Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama
El diseño, síntesis y evaluación de péptidos anticancerígenos es una estrategia utilizada para la búsqueda de nuevas moléculas con potencial terapéutico para el tratamiento del cáncer. El cáncer de mama es el más diagnosticado a nivel mundial, el cuarto con mayor mortalidad y, su amplia variación ge...
- Autores:
-
Barragán Cárdenas, Andrea Carolina
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86375
- Palabra clave:
- 570 - Biología::572 - Bioquímica
610 - Medicina y salud::616 - Enfermedades
Anticarcinógenos
Antineoplásicos
Neoplasias de la mama
Análisis de secuencia de proteína
Citotoxinas
Apoptosis
Anticarcinogenic agents
Antineoplastic agents
Breast neoplasms
Sequence analysis, protein
Cytotoxins
Cáncer de mama
Péptidos
Lactoferricina
Breast cancer
Anticancer peptides
lactoferricin
Secuencia palindrómica
Lactoferricina
Palindromic sequence
Lactoferricin
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_113a4201112ade013e577231b2ebc919 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86375 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
dc.title.translated.eng.fl_str_mv |
Modified peptides derived from the RWQWRWQWR sequence: evaluation of anticancer activity against cell lines derived from breast cancer |
title |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
spellingShingle |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama 570 - Biología::572 - Bioquímica 610 - Medicina y salud::616 - Enfermedades Anticarcinógenos Antineoplásicos Neoplasias de la mama Análisis de secuencia de proteína Citotoxinas Apoptosis Anticarcinogenic agents Antineoplastic agents Breast neoplasms Sequence analysis, protein Cytotoxins Cáncer de mama Péptidos Lactoferricina Breast cancer Anticancer peptides lactoferricin Secuencia palindrómica Lactoferricina Palindromic sequence Lactoferricin |
title_short |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
title_full |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
title_fullStr |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
title_full_unstemmed |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
title_sort |
Péptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mama |
dc.creator.fl_str_mv |
Barragán Cárdenas, Andrea Carolina |
dc.contributor.advisor.spa.fl_str_mv |
García Castañeda, Javier Eduardo |
dc.contributor.author.spa.fl_str_mv |
Barragán Cárdenas, Andrea Carolina |
dc.contributor.researchgroup.spa.fl_str_mv |
Síntesis y Aplicación de Moléculas Peptídicas |
dc.contributor.orcid.spa.fl_str_mv |
Barragán Cárdenas, Andrea Carolina [000000075458129] |
dc.contributor.cvlac.spa.fl_str_mv |
Barragán Cárdenas, Andrea Carolina [0000011789] |
dc.contributor.researchgate.spa.fl_str_mv |
Barragán Cárdenas, Andrea Carolina [Andrea-Barragan-Cardenas] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::572 - Bioquímica 610 - Medicina y salud::616 - Enfermedades |
topic |
570 - Biología::572 - Bioquímica 610 - Medicina y salud::616 - Enfermedades Anticarcinógenos Antineoplásicos Neoplasias de la mama Análisis de secuencia de proteína Citotoxinas Apoptosis Anticarcinogenic agents Antineoplastic agents Breast neoplasms Sequence analysis, protein Cytotoxins Cáncer de mama Péptidos Lactoferricina Breast cancer Anticancer peptides lactoferricin Secuencia palindrómica Lactoferricina Palindromic sequence Lactoferricin |
dc.subject.decs.spa.fl_str_mv |
Anticarcinógenos Antineoplásicos Neoplasias de la mama Análisis de secuencia de proteína Citotoxinas Apoptosis |
dc.subject.decs.eng.fl_str_mv |
Anticarcinogenic agents Antineoplastic agents Breast neoplasms Sequence analysis, protein Cytotoxins |
dc.subject.proposal.spa.fl_str_mv |
Cáncer de mama Péptidos Lactoferricina |
dc.subject.proposal.eng.fl_str_mv |
Breast cancer Anticancer peptides lactoferricin |
dc.subject.wikidata.spa.fl_str_mv |
Secuencia palindrómica Lactoferricina |
dc.subject.wikidata.eng.fl_str_mv |
Palindromic sequence Lactoferricin |
description |
El diseño, síntesis y evaluación de péptidos anticancerígenos es una estrategia utilizada para la búsqueda de nuevas moléculas con potencial terapéutico para el tratamiento del cáncer. El cáncer de mama es el más diagnosticado a nivel mundial, el cuarto con mayor mortalidad y, su amplia variación genética deriva en la necesidad de diferentes moléculas para su tratamiento. Los tratamientos utilizados para este tipo de cáncer no son selectivos por las células cancerosas y generan múltiples efectos secundarios que disminuyen la calidad de vida del paciente de forma drástica, el tumor puede presentar resistencia y derivar en recurrencia; razón por la cual la búsqueda de nuevos posibles agentes terapéuticos es imperativa. En este trabajo se diseñaron, sintetizaron y evaluaron péptidos derivados del péptido palindrómico con actividad anticancerosa LfcinB (21-25)Pal:H2N-RWQWRWQWR-CONH2. Se evaluaron péptidos con modificaciones en la estructura primaria del péptido palindrómico como la longitud y carga neta positiva, cambios puntuales de residuos por aminoácidos de la misma polaridad o por aminoácidos no naturales y, funcionalización con el motivo RGD en el extremo N-terminal y/o C-terminal. Se determinó que el aumento de la longitud y carga de la secuencia mediante adición de una Arg (R) y/o la unión al motivo RGD en el extremo N-terminal generaron péptidos con un mayor efecto citotóxico frente a células derivadas de cáncer de mama MCF-7, identificando cuatro péptidos promisorios: RRWQWRWQWR, RRWQWRWQWRR, RGD-Ahx-RRWQWRWQWR y RGD-Ahx-RWQWRWQWR, los cuales inducen disminución de la viabilidad celular dependiente de la concentración. Se evidenció que los residuos de Arg (R) ubicados en los extremos N y C-terminal de la secuencia palindrómica son relevantes para mantener la selectividad de los péptidos por células cancerosas, mientras que la Arg central de la secuencia es determinante para ejercer el efecto citotóxico. Los resultados sugieren que el aumento de la carga neta positiva del péptido que permite una interacción electrostática inespecífica con la célula no es el único parámetro que influye en el efecto citotóxico y su ubicación en la secuencia es clave. La inclusión de la Arg en el extremo N-terminal (RRWQWRWQWR) incrementó significativamente el efecto anticanceroso, lo cual puede estar asociado a que esta modificación hace que se complete el motivo mínimo de la LfcinB. Reemplazos puntuales en la secuencia por aminoácidos de la misma polaridad o por aminoácidos no naturales generaron disminución del efecto anticanceroso del péptido sugiriendo que es posible que esté involucrada una interacción específica péptido-célula. Los resultados respecto a la funcionalización con el motivo RGD en los extremos N y/o C-terminal muestran que cuando la adición se realiza en el extremo C-terminal el efecto citotóxico disminuye sugiriendo que los residuos ubicados en ese extremo son determinantes. El péptido RGD-Ahx-RWQWRWQWR, presentó mayor actividad citotóxica que la secuencia original, además indujo disminución de la viabilidad celular de líneas celulares derivadas de los cuatro subtipos moleculares de cáncer de mamá (Luminal A, Luminal B, Triple Negativo A y Triple Negativo B), la cual fue dependiente de la concentración, rápida y se mantuvo hasta por 48h. Se observó que en la línea MCF-7 indujo la citotoxicidad mediante la activación de la vía extrínseca e intrínseca de la apoptosis, acompañada de la disminución de la capacidad migratoria celular y disminuyendo también los procesos de invasión. Ensayos preliminares de toxicidad aguda en modelo in vivo muestran que este péptido se categoriza como ligera-moderadamente tóxico indicando que pues una molécula segura para proceder con ensayos de eficacia. Estos resultado sugieren que el péptido obtenido es una molécula que puede ser considerada como un potencial candidato para el desarrollo de agentes terapéuticos en el tratamiento de este tipo de cáncer. (Texto tomado de la fuente) |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-03T16:52:36Z |
dc.date.available.none.fl_str_mv |
2024-07-03T16:52:36Z |
dc.date.issued.none.fl_str_mv |
2024-01-29 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86375 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co |
url |
https://repositorio.unal.edu.co/handle/unal/86375 https://repositorio.unal.edu.co |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Mayo Clinic, “Cancer,” 2018. https://www.mayoclinic.org/diseases-conditions/cancer/symptoms-causes/syc-20370588. Y. A. Fouad and C. Aanei, “Revisiting the hallmarks of cancer,” Am. J. Cancer Res., vol. 7, no. 5, pp. 1016–1036, 2017. AACR, “What Is Cancer?,” American Association for Cancer Research, Inc, 2020. https://www.aacr.org/patients-caregivers/about-cancer/what-is-cancer/#:~:text=The term cancer encompasses more,blood stream and bone marrow. A. G. Waks and E. P. Winer, “Breast Cancer Treatment: A Review,” JAMA - J. Am. Med. Assoc., vol. 321, no. 3, pp. 288–300, 2019, doi: 10.1001/jama.2018.19323. M. Akram, M. Iqbal, M. Daniyal, and A. U. Khan, “Awareness and current knowledge of breast cancer,” Biol. Res., vol. 50, no. 1, pp. 1–23, 2017, doi: 10.1186/s40659-017-0140-9. The global cancer observatory, “Breast cancer,” vol. 419, pp. 3–4, 2020. WHO, “Breast cancer,” 2019. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Fondo Colombiano de Enfermedades de Alto Costo, Situación del cáncer en la población adulta atendida en el SGSSS de Colombia. Bogotá, 2019. M. A. Vivas, “CAC: panorama del cáncer de mama en Colombia 2020 La,” ConsultorSalud, vol. 36, no. 4, pp. 344–352, 2021. Ministerio de Salud y Protección Social de Colombia, Plan Nacional contra el Cancer 2012-2020. 2018. C. Pardo and E. de Vries, “Breast and cervical cancer survival at instituto nacional de cancerología, Colombia,” Colomb. Med., vol. 49, no. 1, pp. 102–108, 2018, doi: 10.25100/cm.v49i1.2840. E. Vergara-Dagobeth, A. Suárez-Causado, and R. D. Gómez-Arias, “Plan Control del cáncer en Colombia 2012-2021. Un análisis formal,” Rev. Gerenc. y Polit. Salud, vol. 16, no. 33, pp. 16–18, 2017, doi: 10.11144/Javeriana.rgps16-33.pccc. N. Harbeck et al., “Breast cancer,” Nat. Rev. Dis. Prim., vol. 5, no. 1, 2019, doi: 10.1038/s41572-019-0111-2 A. L. Tornesello, A. Borrelli, L. Buonaguro, F. M. Buonaguro, and M. L. Tornesello, “Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities,” Molecules, vol. 25, no. 12, pp. 1–25, 2020, doi: 10.3390/molecules25122850. N. K. Kunda, “Antimicrobial peptides as novel therapeutics for non-small cell lung cancer,” Drug Discov. Today, vol. 25, no. 1, pp. 238–247, 2020, doi: 10.1016/j.drudis.2019.11.012 K. Kurrikoff, D. Aphkhazava, and Ü. Langel, “The future of peptides in cancer treatment,” Curr. Opin. Pharmacol., vol. 47, pp. 27–32, 2019, doi: 10.1016/j.coph.2019.01.008. M. Jannesari et al., “Breast Cancer Histopathological