Strategy for multivariate Identification of diferentially expressed genes in microarray data
Abstract. Microarray technology has become one of the most important tools in understanding genetic expression in biological processes. As microarrays contain measurements of thousands of genes' expression levels across multiple conditions, identification of differentially expressed genes will...
- Autores:
-
Acosta Rivera, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/54111
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/54111
http://bdigital.unal.edu.co/48941/
- Palabra clave:
- 51 Matemáticas / Mathematics
57 Ciencias de la vida; Biología / Life sciences; biology
Microarrays
False Discovery Rate
Principal Components Analysis
Bootstrap
Microarreglos de ADN
Tasa de falsos positivos
Análisis en componentes principales,
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_124abde98e6b0f20d50ad023f8f2895c |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/54111 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
title |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
spellingShingle |
Strategy for multivariate Identification of diferentially expressed genes in microarray data 51 Matemáticas / Mathematics 57 Ciencias de la vida; Biología / Life sciences; biology Microarrays False Discovery Rate Principal Components Analysis Bootstrap Microarreglos de ADN Tasa de falsos positivos Análisis en componentes principales, |
title_short |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
title_full |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
title_fullStr |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
title_full_unstemmed |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
title_sort |
Strategy for multivariate Identification of diferentially expressed genes in microarray data |
dc.creator.fl_str_mv |
Acosta Rivera, Juan Pablo |
dc.contributor.author.spa.fl_str_mv |
Acosta Rivera, Juan Pablo |
dc.contributor.spa.fl_str_mv |
López-Kleine, Liliana |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 57 Ciencias de la vida; Biología / Life sciences; biology |
topic |
51 Matemáticas / Mathematics 57 Ciencias de la vida; Biología / Life sciences; biology Microarrays False Discovery Rate Principal Components Analysis Bootstrap Microarreglos de ADN Tasa de falsos positivos Análisis en componentes principales, |
dc.subject.proposal.spa.fl_str_mv |
Microarrays False Discovery Rate Principal Components Analysis Bootstrap Microarreglos de ADN Tasa de falsos positivos Análisis en componentes principales, |
description |
Abstract. Microarray technology has become one of the most important tools in understanding genetic expression in biological processes. As microarrays contain measurements of thousands of genes' expression levels across multiple conditions, identification of differentially expressed genes will necessarily involve data mining or large scale multiple testing procedures. To the date, advances in this regard have either been multivariate but descriptive, or inferential but univariate. In this work, we present a new multivariate inferential analysis method for detecting differentially expressed genes in microarray data. It estimates the positive false discovery rate (pFDR) using artificial components close to the data's principal components, but with an exact interpretation in terms of differential gene expression. Our method works best under very common assumptions and gives way to a new understanding of genetic differential expression in microarray data. We provide a methodology to analyse time course microarray experiments and some guidelines for assessing whether the required assumptions hold. We illustrate our method on two publicly available microarray data sets. |
publishDate |
2015 |
dc.date.issued.spa.fl_str_mv |
2015-05-19 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T19:23:31Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T19:23:31Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/54111 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/48941/ |
url |
https://repositorio.unal.edu.co/handle/unal/54111 http://bdigital.unal.edu.co/48941/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Departamento de Estadística |
dc.relation.references.spa.fl_str_mv |
Acosta Rivera, Juan Pablo (2015) Strategy for multivariate Identification of diferentially expressed genes in microarray data. Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/54111/1/Thesis%20Juan%20Pablo%20Acosta.pdf https://repositorio.unal.edu.co/bitstream/unal/54111/2/Thesis%20Juan%20Pablo%20Acosta.pdf.jpg |
bitstream.checksum.fl_str_mv |
d5f7044bf5c2828af7b2fcd4fb843a96 bc881e3f70fbe3d1ddbc2136fd4ad4a2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089753365053440 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López-Kleine, LilianaAcosta Rivera, Juan Pablob6c6587e-892e-4ab7-a0d5-94b19fcda2b93002019-06-29T19:23:31Z2019-06-29T19:23:31Z2015-05-19https://repositorio.unal.edu.co/handle/unal/54111http://bdigital.unal.edu.co/48941/Abstract. Microarray technology has become one of the most important tools in understanding genetic expression in biological processes. As microarrays contain measurements of thousands of genes' expression levels across multiple conditions, identification of differentially expressed genes will necessarily involve data mining or large scale multiple testing procedures. To the date, advances in this regard have either been multivariate but descriptive, or inferential but univariate. In this work, we present a new multivariate inferential analysis method for detecting differentially expressed genes in microarray data. It estimates the positive false discovery rate (pFDR) using artificial components close to the data's principal components, but with an exact interpretation in terms of differential gene expression. Our method works best under very common assumptions and gives way to a new understanding of genetic differential expression in microarray data. We provide a methodology to analyse time course microarray experiments and some guidelines for assessing whether the required assumptions hold. We illustrate our method on two publicly available microarray data sets.Los microarreglos de ADN se han convertido en una de las herramientas más importantes para entender la expresión génica en procesos biológicos. Como cada microarreglo contiene mediciones del nivel de expressión de miles de genes en múltiples condiciones, la identificación de genes diferencialmente expresados involucra necesariamente minería de datos o pruebas de hipótesis múltiples a gran escala. Hasta hoy, avances en este campo han sido o bien multivariados pero descriptivos, o bien inferenciales pero univariados. En este trabajo, presentamos un nuevo método inferencial y multivariado para identificar genes diferencialmente expresados en microarreglos de ADN. Estimamos la tasa positiva de falsos positivos (pFDR) utilizando componentes artificiales cercanos a los componentes principales de los datos, pero con una interpretación exacta en términos de expresión génica diferencial. Nuestro método funciona mejor bajo algunos supuestos muy comunes y da lugar a un nuevo entendimiento de la expresión diferencial en datos de microarreglos. Planteamos una metodología para analizar microarreglos con múltiples puntos en el tiempo y damos guías heurísticas para determinar si los supuestos necesarios se cumplen en una determinada base de datos. Ilustramos nuestro método con dos bases de datos públicas de microarreglos de ADN.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaAcosta Rivera, Juan Pablo (2015) Strategy for multivariate Identification of diferentially expressed genes in microarray data. Maestría thesis, Universidad Nacional de Colombia.51 Matemáticas / Mathematics57 Ciencias de la vida; Biología / Life sciences; biologyMicroarraysFalse Discovery RatePrincipal Components AnalysisBootstrapMicroarreglos de ADNTasa de falsos positivosAnálisis en componentes principales,Strategy for multivariate Identification of diferentially expressed genes in microarray dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALThesis Juan Pablo Acosta.pdfapplication/pdf6787332https://repositorio.unal.edu.co/bitstream/unal/54111/1/Thesis%20Juan%20Pablo%20Acosta.pdfd5f7044bf5c2828af7b2fcd4fb843a96MD51THUMBNAILThesis Juan Pablo Acosta.pdf.jpgThesis Juan Pablo Acosta.pdf.jpgGenerated Thumbnailimage/jpeg3982https://repositorio.unal.edu.co/bitstream/unal/54111/2/Thesis%20Juan%20Pablo%20Acosta.pdf.jpgbc881e3f70fbe3d1ddbc2136fd4ad4a2MD52unal/54111oai:repositorio.unal.edu.co:unal/541112024-03-11 23:07:40.238Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |