Compact polynomial on non-archimedean banach spaces
The object of the present note is to prove that every compact polynomial between non-Archimedean Banach spaces over a complete discretely valued field of characteristic zero is a limit of a sequence of polynomials of finite rank.
- Autores:
-
Pombo Jr., Dinamérico P.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1989
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43246
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43246
http://bdigital.unal.edu.co/33344/
- Palabra clave:
- Polynomial
Banach space
between non-Archimedean
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | The object of the present note is to prove that every compact polynomial between non-Archimedean Banach spaces over a complete discretely valued field of characteristic zero is a limit of a sequence of polynomials of finite rank. |
---|