Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi

ilustraciones, fotografías a color

Autores:
Castiblanco Quiroga, Nelly Fernanda
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84021
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84021
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::572 - Bioquímica
580 - Plantas
540 - Química y ciencias afines
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
Claveles
Virus fitopatógenos
Virosis (plantas)
Carnations
Plant viruses
Virus diseases of plants
Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Tiamina
Superóxido dismutasa
Tripeptidil peptidasa
Proteínas SIX
Factor de virulencia
Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Thiamine
Superoxide dismutase
Tripeptidyl peptidase
SIX proteins
Virulence factor
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_11628a386b822dee80287fdb4e31be9a
oai_identifier_str oai:repositorio.unal.edu.co:unal/84021
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
dc.title.translated.eng.fl_str_mv Effect of the application of resistance inducers on the in vivo expression of candidate virulence factor genes of the pathogen Fusarium oxysporum f. sp. dianthi in carnation (Dianthus caryophyllus L)
title Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
spellingShingle Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
570 - Biología::572 - Bioquímica
580 - Plantas
540 - Química y ciencias afines
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
Claveles
Virus fitopatógenos
Virosis (plantas)
Carnations
Plant viruses
Virus diseases of plants
Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Tiamina
Superóxido dismutasa
Tripeptidil peptidasa
Proteínas SIX
Factor de virulencia
Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Thiamine
Superoxide dismutase
Tripeptidyl peptidase
SIX proteins
Virulence factor
title_short Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
title_full Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
title_fullStr Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
title_full_unstemmed Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
title_sort Efecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthi
dc.creator.fl_str_mv Castiblanco Quiroga, Nelly Fernanda
dc.contributor.advisor.none.fl_str_mv Ardila Barrantes, Harold Duban
dc.contributor.author.none.fl_str_mv Castiblanco Quiroga, Nelly Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Estudio de Actividades Metabólicas Vegetales
dc.subject.ddc.spa.fl_str_mv 570 - Biología::572 - Bioquímica
580 - Plantas
540 - Química y ciencias afines
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
topic 570 - Biología::572 - Bioquímica
580 - Plantas
540 - Química y ciencias afines
580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
Claveles
Virus fitopatógenos
Virosis (plantas)
Carnations
Plant viruses
Virus diseases of plants
Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Tiamina
Superóxido dismutasa
Tripeptidil peptidasa
Proteínas SIX
Factor de virulencia
Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Thiamine
Superoxide dismutase
Tripeptidyl peptidase
SIX proteins
Virulence factor
dc.subject.lemb.spa.fl_str_mv Claveles
Virus fitopatógenos
Virosis (plantas)
dc.subject.lemb.eng.fl_str_mv Carnations
Plant viruses
Virus diseases of plants
dc.subject.proposal.spa.fl_str_mv Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Tiamina
Superóxido dismutasa
Tripeptidil peptidasa
Proteínas SIX
Factor de virulencia
dc.subject.proposal.eng.fl_str_mv Fusarium oxysporum f. sp. dianthi
Dianthus caryophyllus L.
Thiamine
Superoxide dismutase
Tripeptidyl peptidase
SIX proteins
Virulence factor
description ilustraciones, fotografías a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-14T23:13:05Z
dc.date.available.none.fl_str_mv 2023-06-14T23:13:05Z
dc.date.issued.none.fl_str_mv 2023-06-15
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84021
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84021
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdel-Monaim, M. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10, 10842–10855. https://doi.org/10.5897/AJB11.253
Abd-Elsalam, K. A., Aly, I. N., Abdel-Satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/AJB.V2I4.14830
Adrees, H., Haider, M. S., Anjum, T., & Akram, W. (2019). Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Protection, 115, 75– 83. https://doi.org/10.1016/J.CROPRO.2018.09.011
Ahmed, A. M. H., Sayed, S. A., Farghaly, F. A., & Radi, A. A. F. (2016). Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. Journal of Phytopathology and Pest Management, 23–34.
Ahn, I.-P., Kim, S., Lee, Y.-H., & Suh, S.-C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology, 143(2), 838–848. https://doi.org/10.1104/pp.106.092627
Ali, B. (2021). Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. https://doi.org/10.1016/J.BCAB.2020.101884
Al-Wakeel, Shahnaz A. M., Moubasher Hani, Mahmoud M. Gabr, M. M. Y. M. (2013). Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. IUFS Journal of Biology, 72(1), 9–21.
Ardila Barrantes, H. D. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. http://bdigital.unal.edu.co/57986/
Bailey, B. A. (1995). Purification of a Protein from Culture Filtrates of Fusarium oxysporum that Induces Ethylene and Necrosis in Leaves of Erythroxylum coca. Phytopathology, 85(10), 1250. https://doi.org/10.1094/Phyto-85-1250
Bailey, B. A., Apel-Birkhold, P. C., & Luster, D. G. (2002). Expression of NEP1 by Fusarium oxysporum f. sp. erythroxyli After Gene Replacement and Overexpression Using Polyethylene Glycol-Mediated Transformation. Phytopathology, 92(8), 833–841. https://doi.org/10.1094/PHYTO.2002.92.8.833
Bailey, B. A., Jennings, J. C., & Anderson, J. D. (1997). The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production. Canadian Journal of Microbiology, 43(1), 45–55
Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ‘prime- ome’: towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002
Bani, M., Pérez-de-Luque, A., Rubiales, D., & Rispail, N. (2018). Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f. Sp. pisi in Pea. Frontiers in Plant Science, 9, 199. https://doi.org/10.3389/FPLS.2018.00199/BIBTEX
Beckman, C. H., & Roberts, E. M. (1995). On the Nature and Genetic Basis for Resistance and Tolerance to Fungal Wilt Diseases of Plants. Advances in Botanical Research, 21, 35–77. https://doi.org/10.1016/S0065-2296(08)60008-7
Biernasiuk, A., Berecka-Rycerz, A., Gumieniczek, A., Malm, M., Łączkowski, K. Z., Szymańska, J., & Malm, A. (2021). The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicans. Applied Microbiology and Biotechnology, 105(16–17), 6355. https://doi.org/10.1007/S00253-021-11477-7
Borges, A. A., Borges-Pérez, A., & Fernández-Falcón, M. (2004). Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Protection, 23(12), 1245–1247. https://doi.org/10.1016/J.CROPRO.2004.05.010
Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244(3), 529–543. https://doi.org/10.1007/s00425-016-2552-0
Bray Speth, E., Lee, Y. N., & He, S. Y. (2007). Pathogen virulence factors as molecular probes of basic plant cellular functions. Current Opinion in Plant Biology, 10(6), 580–586. https://doi.org/10.1016/J.PBI.2007.08.003
Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004
Cao, L., Blekemolen, M. C., Tintor, N., Cornelissen, B. J. C., & Takken, F. L. W. (2018). The Fusarium oxysporum Avr2-Six5 Effector Pair Alters Plasmodesmatal Exclusion Selectivity to Facilitate Cell-to-Cell Movement of Avr2. Molecular Plant, 11(5), 691–705. https://doi.org/10.1016/j.molp.2018.02.011
Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García- Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765–779. https://doi.org/10.1046/j.1365-2958.2003.03465.x
Carrillo-Perdomo, E., Jiménez-Arias, D., Aller, Á., & Borges, A. A. (2016). Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests. Pest Management Science, 72(5), 950–960. https://doi.org/10.1002/ps.4074
Castiblanco Quiroga, N. F. (2017). Condiciones de crecimiento del hongo Fusarium oxysporum f. sp. dianthi para la preparación de un potencial inductor de resistencia al marchitamiento vascular del clavel Dianthus caryophyllus L. Universidad Nacional de Colombia.
Catanzariti, A.-M., Do, H. T. T., Bru, P., de Sain, M., Thatcher, L. F., Rep, M., & Jones, D. A. (2017). The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. The Plant Journal, 89(6), 1195– 1209. https://doi.org/10.1111/tpj.13458
Chen, C., Zhang, M.-K., Hu, K.-D., Sun, K.-K., Li, Y.-H., Hu, L.-Y., Chen, X.-Y., Yang, Y., Yang, F., Tang, J., Liu, H.-P., & Zhang, H. (2017). Deletion of Cu/Zn Superoxide Dismutase Gene sodC Reduces Aspergillus niger Virulence on Chinese White Pear. Journal of the American Society for Horticultural Science J. Amer. Soc. Hort. Sci., 142(5), 385–392. https://doi.org/10.21273/JASHS04169-17
Chiocchetti, A., Bernardo, I., Daboussi, M.-J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169
Cho, J. S., Seo, Y. C., Yim, T. Bin, & Lee, H. Y. (2013). Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani. International Journal of Molecular Sciences, 14(2), 4283–4297. https://doi.org/10.3390/ijms14024283
Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/J.TPLANTS.2011.06.004
Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6
Costa, J. H., Bazioli, J. M., de Moraes Pontes, J. G., & Fill, T. P. (2019). Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biology, 123(8), 584–593. https://doi.org/10.1016/J.FUNBIO.2019.05.004
Cuervo Plata, D. C. (2017). Estudio bioquímico y molécular de algunas enzimas asociadas al estrés oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de Colombia
Dana, M. A., Kordbacheh, P., Ghazvini, R. D., Moazeni, M., Nazemi, L., & Rezaie, S. (2018). Inhibitory effect of vitamin C on Aspergillus parasiticus growth and aflatoxin gene expression. Current Medical Mycology, 4(3), 10. https://doi.org/10.18502/CMM.4.3.170
de Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International Journal of Molecular Sciences, 16(10), 23970–23993. https://doi.org/10.3390/ijms161023970
Di Pietro, A., P Madrid, M., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. (2003). Fusarium oxysporum: Exploring the Molecular Arsenal of a Vascular Wilt Fungus. Molecular Plant Pathology, 4, 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.x
Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A. R., Feussner, I., Feussner, K., Meinicke, P., Stierhof, Y.- D., Schwarz, H., Macek, B., Mann, M., & Kahmann, R. (2011). Metabolic priming by a secreted fungal effector. Nature, 478(7369), 395–398. https://doi.org/10.1038/nature10454
Du, Q., Wang, H., & Xie, J. (2011). Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? International Journal of Biological Sciences, 7(1), 41. https://doi.org/10.7150/IJBS.7.41
Eshel, D., Miyara, I., Ailing, T., Dinoor, A., & Prusky, D. (2002). pH Regulates Endoglucanase Expression and Virulence of Alternaria alternata in Persimmon Fruit. Molecular Plant-Microbe Interactions®, 15(8), 774–779. https://doi.org/10.1094/MPMI.2002.15.8.774
Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E. StJ., & O’Brien, P. A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6), 1086–1095. https://doi.org/10.1111/j.1365-3059.2011.02471.x
Estrada Rudas, C. (2022, August 17). Flores colombianas generan 200.000 empleos y son exportadas a más de 100 países. https://www.agronegocios.co/agricultura/flores-colombianas-generan-200-000- empleos-y-son-exportadas-a-mas-de-100-paises-3425195
Evans, R. C., & Garraway, M. O. (1976). Effect of Thiamine on Ethanol and Pyruvate Production in Helminthosporium maydis 1 2. Plant Physiology, 57(5), 812–816. https://doi.org/10.1104/pp.57.5.812
F. Paul Silverman, *, Peter D. Petracek, Daniel F. Heiman, Zhiguo Ju, †, Christina M. Fledderman, and, & Warrior, P. (2005). Salicylate Activity. 2. Potentiation of Atrazine. https://doi.org/10.1021/JF0513821
Ferro, K., Ferro, D., Corrà, F., Bakiu, R., Santovito, G., & Kurtz, J. (2017). Cu,Zn Superoxide Dismutase Genes in Tribolium castaneum: Evolution, Molecular Characterisation, and Gene Expression during Immune Priming. Frontiers in Immunology, 8. https://www.frontiersin.org/articles/10.3389/fimmu.2017.01811
França, K. R. S., Silva, T. L., Cardoso, T. A. L., Ugulino, A. L. N., Rodrigues, A. P. M., & de Mendonça Júnior, A. F. (2018). In vitro effect of essential oil of peppermint (Mentha x piperita L.) on the mycelial growth of Alternaria alternata. Journal of Experimental Agriculture International, 26(5), 1–7
Fraser-Smith, S., Czislowski, E., Meldrum, R. A., Zander, M., O’Neill, W., Balali, G. R., & Aitken, E. A. B. (2014). Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathology, 63(5), 1044–1052. https://doi.org/10.1111/ppa.12184
Gawehns, F., Houterman, P. M., Ichou, F. A., Michielse, C. B., Hijdra, M., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2014). The Fusarium oxysporum Effector Six6 Contributes to Virulence and Suppresses I-2-Mediated Cell Death. Molecular Plant-Microbe Interactions, 27(4), 336–348. https://doi.org/10.1094/MPMI-11-13-0330-R
Gawehns, F. K. K. (2014). Function and targets of Fusarium oxysporum effectors. Swammerdam Institute for Life Sciences (SILS).
Gawehns, F., Ma, L., Bruning, O., Houterman, P. M., Boeren, S., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2015). The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Frontiers in Plant Science, 6, 967. https://doi.org/10.3389/fpls.2015.00967
Gentile, I. A., & Matta, A. (1975). Production of and some effects of ethylene in relation to Fusarium wilt of tomato. Physiological Plant Pathology, 5(1), 27–35. https://doi.org/10.1016/0048-4059(75)90067-3
Gessler, N. N., Aver’yanov, A. A., & Belozerskaya, T. A. (2007). Reactive oxygen species in regulation of fungal development. Biochemistry. Biokhimiia, 72(10), 1091–1109. https://doi.org/10.1134/S0006297907100070
Goellner, K., & Conrath, U. (2008). Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology, 121(3), 233–242. https://doi.org/10.1007/s10658-007-9251-4
Gómez García, L., & Martínez, S. T. (2005). Inducción de dos enzimas pectolíticas en el modelo Fusarium oxysporum f. sp. dianthi - clavel. Revista Colombiana de Química, 34(1), 25–34. http://www.redalyc.org/articulo.oa?id=309026662003
Goodwin, P. H., Trueman, C., Loewen, S. A., & Tazhoor, R. (2018). Variation in the responsiveness of induced resistance against Pseudomonas syringae pv. tomato by Solanum lycopersicum treated with para-aminobenzoic acid. Physiological and Molecular Plant Pathology, 104, 31–39. https://doi.org/10.1016/J.PMPP .2018.08.007
Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50–59. https://doi.org/https://doi.org/10.1016/j.cropro.2015.01.003
Hallen-Adams, H. E., Wenner, N., Kuldau, G. A., & Trail, F. (2011). Deoxynivalenol Biosynthesis-Related Gene Expression During Wheat Kernel Colonization by Fusarium graminearum. Phytopathology®, 101(9), 1091–1096. https://doi.org/10.1094/PHYTO-01-11-0023
Harbaugh, D. T., Nepokroeff, M., Rabeler, R. K., McNeill, J., Zimmer, E. A., & Wagner, W. L. (2010). A New Lineage-Based Tribal Classification of the Family Caryophyllaceae. International Journal of Plant Sciences, 171(2), 185–198. https://doi.org/10.1086/648993
Harris, L. J., Balcerzak, M., Johnston, A., Schneiderman, D., & Ouellet, T. (2016). Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biology, 120(1), 111–123. https://doi.org/10.1016/J.FUNBIO.2015.10.010
Hegde, K. T., Narayanaswamy, H., VEERAGHANTI, K., & Manu, T. G. (2017). Efficacy of bio-agents, botanicals and fungicides against Fusarium oxysporum f. sp. dianthi causing wilt of carnation. International Journal of Chemical Studies, 5(56), 139–142.
Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J., & Chang, S. W. (2016). Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants. The Plant Pathology Journal, 32(5), 469–480. https://doi.org/10.5423/PPJ.OA.03.2016.0076
Huang, W.-K., Ji, H.-L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316
Ichikawa, K., Shiba, Y., Yamazaki, M., & Serizawa, N. (1997). Thiamine increases expression of yeast gene. Bioscience, Biotechnology, and Biochemistry, 61(7), 1221–1224. https://doi.org/10.1271/bbb.61.1221
Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. Frontiers in Plant Science, 12, 462. https://doi.org/10.3389/FPLS.2021.628611/BIBTEX
Jarai, G., & Buxton, F. (1994). Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Current Genetics, 26(3), 238–244. https://doi.org/10.1007/BF00309554
Jenkins, S., Taylor, A., Jackson, A. C., Armitage, A. D., Bates, H. J., Mead, A., Harrison, R. J., & Clarkson, J. P. (2021). Identification and Expression of Secreted In Xylem Pathogenicity Genes in Fusarium oxysporum f. sp. pisi. Frontiers in Microbiology, 12, 788. https://doi.org/10.3389/FMICB.2021.593140/BIBTEX
Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286
Kachroo, P., & Kachroo, A. (2018). Plants Pack a Quiver Full of Arrows. Cell Host & Microbe, 23(5), 573–575. https://doi.org/10.1016/J.CHOM.2018.04.014
Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., & Kumar, P. (2020). Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. 457–470. https://doi.org/10.1007/978-3-030-41870-0_20
Kashiwa, T., Suzuki, T., Sato, A., Akai, K., Teraoka, T., Komatsu, K., & Arie, T. (2016). A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiology Letters, 363(14), fnw132. https://doi.org/10.1093/femsle/fnw132
Katz, M. E., Flynn, P. K., vanKuyk, P. A., & Cheetham, B. F. (1996). Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. Molecular & General Genetics : MGG, 250(6), 715–724. https://doi.org/10.1007/BF02172983
Kayali, H. A., & Tarhan, L. (2006). The impact of Vitamins C, B1 and B6 supplementation on antioxidant enzyme activities, membrane total sialic acid and lipid peroxidation levels in Fusarium species. Process Biochemistry, 41(7), 1608–1613. https://doi.org/https://doi.org/10.1016/j.procbio.2006.03.012
Langner, T., & Göhre, V. (2015). Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current Genetics 2015 62:2, 62(2), 243–254. https://doi.org/10.1007/S00294-015-0530-X
Leitão, J. H. (2020). Microbial Virulence Factors. International Journal of Molecular Sciences, 21(15). https://doi.org/10.3390/ijms21155320
Li, E., Wang, G., Xiao, J., Ling, J., Yang, Y., & Xie, B. (2016). A SIX1 Homolog in Fusarium oxysporum f. sp. conglutinans Is Required for Full Virulence on Cabbage. PloS One, 11(3), e0152273. https://doi.org/10.1371/journal.pone.0152273
Li, T., Jian, Q., Wang, Y., Chen, F., Yang, C., Gong, L., Duan, X., Yang, B., & Jiang, Y. (2016). Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 148, 1–11. https://doi.org/10.1016/J.JPROT.2016.04.051
Lievens, B., Houterman, P. M., & Rep, M. (2009). Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters, 300(2), 201–215. https://doi.org/10.1111/j.1574-6968.2009.01783.x
Liu, X., Xie, J., Fu, Y., Jiang, D., Chen, T., & Cheng, J. (2020). The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. International Journal of Molecular Sciences 2020, Vol. 21, Page 603, 21(2), 603. https://doi.org/10.3390/IJMS21020603
Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., & Kahmann, R. (2015). Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66(1), 513–545. https://doi.org/10.1146/annurev-arplant-043014-114623
Louise Glass, N., Schmoll, M., Cate, J. H. D., & Coradetti, S. (2013). Plant cell wall deconstruction by ascomycete fungi. Annual Review of Microbiology, 67, 477– 498. https://doi.org/10.1146/ANNUREV-MICRO-092611-150044
Lukienko, P. I., Mel’nichenko, N. G., Zverinskii, I. V, & Zabrodskaya, S. V. (2000). Antioxidant properties of thiamine. Bulletin of Experimental Biology and Medicine, 130(9), 874–876.
Ma, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium pathogenomics. Annual Review of Microbiology, 67, 399–416. https://doi.org/10.1146/ANNUREV-MICRO-092412-155650
Malik, N. A. A., Kumar, I. S., & Nadarajah, K. (2020). Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. International Journal of Molecular Sciences 2020, Vol. 21, Page 963, 21(3), 963. https://doi.org/10.3390/IJMS21030963
Martínez González, A. P. (2012). Evaluación de los niveles de expresión “in vitro” de enzimas pectinolíticas del hongo Colletotrichum acutatum en presencia de inductores naturales provenientes del fruto de lulo (Solanum quitoense Lam). Avances para determinar sus niveles de transcripción. https://repositorio.unal.edu.co/handle/unal/11480
Martinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi [Universidad Nacional de Colombia - Sede Bogotá]. http://bdigital.unal.edu.co/74221/
Merhej, J., Urban, M., Dufresne, M., Hammond-Kosack, K. E., Richard-Forget, F., & Barreau, C. (2012). The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Molecular Plant Pathology, 13(4), 363–374. https://doi.org/10.1111/J.1364-3703.2011.00755.X
Mishra, A. K., Sharma, K., & Misra, R. S. (2012). Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 7(2), 95–120. https://doi.org/10.1080/17429145.2011.597517
Moldovan, E., & Moldovan, V. (2020). Controls in Real-Time Polymerase Chain Reaction Based Techniques. Acta Marisiensis - Seria Medica, 66(3), 79–82. https://doi.org/doi:10.2478/amma-2020-0025
Monod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., & Jousson, O. (2002). Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology, 292(5), 405–419. https://doi.org/https://doi.org/10.1078/1438-4221-00223
Monroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Universidad Nacional de Colombia.
Monroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus Caryophyllus L.) - Fusarium oxysporum f. sp. Dianthi. Revista Colombiana de Química, 48, 5–14.
Mozafar, A., & Oertli, J. J. (1992). Uptake and Transport of Thiamin (Vitamin B 1) by Barley and Soybean. Journal of Plant Physiology, 139(4), 436–442. https://doi.org/https://doi.org/10.1016/S0176-1617(11)80491-8
Mueller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B., Wu, A., & de Vries, R. P. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology, 45, S63–S70. https://doi.org/https://doi.org/10.1016/j.fgb.2008.03.012
Muszewska, A., Stepniewska-Dziubinska, M. M., Steczkiewicz, K., Pawlowska, J., Dziedzic, A., & Ginalski, K. (2017). Fungal lifestyle reflected in serine protease repertoire. Scientific Reports 2017 7:1, 7(1), 1–12. https://doi.org/10.1038/s41598-017-09644-w
Muthukrishnan, S., Murugan, I., & Selvaraj, M. (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers, 212, 169–177. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.02.037
Nazemi, L., Kordbacheh, P., Daei Ghazvini, R., Moazeni, M., Akbari Dana, M., & Rezaie, S. (2015). Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. parasiticus. Current Medical Mycology, 1(1), 26. https://doi.org/10.18869/ACADPUB.CMM.1.1.26
Niño-Sánchez, J., Casado-Del Castillo, V., Tello, V., de Vega-Bartol, J. J., Ramos, B., Sukno, S. A., & Díaz Mínguez, J. M. (2016). The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. Molecular Plant Pathology, 17(7), 1124–1139. https://doi.org/10.1111/mpp.12373
Nordzieke, D. E., Fernandes, T. R., el Ghalid, M., Turrà, D., & di Pietro, A. (2019). NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytologist, 224(4), 1600–1612. https://doi.org/10.1111/NPH.16085
Ojha, S., & Chatterjee, N. (2012). Induction of resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici mediated through salicylic acid and Trichoderma harzianum (Vol. 52, Issue No 2, pp. 220–225). Institute of Plant Protection – National Research Institute.
Paraschivu, M., & Cotuna, O. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science, 45, 193–201.
Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Https://Doi.Org/10.1080/03235408.2020.1868734, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734
Pizano, M. (1987). El cultivo del Clavel en Colombia. Horticultura, 35, 114–127.
Poli, A., Bertetti, D., Garibaldi, A., & Gullino, M. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. The Plant Pathology Journal, 95, 255–263.
Pontes, J. G. D. M., Fernandes, L. S., dos Santos, R. vander, Tasic, L., & Fill, T. P. (2020). Virulence Factors in the Phytopathogen-Host Interactions: An Overview. Journal of Agricultural and Food Chemistry, 68(29), 7555–7570. https://doi.org/10.1021/ACS.JAFC.0C02389/ASSET/IMAGES/MEDIUM/JF0C02 389_0005.GIF
Ponukumati, S. v., Elliott, M. L., & des Jardin, E. A. (2019). Comparison of Secreted in Xylem (SIX) genes in two fusarium wilt pathogens of ornamental palms. Plant Pathology, 68(9), 1663–1681. https://doi.org/10.1111/PPA.13090
Rajeswari, P. (2020). Assessment of Combination of Biocontrol Strains on the Fusaric Acid and other Toxins Secreted from Fusarium oxysporum by HPLC- MS/MS Method and Differential Expression Profiling in Arachis hypogaea L. Toxicology International, 26, 89–97.
Ramírez Vargas, E. (2014). Evaluación de los niveles de actividad y transcripcionales in vivo de algunas enzimas hidrolíticas secretadas por Fusarium oxysporum f.sp. dianthi en su interacción con el clavel (Dianthus caryophyllus L) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/46176/
Ramoni, J., Seidl-Seiboth, V., Bischof, R. H., & Seiboth, B. (2016). Gene Expression Systems in Industrial Ascomycetes: Advancements and Applications. In M. Schmoll & C. Dattenböck (Eds.), Gene Expression Systems in Fungi: Advancements and Applications (pp. 3–22). Springer International Publishing. https://doi.org/10.1007/978-3-319-27951-0_1
Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77. https://doi.org/10.1016/J.PBI.2017.04.011
Rapala-Kozik, M., Wolak, N., Kujda, M., & Banas, A. K. (2012). The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biology, 12. https://doi.org/10.1186/1471-2229- 12-2
Recorbet, G., Steinberg, C., Olivain, C., Edel, V., Trouvelot, S., Dumas-Gaudot, E., Gianinazzi, S., & Alabouvette, C. (2003). Wanted: Pathogenesis-Related Marker Molecules for Fusarium oxysporum. The New Phytologist, 159(1), 73– 92.
Reichard, U., Léchenne, B., Asif, A. R., Streit, F., Grouzmann, E., Jousson, O., & Monod, M. (2006). Sedolisins, a New Class of Secreted Proteases from Aspergillus fumigatus with Endoprotease or Tripeptidyl-Peptidase Activity at Acidic pHs. Applied and Environmental Microbiology, 72(3), 1739 LP – 1748. https://doi.org/10.1128/AEM.72.3.1739-1748.2006
Rep, M., van der Does, H. C., Meijer, M., van Wijk, R., Houterman, P. M., Dekker, H. L., de Koster, C. G., & Cornelissen, B. J. C. (2004). A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53(5), 1373–1383. https://doi.org/10.1111/j.1365-2958.2004.04177.x
Rocha, L. O., Laurence, M. H., Ludowici, V. A., Puno, V. I., Lim, C. C., Tesoriero, L. A., Summerell, B. A., & Liew, E. C. Y. (2016). Putative effector genes detected in Fusarium oxysporum from natural ecosystems of Australia. Plant Pathology, 65(6), 914–929. https://doi.org/10.1111/PPA.12472
Rodríguez-Herva, J. J., González-Melendi, P., Cuartas-Lanza, R., Antúnez-Lamas, M., Río-Alvarez, I., Li, Z., López-Torrejón, G., Díaz, I., del Pozo, J. C., Chakravarthy, S., Collmer, A., Rodríguez-Palenzuela, P., & López-Solanilla, E. (2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cellular Microbiology, 14(5), 669–681. https://doi.org/10.1111/J.1462- 5822.2012.01749.X
Romero Rincón, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia.
Roncero, M. I. G., Hera, C., Ruiz-Rubio, M., García Maceira, F. I., Madrid, M. P., Caracuel, Z., Calero, F., Delgado-Jarana, J., Roldán-Rodríguez, R., Martínez- Rocha, A. L., Velasco, C., Roa, J., Martín-Urdiroz, M., Córdoba, D., & di Pietro, A. (2003). Fusarium as a model for studying virulence in soilborne plant pathogens. Physiological and Molecular Plant Pathology, 62(2), 87–98. https://doi.org/10.1016/S0885-5765(03)00043-2
Rouf, A., & Tanyeli, C. (2015). Bioactive thiazole and benzothiazole derivatives. European Journal of Medicinal Chemistry, 97, 911–927. https://doi.org/10.1016/j.ejmech.2014.10.058
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. The Plant Cell, 8(10), 1809– 1819. https://doi.org/10.1105/tpc.8.10.1809
Sánchez-Rangel, D., Hernández-Domínguez, E. E., Pérez-Torres, C. A., Ortiz- Castro, R., Villafán, E., Rodríguez-Haas, B., Alonso-Sánchez, A., López- Buenfil, A., Carrillo-Ortiz, N., Hernández-Ramos, L., & Ibarra-Laclette, E. (2018). Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics 2018 19:1, 19(1), 1–21. https://doi.org/10.1186/S12864-018-5083-1
Sathiyabama, M., & Indhumathi, M. (2022). Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. International Journal of Biological Macromolecules, 198, 11–17. https://doi.org/10.1016/J.IJBIOMAC.2021.12.105
Scalschi, L., Camañes, G., Llorens, E., Fernández-Crespo, E., López, M. M., García- Agustín, P., & Vicedo, B. (2014). Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants. PLOS ONE, 9(9), e106429. https://doi.org/10.1371/JOURNAL.PONE.0106429
Schmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14(1), 119. https://doi.org/10.1186/1471-2164-14- 119
Sharafaddin, A. H., Hamad, Y. K., El_Komy, M. H., Ibrahim, Y. E., Widyawan, A., Molan, Y. Y., & Saleh, A. A. (2019). Cell wall degrading enzymes and their impact on Fusarium proliferatum pathogenicity. European Journal of Plant Pathology, 155(3), 871–880. https://doi.org/10.1007/S10658-019-01818- 8/TABLES/4
Shooshtari, A. H., Mohammadi, S., Shahsavandi, S., Pourbakhsh, S. A., Hashemi, S. J., Erami, M., & Jahanshiri, Z. (2007). Application of PCR on detection of aflatoxinogenic fungi. Archives of Razi Institute, 62(2), 95–100. https://doi.org/10.22092/ari.2007.103774
Simbaqueba, J. (2017). Analysis of Fusarium oxysporum effectors shared between strains that infect cape gooseberry and tomato. Australian National University.
Singh, A., Lim, G.-H., & Kachroo, P. (2017). Transport of chemical signals in systemic acquired resistance. Journal of Integrative Plant Biology, 59(5), 336– 344. https://doi.org/10.1111/jipb.12537
Soyer, J. L., el Ghalid, M., Glaser, N., Ollivier, B., Linglin, J., Grandaubert, J., Balesdent, M. H., Connolly, L. R., Freitag, M., Rouxel, T., & Fudal, I. (2014). Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans. PLOS Genetics, 10(3), e1004227. https://doi.org/10.1371/JOURNAL.PGEN.1004227
Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141
Sriranganadane, D., Waridel, P., Salamin, K., Reichard, U., Grouzmann, E., Neuhaus, J.-M., Quadroni, M., & Monod, M. (2010). Aspergillus Protein Degradation Pathways with Different Secreted Protease Sets at Neutral and Acidic pH. Journal of Proteome Research, 9(7), 3511–3519. https://doi.org/10.1021/pr901202z
Stergiopoulos, I., Collemare, J., Mehrabi, R., & De Wit, P. J. G. M. (2013). Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiology Reviews, 37(1), 67–93. https://doi.org/10.1111/j.1574-6976.2012.00349.x
Takken, F., & Rep, M. (2010). The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 11(2), 309–314. https://doi.org/10.1111/J.1364-3703.2009.00605.X
Takle, G. W., Toth, I. K., & Brurberg, M. B. (2007). Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biology, 7(1), 1–9. https://doi.org/10.1186/1471-2229- 7-50/TABLES/4
Taylor, A., Vágány, V., Jackson, A. C., Harrison, R. J., Rainoni, A., & Clarkson, J. P. (2016). Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Molecular Plant Pathology, 17(7), 1032–1047. https://doi.org/10.1111/mpp.12346
Thatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A Highly Conserved Effector in Fusarium oxysporum Is Required for Full Virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 25(2), 180–190. https://doi.org/10.1094/MPMI-08-11-0212
The Biology of Dianthus caryophyllus L. (Carnation). (2015). http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/5DCF28AD2F3779C 4CA257D4E001819B9/$File/biology-carnation2015.pdf
Tian, L., Li, J., Huang, C., Zhang, D., Xu, Y., Yang, X., Song, J., Wang, D., Qiu, N., Short, D. P. G., Inderbitzin, P., Subbarao, K. v., Chen, J., & Dai, X. (2021). Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. Molecular Plant Pathology, 22(9), 1092–1108. https://doi.org/10.1111/MPP.13099
Torres, G. A. (1993). Las enfermedades vasculares del clavel en colombia y en el mundo. Agronomía Colombiana; Vol. 10, Núm. 1 (1993); 12-18 Agronomía Colombiana; Vol. 10, Núm. 1 (1993); 12-18 2357-3732 0120-9965. http://bdigital.unal.edu.co/24110/
Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204
Tunc-Ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R., & Shintani, D. (2009). Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis. Plant Physiology, 151(1), 421 LP – 432. https://doi.org/10.1104/pp.109.140046
Turabelidze, A., Guo, S., & Dipietro, L. A. (2010). Importance of Housekeeping gene selection for accurate RT-qPCR in a wound healing model. Wound Repair and Regeneration : Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 18(5), 460. https://doi.org/10.1111/J.1524- 475X.2010.00611.X
van Dam, P., Fokkens, L., Schmidt, S. M., Linmans, J. H. J., Kistler, H. C., Ma, L.-J., & Rep, M. (2016). Effector profiles distinguish formae speciales of Fusarium oxysporum. Environmental Microbiology, 18(11), 4087–4102. https://doi.org/10.1111/1462-2920.13445
van Dam, P., & Rep, M. (2017). The Distribution of Miniature Impala Elements and SIX Genes in the Fusarium Genus is Suggestive of Horizontal Gene Transfer. Journal of Molecular Evolution, 85(1–2), 14–25. https://doi.org/10.1007/s00239- 017-9801-0
van der Does, H. C., Duyvesteijn, R. G. E., Goltstein, P. M., van Schie, C. C. N., Manders, E. M. M., Cornelissen, B. J. C., & Rep, M. (2008). Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology, 45(9), 1257–1264. https://doi.org/10.1016/J.FGB.2008.06.002
Velho, A. C., Mondino, P., & Stadnik, M. J. (2018). Extracellular enzymes of Colletotrichum fructicola isolates associated to Apple bitter rot and Glomerella leaf spot. Mycology, 9(2), 145. https://doi.org/10.1080/21501203.2018.1464525
Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., & Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytologist, 229(3), 1234–1250. https://doi.org/10.1111/NPH.16953
Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026
Wang, M., Weiberg, A., & Jin, H. (2015). Pathogen small RNAs: a new class of effectors for pathogen attacks. Molecular Plant Pathology, 16(3), 219–223. https://doi.org/10.1111/mpp.12233
Wang, Q., Pokhrel, A., & Coleman, J. J. (2021). The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity. Frontiers in Plant Science, 12, 294. https://doi.org/10.3389/FPLS.2021.608861/BIBTEX
Wendehenne, D., Gao, Q., Kachroo, A., & Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology, 20, 127–134. https://doi.org/10.1016/J.PBI.2014.05.012
Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B., & Albrectsen, B. R. (2019). Defence priming in Arabidopsis - a Meta-Analysis. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-019-49811-9
Wlodawer, A., Li, M., Gustchina, A., Oyama, H., Dunn, B., & Oda, K. (2003). Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidase. Acta Biochimica Polonica, 50, 81–102. https://doi.org/10.18388/abp.2003_3716
Wolak, N., Kowalska, E., Kozik, A., & Rapala-Kozik, M. (2014). Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Research, 14(8), 1249– 1262. https://doi.org/10.1111/1567-1364.12218
Wolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In R. J. McGovern & W. H. Elmer (Eds.), Handbook of Florists’ Crops Diseases (pp. 317–378). Springer International Publishing. https://doi.org/10.1007/978-3-319- 39670-5_14
Yao, S.-H., Guo, Y., Wang, Y.-Z., Zhang, D., Xu, L., & Tang, W.-H. (2016). A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genetics and Biology, 91, 32– 42. https://doi.org/https://doi.org/10.1016/j.fgb.2016.03.006
Yike, I. (2011). Fungal Proteases and Their Pathophysiological Effects. Mycopathologia, 171(5), 299–323. https://doi.org/10.1007/s11046-010-9386-2
Yoshida, H., & Tanaka, C. (2019). Monitoring of in planta gene expression for xylan degradation and assimilation in the maize pathogen Bipolaris maydis. Mycoscience, 60(2), 116–124. https://doi.org/10.1016/J.MYC.2018.10.002
Zhao, L., Hu, Z., Li, S., Zhou, X., Li, J., Su, X., Zhang, L., Zhang, Z., & Dong, J. (2019). Diterpenoid compounds from Wedelia trilobata induce resistance to Tomato spotted wilt virus via the JA signal pathway in tobacco plants. Scientific Reports, 9(1), 2763. https://doi.org/10.1038/s41598-019-39247-6
Zheng, P., Chen, L., Zhong, S., Wei, X., Zhao, Q., Pan, Q., Kang, Z., & Liu, J. (2020). A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environmental Microbiology, 22(12), 5309–5326. https://doi.org/10.1111/1462-2920.15236
Zuriegat, Q., Zheng, Y., Liu, H., Wang, Z., & Yun, Y. (2021). Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Molecular Plant Pathology, 22(7), 882–895. https://doi.org/https://doi.org/10.1111/mpp.13068
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii,110 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84021/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84021/4/1012406246.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84021/5/1012406246.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
01dae7f037a94fc326a8d97fb3e0afa7
6a145515fb85a0c0d32fe934a0b4c3e8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089962649288704
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ardila Barrantes, Harold Duban3c0b4dc91cdf02792559faddcd37e2b3Castiblanco Quiroga, Nelly Fernandad206bc3c8a0a1c7af1e5fa44e3018d1fEstudio de Actividades Metabólicas Vegetales2023-06-14T23:13:05Z2023-06-14T23:13:05Z2023-06-15https://repositorio.unal.edu.co/handle/unal/84021Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a colorLa tiamina se ha postulado como un potencial inductor de resistencia al marchitamiento vascular causado por Fusarium oxysporum f. sp. dianthi (Fod), dado que su aspersión foliar en plantas de clavel reduce significativamente la severidad de la enfermedad. No obstante, hasta el momento se desconocen los fenómenos bioquímicos involucrados en la inducción de resistencia en este modelo, por ejemplo, no se conoce el efecto que puede tener este tipo de sustancias directamente sobre el patógeno. En este estudio se investigó el efecto que tiene la tiamina sobre el crecimiento micelial y los niveles transcripcionales de los genes sod1, sed4, six7 y six10 los cuales codifican para posibles factores de virulencia de este patógeno del clavel. Para ello, primero se realizó el cultivo in vitro del patógeno y se determinó el efecto de la presencia de tiamina sobre el crecimiento y los niveles de transcripción de sod1 y sed4. Posteriormente, se inocularon con Fod plantas de clavel previamente tratadas con tiamina y se confirmó el efecto de ésta en la disminución de la severidad a la enfermedad; en este punto se evaluaron los niveles de transcripción in planta de los genes sed4, sod1, six7 y six10 en dos variedades de clavel con niveles de resistencia contrastante al marchitamiento vascular. En la primera etapa, se evidenció que, durante la fase exponencial, la presencia de tiamina genera una disminución de hasta un 68% en el crecimiento micelial, al comparar con el control; así mismo se observó que la presencia de este compuesto genera una modulación de los niveles transcripcionales de sod1 y sed4 en función de la fase de crecimiento del patógeno. A nivel in planta, se confirmó que la aspersión foliar de tiamina disminuye la severidad de la enfermedad causada por Fod y que, durante este proceso, hay una disminución de los niveles de expresión de sod1, six7, six10 y un aumento de la expresión de sed4. Además, se observó que los niveles transcripcionales de estos genes se encuentran modulados diferencialmente en función del nivel de resistencia de la planta. Estos hallazgos sugieren que la tiamina actúa como potencial inhibidor del crecimiento micelial in vitro y como un regulador de la transcripción de diversos genes relacionados con virulencia en Fusarium oxysporum f. sp. dianthi. (Texto tomado de la fuente)Thiamine has been proposed as a potential inducer of resistance to vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod), since its foliar spraying on carnation plants results in a significant reduction in the severity of the disease. However, the biochemical phenomena involved in the induction of resistance in this model are still unknown: for example, the effect that this type of substance can have directly on the pathogen is also unknown. In this study, we investigate the effect of thiamine on mycelial growth and transcriptional levels of the sod1, sed4, six7 and six10 genes, which are encoding potential virulence factors of this carnation pathogen. For that purpose, the pathogen was first cultured in vitro and the effect of the presence of thiamine on the growth and transcriptional levels of sod1 and sed4 was evaluated. Subsequently, carnation plants previously treated with thiamine were inoculated with Fod and the effect of thiamine on the reduction of disease severity was confirmed; at this point, the in planta transcription levels of the sed4, sod1, six7 and six10 genes were analyzed in two carnation varieties with contrasting levels of resistance to vascular wilt. In the first stage, it was found that, during the exponential phase, the presence of thiamine generated a decrease of up to 68% in mycelial growth, when compared to the control; it was also observed that the presence of this compound generated a modulation of the transcriptional levels of sod1 and sed4 depending on the growth phase of the pathogen. At the in planta level, it was confirmed that the foliar spray of thiamine reduces the severity of the disease caused by Fod and that during this process, there is a decrease in the expression levels of sod1, six7, six10 and an increase in the expression of sed4. Furthermore, the transcriptional levels of these genes were found to be differentially modulated depending on the level of plant resistance. These findings suggested that thiamine acts as a potential inhibitor of mycelial growth in vitro and as a transcriptional regulator of several virulence-related genes in Fusarium oxysporum f. sp. dianthi.MaestríaInteracción Hospedero - Patógenoxxiii,110 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BioquímicaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica580 - Plantas540 - Química y ciencias afines580 - Plantas::582 - Plantas destacadas por características vegetativas y floresClavelesVirus fitopatógenosVirosis (plantas)CarnationsPlant virusesVirus diseases of plantsFusarium oxysporum f. sp. dianthiDianthus caryophyllus L.TiaminaSuperóxido dismutasaTripeptidil peptidasaProteínas SIXFactor de virulenciaFusarium oxysporum f. sp. dianthiDianthus caryophyllus L.ThiamineSuperoxide dismutaseTripeptidyl peptidaseSIX proteinsVirulence factorEfecto de la aplicación de inductores de resistencia en el clavel (Dianthus caryophyllus L) sobre la expresión in vivo de genes codificantes para candidatos a factores de virulencia del patógeno Fusarium oxysporum f. sp. dianthiEffect of the application of resistance inducers on the in vivo expression of candidate virulence factor genes of the pathogen Fusarium oxysporum f. sp. dianthi in carnation (Dianthus caryophyllus L)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdel-Monaim, M. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. African Journal of Biotechnology, 10, 10842–10855. https://doi.org/10.5897/AJB11.253Abd-Elsalam, K. A., Aly, I. N., Abdel-Satar, M. A., Khalil, M. S., & Verreet, J. A. (2003). PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. African Journal of Biotechnology, 2(4), 82–85. https://doi.org/10.4314/AJB.V2I4.14830Adrees, H., Haider, M. S., Anjum, T., & Akram, W. (2019). Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors. Crop Protection, 115, 75– 83. https://doi.org/10.1016/J.CROPRO.2018.09.011Ahmed, A. M. H., Sayed, S. A., Farghaly, F. A., & Radi, A. A. F. (2016). Induction of resistance in Safflower plant against root rot and wilt diseases by certain inducers. Journal of Phytopathology and Pest Management, 23–34.Ahn, I.-P., Kim, S., Lee, Y.-H., & Suh, S.-C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology, 143(2), 838–848. https://doi.org/10.1104/pp.106.092627Ali, B. (2021). Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatalysis and Agricultural Biotechnology, 31, 101884. https://doi.org/10.1016/J.BCAB.2020.101884Al-Wakeel, Shahnaz A. M., Moubasher Hani, Mahmoud M. Gabr, M. M. Y. M. (2013). Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. IUFS Journal of Biology, 72(1), 9–21.Ardila Barrantes, H. D. (2013). Contribución al estudio de algunos componentes bioquímicos y moleculares de la resistencia del clavel (Dianthus caryophyllus L) al patógeno Fusarium oxysporum f. sp. dianthi. http://bdigital.unal.edu.co/57986/Bailey, B. A. (1995). Purification of a Protein from Culture Filtrates of Fusarium oxysporum that Induces Ethylene and Necrosis in Leaves of Erythroxylum coca. Phytopathology, 85(10), 1250. https://doi.org/10.1094/Phyto-85-1250Bailey, B. A., Apel-Birkhold, P. C., & Luster, D. G. (2002). Expression of NEP1 by Fusarium oxysporum f. sp. erythroxyli After Gene Replacement and Overexpression Using Polyethylene Glycol-Mediated Transformation. Phytopathology, 92(8), 833–841. https://doi.org/10.1094/PHYTO.2002.92.8.833Bailey, B. A., Jennings, J. C., & Anderson, J. D. (1997). The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production. Canadian Journal of Microbiology, 43(1), 45–55Balmer, A., Pastor, V., Gamir, J., Flors, V., & Mauch-Mani, B. (2015). The ‘prime- ome’: towards a holistic approach to priming. Trends in Plant Science, 20(7), 443–452. https://doi.org/10.1016/j.tplants.2015.04.002Bani, M., Pérez-de-Luque, A., Rubiales, D., & Rispail, N. (2018). Physical and chemical barriers in root tissues contribute to quantitative resistance to Fusarium oxysporum f. Sp. pisi in Pea. Frontiers in Plant Science, 9, 199. https://doi.org/10.3389/FPLS.2018.00199/BIBTEXBeckman, C. H., & Roberts, E. M. (1995). On the Nature and Genetic Basis for Resistance and Tolerance to Fungal Wilt Diseases of Plants. Advances in Botanical Research, 21, 35–77. https://doi.org/10.1016/S0065-2296(08)60008-7Biernasiuk, A., Berecka-Rycerz, A., Gumieniczek, A., Malm, M., Łączkowski, K. Z., Szymańska, J., & Malm, A. (2021). The newly synthesized thiazole derivatives as potential antifungal compounds against Candida albicans. Applied Microbiology and Biotechnology, 105(16–17), 6355. https://doi.org/10.1007/S00253-021-11477-7Borges, A. A., Borges-Pérez, A., & Fernández-Falcón, M. (2004). Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Protection, 23(12), 1245–1247. https://doi.org/10.1016/J.CROPRO.2004.05.010Boubakri, H., Gargouri, M., Mliki, A., Brini, F., Chong, J., & Jbara, M. (2016). Vitamins for enhancing plant resistance. Planta, 244(3), 529–543. https://doi.org/10.1007/s00425-016-2552-0Bray Speth, E., Lee, Y. N., & He, S. Y. (2007). Pathogen virulence factors as molecular probes of basic plant cellular functions. Current Opinion in Plant Biology, 10(6), 580–586. https://doi.org/10.1016/J.PBI.2007.08.003Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004Cao, L., Blekemolen, M. C., Tintor, N., Cornelissen, B. J. C., & Takken, F. L. W. (2018). The Fusarium oxysporum Avr2-Six5 Effector Pair Alters Plasmodesmatal Exclusion Selectivity to Facilitate Cell-to-Cell Movement of Avr2. Molecular Plant, 11(5), 691–705. https://doi.org/10.1016/j.molp.2018.02.011Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García- Maceira, F. I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48(3), 765–779. https://doi.org/10.1046/j.1365-2958.2003.03465.xCarrillo-Perdomo, E., Jiménez-Arias, D., Aller, Á., & Borges, A. A. (2016). Menadione Sodium Bisulphite (MSB) enhances the resistance response of tomato, leading to repel mollusc pests. Pest Management Science, 72(5), 950–960. https://doi.org/10.1002/ps.4074Castiblanco Quiroga, N. F. (2017). Condiciones de crecimiento del hongo Fusarium oxysporum f. sp. dianthi para la preparación de un potencial inductor de resistencia al marchitamiento vascular del clavel Dianthus caryophyllus L. Universidad Nacional de Colombia.Catanzariti, A.-M., Do, H. T. T., Bru, P., de Sain, M., Thatcher, L. F., Rep, M., & Jones, D. A. (2017). The tomato I gene for Fusarium wilt resistance encodes an atypical leucine-rich repeat receptor-like protein whose function is nevertheless dependent on SOBIR1 and SERK3/BAK1. The Plant Journal, 89(6), 1195– 1209. https://doi.org/10.1111/tpj.13458Chen, C., Zhang, M.-K., Hu, K.-D., Sun, K.-K., Li, Y.-H., Hu, L.-Y., Chen, X.-Y., Yang, Y., Yang, F., Tang, J., Liu, H.-P., & Zhang, H. (2017). Deletion of Cu/Zn Superoxide Dismutase Gene sodC Reduces Aspergillus niger Virulence on Chinese White Pear. Journal of the American Society for Horticultural Science J. Amer. Soc. Hort. Sci., 142(5), 385–392. https://doi.org/10.21273/JASHS04169-17Chiocchetti, A., Bernardo, I., Daboussi, M.-J., Garibaldi, A., Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169Cho, J. S., Seo, Y. C., Yim, T. Bin, & Lee, H. Y. (2013). Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani. International Journal of Molecular Sciences, 14(2), 4283–4297. https://doi.org/10.3390/ijms14024283Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/J.TPLANTS.2011.06.004Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant–pathogen interactions. Trends in Plant Science, 7(5), 210–216. https://doi.org/10.1016/S1360-1385(02)02244-6Costa, J. H., Bazioli, J. M., de Moraes Pontes, J. G., & Fill, T. P. (2019). Penicillium digitatum infection mechanisms in citrus: What do we know so far? Fungal Biology, 123(8), 584–593. https://doi.org/10.1016/J.FUNBIO.2019.05.004Cuervo Plata, D. C. (2017). Estudio bioquímico y molécular de algunas enzimas asociadas al estrés oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. Universidad Nacional de ColombiaDana, M. A., Kordbacheh, P., Ghazvini, R. D., Moazeni, M., Nazemi, L., & Rezaie, S. (2018). Inhibitory effect of vitamin C on Aspergillus parasiticus growth and aflatoxin gene expression. Current Medical Mycology, 4(3), 10. https://doi.org/10.18502/CMM.4.3.170de Sain, M., & Rep, M. (2015). The Role of Pathogen-Secreted Proteins in Fungal Vascular Wilt Diseases. International Journal of Molecular Sciences, 16(10), 23970–23993. https://doi.org/10.3390/ijms161023970Di Pietro, A., P Madrid, M., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. (2003). Fusarium oxysporum: Exploring the Molecular Arsenal of a Vascular Wilt Fungus. Molecular Plant Pathology, 4, 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xDjamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A. R., Feussner, I., Feussner, K., Meinicke, P., Stierhof, Y.- D., Schwarz, H., Macek, B., Mann, M., & Kahmann, R. (2011). Metabolic priming by a secreted fungal effector. Nature, 478(7369), 395–398. https://doi.org/10.1038/nature10454Du, Q., Wang, H., & Xie, J. (2011). Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets? International Journal of Biological Sciences, 7(1), 41. https://doi.org/10.7150/IJBS.7.41Eshel, D., Miyara, I., Ailing, T., Dinoor, A., & Prusky, D. (2002). pH Regulates Endoglucanase Expression and Virulence of Alternaria alternata in Persimmon Fruit. Molecular Plant-Microbe Interactions®, 15(8), 774–779. https://doi.org/10.1094/MPMI.2002.15.8.774Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E. StJ., & O’Brien, P. A. (2011). Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathology, 60(6), 1086–1095. https://doi.org/10.1111/j.1365-3059.2011.02471.xEstrada Rudas, C. (2022, August 17). Flores colombianas generan 200.000 empleos y son exportadas a más de 100 países. https://www.agronegocios.co/agricultura/flores-colombianas-generan-200-000- empleos-y-son-exportadas-a-mas-de-100-paises-3425195Evans, R. C., & Garraway, M. O. (1976). Effect of Thiamine on Ethanol and Pyruvate Production in Helminthosporium maydis 1 2. Plant Physiology, 57(5), 812–816. https://doi.org/10.1104/pp.57.5.812F. Paul Silverman, *, Peter D. Petracek, Daniel F. Heiman, Zhiguo Ju, †, Christina M. Fledderman, and, & Warrior, P. (2005). Salicylate Activity. 2. Potentiation of Atrazine. https://doi.org/10.1021/JF0513821Ferro, K., Ferro, D., Corrà, F., Bakiu, R., Santovito, G., & Kurtz, J. (2017). Cu,Zn Superoxide Dismutase Genes in Tribolium castaneum: Evolution, Molecular Characterisation, and Gene Expression during Immune Priming. Frontiers in Immunology, 8. https://www.frontiersin.org/articles/10.3389/fimmu.2017.01811França, K. R. S., Silva, T. L., Cardoso, T. A. L., Ugulino, A. L. N., Rodrigues, A. P. M., & de Mendonça Júnior, A. F. (2018). In vitro effect of essential oil of peppermint (Mentha x piperita L.) on the mycelial growth of Alternaria alternata. Journal of Experimental Agriculture International, 26(5), 1–7Fraser-Smith, S., Czislowski, E., Meldrum, R. A., Zander, M., O’Neill, W., Balali, G. R., & Aitken, E. A. B. (2014). Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathology, 63(5), 1044–1052. https://doi.org/10.1111/ppa.12184Gawehns, F., Houterman, P. M., Ichou, F. A., Michielse, C. B., Hijdra, M., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2014). The Fusarium oxysporum Effector Six6 Contributes to Virulence and Suppresses I-2-Mediated Cell Death. Molecular Plant-Microbe Interactions, 27(4), 336–348. https://doi.org/10.1094/MPMI-11-13-0330-RGawehns, F. K. K. (2014). Function and targets of Fusarium oxysporum effectors. Swammerdam Institute for Life Sciences (SILS).Gawehns, F., Ma, L., Bruning, O., Houterman, P. M., Boeren, S., Cornelissen, B. J. C., Rep, M., & Takken, F. L. W. (2015). The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection. Frontiers in Plant Science, 6, 967. https://doi.org/10.3389/fpls.2015.00967Gentile, I. A., & Matta, A. (1975). Production of and some effects of ethylene in relation to Fusarium wilt of tomato. Physiological Plant Pathology, 5(1), 27–35. https://doi.org/10.1016/0048-4059(75)90067-3Gessler, N. N., Aver’yanov, A. A., & Belozerskaya, T. A. (2007). Reactive oxygen species in regulation of fungal development. Biochemistry. Biokhimiia, 72(10), 1091–1109. https://doi.org/10.1134/S0006297907100070Goellner, K., & Conrath, U. (2008). Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology, 121(3), 233–242. https://doi.org/10.1007/s10658-007-9251-4Gómez García, L., & Martínez, S. T. (2005). Inducción de dos enzimas pectolíticas en el modelo Fusarium oxysporum f. sp. dianthi - clavel. Revista Colombiana de Química, 34(1), 25–34. http://www.redalyc.org/articulo.oa?id=309026662003Goodwin, P. H., Trueman, C., Loewen, S. A., & Tazhoor, R. (2018). Variation in the responsiveness of induced resistance against Pseudomonas syringae pv. tomato by Solanum lycopersicum treated with para-aminobenzoic acid. Physiological and Molecular Plant Pathology, 104, 31–39. https://doi.org/10.1016/J.PMPP .2018.08.007Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 50–59. https://doi.org/https://doi.org/10.1016/j.cropro.2015.01.003Hallen-Adams, H. E., Wenner, N., Kuldau, G. A., & Trail, F. (2011). Deoxynivalenol Biosynthesis-Related Gene Expression During Wheat Kernel Colonization by Fusarium graminearum. Phytopathology®, 101(9), 1091–1096. https://doi.org/10.1094/PHYTO-01-11-0023Harbaugh, D. T., Nepokroeff, M., Rabeler, R. K., McNeill, J., Zimmer, E. A., & Wagner, W. L. (2010). A New Lineage-Based Tribal Classification of the Family Caryophyllaceae. International Journal of Plant Sciences, 171(2), 185–198. https://doi.org/10.1086/648993Harris, L. J., Balcerzak, M., Johnston, A., Schneiderman, D., & Ouellet, T. (2016). Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biology, 120(1), 111–123. https://doi.org/10.1016/J.FUNBIO.2015.10.010Hegde, K. T., Narayanaswamy, H., VEERAGHANTI, K., & Manu, T. G. (2017). Efficacy of bio-agents, botanicals and fungicides against Fusarium oxysporum f. sp. dianthi causing wilt of carnation. International Journal of Chemical Studies, 5(56), 139–142.Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J., & Chang, S. W. (2016). Differential Control Efficacies of Vitamin Treatments against Bacterial Wilt and Grey Mould Diseases in Tomato Plants. The Plant Pathology Journal, 32(5), 469–480. https://doi.org/10.5423/PPJ.OA.03.2016.0076Huang, W.-K., Ji, H.-L., Gheysen, G., & Kyndt, T. (2016). Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology, 17(4), 614–624. https://doi.org/10.1111/mpp.12316Ichikawa, K., Shiba, Y., Yamazaki, M., & Serizawa, N. (1997). Thiamine increases expression of yeast gene. Bioscience, Biotechnology, and Biochemistry, 61(7), 1221–1224. https://doi.org/10.1271/bbb.61.1221Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., & Kapoor, R. (2021). Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. Frontiers in Plant Science, 12, 462. https://doi.org/10.3389/FPLS.2021.628611/BIBTEXJarai, G., & Buxton, F. (1994). Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Current Genetics, 26(3), 238–244. https://doi.org/10.1007/BF00309554Jenkins, S., Taylor, A., Jackson, A. C., Armitage, A. D., Bates, H. J., Mead, A., Harrison, R. J., & Clarkson, J. P. (2021). Identification and Expression of Secreted In Xylem Pathogenicity Genes in Fusarium oxysporum f. sp. pisi. Frontiers in Microbiology, 12, 788. https://doi.org/10.3389/FMICB.2021.593140/BIBTEXJones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323–329. https://doi.org/10.1038/nature05286Kachroo, P., & Kachroo, A. (2018). Plants Pack a Quiver Full of Arrows. Cell Host & Microbe, 23(5), 573–575. https://doi.org/10.1016/J.CHOM.2018.04.014Kamle, M., Borah, R., Bora, H., Jaiswal, A. K., Singh, R. K., & Kumar, P. (2020). Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. 457–470. https://doi.org/10.1007/978-3-030-41870-0_20Kashiwa, T., Suzuki, T., Sato, A., Akai, K., Teraoka, T., Komatsu, K., & Arie, T. (2016). A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiology Letters, 363(14), fnw132. https://doi.org/10.1093/femsle/fnw132Katz, M. E., Flynn, P. K., vanKuyk, P. A., & Cheetham, B. F. (1996). Mutations affecting extracellular protease production in the filamentous fungus Aspergillus nidulans. Molecular & General Genetics : MGG, 250(6), 715–724. https://doi.org/10.1007/BF02172983Kayali, H. A., & Tarhan, L. (2006). The impact of Vitamins C, B1 and B6 supplementation on antioxidant enzyme activities, membrane total sialic acid and lipid peroxidation levels in Fusarium species. Process Biochemistry, 41(7), 1608–1613. https://doi.org/https://doi.org/10.1016/j.procbio.2006.03.012Langner, T., & Göhre, V. (2015). Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions. Current Genetics 2015 62:2, 62(2), 243–254. https://doi.org/10.1007/S00294-015-0530-XLeitão, J. H. (2020). Microbial Virulence Factors. International Journal of Molecular Sciences, 21(15). https://doi.org/10.3390/ijms21155320Li, E., Wang, G., Xiao, J., Ling, J., Yang, Y., & Xie, B. (2016). A SIX1 Homolog in Fusarium oxysporum f. sp. conglutinans Is Required for Full Virulence on Cabbage. PloS One, 11(3), e0152273. https://doi.org/10.1371/journal.pone.0152273Li, T., Jian, Q., Wang, Y., Chen, F., Yang, C., Gong, L., Duan, X., Yang, B., & Jiang, Y. (2016). Inhibitory mechanism of butylated hydroxyanisole against infection of Fusarium proliferatum based on comparative proteomic analysis. Journal of Proteomics, 148, 1–11. https://doi.org/10.1016/J.JPROT.2016.04.051Lievens, B., Houterman, P. M., & Rep, M. (2009). Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiology Letters, 300(2), 201–215. https://doi.org/10.1111/j.1574-6968.2009.01783.xLiu, X., Xie, J., Fu, Y., Jiang, D., Chen, T., & Cheng, J. (2020). The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Botrytis cinerea. International Journal of Molecular Sciences 2020, Vol. 21, Page 603, 21(2), 603. https://doi.org/10.3390/IJMS21020603Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., & Kahmann, R. (2015). Fungal Effectors and Plant Susceptibility. Annual Review of Plant Biology, 66(1), 513–545. https://doi.org/10.1146/annurev-arplant-043014-114623Louise Glass, N., Schmoll, M., Cate, J. H. D., & Coradetti, S. (2013). Plant cell wall deconstruction by ascomycete fungi. Annual Review of Microbiology, 67, 477– 498. https://doi.org/10.1146/ANNUREV-MICRO-092611-150044Lukienko, P. I., Mel’nichenko, N. G., Zverinskii, I. V, & Zabrodskaya, S. V. (2000). Antioxidant properties of thiamine. Bulletin of Experimental Biology and Medicine, 130(9), 874–876.Ma, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium pathogenomics. Annual Review of Microbiology, 67, 399–416. https://doi.org/10.1146/ANNUREV-MICRO-092412-155650Malik, N. A. A., Kumar, I. S., & Nadarajah, K. (2020). Elicitor and Receptor Molecules: Orchestrators of Plant Defense and Immunity. International Journal of Molecular Sciences 2020, Vol. 21, Page 963, 21(3), 963. https://doi.org/10.3390/IJMS21030963Martínez González, A. P. (2012). Evaluación de los niveles de expresión “in vitro” de enzimas pectinolíticas del hongo Colletotrichum acutatum en presencia de inductores naturales provenientes del fruto de lulo (Solanum quitoense Lam). Avances para determinar sus niveles de transcripción. https://repositorio.unal.edu.co/handle/unal/11480Martinez Gonzalez, A. P. (2019). Contribución al estudio de los fenómenos bioquímicos y moleculares del apoplasto de clavel (Dianthus caryophyllus L) durante su interacción con Fusarium oxysporum f. sp. dianthi [Universidad Nacional de Colombia - Sede Bogotá]. http://bdigital.unal.edu.co/74221/Merhej, J., Urban, M., Dufresne, M., Hammond-Kosack, K. E., Richard-Forget, F., & Barreau, C. (2012). The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum. Molecular Plant Pathology, 13(4), 363–374. https://doi.org/10.1111/J.1364-3703.2011.00755.XMishra, A. K., Sharma, K., & Misra, R. S. (2012). Elicitor recognition, signal transduction and induced resistance in plants. Journal of Plant Interactions, 7(2), 95–120. https://doi.org/10.1080/17429145.2011.597517Moldovan, E., & Moldovan, V. (2020). Controls in Real-Time Polymerase Chain Reaction Based Techniques. Acta Marisiensis - Seria Medica, 66(3), 79–82. https://doi.org/doi:10.2478/amma-2020-0025Monod, M., Capoccia, S., Léchenne, B., Zaugg, C., Holdom, M., & Jousson, O. (2002). Secreted proteases from pathogenic fungi. International Journal of Medical Microbiology, 292(5), 405–419. https://doi.org/https://doi.org/10.1078/1438-4221-00223Monroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Universidad Nacional de Colombia.Monroy-Mena, S., Chacón-Parra, A. L., Farfán-Angarita, J. P., Martínez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus Caryophyllus L.) - Fusarium oxysporum f. sp. Dianthi. Revista Colombiana de Química, 48, 5–14.Mozafar, A., & Oertli, J. J. (1992). Uptake and Transport of Thiamin (Vitamin B 1) by Barley and Soybean. Journal of Plant Physiology, 139(4), 436–442. https://doi.org/https://doi.org/10.1016/S0176-1617(11)80491-8Mueller, O., Kahmann, R., Aguilar, G., Trejo-Aguilar, B., Wu, A., & de Vries, R. P. (2008). The secretome of the maize pathogen Ustilago maydis. Fungal Genetics and Biology, 45, S63–S70. https://doi.org/https://doi.org/10.1016/j.fgb.2008.03.012Muszewska, A., Stepniewska-Dziubinska, M. M., Steczkiewicz, K., Pawlowska, J., Dziedzic, A., & Ginalski, K. (2017). Fungal lifestyle reflected in serine protease repertoire. Scientific Reports 2017 7:1, 7(1), 1–12. https://doi.org/10.1038/s41598-017-09644-wMuthukrishnan, S., Murugan, I., & Selvaraj, M. (2019). Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydrate Polymers, 212, 169–177. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.02.037Nazemi, L., Kordbacheh, P., Daei Ghazvini, R., Moazeni, M., Akbari Dana, M., & Rezaie, S. (2015). Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. parasiticus. Current Medical Mycology, 1(1), 26. https://doi.org/10.18869/ACADPUB.CMM.1.1.26Niño-Sánchez, J., Casado-Del Castillo, V., Tello, V., de Vega-Bartol, J. J., Ramos, B., Sukno, S. A., & Díaz Mínguez, J. M. (2016). The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum. Molecular Plant Pathology, 17(7), 1124–1139. https://doi.org/10.1111/mpp.12373Nordzieke, D. E., Fernandes, T. R., el Ghalid, M., Turrà, D., & di Pietro, A. (2019). NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. New Phytologist, 224(4), 1600–1612. https://doi.org/10.1111/NPH.16085Ojha, S., & Chatterjee, N. (2012). Induction of resistance in tomato plants against Fusarium oxysporum f. sp. lycopersici mediated through salicylic acid and Trichoderma harzianum (Vol. 52, Issue No 2, pp. 220–225). Institute of Plant Protection – National Research Institute.Paraschivu, M., & Cotuna, O. (2013). The use of the area under the disease progress curve (AUDPC) to assess the epidemics of Septoria tritici in winter wheat. Research Journal of Agricultural Science, 45, 193–201.Pérez Mora, W., Melgarejo, L. M., & Ardila, H. D. (2021). Effectiveness of some resistance inducers for controlling carnation vascular wilting caused by Fusarium oxysporum f. sp. dianthi. Https://Doi.Org/10.1080/03235408.2020.1868734, 54(13–14), 886–902. https://doi.org/10.1080/03235408.2020.1868734Pizano, M. (1987). El cultivo del Clavel en Colombia. Horticultura, 35, 114–127.Poli, A., Bertetti, D., Garibaldi, A., & Gullino, M. (2013). Characterization and identification of Colombian isolates of Fusarium oxysporum f. sp. dianthi. The Plant Pathology Journal, 95, 255–263.Pontes, J. G. D. M., Fernandes, L. S., dos Santos, R. vander, Tasic, L., & Fill, T. P. (2020). Virulence Factors in the Phytopathogen-Host Interactions: An Overview. Journal of Agricultural and Food Chemistry, 68(29), 7555–7570. https://doi.org/10.1021/ACS.JAFC.0C02389/ASSET/IMAGES/MEDIUM/JF0C02 389_0005.GIFPonukumati, S. v., Elliott, M. L., & des Jardin, E. A. (2019). Comparison of Secreted in Xylem (SIX) genes in two fusarium wilt pathogens of ornamental palms. Plant Pathology, 68(9), 1663–1681. https://doi.org/10.1111/PPA.13090Rajeswari, P. (2020). Assessment of Combination of Biocontrol Strains on the Fusaric Acid and other Toxins Secreted from Fusarium oxysporum by HPLC- MS/MS Method and Differential Expression Profiling in Arachis hypogaea L. Toxicology International, 26, 89–97.Ramírez Vargas, E. (2014). Evaluación de los niveles de actividad y transcripcionales in vivo de algunas enzimas hidrolíticas secretadas por Fusarium oxysporum f.sp. dianthi en su interacción con el clavel (Dianthus caryophyllus L) [Universidad Nacional de Colombia]. http://bdigital.unal.edu.co/46176/Ramoni, J., Seidl-Seiboth, V., Bischof, R. H., & Seiboth, B. (2016). Gene Expression Systems in Industrial Ascomycetes: Advancements and Applications. In M. Schmoll & C. Dattenböck (Eds.), Gene Expression Systems in Fungi: Advancements and Applications (pp. 3–22). Springer International Publishing. https://doi.org/10.1007/978-3-319-27951-0_1Ranf, S. (2017). Sensing of molecular patterns through cell surface immune receptors. Current Opinion in Plant Biology, 38, 68–77. https://doi.org/10.1016/J.PBI.2017.04.011Rapala-Kozik, M., Wolak, N., Kujda, M., & Banas, A. K. (2012). The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biology, 12. https://doi.org/10.1186/1471-2229- 12-2Recorbet, G., Steinberg, C., Olivain, C., Edel, V., Trouvelot, S., Dumas-Gaudot, E., Gianinazzi, S., & Alabouvette, C. (2003). Wanted: Pathogenesis-Related Marker Molecules for Fusarium oxysporum. The New Phytologist, 159(1), 73– 92.Reichard, U., Léchenne, B., Asif, A. R., Streit, F., Grouzmann, E., Jousson, O., & Monod, M. (2006). Sedolisins, a New Class of Secreted Proteases from Aspergillus fumigatus with Endoprotease or Tripeptidyl-Peptidase Activity at Acidic pHs. Applied and Environmental Microbiology, 72(3), 1739 LP – 1748. https://doi.org/10.1128/AEM.72.3.1739-1748.2006Rep, M., van der Does, H. C., Meijer, M., van Wijk, R., Houterman, P. M., Dekker, H. L., de Koster, C. G., & Cornelissen, B. J. C. (2004). A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato. Molecular Microbiology, 53(5), 1373–1383. https://doi.org/10.1111/j.1365-2958.2004.04177.xRocha, L. O., Laurence, M. H., Ludowici, V. A., Puno, V. I., Lim, C. C., Tesoriero, L. A., Summerell, B. A., & Liew, E. C. Y. (2016). Putative effector genes detected in Fusarium oxysporum from natural ecosystems of Australia. Plant Pathology, 65(6), 914–929. https://doi.org/10.1111/PPA.12472Rodríguez-Herva, J. J., González-Melendi, P., Cuartas-Lanza, R., Antúnez-Lamas, M., Río-Alvarez, I., Li, Z., López-Torrejón, G., Díaz, I., del Pozo, J. C., Chakravarthy, S., Collmer, A., Rodríguez-Palenzuela, P., & López-Solanilla, E. (2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cellular Microbiology, 14(5), 669–681. https://doi.org/10.1111/J.1462- 5822.2012.01749.XRomero Rincón, A. E. (2020). Efecto de la Aplicación de Elicitores de Origen Biótico en la Biosíntesis de Flavonoides en Clavel (Dianthus caryophyllus L) Durante la Interacción con Fusarium oxysporum f sp. dianthi. Universidad Nacional de Colombia.Roncero, M. I. G., Hera, C., Ruiz-Rubio, M., García Maceira, F. I., Madrid, M. P., Caracuel, Z., Calero, F., Delgado-Jarana, J., Roldán-Rodríguez, R., Martínez- Rocha, A. L., Velasco, C., Roa, J., Martín-Urdiroz, M., Córdoba, D., & di Pietro, A. (2003). Fusarium as a model for studying virulence in soilborne plant pathogens. Physiological and Molecular Plant Pathology, 62(2), 87–98. https://doi.org/10.1016/S0885-5765(03)00043-2Rouf, A., & Tanyeli, C. (2015). Bioactive thiazole and benzothiazole derivatives. European Journal of Medicinal Chemistry, 97, 911–927. https://doi.org/10.1016/j.ejmech.2014.10.058Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. The Plant Cell, 8(10), 1809– 1819. https://doi.org/10.1105/tpc.8.10.1809Sánchez-Rangel, D., Hernández-Domínguez, E. E., Pérez-Torres, C. A., Ortiz- Castro, R., Villafán, E., Rodríguez-Haas, B., Alonso-Sánchez, A., López- Buenfil, A., Carrillo-Ortiz, N., Hernández-Ramos, L., & Ibarra-Laclette, E. (2018). Environmental pH modulates transcriptomic responses in the fungus Fusarium sp. associated with KSHB Euwallacea sp. near fornicatus. BMC Genomics 2018 19:1, 19(1), 1–21. https://doi.org/10.1186/S12864-018-5083-1Sathiyabama, M., & Indhumathi, M. (2022). Chitosan thiamine nanoparticles intervene innate immunomodulation during Chickpea-Fusarium interaction. International Journal of Biological Macromolecules, 198, 11–17. https://doi.org/10.1016/J.IJBIOMAC.2021.12.105Scalschi, L., Camañes, G., Llorens, E., Fernández-Crespo, E., López, M. M., García- Agustín, P., & Vicedo, B. (2014). Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants. PLOS ONE, 9(9), e106429. https://doi.org/10.1371/JOURNAL.PONE.0106429Schmidt, S. M., Houterman, P. M., Schreiver, I., Ma, L., Amyotte, S., Chellappan, B., Boeren, S., Takken, F. L. W., & Rep, M. (2013). MITEs in the promoters of effector genes allow prediction of novel virulence genes in Fusarium oxysporum. BMC Genomics, 14(1), 119. https://doi.org/10.1186/1471-2164-14- 119Sharafaddin, A. H., Hamad, Y. K., El_Komy, M. H., Ibrahim, Y. E., Widyawan, A., Molan, Y. Y., & Saleh, A. A. (2019). Cell wall degrading enzymes and their impact on Fusarium proliferatum pathogenicity. European Journal of Plant Pathology, 155(3), 871–880. https://doi.org/10.1007/S10658-019-01818- 8/TABLES/4Shooshtari, A. H., Mohammadi, S., Shahsavandi, S., Pourbakhsh, S. A., Hashemi, S. J., Erami, M., & Jahanshiri, Z. (2007). Application of PCR on detection of aflatoxinogenic fungi. Archives of Razi Institute, 62(2), 95–100. https://doi.org/10.22092/ari.2007.103774Simbaqueba, J. (2017). Analysis of Fusarium oxysporum effectors shared between strains that infect cape gooseberry and tomato. Australian National University.Singh, A., Lim, G.-H., & Kachroo, P. (2017). Transport of chemical signals in systemic acquired resistance. Journal of Integrative Plant Biology, 59(5), 336– 344. https://doi.org/10.1111/jipb.12537Soyer, J. L., el Ghalid, M., Glaser, N., Ollivier, B., Linglin, J., Grandaubert, J., Balesdent, M. H., Connolly, L. R., Freitag, M., Rouxel, T., & Fudal, I. (2014). Epigenetic Control of Effector Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans. PLOS Genetics, 10(3), e1004227. https://doi.org/10.1371/JOURNAL.PGEN.1004227Spoel, S. H., & Dong, X. (2012). How do plants achieve immunity? Defence without specialized immune cells. Nature Reviews Immunology, 12(2), 89–100. https://doi.org/10.1038/nri3141Sriranganadane, D., Waridel, P., Salamin, K., Reichard, U., Grouzmann, E., Neuhaus, J.-M., Quadroni, M., & Monod, M. (2010). Aspergillus Protein Degradation Pathways with Different Secreted Protease Sets at Neutral and Acidic pH. Journal of Proteome Research, 9(7), 3511–3519. https://doi.org/10.1021/pr901202zStergiopoulos, I., Collemare, J., Mehrabi, R., & De Wit, P. J. G. M. (2013). Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiology Reviews, 37(1), 67–93. https://doi.org/10.1111/j.1574-6976.2012.00349.xTakken, F., & Rep, M. (2010). The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 11(2), 309–314. https://doi.org/10.1111/J.1364-3703.2009.00605.XTakle, G. W., Toth, I. K., & Brurberg, M. B. (2007). Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biology, 7(1), 1–9. https://doi.org/10.1186/1471-2229- 7-50/TABLES/4Taylor, A., Vágány, V., Jackson, A. C., Harrison, R. J., Rainoni, A., & Clarkson, J. P. (2016). Identification of pathogenicity-related genes in Fusarium oxysporum f. sp. cepae. Molecular Plant Pathology, 17(7), 1032–1047. https://doi.org/10.1111/mpp.12346Thatcher, L. F., Gardiner, D. M., Kazan, K., & Manners, J. M. (2012). A Highly Conserved Effector in Fusarium oxysporum Is Required for Full Virulence on Arabidopsis. Molecular Plant-Microbe Interactions, 25(2), 180–190. https://doi.org/10.1094/MPMI-08-11-0212The Biology of Dianthus caryophyllus L. (Carnation). (2015). http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/Content/5DCF28AD2F3779C 4CA257D4E001819B9/$File/biology-carnation2015.pdfTian, L., Li, J., Huang, C., Zhang, D., Xu, Y., Yang, X., Song, J., Wang, D., Qiu, N., Short, D. P. G., Inderbitzin, P., Subbarao, K. v., Chen, J., & Dai, X. (2021). Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. Molecular Plant Pathology, 22(9), 1092–1108. https://doi.org/10.1111/MPP.13099Torres, G. A. (1993). Las enfermedades vasculares del clavel en colombia y en el mundo. Agronomía Colombiana; Vol. 10, Núm. 1 (1993); 12-18 Agronomía Colombiana; Vol. 10, Núm. 1 (1993); 12-18 2357-3732 0120-9965. http://bdigital.unal.edu.co/24110/Toruño, T. Y., Stergiopoulos, I., & Coaker, G. (2016). Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology, 54(1), 419–441. https://doi.org/10.1146/annurev-phyto-080615-100204Tunc-Ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, A. N., Mittler, R., & Shintani, D. (2009). Thiamin Confers Enhanced Tolerance to Oxidative Stress in Arabidopsis. Plant Physiology, 151(1), 421 LP – 432. https://doi.org/10.1104/pp.109.140046Turabelidze, A., Guo, S., & Dipietro, L. A. (2010). Importance of Housekeeping gene selection for accurate RT-qPCR in a wound healing model. Wound Repair and Regeneration : Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 18(5), 460. https://doi.org/10.1111/J.1524- 475X.2010.00611.Xvan Dam, P., Fokkens, L., Schmidt, S. M., Linmans, J. H. J., Kistler, H. C., Ma, L.-J., & Rep, M. (2016). Effector profiles distinguish formae speciales of Fusarium oxysporum. Environmental Microbiology, 18(11), 4087–4102. https://doi.org/10.1111/1462-2920.13445van Dam, P., & Rep, M. (2017). The Distribution of Miniature Impala Elements and SIX Genes in the Fusarium Genus is Suggestive of Horizontal Gene Transfer. Journal of Molecular Evolution, 85(1–2), 14–25. https://doi.org/10.1007/s00239- 017-9801-0van der Does, H. C., Duyvesteijn, R. G. E., Goltstein, P. M., van Schie, C. C. N., Manders, E. M. M., Cornelissen, B. J. C., & Rep, M. (2008). Expression of effector gene SIX1 of Fusarium oxysporum requires living plant cells. Fungal Genetics and Biology, 45(9), 1257–1264. https://doi.org/10.1016/J.FGB.2008.06.002Velho, A. C., Mondino, P., & Stadnik, M. J. (2018). Extracellular enzymes of Colletotrichum fructicola isolates associated to Apple bitter rot and Glomerella leaf spot. Mycology, 9(2), 145. https://doi.org/10.1080/21501203.2018.1464525Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., & Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytologist, 229(3), 1234–1250. https://doi.org/10.1111/NPH.16953Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026Wang, M., Weiberg, A., & Jin, H. (2015). Pathogen small RNAs: a new class of effectors for pathogen attacks. Molecular Plant Pathology, 16(3), 219–223. https://doi.org/10.1111/mpp.12233Wang, Q., Pokhrel, A., & Coleman, J. J. (2021). The Extracellular Superoxide Dismutase Sod5 From Fusarium oxysporum Is Localized in Response to External Stimuli and Contributes to Fungal Pathogenicity. Frontiers in Plant Science, 12, 294. https://doi.org/10.3389/FPLS.2021.608861/BIBTEXWendehenne, D., Gao, Q., Kachroo, A., & Kachroo, P. (2014). Free radical-mediated systemic immunity in plants. Current Opinion in Plant Biology, 20, 127–134. https://doi.org/10.1016/J.PBI.2014.05.012Westman, S. M., Kloth, K. J., Hanson, J., Ohlsson, A. B., & Albrectsen, B. R. (2019). Defence priming in Arabidopsis - a Meta-Analysis. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-019-49811-9Wlodawer, A., Li, M., Gustchina, A., Oyama, H., Dunn, B., & Oda, K. (2003). Structural and enzymatic properties of the sedolisin family of serine-carboxyl peptidase. Acta Biochimica Polonica, 50, 81–102. https://doi.org/10.18388/abp.2003_3716Wolak, N., Kowalska, E., Kozik, A., & Rapala-Kozik, M. (2014). Thiamine increases the resistance of baker’s yeast Saccharomyces cerevisiae against oxidative, osmotic and thermal stress, through mechanisms partly independent of thiamine diphosphate-bound enzymes. FEMS Yeast Research, 14(8), 1249– 1262. https://doi.org/10.1111/1567-1364.12218Wolcan, S. M., Malbrán, I., Mourelos, C. A., Sisterna, M. N., González, M. del P., Alippi, A. M., Nico, A., & Lori, G. A. (2018). Diseases of Carnation. In R. J. McGovern & W. H. Elmer (Eds.), Handbook of Florists’ Crops Diseases (pp. 317–378). Springer International Publishing. https://doi.org/10.1007/978-3-319- 39670-5_14Yao, S.-H., Guo, Y., Wang, Y.-Z., Zhang, D., Xu, L., & Tang, W.-H. (2016). A cytoplasmic Cu-Zn superoxide dismutase SOD1 contributes to hyphal growth and virulence of Fusarium graminearum. Fungal Genetics and Biology, 91, 32– 42. https://doi.org/https://doi.org/10.1016/j.fgb.2016.03.006Yike, I. (2011). Fungal Proteases and Their Pathophysiological Effects. Mycopathologia, 171(5), 299–323. https://doi.org/10.1007/s11046-010-9386-2Yoshida, H., & Tanaka, C. (2019). Monitoring of in planta gene expression for xylan degradation and assimilation in the maize pathogen Bipolaris maydis. Mycoscience, 60(2), 116–124. https://doi.org/10.1016/J.MYC.2018.10.002Zhao, L., Hu, Z., Li, S., Zhou, X., Li, J., Su, X., Zhang, L., Zhang, Z., & Dong, J. (2019). Diterpenoid compounds from Wedelia trilobata induce resistance to Tomato spotted wilt virus via the JA signal pathway in tobacco plants. Scientific Reports, 9(1), 2763. https://doi.org/10.1038/s41598-019-39247-6Zheng, P., Chen, L., Zhong, S., Wei, X., Zhao, Q., Pan, Q., Kang, Z., & Liu, J. (2020). A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environmental Microbiology, 22(12), 5309–5326. https://doi.org/10.1111/1462-2920.15236Zuriegat, Q., Zheng, Y., Liu, H., Wang, Z., & Yun, Y. (2021). Current progress on pathogenicity-related transcription factors in Fusarium oxysporum. Molecular Plant Pathology, 22(7), 882–895. https://doi.org/https://doi.org/10.1111/mpp.13068MinCienciasPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84021/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1012406246.2023.pdf1012406246.2023.pdfTesis de Maestría en Ciencias - Bioquímicaapplication/pdf4828152https://repositorio.unal.edu.co/bitstream/unal/84021/4/1012406246.2023.pdf01dae7f037a94fc326a8d97fb3e0afa7MD54THUMBNAIL1012406246.2023.pdf.jpg1012406246.2023.pdf.jpgGenerated Thumbnailimage/jpeg5788https://repositorio.unal.edu.co/bitstream/unal/84021/5/1012406246.2023.pdf.jpg6a145515fb85a0c0d32fe934a0b4c3e8MD55unal/84021oai:repositorio.unal.edu.co:unal/840212024-08-06 23:10:48.688Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=