Stable minimal cones in ℝ8 and ℝ9 with constant scalar curvature

In this paper we prove that if M ⊏ ℝn , n = 8 or n = 9, is a n  - 1 dimensional stable minimal complete cone such that its scalar curvature varies radially, then M must be either a hyperplane or a Clifford minimal cone. By Gauss' formula, the condition on the scalar curvature is equivalent to t...

Full description

Autores:
Perdomo, Oscar
Tipo de recurso:
Article of journal
Fecha de publicación:
2002
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43808
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43808
http://bdigital.unal.edu.co/33906/
Palabra clave:
Clifford hypersurfaces
minimal hypersurfaces
shape operator
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional