. D. Vlad, J. López, and E. Fernández, “Design and properties of 3D scaffolds for bone tissue engineering,” Acta Biomater, vol. 42, no. June, pp. 341–350, 2016, doi: 10.1016/j.actbio.2016.06.032.
V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27. Elsevier BV, pp. 5474–5491, 2005. doi: 10.1016/j.biomaterials.2005.02.002.
C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.
N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold Library for Tissue Engineering : A Geometric Evaluation,” vol. 2012, 2012, doi: 10.1155/2012/407805.
M. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 64 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83700/4/1032457113_2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/83700/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83700/5/1032457113_2023.pdf.jpg
bitstream.checksum.fl_str_mv 5d7593ac387b8093dfb73b7b275bc55c
eb34b1cf90b7e1103fc9dfd26be24b4a
104d2dd745fe3e2fdf6962d3dc3c4b9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886638742142976
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Garzón Alvarado, Diego Alexandera780fc0a2dd14ac611c37bca9998c94bCastañeda Parra, Fahir Dario4d79bd7b048f04f316d7678d4517ec9cGnum Grupo de Modelado y Métodos Numericos en IngenieríaCastañeda Parra, Fahir Dario [0000-0002-7191-5940]2023-04-12T16:26:12Z2023-04-12T16:26:12Z2023-03-31https://repositorio.unal.edu.co/handle/unal/83700Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a colorilustraciones, fotografías principalmente colorBone tissue engineering focuses, in addition to other things, on the understanding of bone structures to promote their formation with scaffolds. The manufacturing processes of scaffolds with variable density are complicated for traditional manufacturing methods, where localized holes are drilled in structures to mimic bone architecture. In recent years, tissue engineering has benefited from advances in the development of additive manufacturing, which allows the creation of complex geometries such as scaffolds. To explore this method, the use of image-based design is proposed. In this thesis, a scaffold with variable internal density is developed, which can be fabricated by additive manufacturing by controlling the external and internal geometry of the structure, porosity, and pore size from diagnostic images. (Texto tomado de la fuente)La ingeniería de tejidos ósea se encarga, entre otros, de la comprensión de las estructuras de los huesos para tratar de promover su formación con scaffolds. Los procesos de fabricación de scaffolds con densidad variable se dificultan para métodos tradicionales de manufactura en donde se realizan agujeros localizados en estructuras con el objetivo de lograr imitar la arquitectura del hueso. En los últimos años, la Ingeniería de Tejidos se ha visto beneficiada de los avances que se han realizado en el desarrollo de la manufactura aditiva, la cual permite la creación de geometrías complejas como las de los scaffolds. Para incursionar en este método, se propone el uso del diseño basado en imágenes diagnosticas. En esta tesis se desarrolla un scaffold con densidad interna variable, que puede ser llevado a su fabricación por manufactura aditiva controlando geometría externa e interna de la estructura, porosidad y tamaño de poro a partir de imágenes diagnosticas.MaestríaMagíster en Ingeniería - Materiales y ProcesosIngeniería de tejidosx, 64 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud600 - Tecnología (Ciencias aplicadas)Matriz extracelularIngeniería de tejidosExtracellular MatrixTissue EngineeringCellular materialsGenerative designFinite element methodBone scaffoldMateriales celularesDiseño generativoMétodo de elementos finitosAndamio óseoDesign of scaffolds for bone tissue regeneration through diagnostic imaging and generative designDiseño de scaffolds para regeneración de tejido óseo mediante imágenes diagnósticas y diseño generativoTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMM. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology. I: Structure, blood supply, cells, matrix, and mineralization.,” Instr Course Lect, vol. 45, pp. 371–86, 1996, doi: 10.3390/jfb1010022.J. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos: una introducción Osseous Regeneration through Tissue Engineering :,” Redalyc.org, p. 13, 2009, [Online]. Available: http://www.redalyc.org/pdf/1792/179214945008.pdfK. a Hing, “Bone repair in the twenty-first century: biology, chemistry or engineering?,” Philos Trans A Math Phys Eng Sci, vol. 362, no. 1825, pp. 2821–50, 2004, doi: 10.1098/rsta.2004.1466.International Osteoporosis Foundation, “Osteoporosis en Colombia,” International Osteoporosis Foundation, p. 3, 2012, [Online]. Available: https://www.iofbonehealth.org/sites/default/files/media/PDFs/Regional Audits/2012- Latin_America_Audit-Colombia-ES_0_0.pdfElespectador.com, “En Colombia se realizan 10.000 reemplazos de cadera o rodilla al año - ELESPECTADOR.COM,” El Espectador, Bogotá, 2009. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elespectador.com/noticias/salud/articulo114216- colombia-se-realizan-10000-reemplazos-de-cadera-o-rodilla-al-anoN. Ospina Vélez, “Reemplazo articular aumenta en personas jóvenes,” El Colombiano, 2012. Accessed: Nov. 25, 2019. [Online]. Available: https://www.elcolombiano.com/historico/reemplazo_articular_aumenta_en_personas_ jovenes-EBEC_177333D. Z. Amaro, “Regeneración de tejido : Una solución para la deficiencia ósea,” 2012.L. J. Bonassar and C. a Vacanti, “Tissue engineering: the first decade and beyond.,” J Cell Biochem Suppl, vol. 30–31, no. September, pp. 297–303, 1998, doi: 10.1002/(SICI)1097- 4644(1998)72.W. M. Saltzman and T. R. Kyriakides, Cell interactions with polymers_Lanza19.pdf, Third Edit. Elsevier Inc., 2014. doi: 10.1016/B978-0-12-370615-7.50024-XL. J. Gibson and M. F. Ashby, Cellular Solids, vol. 22, no. 4. Cambridge: Cambridge University Press, 1997. doi: 10.1017/CBO9781139878326.M. Scheffler and P. Colombo, Cellular Ceramics. Wiley, 2005. doi: 10.1002/3527606696.L. J. Gibson, M. F. Ashby, G. N. Karam, U. Wegst, and H. R. Shercliff, “The Mechanical Properties of Natural Materials. II. Microstructures for Mechanical Efficiency,” Proceedings: Mathematical and Physical Sciences, vol. 450. Royal Society, pp. 141–162. doi: 10.2307/52663.J. G. Skedros and S. L. Baucom, “Mathematical analysis of trabecular ‘trajectories’ in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur,” J Theor Biol, vol. 244, no. 1, pp. 15–45, Jan. 2007, doi: 10.1016/j.jtbi.2006.06.029.C. H. Turner, “On Wolff’s law of trabecular architecture,” J Biomech, vol. 25, no. 1, pp. 1– 9, Jan. 1992, doi: 10.1016/0021-9290(92)90240-2.L. Esteban-Tejeda et al., “Bone tissue scaffolds based on antimicrobial SiO2-Na2OAl2O3-CaO-B2O3 glass,” J Non Cryst Solids, vol. 432, pp. 73–80, 2016, doi: 10.1016/j.jnoncrysol.2015.05.040.Q. Fu, Bioactive Glass Scaffolds for Bone Tissue Engineering. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00015-x.Y. Kim, J. Y. Lim, G. H. Yang, J.-H. Seo, H.-S. Ryu, and G. Kim, “3D-printed PCL/bioglass (BGS-7) composite scaffolds with high toughness and cell-responses for bone tissue regeneration,” Journal of Industrial and Engineering Chemistry, 2019, doi: 10.1016/j.jiec.2019.06.027.Z. Khurshid et al., Novel Techniques of Scaffold Fabrication for Bioactive Glasses. Elsevier Ltd., 2019. doi: 10.1016/b978-0-08-102196-5.00018-5.A. M. Deliormanli, “Size-dependent degradation and bioactivity of borate bioactive glass,” Ceram Int, vol. 39, no. 7, pp. 8087–8095, 2013, doi: 10.1016/j.ceramint.2013.03.081.J. Wieding, A. Wolf, and R. Bader, “Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone,” J Mech Behav Biomed Mater, vol. 37, pp. 56–68, 2014, doi: 10.1016/j.jmbbm.2014.05.002.D. W. Rosen, S. Johnston, M. Reed, and H. Wang, “Design of General Lattice Structures for Lightweight and Compliance Applications,” Rapid Manufacturing Conference, no. March, pp. 1–14, 2006.S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.M. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.Y. Wang, “Periodic surface modeling for computer aided nano design,” CAD Computer Aided Design, vol. 39, no. 3, pp. 179–189, Mar. 2007, doi: 10.1016/j.cad.2006.09.005.I. Maskery et al., “Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing,” Polymer (Guildf), vol. 152, pp. 62–71, Sep. 2018, doi: 10.1016/J.POLYMER.2017.11.049.O. Sigmund and K. Maute, “Topology optimization approaches,” Structural and Multidisciplinary Optimization, vol. 48, no. 6, pp. 1031–1055, Dec. 2013, doi: 10.1007/s00158-013-0978-6.J. Wang and R. Rai, “Classification of Bio-Inspired Periodic Cubic Cellular Materials Based on Compressive Deformation Behaviors of 3D Printed Parts and FE Simulations,” in Volume 7: 28th International Conference on Design Theory and Methodology, ASME, Aug. 2016, p. V007T06A003. doi: 10.1115/DETC2016-59729.S. J. Hollister, R. A. Levy, T.-M. Chu, J. W. Halloran, and S. E. Feinberg, “An image-based approach for designing and manufacturing craniofacial scaffolds,” Int J Oral Maxillofac Surg, vol. 29, no. 1, pp. 67–71, 2000, doi: 10.1034/j.1399-0020.2000.290115.x.M. Fantini and M. Curto, “Interactive design and manufacturing of a Voronoi-based biomimetic bone scaffold for morphological characterization,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 12, no. 2, pp. 585–596, May 2018, doi: 10.1007/s12008-017-0416-x.S. Krish and Sivam, “A practical generative design method,” Computer-Aided Design, vol. 43, no. 1, pp. 88–100, Jan. 2011, doi: 10.1016/j.cad.2010.09.009.G. Marchiori et al., “Design of a novel procedure for the optimization of the mechanical performances of 3D printed scaffolds for bone tissue engineering combining CAD, Taguchi method and FEA,” Med Eng Phys, vol. 69, pp. 92–99, 2019, doi: 10.1016/j.medengphy.2019.04.009.A. Di Luca et al., “Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds,” Sci Rep, vol. 6, no. February, pp. 1–13, 2016, doi: 10.1038/srep22898.G. Staffa et al., “Custom made bioceramic implants in complex and large cranial reconstruction: A two-year follow-up,” Journal of Cranio-Maxillofacial Surgery, vol. 40, no. 3, 2012, doi: 10.1016/j.jcms.2011.04.014.A. R. Smith, “Alpha and the history of digital compositing,” Microsoft Tech Memo 7, vol. 24, pp. 1–10, 1995.D.-S. Kim and K. Sugihara, “New trends in Voronoi diagrams for CAD/CAM/CAE,” Computer-Aided Design, vol. 41, no. 5, pp. 325–326, May 2009, doi: 10.1016/J.CAD.2008.10.001.S. Fortune, “Voronoi diagrams and delaunay triangulations,” in Handbook of Discrete and Computational Geometry, Third Edition, 2017, pp. 705–721. doi: 10.1201/9781315119601.Fred A. Mettler.r., Essentials of Radiology, vol. 1. 2005. doi: 10.1136/bmj.1.4647.229-a.S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/j.tibtech.2012.07.005.J. P. Bilezikian, L. G. Raisz, and T. J. Martin, Principles of Bone Biology 3, vol. 1, no. 9. Academic Press, 2008. doi: 10.3174/ajnr.A1712.D. Alfredo and Q. Rodríguez, “MODELO COMPUTACIONAL DE REMODELAMIENTO ÓSEO MEDIANTE ESTRUCTURAS DISCRETAS,” Universidad Nacional de Colombia, Bogotá, 2021.M. P. Bendsøe and O. Sigmund, Topology Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. doi: 10.1007/978-3-662-05086-6.M. P. Bendsøe, “Optimal shape design as a material distribution problem,” Structural Optimization, vol. 1, no. 4, pp. 193–202, 1989, doi: 10.1007/BF01650949.M. Yliperttula, B. G. Chung, A. Navaladi, A. Manbachi, and A. Urtti, “High-throughput screening of cell responses to biomaterials,” European Journal of Pharmaceutical Sciences, vol. 35, no. 3. pp. 151–160, Oct. 02, 2008. doi: 10.1016/j.ejps.2008.04.012.R. Dimitriou, E. Jones, D. McGonagle, and P. v Giannoudis, “Bone regeneration: current concepts and future directions,” BMC Med, vol. 9, no. 1, p. 66, Dec. 2011, doi: 10.1186/1741-7015-9-66.V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.S. Hofmann et al., “Control of in vitro tissue-engineered bone-like structures using human mesenchymal stem cells and porous silk scaffolds,” Biomaterials, vol. 28, no. 6, pp. 1152– 1162, Feb. 2007, doi: 10.1016/j.biomaterials.2006.10.019.A. C. Jones, C. H. Arns, D. W. Hutmacher, B. K. Milthorpe, A. P. Sheppard, and M. A. Knackstedt, “The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth,” Biomaterials, vol. 30, no. 7, pp. 1440–1451, Mar. 2009, doi: 10.1016/j.biomaterials.2008.10.056.Y. Wang, U. J. Kim, D. J. Blasioli, H. J. Kim, and D. L. Kaplan, “In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells,” Biomaterials, vol. 26, no. 34, pp. 7082–7094, Dec. 2005, doi: 10.1016/j.biomaterials.2005.05.022.L. Meinel et al., “Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds,” J Biomed Mater Res A, vol. 71, no. 1, pp. 25–34, Oct. 2004, doi: 10.1002/jbm.a.30117.L. Meinel et al., “Silk implants for the healing of critical size bone defects,” Bone, vol. 37, no. 5, pp. 688–698, 2005, doi: 10.1016/j.bone.2005.06.010.L. Meinel et al., “Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds,” Biotechnol Bioeng, vol. 88, no. 3, pp. 379–391, Nov. 2004, doi: 10.1002/bit.20252.L. Uebersax et al., “Effect of Scaffold Design on Bone Morphology In Vitro.”X. Liu and P. X. Ma, “Polymeric Scaffolds for Bone Tissue Engineering,” 2004.W. L. Murphy, R. G. Dennis, J. L. Kileny, and D. J. Mooney, “Salt Fusion: An Approach to Improve Pore Interconnectivity within Tissue Engineering Scaffolds,” 2002.K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, no. 23, pp. 2347–2359, 2000, doi: 10.1016/S0142- 9612(00)00102-2.D. W. Hutmacher, “Sca!olds in tissue engineering bone and cartilage,” 2000.J. Raghunath, J. Rollo, K. M. Sales, P. E. Butler, and A. M. Seifalian, “Biomaterials and scaffold design: key to tissue-engineering cartilage,” Biotechnol Appl Biochem, vol. 46, no. 2, p. 73, Feb. 2007, doi: 10.1042/ba20060134.K. Rezwan, Q. Z. Chen, J. J. Blaker, and A. R. Boccaccini, “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering,” Biomaterials, vol. 27, no. 18. pp. 3413–3431, Jun. 2006. doi: 10.1016/j.biomaterials.2006.01.039.Y. Wang, H. J. Kim, G. Vunjak-Novakovic, and D. L. Kaplan, “Stem cell-based tissue engineering with silk biomaterials,” Biomaterials, vol. 27, no. 36. pp. 6064–6082, Dec. 2006. doi: 10.1016/j.biomaterials.2006.07.008.C. Vepari and D. L. Kaplan, “Silk as a biomaterial,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 991–1007, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.013.Y. Wang et al., “In vivo degradation of three-dimensional silk fibroin scaffolds,” Biomaterials, vol. 29, no. 24–25, pp. 3415–3428, Aug. 2008, doi: 10.1016/j.biomaterials.2008.05.002.L. S. Nair and C. T. Laurencin, “Biodegradable polymers as biomaterials,” Progress in Polymer Science (Oxford), vol. 32, no. 8–9. pp. 762–798, Aug. 2007. doi: 10.1016/j.progpolymsci.2007.05.017.E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2. pp. 215–228, Jan. 14, 2008. doi: 10.1016/j.addr.2007.08.037.C. A. Gersbach, J. E. Phillips, and A. J. García, “Genetic engineering for skeletal regenerative medicine,” Annual Review of Biomedical Engineering, vol. 9. pp. 87–119, 2007. doi: 10.1146/annurev.bioeng.9.060906.151949.S. Cartmell, “Controlled release scaffolds for bone tissue engineering,” J Pharm Sci, vol. 98, no. 2, pp. 430–441, 2009, doi: 10.1002/jps.21431.F. Ben-Hatira, K. Saidane, and A. Mrabet, “A finite element modeling of the human lumbar unit including the spinal cord,” J Biomed Sci Eng, vol. 05, no. 03, pp. 146–152, 2012, doi: 10.4236/jbise.2012.53019.F. A. Pintar N Yoganandan M Pesigan J Reinartz A Sances and J. J. F Cusick, “Cervical Vertebral Strain Measurements Under Axial and Eccentric Loading,” 1995. [Online]. Available: http://biomechanical.asmedigitalcollection.asme.org/M. P. Lutolf and J. A. Hubbell, “Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering,” Nat Biotechnol, vol. 23, no. 1, pp. 47–55, 2005.B. D. Boyan, T. W. Hummert, D. D. Dean, and Z. Schwartz, “Role of material surfaces in regulating bone and cartilage cell response,” Biomaterials, vol. 17, no. 2, pp. 137–146, 1996.B. A. C. Harley, H.-D. Kim, M. H. Zaman, I. V Yannas, D. A. Lauffenburger, and L. J. Gibson, “Microarchitecture of three-dimensional scaffolds influences cell migration behavior via junction interactions,” Biophys J, vol. 95, no. 8, p. 4013—4024, 2008, doi: 10.1529/biophysj.107.122598.S.-W. Choi, Y. Zhang, M. R. Macewan, and Y. Xia, “Neovascularization in biodegradable inverse opal scaffolds with uniform and precisely controlled pore sizes,” Adv Healthc Mater, vol. 2, no. 1, p. 145—154, 2013, doi: 10.1002/adhm.201200106.S. J. Hollister, “Porous scaffold design for tissue engineering,” vol. 4, no. July, 2005.L. R. Madden et al., “Proangiogenic scaffolds as functional templates for cardiac tissue engineering,” Proc Natl Acad Sci U S A, vol. 107, no. 34, p. 15211—15216, 2010, doi: 10.1073/pnas.1006442107.F. Bai et al., “The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo Biomed.” Mater, 2011.A. P. Roberts and E. J. Garboczi, “ELASTIC MODULI OF MODEL RANDOM THREEDIMENSIONAL CLOSED-CELL CELLULAR SOLIDS,” 2001. [Online]. Available: www.elsevier.com/locate/actamatY. X. Gan, C. Chen, and Y. P. Shen, “Three-dimensional modeling of the mechanical property of linearly elastic open cell foams,” Int J Solids Struct, vol. 42, no. 26, pp. 6628– 6642, Dec. 2005, doi: 10.1016/j.ijsolstr.2005.03.002.B. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, p. 110224, 2021, doi: 10.1016/j.matdes.2021.110224.S. Gómez, M. D. Vlad, J. López, and E. Fernández, “Design and properties of 3D scaffolds for bone tissue engineering,” Acta Biomater, vol. 42, no. June, pp. 341–350, 2016, doi: 10.1016/j.actbio.2016.06.032.V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27. Elsevier BV, pp. 5474–5491, 2005. doi: 10.1016/j.biomaterials.2005.02.002.C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping . Part 2 : Parametric Library and Assembly Program,” Advanced manufacturing technology, vol. 21, pp. 302–312, 2003.N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold Library for Tissue Engineering : A Geometric Evaluation,” vol. 2012, 2012, doi: 10.1155/2012/407805.M. A. Wettergreen, B. S. Bucklen, B. Starly, E. Yuksel, W. Sun, and M. A. K. Liebschner, “Creation of a unit block library of architectures for use in assembled scaffold engineering,” Computer-Aided Design, vol. 37, no. 11, pp. 1141–1149, Sep. 2005, doi: DOI: 10.1016/j.cad.2005.02.005.EstudiantesInvestigadoresORIGINAL1032457113_2023.pdf1032457113_2023.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf9585081https://repositorio.unal.edu.co/bitstream/unal/83700/4/1032457113_2023.pdf5d7593ac387b8093dfb73b7b275bc55cMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83700/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1032457113_2023.pdf.jpg1032457113_2023.pdf.jpgGenerated Thumbnailimage/jpeg4697https://repositorio.unal.edu.co/bitstream/unal/83700/5/1032457113_2023.pdf.jpg104d2dd745fe3e2fdf6962d3dc3c4b9bMD55unal/83700oai:repositorio.unal.edu.co:unal/837002024-08-01 23:09:37.006Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=