Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar

ilustraciones, diagramas

Autores:
Morales Suarez, Germain Nicolas
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85995
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85995
https://repositorio.unal.edu.co/
Palabra clave:
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
DCGAN
Fotósfera
MHD
Deep learning
CNN
Pytorch
Photosphere
Aprendizaje profundo
Fotosfera
astronomía solar
deep learning
photosphere
solar astronomy
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_13cb07e96720a9742bc266c4da47b6a3
oai_identifier_str oai:repositorio.unal.edu.co:unal/85995
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
dc.title.translated.eng.fl_str_mv Application of Deep Learning techniques in modeling and observation of the photosphere
title Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
spellingShingle Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
DCGAN
Fotósfera
MHD
Deep learning
CNN
Pytorch
Photosphere
Aprendizaje profundo
Fotosfera
astronomía solar
deep learning
photosphere
solar astronomy
title_short Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
title_full Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
title_fullStr Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
title_full_unstemmed Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
title_sort Aplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solar
dc.creator.fl_str_mv Morales Suarez, Germain Nicolas
dc.contributor.advisor.spa.fl_str_mv Vargas Domínguez, Santiago
Shelyag, Sergiy
dc.contributor.author.spa.fl_str_mv Morales Suarez, Germain Nicolas
dc.subject.ddc.spa.fl_str_mv 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
DCGAN
Fotósfera
MHD
Deep learning
CNN
Pytorch
Photosphere
Aprendizaje profundo
Fotosfera
astronomía solar
deep learning
photosphere
solar astronomy
dc.subject.proposal.spa.fl_str_mv DCGAN
Fotósfera
MHD
Deep learning
CNN
dc.subject.proposal.eng.fl_str_mv Pytorch
Photosphere
dc.subject.wikidata.spa.fl_str_mv Aprendizaje profundo
Fotosfera
astronomía solar
dc.subject.wikidata.eng.fl_str_mv deep learning
photosphere
solar astronomy
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-04-29T19:54:42Z
dc.date.available.none.fl_str_mv 2024-04-29T19:54:42Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85995
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85995
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv M. Schüssler F. Cattaneo T. Emonet A. Vögler, S. Shelyag1 and T. Linde. Simulations of magneto- convection in the solar photosphere equations, methods, and results of the muram code. As- tronomy & Astrophysics, II:8–10, 2004.
C. M. Bishop. Neural networks for pattern recognition. Astronomy & Astrophysics, II:0–498, 1996.
Roger P Briggs. Solar Physics and Terrestrial Effects: A Curriculum Guide for Teachers, Grades 7–12. Space Environment Laboratory, National Oceanic and Atmospheric Administration, 1993.
I. Dabbura. Gradient descent algorithm and its variants, December 21 2017. URL https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3. towards Data Science.
Lore Goetschalckx, Alex Andonian, and Johan Wagemans. Generative adversarial networks un- lock new methods for cognitive science. Trends in Cognitive Sciences, September 2021. doi: 10.1016/j.tics.2021.07.002.
George Ellery Hale. On the probable existence of a magnetic field in sun-spots. Astrophysical Journal, 28:315–343, 1908.
Rom Harré. Models in science. Physics Education, 1978. URL https://api.semanticscholar. org/CorpusID:117952040.
Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep learning. The MIT Press, London, 2016.
James B Kaler. Stars and their spectra: an introduction to the spectral sequence. Cambridge University Press, 2011.
Sandesh Kumar. Redes neuronales de convolución en pocas palabras, julio 5 2020. URL https: //www.herevego.com/redes-neuronales-de-convolucion/. Home; Sandesh Kumar.
Joan Manuel Bullon Lahuerta and Ma Ángeles del Castillo Alarcos. Observación solar. APEA, Aso- ciación para la Enseñanza de la Astronomía, 2010.
Maud Langlois, Gil Moretto, Kit Richards, Steve Hegwer, and Thomas R Rimmele. Solar multi- conjugate adaptive optics at the dunn solar telescope: preliminary results. In Advancements in Adaptive Optics, volume 5490, pages 59–66. SPIE, 2004.
McCulloch, JY Pitts, Lettvin, PD Wall, and B Howland. Inhibition of impulses travelling in the primary afferent dorsal column fibres of cat spinal cord. In Fed Proc, volume 13, page 87, 1954.
Dale A Ostlie and Bradley W Carroll. An introduction to modern astrophysics. Addison-Wesley Read- ing, MA, USA, 2007.
Dina Prialnik. An Introduction to the Theory of Stellar Structure and Evolution. CAMBRIDGE, Cambridge, 2010.
Eric Ronald Priest. Solar magnetohydrodynamics, volume 21. Springer Science & Business Media, 2012.
David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.
Karl Schwarzschild. Gesammelte Werke Collected Works: Volume 1, volume 1. Springer-Verlag, 2013.
Sergiy Shelyag, Peter Keys, Mihalis Mathioudakis, and Francis P Keenan. Vorticity in the solar photosphere. Astronomy & Astrophysics, 526:A5, 2011.
K Wilhelm, P Lemaire, W Curdt, U Schühle, E Marsch, AI Poland, SD Jordan, RJ Thomas, DM Has- sler, MCE Huber, et al. First results of tide sumer telescope and spectrometer on soho: I. spectra and spectroradiometry. The First Results from SOHO, pages 75–104, 1997.
William Falcon et al. pytorch-lightning.readthedocs.io, Enero de 2024.
Friedrich Wöger, Thomas Rimmele, Andrew Ferayorni, Andrew Beard, Brian S Gregory, Predrag Sekulic, and Steven L Hegwer. The daniel k. inouye solar telescope (dkist)/visible broadband imager (vbi). Solar Physics, 296:1–25, 2021.
Harold Zirin. Astrophysics of the Sun. Cambridge University Press, Cambridge, UK, 1988. ISBN 978-0521343540.
Abdurrahman Öcal and Lale Özbakır. Supervised deep convolutional generative adversarial net- works. Neurocomputing, 449:389–398, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/ j.neucom.2021.03.125. URL https://www.sciencedirect.com/science/article/pii/ S0925231221005178.
W Dean Pesnell, B J. Thompson, and PC Chamberlin. The solar dynamics observatory (SDO). Springer, 2012.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 66 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85995/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85995/2/1023010074.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0717c9104ad22189530fbf08ebfafd2b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886492723740672
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vargas Domínguez, Santiagobe22c53e96dc3348c6f6be91604e15deShelyag, Sergiy4000ca5662ea578f7671b324d96837b5600Morales Suarez, Germain Nicolas36079b2b6cef3d1084b986f39896e13d2024-04-29T19:54:42Z2024-04-29T19:54:42Z2023https://repositorio.unal.edu.co/handle/unal/85995Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl presente trabajo se enmarca en las aplicaciones de las redes neuronales profundas para el modelamiento de los fenómenos presentes en la fotósfera solar. La investigación propuesta se basa en la construcción de red neuronal convolucional 3D profunda de tipo generativa, DCGAN por sus siglas en ingles, haciendo uso de las módulos de inteligencia artificial de Python como Pytorch para arquitectura de la de red neuronal. Se pretende entrenar una red neuronal capaz de generar grupos de cubos de una alta similitud con cubos de entrenamiento, dichos cubos corresponden a magnitudes físicas de la fotósfera solar tales como densidad, campo magnético, velocidad del plasma, temperatura, entre otras, obtenidas del código de simulación MURaM. Codigo de simulación desarrollado por el grupo Solar-MHD de instituto Max Planck desarrollado entre el 2001-2005 con la finalidad de generar simulaciones realistas de procesos de magneto-convección y actividades magneticas, que tienen caso sobre la zona convectiva del sol, el presente trabajo busca tomar sus resultado y tomarlos como datos de entrenamiento para la red neuronal generando datos nuevos con una similitud de manera visual y en los apartados físicos, posteriormente realizar una comparativa entre los resultados y los datos de entrenamiento, se proponen los retos para usar estas herramientas en el estudio de la fotósfera solar, tubos de flujo y poros. (Texto tomado de la fuente).The present work is framed in the applications of deep neural networks for the modeling of the phenomena present in the solar photosphere. The proposed research is based on the construction of a 3D deep generative convolutional neural network, DCGAN, using Python artificial intelligence modules such as Pytorch for neural network architecture. It is intended to train a neural network capable of generating groups of cubes of high similarity with training cubes, these cubes correspond to physical quantities of the solar photosphere such as density, magnetic field, plasma velocity, temperature, among others, obtained from the simulation code MURaM. Simulation code developed by the Solar-MHD group of the Max Planck Institute developed between 2001-2005 with the purpose of generating realistic simulations of magneto-convection processes and magnetic activities, which have an effect on the convective zone of the sun, The present work seeks to take its results and take them as training data for the neural network generating new data with a similarity in a visual way and in the physical sections, then make a comparison between the results and the training data, the challenges are proposed to use these tools in the study of the solar photosphere, flux tubes and pores.MaestríaMagíster en Ciencias - AstronomíaAstrofísica solarviii, 66 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - AstronomíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materialesDCGANFotósferaMHDDeep learningCNNPytorchPhotosphereAprendizaje profundoFotosferaastronomía solardeep learningphotospheresolar astronomyAplicación de técnicas de Deep Learning en modelamiento y observación de la fotósfera solarApplication of Deep Learning techniques in modeling and observation of the photosphereTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMM. Schüssler F. Cattaneo T. Emonet A. Vögler, S. Shelyag1 and T. Linde. Simulations of magneto- convection in the solar photosphere equations, methods, and results of the muram code. As- tronomy & Astrophysics, II:8–10, 2004.C. M. Bishop. Neural networks for pattern recognition. Astronomy & Astrophysics, II:0–498, 1996.Roger P Briggs. Solar Physics and Terrestrial Effects: A Curriculum Guide for Teachers, Grades 7–12. Space Environment Laboratory, National Oceanic and Atmospheric Administration, 1993.I. Dabbura. Gradient descent algorithm and its variants, December 21 2017. URL https://towardsdatascience.com/gradient-descent-algorithm-and-its-variants-10f652806a3. towards Data Science.Lore Goetschalckx, Alex Andonian, and Johan Wagemans. Generative adversarial networks un- lock new methods for cognitive science. Trends in Cognitive Sciences, September 2021. doi: 10.1016/j.tics.2021.07.002.George Ellery Hale. On the probable existence of a magnetic field in sun-spots. Astrophysical Journal, 28:315–343, 1908.Rom Harré. Models in science. Physics Education, 1978. URL https://api.semanticscholar. org/CorpusID:117952040.Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep learning. The MIT Press, London, 2016.James B Kaler. Stars and their spectra: an introduction to the spectral sequence. Cambridge University Press, 2011.Sandesh Kumar. Redes neuronales de convolución en pocas palabras, julio 5 2020. URL https: //www.herevego.com/redes-neuronales-de-convolucion/. Home; Sandesh Kumar.Joan Manuel Bullon Lahuerta and Ma Ángeles del Castillo Alarcos. Observación solar. APEA, Aso- ciación para la Enseñanza de la Astronomía, 2010.Maud Langlois, Gil Moretto, Kit Richards, Steve Hegwer, and Thomas R Rimmele. Solar multi- conjugate adaptive optics at the dunn solar telescope: preliminary results. In Advancements in Adaptive Optics, volume 5490, pages 59–66. SPIE, 2004.McCulloch, JY Pitts, Lettvin, PD Wall, and B Howland. Inhibition of impulses travelling in the primary afferent dorsal column fibres of cat spinal cord. In Fed Proc, volume 13, page 87, 1954.Dale A Ostlie and Bradley W Carroll. An introduction to modern astrophysics. Addison-Wesley Read- ing, MA, USA, 2007.Dina Prialnik. An Introduction to the Theory of Stellar Structure and Evolution. CAMBRIDGE, Cambridge, 2010.Eric Ronald Priest. Solar magnetohydrodynamics, volume 21. Springer Science & Business Media, 2012.David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.Karl Schwarzschild. Gesammelte Werke Collected Works: Volume 1, volume 1. Springer-Verlag, 2013.Sergiy Shelyag, Peter Keys, Mihalis Mathioudakis, and Francis P Keenan. Vorticity in the solar photosphere. Astronomy & Astrophysics, 526:A5, 2011.K Wilhelm, P Lemaire, W Curdt, U Schühle, E Marsch, AI Poland, SD Jordan, RJ Thomas, DM Has- sler, MCE Huber, et al. First results of tide sumer telescope and spectrometer on soho: I. spectra and spectroradiometry. The First Results from SOHO, pages 75–104, 1997.William Falcon et al. pytorch-lightning.readthedocs.io, Enero de 2024.Friedrich Wöger, Thomas Rimmele, Andrew Ferayorni, Andrew Beard, Brian S Gregory, Predrag Sekulic, and Steven L Hegwer. The daniel k. inouye solar telescope (dkist)/visible broadband imager (vbi). Solar Physics, 296:1–25, 2021.Harold Zirin. Astrophysics of the Sun. Cambridge University Press, Cambridge, UK, 1988. ISBN 978-0521343540.Abdurrahman Öcal and Lale Özbakır. Supervised deep convolutional generative adversarial net- works. Neurocomputing, 449:389–398, 2021. ISSN 0925-2312. doi: https://doi.org/10.1016/ j.neucom.2021.03.125. URL https://www.sciencedirect.com/science/article/pii/ S0925231221005178.W Dean Pesnell, B J. Thompson, and PC Chamberlin. The solar dynamics observatory (SDO). Springer, 2012.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85995/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1023010074.2024.pdf1023010074.2024.pdfTesis de Maestría en Ciencias - Astronomíaapplication/pdf42954073https://repositorio.unal.edu.co/bitstream/unal/85995/2/1023010074.2024.pdf0717c9104ad22189530fbf08ebfafd2bMD52unal/85995oai:repositorio.unal.edu.co:unal/859952024-04-29 14:58:17.294Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=