Modelo multimodal para pronóstico de producción de pozos petroleros
ilustraciones, diagramas
- Autores:
-
Bello Angulo, David Esneyder
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86543
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Clasificación de series de tiempo
Pronósticos de series de tiempo
Multimodal
Redes neuronales
Aprendizaje automático
Aprendizaje profundo
Timeseries classification
Timeseries forecasting
Multimodal
Neural networks
Machine learning
Deep learning
Industria petrolera
Análisis de datos
Petroleum industry
Data analysis
pronóstico
inteligencia artificial
forecasting
artificial intelligence
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_120cfff3e64a22644f53a30f7cfc5ec3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86543 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelo multimodal para pronóstico de producción de pozos petroleros |
dc.title.translated.eng.fl_str_mv |
Multi-modal model for production forecasting in oil wells |
title |
Modelo multimodal para pronóstico de producción de pozos petroleros |
spellingShingle |
Modelo multimodal para pronóstico de producción de pozos petroleros 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Clasificación de series de tiempo Pronósticos de series de tiempo Multimodal Redes neuronales Aprendizaje automático Aprendizaje profundo Timeseries classification Timeseries forecasting Multimodal Neural networks Machine learning Deep learning Industria petrolera Análisis de datos Petroleum industry Data analysis pronóstico inteligencia artificial forecasting artificial intelligence |
title_short |
Modelo multimodal para pronóstico de producción de pozos petroleros |
title_full |
Modelo multimodal para pronóstico de producción de pozos petroleros |
title_fullStr |
Modelo multimodal para pronóstico de producción de pozos petroleros |
title_full_unstemmed |
Modelo multimodal para pronóstico de producción de pozos petroleros |
title_sort |
Modelo multimodal para pronóstico de producción de pozos petroleros |
dc.creator.fl_str_mv |
Bello Angulo, David Esneyder |
dc.contributor.advisor.spa.fl_str_mv |
León Guzmán, Elizabeth |
dc.contributor.author.spa.fl_str_mv |
Bello Angulo, David Esneyder |
dc.contributor.researchgroup.spa.fl_str_mv |
Midas: Grupo de Investigación en Minería de Datos |
dc.contributor.orcid.spa.fl_str_mv |
Bello Angulo, David Esneyder [https://orcid.org/0009-0007-4142-1441] |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Clasificación de series de tiempo Pronósticos de series de tiempo Multimodal Redes neuronales Aprendizaje automático Aprendizaje profundo Timeseries classification Timeseries forecasting Multimodal Neural networks Machine learning Deep learning Industria petrolera Análisis de datos Petroleum industry Data analysis pronóstico inteligencia artificial forecasting artificial intelligence |
dc.subject.proposal.spa.fl_str_mv |
Clasificación de series de tiempo Pronósticos de series de tiempo Multimodal Redes neuronales Aprendizaje automático Aprendizaje profundo |
dc.subject.proposal.eng.fl_str_mv |
Timeseries classification Timeseries forecasting Multimodal Neural networks Machine learning Deep learning |
dc.subject.unesco.spa.fl_str_mv |
Industria petrolera Análisis de datos |
dc.subject.unesco.eng.fl_str_mv |
Petroleum industry Data analysis |
dc.subject.wikidata.spa.fl_str_mv |
pronóstico inteligencia artificial |
dc.subject.wikidata.eng.fl_str_mv |
forecasting artificial intelligence |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-17T19:44:49Z |
dc.date.available.none.fl_str_mv |
2024-07-17T19:44:49Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86543 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86543 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael; Jia, Yangqing; Jozefowicz, Rafal; Kaiser, Lukasz; Kudlur, Manjunath; Levenberg, Josh; Mané, Dandelion; Monga, Rajat; Moore, Sherry; Murray, Derek; Olah, Chris; Schuster, Mike; Shlens, Jonathon; Steiner, Benoit; Sutskever, Ilya; Talwar, Kunal; Tucker, Paul; Vanhoucke, Vincent; Vasudevan, Vijay; Viégas, Fernanda; Vinyals, Oriol; Warden, Pete; Wattenberg, Martin; Wicke, Martin; Yu, Yuan; Zheng, Xiaoqiang: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. – Software available from tensorflow.org Aizenberg, Igor; Sheremetov, Leonid; Villa-Vargas, Luis; Martinez-Muñoz, Jorge: Multilayer Neural Network with Multi-Valued Neurons in time series forecasting of oil production. En: Neurocomputing 175 (2016), jan, p. 980–989. – ISSN 0925–2312 Anderson, Roger N.; Xie, Boyi; Wu, Leon; Kressner, Arthur A.; Frantz Jr., Joseph H.; Ockree, Matthew A.; Brown, Kenneth G.: Petroleum Analytics Learning Machine to Forecast Production in the Wet Gas Marcellus Shale. En: Proceedings of the 4th Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, aug 2016. – ISBN 978–0–9912144–3–3 Arps, J.J.: Analysis of Decline Curves, Society of Petroleum Engineers, dec 2013. – ISBN 0081–1696–01 Bello-Angulo, David; León-Guzmán, Elizabeth: Multi-Modal Recurrent Model for Timeseries Classification: A Use Case on Failure Prediction in Oil Wells with Rod Lift System. En: 10th International conference on Time Series and Forecasting (2023), 12. – ISSN in press Bello-Angulo, David ; Mantilla-Duarte, Carlos ; Montes-Paez, Erik ; Guerrero-Martin, Camilo: Box–Jenkins Methodology Application to Improve Crude Oil Production Forecasting: Case Study in a Colombian Field. En: Arabian Journal for Science and Engineering 47 (2022), 9, p. 11269–11278. – ISSN 21914281 Chen, Chaohui; Gao, Guohua; Honorio, Jean; Gelderblom, Paul; Jimenez, Eduardo; Jaakkola, Tommi, en "Integration of Principal-Component-Analysis and Streamline Information for the History Matching of Channelized Reservoirs" presentado en la SPE Annual Technical Conference and Exhibition de octubre de 2014, proponen métodos para la calibración histórica de yacimientos canalizados utilizando análisis de componentes principales y información de líneas de flujo. Cao, Q. ; Banerjee, R. ; Gupta, S. ; Li, J. ; Zhou, W. ; Jeyachandra, B.: Data Driven Production Forecasting Using Machine Learning. En: SPE Argentina Exploration and Production of Unconventional Resources Symposium, Society of Petroleum Engineers, jun 2016. – ISBN 978–1–61399–474–0 Chen, Chaohui ; Gao, Guohua ; Honorio, Jean ; Gelderblom, Paul ; Jimenez, Eduardo ; Jaakkola, Tommi: Integration of Principal-Component-Analysis and Streamline Information for the History Matching of Channelized Reservoirs. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2014 Collins, Patrick ; Ilk, Dilhan ; Blasingame, Thomas A.: Practical Considerations for Forecasting Production Data in Unconventional Reservoirs — Variable Pressure Drop Case. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2014 Dana Lahat, Christian J.: Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects, Institute of Electrical and Electronics Engineers, jul 2015 Deng, Houtao ; Runger, George ; Tuv, Eugene ; Vladimir, Martyanov: A Time Series Forest for Classification and Feature Extraction. En: Information Sciences 239 (2013), 2, p. 142–153. – ISSN 00200255 Dufter, Philipp ; Schmitt, Martin ; Schütze, Hinrich: Position Information in Transformers: An Overview. En: Computational Linguistics 48 (2022), 9, p. 733–763. – ISSN 15309312 Dursun, Serkan ; Rangarajan, Keshava ; Singh, Amit: A Framework-Oriented Approach for Determining Attribute Importance When Building Effective Predictive Models for Oil and Gas Data Analytics. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, sep 2013. – ISBN 978–1–61399–240–1 Dzurman, Peter J. ; Leung, Juliana Yuk W. ; Zanon, Stefan David J. ; Amirian, Ehsan: Data-Driven Modeling Approach for Recovery Performance Prediction in SAGD Operations. En: SPE Heavy Oil Conference-Canada, Society of Petroleum Engineers, jun 2013. – ISBN 978–1–61399–262–3 Echometer. Total Well Management (TWM). 2012 Echometer. Total Asset Monitor (TAM). 2022 Fawaz, Hassan I. ; Lucas, Benjamin ; Forestier, Germain ; Pelletier, Charlotte ; Schmidt, Daniel F. ; Weber, Jonathan ; Webb, Geoffrey I. ; Idoumghar, Lhassane ; Muller, Pierre A. ; Petitjean, François: InceptionTime: Finding AlexNet for Time Series Classification. En: Data Mining and Knowledge Discovery 34 (2019), 9, p. 1936–1962. – ISBN 1061802000710 Fetkovich, M.J.: Decline Curve Analysis Using Type Curves, Society of Petroleum Engineers, jun 1980 Foumani, Navid M. ; Miller, Lynn ; Tan, Chang W. ; Webb, Geoffrey I. ; Forestier, Germain ; Salehi, Mahsa: Deep Learning for Time Series Classification and Extrinsic Regression: A Current Survey. (2023), 2 Foumani, Navid M. ; Tan, Chang W. ; Webb, Geoffrey I. ; Salehi, Mahsa: Improving position encoding of transformers for multivariate time series classification. En: Data Mining and Knowledge Discovery (2023), 9, p. 1–27. – ISSN 1573756X Goldsmith, Jeff ; Scheipl, Fabian: Estimator selection and combination in scalar-on-function regression. En: Computational Statistics and Data Analysis 70 (2014), 2, p. 362–372. – ISSN 0167–9473 Gupta, Siddhartha ; Fuehrer, Franz ; Jeyachandra, Benin C.: Production Forecasting in Unconventional Resources using Data Mining and Time Series Analysis. En: SPE/CSUR Unconventional Resources Conference – Canada, Society of Petroleum Engineers, sep 2014. – ISBN 978–1–61399–363–7 Huang, Zhiheng ; Liang, Davis ; Xu, Peng ; Xiang, Bing: Improve Transformer Models with Better Relative Position Embeddings. En: Findings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020 (2020), 9, p. 3327–3335. ISBN 9781952148903 Jia, Xinli ; Zhang, Feifei: Applying Data-Driven Method to Production Decline Analysis and Forecasting. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, sep 2016. – ISBN 978–1–61399–463–4 Jiang, Hao ; Liu, Lianguang ; Lian, Cheng: Multi-Modal Fusion Transformer for Multivariate Time Series Classification. En: 2022 14th International Conference on Advanced Computational Intelligence, ICACI 2022 (2022), p. 284–288. ISBN 9781665470452 Kingma, Diederik P. ; Ba, Jimmy L.: Adam: A Method for Stochastic Optimization. En: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2014), 12 Kostas, Demetres ; Aroca-Ouellette, Stéphane ; Rudzicz, Frank: BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data. En: Frontiers in Human Neuroscience 15 (2021), 1. – ISSN 16625161 Li, X. ; Chan, C.W. ; Nguyen, H.H.: Application of the Neural Decision Tree approach for prediction of petroleum production. En: Journal of Petroleum Science and Engineering 104 (2013), apr, p. 11–16. – ISSN 0920–4105 Li, Yunan ; Han, Yifu: Decline Curve Analysis for Production Forecasting Based on Machine Learning. En: SPE Symposium: Production Enhancement and Cost Optimisation, Society of Petroleum Engineers, nov 2017. – ISBN 978–1–61399–561–7 Lin, Jessica ; Khade, Rohan ; Li, Yuan: Rotation-invariant similarity in time series using bag-of-patterns representation. En: Journal of Intelligent Information Systems 39 (2012), 10, p. 287–315. – ISSN 09259902 Liu, Jeremy ; Jaiswal, Ayush ; Yao, Ke-Thia ; Raghavendra, Cauligi S.: Autoencoder-derived Features as Inputs to Classification Algorithms for Predicting Well Failures. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2015. – ISBN 978–1–61399–404–7 Liu, Y. ; Yao, Ke-Thia ; Liu, Shuping ; Raghavendra, Cauligi S. ; Lenz, Tracy L. ; Olabinjo, Lanre ; Seren, F. B. ; Seddighrad, Sanaz ; Dinesh Babu, C.G.: Failure Prediction for Artificial Lift Systems. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2010. – ISBN 978–1–55563–294–6 Lolon, E. ; Hamidieh, K. ; Weijers, L. ; Mayerhofer, M. ; Melcher, H. ; Oduba, O.: Evaluating the Relationship Between Well Parameters and Production Using Multivariate Statistical Models: A Middle Bakken and Three Forks Case History. En: SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, feb 2016. – ISBN 978–1–61399–438–2 Ma, Zhiwei ; Liu, Yaqi ; Leung, Juliana Y. ; Zanon, Stefan: Practical Data Mining and Artificial Neural Network Modeling for SAGD Production Analysis. En: SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers, jun 2015. – ISBN 978–1–61399–402–3 Malhotra, Pankaj ; Vishnu, T. V. ; Vig, Lovekesh ; Agarwal, Puneet ; Shroff, Gautam: TimeNet: Pre-trained deep recurrent neural network for time series classification. En: ESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2017), 6, p. 607–612. ISBN 9782875870391 Martin, Eileen ; Wills, Peter ; Hohl, Detlef ; Lopez, Jorge L.: Using Machine Learning to Predict Production at a Peace River Thermal EOR Site. En: SPE Reservoir Simulation Conference, Society of Petroleum Engineers, feb 2017. – ISBN 978–1–61399–483–2 Montes, Erik G. ; Delgadillo, Claudia L. ; Calvete, Fernando E.: APLICACIÓN DE LA SIMULACIÓN NUMÉRICA DE YACIMIENTOS EN EL ANÁLISIS DE LOS FACTORES QUE AFECTAN LOS PRONÓSTICOS DE PRODUCCIÓN DE PETRÓLEO, 2015. – ISSN 2346–0466 Montes, Erik G. ; Mantilla, Carlos A. ; Bello, David E.: Herramienta software DeclineR para la elaboración automatizada de pronósticos de producción, mediante análisis de series de tiempo, Ingepet, oct 2018 Montes Páez, Erik G. ; Calvete González, Fernando E. ; Mantilla Duarte, Carlos A.: APLICACIÓN DE SERIES DE TIEMPO EN LA REALIZACIÓN DE PRONÓSTICOS DE PRODUCCIÓN, 2016. – ISSN 16576527, p. 79–88 Mutegeki, Ronald ; Han, Dong S.: A CNN-LSTM Approach to Human Activity Recognition. En: 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 (2020), 2, p. 362–366. ISBN 9781728149851 Olominu, Oluwafemi ; Sulaimon, Aliyu A.: Application of Time Series Analysis to Predict Reservoir Production Performance. En: SPE Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, aug 2014. – ISBN 978–1–61399–358–3 Pennington, Jeffrey ; Socher, Richard ; Manning, Christopher D.: GloVe: Global Vectors for Word Representation. En: Conference on Empirical Methods in Natural Language Processing, 2014 Popa, Andrei S. ; Patel, Anil N.: Neural Networks for Production Curve Pattern Recognition Applied to Cyclic Steam Optimization in Diatomite Reservoirs. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2012 Raghavenda, Cauligi S. ; Liu, Yintao ; Wu, Anqi ; Olabinjo, Lanre ; Balogun, Oluwafemi ; Ershaghi, Iraj ; Zheng, Jingwen ; Guo, Dong ; Yao, Ke-Thia: Global Model for Failure Prediction for Rod Pump Artificial Lift Systems. En: SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference, Society of Petroleum Engineers, apr 2013. – ISBN 978–1–61399–264–7 Rebeschini, J. ; Querales, M. ; Carvajal, G. A. ; Villamizar, M. ; Md Adnan, F. ; Rodriguez, J. ; Knabe, S. ; Rivas, F. ; Saputelli, L. ; Al-Jasmi, A. ; Nasr, H. ; Goel, H. K.: Building Neural-Network-Based Models Using Nodal and Time-Series Analysis for Short-Term Production Forecasting. En: SPE Middle East Intelligent Energy Conference and Exhibition, Society of Petroleum Engineers, oct 2013. – ISBN 978–1–61399–276–0 Schuetter, Jared ; Mishra, Srikanta ; Zhong, Ming ; LaFollette, Randy: A Data-Analytics Tutorial: Building Predictive Models for Oil Production in an Unconventional Shale Reservoir. En: SPE Journal (2018), mar. – ISSN 1086–055X Smith, Taylor G. [u. a.]: pmdarima: ARIMA estimators for Python. 2017–. – [Online; accessed 2023-12-13] Suhag, Anuj ; Ranjith, Rahul ; Aminzadeh, Fred: Comparison of Shale Oil Production Forecasting using Empirical Methods and Artificial Neural Networks. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2017. – ISBN 978–1–61399–542–6 Tan, Chang W. ; Bergmeir, Christoph ; Petitjean, Francois ; Webb, Geoffrey I.: Time Series Extrinsic Regression. En: Data Mining and Knowledge Discovery 35 (2020), 6, p. 1032–1060. – ISSN 1384–5810 Tang, Yujin ; Xu, Jianfeng ; Matsumoto, Kazunori ; Ono, Chihiro: Sequence-To-Sequence Model with Attention for Time Series Classification. En: IEEE International Conference on Data Mining Workshops, ICDMW 0 (2016), 7, p. 503–510. – ISBN 9781509054725 Valko, Peter P. ; Lee, W. J.: A Better Way To Forecast Production From Unconventional Gas Wells. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, apr 2010 Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones, Llion ; Gomez, Aidan N. ; Łukasz Kaiser ; Polosukhin, Illia: Attention Is All You Need. En: Advances in Neural Information Processing Systems 2017-December (2017), 6, p. 5999–6009. – ISBN 1706.03762v7 Vyas, Aditya ; Datta-Gupta, Akhil ; Mishra, Srikanta: Modeling Early Time Rate Decline in Unconventional Reservoirs Using Machine Learning Techniques. En: Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers, nov 2017. – ISBN 978–1–61399–563–1 Wang, Zhiguang ; Yan, Weizhong ; Oates, Tim: Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. En: Proceedings of the International Joint Conference on Neural Networks 2017-May (2016), 11, p. 1578–1585. ISBN 9781509061815 Wu, Kan ; Peng, Houwen ; Chen, Minghao ; Fu, Jianlong ; Chao, Hongyang: Rethinking and Improving Relative Position Encoding for Vision Transformer. En: Proceedings of the IEEE International Conference on Computer Vision (2021), 7, p. 10013–10021. – ISBN 9781665428125 Xian, Qingyu ; Liang, Wenxuan: A Multi-modal Time Series Intelligent Prediction Model. En: Lecture Notes in Electrical Engineering 942 LNEE (2022), p. 1150–1157. – ISBN 9789811924552 Xue, Wang ; Zhou, Tian ; Wen, Qingsong ; Gao, Jinyang ; Ding, Bolin ; Jin, Rong: Make Transformer Great Again for Time Series Forecasting: Channel Aligned Robust Dual Transformer. (2023), 5 Zerveas, George ; Jayaraman, Srideepika ; Patel, Dhaval ; Bhamidipaty, Anuradha ; Eickhoff, Carsten: A Transformer-based Framework for Multivariate Time Series Representation Learning. En: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 11 (2021), 8, p. 2114–2124. ISBN 9781450383325 Zheng, Jingwen ; Leung, Juliana Y. ; Sawatzky, Ronald P. ; Alvarez, Jose M.: A Proxy Model for Predicting SAGD Production from Reservoirs Containing Shale Barriers. En: SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers, jun 2016. – ISBN 978–1–61399–471–9 Zhou, Peng ; Sang, Huiyan ; Jin, Liuyi ; Lee, W. J.: Application of Statistical Methods to Predict Production From Liquid-Rich Shale Reservoirs. En: Proceedings of the 5th Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, jul 2017. – ISBN 978–0–9912144–4–0 Zhu, Qiding ; Zhang, Shukui ; Zhang, Yang ; Yu, Chunqing ; Dang, Mengli ; Zhang, Li: Multimodal time series data fusion based on SSAE and LSTM. En: IEEE Wireless Communications and Networking Conference, WCNC 2021-March (2021). – ISBN 9781728195056 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvii, 116 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86543/2/1099213032.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86543/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86543/4/1099213032.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
ec40d6e30c7b0d953b0a54c5b1ee2a1b eb34b1cf90b7e1103fc9dfd26be24b4a 1502cea2bf97669504de041695a12640 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089535489835008 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2León Guzmán, Elizabeth779ab1fc47e98dc4709dec375b4bafa4Bello Angulo, David Esneyder4e657d135456c80be90c44798dfe8055600Midas: Grupo de Investigación en Minería de DatosBello Angulo, David Esneyder [https://orcid.org/0009-0007-4142-1441]2024-07-17T19:44:49Z2024-07-17T19:44:49Z2024https://repositorio.unal.edu.co/handle/unal/86543Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl presente trabajo de investigación presenta un aporte en dos áreas de estudio de series de tiempo en el contexto de la producción de pozos petroleros, siendo estas la clasificación para identificar fallas en los pozos, y los pronósticos de producción. El conjunto de datos utilizado corresponde a la producción de pozos petroleros, incluyendo información multimodal como datos numéricos, imágenes y texto para cada punto temporal. En la clasificación de series de tiempo, se aborda la predicción de fallas en el siguiente paso temporal, logrando una exactitud del 61.3% con un modelo multimodal conectado a una capa LSTM. En pronósticos de series de tiempo, los modelos multimodales con capas LSTM destacan, superando a modelos no multimodales y a implementaciones ARIMA en predicciones trimestrales y bi-anuales, presentando un error porcentual absoluto medio de 8% llegando a 2% en casos específicos. Este trabajo contribuye significativamente a los campos de clasificación y predicción de series de tiempo multimodales, proponiendo una arquitectura de encoder multimodal distribuido en el tiempo que puede ser implementada para series de tiempo multimodales de cualquier área de la industria. (Texto tomado de la fuente).This research presents a contribution to two areas of time series study, in the context of oil well production, these are the classification to identify possible failures and the production forecasting. The dataset utilized corresponds to the production of oil wells, consisting in multimodal information such as numerical data, images, and text for each temporal point. In time series classification, the prediction of failures in the subsequent time step is addressed, achieving an accuracy of 61.3% with a multimodal model connected to an LSTM layer. In time series forecasting, multimodal models with LSTM layers excel, outperforming non-multimodal models and ARIMA implementations in quarterly and bi-annual predictions, presenting a mean absolute percentage error of 8%, reaching 2% in specific cases. This work significantly contributes to the fields of multimodal time series classification and prediction, proposing a temporally distributed multimodal encoder architecture that can be implemented for multimodal time series across various industry domains.MaestríaMagíster en Ingeniería - Ingeniería de Sistemas y ComputaciónMinería de Datos - Clasificación y pronóstico de series de tiempo multimodalesxvii, 116 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaClasificación de series de tiempoPronósticos de series de tiempoMultimodalRedes neuronalesAprendizaje automáticoAprendizaje profundoTimeseries classificationTimeseries forecastingMultimodalNeural networksMachine learningDeep learningIndustria petroleraAnálisis de datosPetroleum industryData analysispronósticointeligencia artificialforecastingartificial intelligenceModelo multimodal para pronóstico de producción de pozos petrolerosMulti-modal model for production forecasting in oil wellsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael; Jia, Yangqing; Jozefowicz, Rafal; Kaiser, Lukasz; Kudlur, Manjunath; Levenberg, Josh; Mané, Dandelion; Monga, Rajat; Moore, Sherry; Murray, Derek; Olah, Chris; Schuster, Mike; Shlens, Jonathon; Steiner, Benoit; Sutskever, Ilya; Talwar, Kunal; Tucker, Paul; Vanhoucke, Vincent; Vasudevan, Vijay; Viégas, Fernanda; Vinyals, Oriol; Warden, Pete; Wattenberg, Martin; Wicke, Martin; Yu, Yuan; Zheng, Xiaoqiang: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. – Software available from tensorflow.orgAizenberg, Igor; Sheremetov, Leonid; Villa-Vargas, Luis; Martinez-Muñoz, Jorge: Multilayer Neural Network with Multi-Valued Neurons in time series forecasting of oil production. En: Neurocomputing 175 (2016), jan, p. 980–989. – ISSN 0925–2312Anderson, Roger N.; Xie, Boyi; Wu, Leon; Kressner, Arthur A.; Frantz Jr., Joseph H.; Ockree, Matthew A.; Brown, Kenneth G.: Petroleum Analytics Learning Machine to Forecast Production in the Wet Gas Marcellus Shale. En: Proceedings of the 4th Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, aug 2016. – ISBN 978–0–9912144–3–3Arps, J.J.: Analysis of Decline Curves, Society of Petroleum Engineers, dec 2013. – ISBN 0081–1696–01Bello-Angulo, David; León-Guzmán, Elizabeth: Multi-Modal Recurrent Model for Timeseries Classification: A Use Case on Failure Prediction in Oil Wells with Rod Lift System. En: 10th International conference on Time Series and Forecasting (2023), 12. – ISSN in pressBello-Angulo, David ; Mantilla-Duarte, Carlos ; Montes-Paez, Erik ; Guerrero-Martin, Camilo: Box–Jenkins Methodology Application to Improve Crude Oil Production Forecasting: Case Study in a Colombian Field. En: Arabian Journal for Science and Engineering 47 (2022), 9, p. 11269–11278. – ISSN 21914281Chen, Chaohui; Gao, Guohua; Honorio, Jean; Gelderblom, Paul; Jimenez, Eduardo; Jaakkola, Tommi, en "Integration of Principal-Component-Analysis and Streamline Information for the History Matching of Channelized Reservoirs" presentado en la SPE Annual Technical Conference and Exhibition de octubre de 2014, proponen métodos para la calibración histórica de yacimientos canalizados utilizando análisis de componentes principales y información de líneas de flujo.Cao, Q. ; Banerjee, R. ; Gupta, S. ; Li, J. ; Zhou, W. ; Jeyachandra, B.: Data Driven Production Forecasting Using Machine Learning. En: SPE Argentina Exploration and Production of Unconventional Resources Symposium, Society of Petroleum Engineers, jun 2016. – ISBN 978–1–61399–474–0Chen, Chaohui ; Gao, Guohua ; Honorio, Jean ; Gelderblom, Paul ; Jimenez, Eduardo ; Jaakkola, Tommi: Integration of Principal-Component-Analysis and Streamline Information for the History Matching of Channelized Reservoirs. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2014Collins, Patrick ; Ilk, Dilhan ; Blasingame, Thomas A.: Practical Considerations for Forecasting Production Data in Unconventional Reservoirs — Variable Pressure Drop Case. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2014Dana Lahat, Christian J.: Multimodal Data Fusion: An Overview of Methods, Challenges and Prospects, Institute of Electrical and Electronics Engineers, jul 2015Deng, Houtao ; Runger, George ; Tuv, Eugene ; Vladimir, Martyanov: A Time Series Forest for Classification and Feature Extraction. En: Information Sciences 239 (2013), 2, p. 142–153. – ISSN 00200255Dufter, Philipp ; Schmitt, Martin ; Schütze, Hinrich: Position Information in Transformers: An Overview. En: Computational Linguistics 48 (2022), 9, p. 733–763. – ISSN 15309312Dursun, Serkan ; Rangarajan, Keshava ; Singh, Amit: A Framework-Oriented Approach for Determining Attribute Importance When Building Effective Predictive Models for Oil and Gas Data Analytics. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, sep 2013. – ISBN 978–1–61399–240–1Dzurman, Peter J. ; Leung, Juliana Yuk W. ; Zanon, Stefan David J. ; Amirian, Ehsan: Data-Driven Modeling Approach for Recovery Performance Prediction in SAGD Operations. En: SPE Heavy Oil Conference-Canada, Society of Petroleum Engineers, jun 2013. – ISBN 978–1–61399–262–3Echometer. Total Well Management (TWM). 2012Echometer. Total Asset Monitor (TAM). 2022Fawaz, Hassan I. ; Lucas, Benjamin ; Forestier, Germain ; Pelletier, Charlotte ; Schmidt, Daniel F. ; Weber, Jonathan ; Webb, Geoffrey I. ; Idoumghar, Lhassane ; Muller, Pierre A. ; Petitjean, François: InceptionTime: Finding AlexNet for Time Series Classification. En: Data Mining and Knowledge Discovery 34 (2019), 9, p. 1936–1962. – ISBN 1061802000710Fetkovich, M.J.: Decline Curve Analysis Using Type Curves, Society of Petroleum Engineers, jun 1980Foumani, Navid M. ; Miller, Lynn ; Tan, Chang W. ; Webb, Geoffrey I. ; Forestier, Germain ; Salehi, Mahsa: Deep Learning for Time Series Classification and Extrinsic Regression: A Current Survey. (2023), 2Foumani, Navid M. ; Tan, Chang W. ; Webb, Geoffrey I. ; Salehi, Mahsa: Improving position encoding of transformers for multivariate time series classification. En: Data Mining and Knowledge Discovery (2023), 9, p. 1–27. – ISSN 1573756XGoldsmith, Jeff ; Scheipl, Fabian: Estimator selection and combination in scalar-on-function regression. En: Computational Statistics and Data Analysis 70 (2014), 2, p. 362–372. – ISSN 0167–9473Gupta, Siddhartha ; Fuehrer, Franz ; Jeyachandra, Benin C.: Production Forecasting in Unconventional Resources using Data Mining and Time Series Analysis. En: SPE/CSUR Unconventional Resources Conference – Canada, Society of Petroleum Engineers, sep 2014. – ISBN 978–1–61399–363–7Huang, Zhiheng ; Liang, Davis ; Xu, Peng ; Xiang, Bing: Improve Transformer Models with Better Relative Position Embeddings. En: Findings of the Association for Computational Linguistics Findings of ACL: EMNLP 2020 (2020), 9, p. 3327–3335. ISBN 9781952148903Jia, Xinli ; Zhang, Feifei: Applying Data-Driven Method to Production Decline Analysis and Forecasting. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, sep 2016. – ISBN 978–1–61399–463–4Jiang, Hao ; Liu, Lianguang ; Lian, Cheng: Multi-Modal Fusion Transformer for Multivariate Time Series Classification. En: 2022 14th International Conference on Advanced Computational Intelligence, ICACI 2022 (2022), p. 284–288. ISBN 9781665470452Kingma, Diederik P. ; Ba, Jimmy L.: Adam: A Method for Stochastic Optimization. En: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2014), 12Kostas, Demetres ; Aroca-Ouellette, Stéphane ; Rudzicz, Frank: BENDR: using transformers and a contrastive self-supervised learning task to learn from massive amounts of EEG data. En: Frontiers in Human Neuroscience 15 (2021), 1. – ISSN 16625161Li, X. ; Chan, C.W. ; Nguyen, H.H.: Application of the Neural Decision Tree approach for prediction of petroleum production. En: Journal of Petroleum Science and Engineering 104 (2013), apr, p. 11–16. – ISSN 0920–4105Li, Yunan ; Han, Yifu: Decline Curve Analysis for Production Forecasting Based on Machine Learning. En: SPE Symposium: Production Enhancement and Cost Optimisation, Society of Petroleum Engineers, nov 2017. – ISBN 978–1–61399–561–7Lin, Jessica ; Khade, Rohan ; Li, Yuan: Rotation-invariant similarity in time series using bag-of-patterns representation. En: Journal of Intelligent Information Systems 39 (2012), 10, p. 287–315. – ISSN 09259902Liu, Jeremy ; Jaiswal, Ayush ; Yao, Ke-Thia ; Raghavendra, Cauligi S.: Autoencoder-derived Features as Inputs to Classification Algorithms for Predicting Well Failures. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2015. – ISBN 978–1–61399–404–7Liu, Y. ; Yao, Ke-Thia ; Liu, Shuping ; Raghavendra, Cauligi S. ; Lenz, Tracy L. ; Olabinjo, Lanre ; Seren, F. B. ; Seddighrad, Sanaz ; Dinesh Babu, C.G.: Failure Prediction for Artificial Lift Systems. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2010. – ISBN 978–1–55563–294–6Lolon, E. ; Hamidieh, K. ; Weijers, L. ; Mayerhofer, M. ; Melcher, H. ; Oduba, O.: Evaluating the Relationship Between Well Parameters and Production Using Multivariate Statistical Models: A Middle Bakken and Three Forks Case History. En: SPE Hydraulic Fracturing Technology Conference, Society of Petroleum Engineers, feb 2016. – ISBN 978–1–61399–438–2Ma, Zhiwei ; Liu, Yaqi ; Leung, Juliana Y. ; Zanon, Stefan: Practical Data Mining and Artificial Neural Network Modeling for SAGD Production Analysis. En: SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers, jun 2015. – ISBN 978–1–61399–402–3Malhotra, Pankaj ; Vishnu, T. V. ; Vig, Lovekesh ; Agarwal, Puneet ; Shroff, Gautam: TimeNet: Pre-trained deep recurrent neural network for time series classification. En: ESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2017), 6, p. 607–612. ISBN 9782875870391Martin, Eileen ; Wills, Peter ; Hohl, Detlef ; Lopez, Jorge L.: Using Machine Learning to Predict Production at a Peace River Thermal EOR Site. En: SPE Reservoir Simulation Conference, Society of Petroleum Engineers, feb 2017. – ISBN 978–1–61399–483–2Montes, Erik G. ; Delgadillo, Claudia L. ; Calvete, Fernando E.: APLICACIÓN DE LA SIMULACIÓN NUMÉRICA DE YACIMIENTOS EN EL ANÁLISIS DE LOS FACTORES QUE AFECTAN LOS PRONÓSTICOS DE PRODUCCIÓN DE PETRÓLEO, 2015. – ISSN 2346–0466Montes, Erik G. ; Mantilla, Carlos A. ; Bello, David E.: Herramienta software DeclineR para la elaboración automatizada de pronósticos de producción, mediante análisis de series de tiempo, Ingepet, oct 2018Montes Páez, Erik G. ; Calvete González, Fernando E. ; Mantilla Duarte, Carlos A.: APLICACIÓN DE SERIES DE TIEMPO EN LA REALIZACIÓN DE PRONÓSTICOS DE PRODUCCIÓN, 2016. – ISSN 16576527, p. 79–88Mutegeki, Ronald ; Han, Dong S.: A CNN-LSTM Approach to Human Activity Recognition. En: 2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020 (2020), 2, p. 362–366. ISBN 9781728149851Olominu, Oluwafemi ; Sulaimon, Aliyu A.: Application of Time Series Analysis to Predict Reservoir Production Performance. En: SPE Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, aug 2014. – ISBN 978–1–61399–358–3Pennington, Jeffrey ; Socher, Richard ; Manning, Christopher D.: GloVe: Global Vectors for Word Representation. En: Conference on Empirical Methods in Natural Language Processing, 2014Popa, Andrei S. ; Patel, Anil N.: Neural Networks for Production Curve Pattern Recognition Applied to Cyclic Steam Optimization in Diatomite Reservoirs. En: SPE Western Regional Meeting, Society of Petroleum Engineers, apr 2012Raghavenda, Cauligi S. ; Liu, Yintao ; Wu, Anqi ; Olabinjo, Lanre ; Balogun, Oluwafemi ; Ershaghi, Iraj ; Zheng, Jingwen ; Guo, Dong ; Yao, Ke-Thia: Global Model for Failure Prediction for Rod Pump Artificial Lift Systems. En: SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference, Society of Petroleum Engineers, apr 2013. – ISBN 978–1–61399–264–7Rebeschini, J. ; Querales, M. ; Carvajal, G. A. ; Villamizar, M. ; Md Adnan, F. ; Rodriguez, J. ; Knabe, S. ; Rivas, F. ; Saputelli, L. ; Al-Jasmi, A. ; Nasr, H. ; Goel, H. K.: Building Neural-Network-Based Models Using Nodal and Time-Series Analysis for Short-Term Production Forecasting. En: SPE Middle East Intelligent Energy Conference and Exhibition, Society of Petroleum Engineers, oct 2013. – ISBN 978–1–61399–276–0Schuetter, Jared ; Mishra, Srikanta ; Zhong, Ming ; LaFollette, Randy: A Data-Analytics Tutorial: Building Predictive Models for Oil Production in an Unconventional Shale Reservoir. En: SPE Journal (2018), mar. – ISSN 1086–055XSmith, Taylor G. [u. a.]: pmdarima: ARIMA estimators for Python. 2017–. – [Online; accessed 2023-12-13]Suhag, Anuj ; Ranjith, Rahul ; Aminzadeh, Fred: Comparison of Shale Oil Production Forecasting using Empirical Methods and Artificial Neural Networks. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, oct 2017. – ISBN 978–1–61399–542–6Tan, Chang W. ; Bergmeir, Christoph ; Petitjean, Francois ; Webb, Geoffrey I.: Time Series Extrinsic Regression. En: Data Mining and Knowledge Discovery 35 (2020), 6, p. 1032–1060. – ISSN 1384–5810Tang, Yujin ; Xu, Jianfeng ; Matsumoto, Kazunori ; Ono, Chihiro: Sequence-To-Sequence Model with Attention for Time Series Classification. En: IEEE International Conference on Data Mining Workshops, ICDMW 0 (2016), 7, p. 503–510. – ISBN 9781509054725Valko, Peter P. ; Lee, W. J.: A Better Way To Forecast Production From Unconventional Gas Wells. En: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, apr 2010Vaswani, Ashish ; Shazeer, Noam ; Parmar, Niki ; Uszkoreit, Jakob ; Jones, Llion ; Gomez, Aidan N. ; Łukasz Kaiser ; Polosukhin, Illia: Attention Is All You Need. En: Advances in Neural Information Processing Systems 2017-December (2017), 6, p. 5999–6009. – ISBN 1706.03762v7Vyas, Aditya ; Datta-Gupta, Akhil ; Mishra, Srikanta: Modeling Early Time Rate Decline in Unconventional Reservoirs Using Machine Learning Techniques. En: Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers, nov 2017. – ISBN 978–1–61399–563–1Wang, Zhiguang ; Yan, Weizhong ; Oates, Tim: Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. En: Proceedings of the International Joint Conference on Neural Networks 2017-May (2016), 11, p. 1578–1585. ISBN 9781509061815Wu, Kan ; Peng, Houwen ; Chen, Minghao ; Fu, Jianlong ; Chao, Hongyang: Rethinking and Improving Relative Position Encoding for Vision Transformer. En: Proceedings of the IEEE International Conference on Computer Vision (2021), 7, p. 10013–10021. – ISBN 9781665428125Xian, Qingyu ; Liang, Wenxuan: A Multi-modal Time Series Intelligent Prediction Model. En: Lecture Notes in Electrical Engineering 942 LNEE (2022), p. 1150–1157. – ISBN 9789811924552Xue, Wang ; Zhou, Tian ; Wen, Qingsong ; Gao, Jinyang ; Ding, Bolin ; Jin, Rong: Make Transformer Great Again for Time Series Forecasting: Channel Aligned Robust Dual Transformer. (2023), 5Zerveas, George ; Jayaraman, Srideepika ; Patel, Dhaval ; Bhamidipaty, Anuradha ; Eickhoff, Carsten: A Transformer-based Framework for Multivariate Time Series Representation Learning. En: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 11 (2021), 8, p. 2114–2124. ISBN 9781450383325Zheng, Jingwen ; Leung, Juliana Y. ; Sawatzky, Ronald P. ; Alvarez, Jose M.: A Proxy Model for Predicting SAGD Production from Reservoirs Containing Shale Barriers. En: SPE Canada Heavy Oil Technical Conference, Society of Petroleum Engineers, jun 2016. – ISBN 978–1–61399–471–9Zhou, Peng ; Sang, Huiyan ; Jin, Liuyi ; Lee, W. J.: Application of Statistical Methods to Predict Production From Liquid-Rich Shale Reservoirs. En: Proceedings of the 5th Unconventional Resources Technology Conference. Tulsa, OK, USA : American Association of Petroleum Geologists, jul 2017. – ISBN 978–0–9912144–4–0Zhu, Qiding ; Zhang, Shukui ; Zhang, Yang ; Yu, Chunqing ; Dang, Mengli ; Zhang, Li: Multimodal time series data fusion based on SSAE and LSTM. En: IEEE Wireless Communications and Networking Conference, WCNC 2021-March (2021). – ISBN 9781728195056EstudiantesInvestigadoresMaestrosORIGINAL1099213032.2024.pdf1099213032.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Sistemas y Computaciónapplication/pdf5804043https://repositorio.unal.edu.co/bitstream/unal/86543/2/1099213032.2024.pdfec40d6e30c7b0d953b0a54c5b1ee2a1bMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86543/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1099213032.2024.pdf.jpg1099213032.2024.pdf.jpgGenerated Thumbnailimage/jpeg4641https://repositorio.unal.edu.co/bitstream/unal/86543/4/1099213032.2024.pdf.jpg1502cea2bf97669504de041695a12640MD54unal/86543oai:repositorio.unal.edu.co:unal/865432024-08-26 23:10:35.139Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |