Compact polynomial on non-archimedean banach spaces

The object of the present note is to prove that every compact polynomial between non-Archimedean Banach spaces over a complete discretely valued field of characteristic zero is a limit of a sequence of polynomials of finite rank.

Autores:
Pombo Jr., Dinamérico P.
Tipo de recurso:
Article of journal
Fecha de publicación:
1989
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43246
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43246
http://bdigital.unal.edu.co/33344/
Palabra clave:
Polynomial
Banach space
between non-Archimedean
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The object of the present note is to prove that every compact polynomial between non-Archimedean Banach spaces over a complete discretely valued field of characteristic zero is a limit of a sequence of polynomials of finite rank.