Image Classification: A Deep Learning Approach,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, no. March 2020, pp. 2405–2412, 2019, doi: 10.1109/BIBM.2018.8621307. Y. Tang, Y. Wang, M. F. Kiani, and B. Wang, “Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer,” Clin. Breast Cancer, vol. 16, no. 5, pp. 335–343, 2016, doi: 10.1016/j.clbc.2016.05.012 J. L. Townson and A. F. Chambers, “Dormancy of solitary metastatic cells,” Cell Cycle, vol. 5, no. 16, pp. 1744–1750, 2006, doi: 10.4161/cc.5.16.2864. H. Y. Wen and E. Brogi, “Lobular Carcinoma In Situ,” Surg. Pathol. Clin., vol. 11, no. 1, pp. 123–145, 2018, doi: 10.1016/j.path.2017.09.009. Z. Chen et al., “Invasive lobular carcinoma of the breast: A special histological type compared with invasive ductal carcinoma,” PLoS One, vol. 12, no. 9, pp. 1–17, 2017, doi: 10.1371/journal.pone.0182397. Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi: 10.1016/j.gendis.2018.05.001. F. Imigo, E. Mansilla, I. Delama, M. T. Poblete, and C. Fonfach, “CLASIFICACIÓN MOLECULAR DEL CÁNCER DE MAMA,” Cuad. cirugía, vol. 25, pp. 67–74, 2011. O. A. Bonilla-Sepúlveda, G. Matute-Turízo, and Severich, “Classification of intrinsic subtypes of breast carcinomas analyzed in a pathology center of Medellin in 2011,” CES Med., vol. 29, no. 1, pp. 36–45, 2015. Globocan, “Estimated number of incident cases and deaths worldwide,” Glob. Cancer Obs., p. 80, 2020. H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi: 10.3322/caac.21660. A. Di Sibio, G. Abriata, D. Forman, and M. S. Sierra, “Female breast cancer in Central and South America,” Cancer Epidemiol., vol. 44, pp. S110–S120, 2016, doi: 10.1016/j.canep.2016.08.010. S. K. Al-Ghazal, L. Fallowfield, and R. W. Blamey, “Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction,” Eur. J. Cancer, vol. 36, no. 15, pp. 1938–1943, 2000, doi: 10.1016/S0959-8049(00)00197-0. B. H. L. Howes, D. I. Watson, C. Xu, B. Fosh, M. Canepa, and N. R. Dean, “Quality of life following total mastectomy with and without reconstruction versus breast-conserving surgery for breast cancer: A case-controlled cohort study,” J. Plast. Reconstr. Aesthetic Surg., vol. 69, no. 9, pp. 1184–1191, 2016, doi: 10.1016/j.bjps.2016.06.004. C. Speers and L. J. Pierce, “Postoperative radiotherapy after breast-conserving surgery for early-stage breast cancer a review,” JAMA Oncol., vol. 2, no. 8, pp. 1075–1082, 2016, doi: 10.1001/jamaoncol.2015.5805. K. Rygiel, “Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: An overview,” J. Cancer Res. Ther., vol. 13, no. 2, pp. 186–192, 2017, doi: 10.4103/0973-1482.187303. H. T. Hsu et al., “Symptom Cluster Trajectories During Chemotherapy in Breast Cancer Outpatients,” J. Pain Symptom Manage., vol. 53, no. 6, pp. 1017–1025, 2017, doi: 10.1016/j.jpainsymman.2016.12.354. J. J. Tao, K. Visvanathan, and A. C. Wolff, “Long term side effects of adjuvant chemotherapy in patients with early breast cancer,” The Breast, vol. 24, no. 0 2, pp. S23–S24, 2015, doi: 10.1016/s0960-9776(15)70048-2. S. A. Hussain, S. Williams, A. Stevens, and D. W. Rea, “Endocrine therapy for early breast cancer,” Expert Rev. Anticancer Ther., vol. 4, no. 5, pp. 877–888, 2004, doi: 10.1586/14737140.4.5.877. R. Condorelli and I. Vaz-Luis, “Managing side effects in adjuvant endocrine therapy for breast cancer,” Expert Rev. Anticancer Ther., vol. 18, no. 11, pp. 1101–1112, 2018, doi: 10.1080/14737140.2018.1520096. A. Spellman and S. C. Tang, “Immunotherapy for breast cancer: past, present, and future,” Cancer Metastasis Rev., vol. 35, no. 4, pp. 525–546, 2016, doi: 10.1007/s10555-016-9654-9. N. L. Henry, C. L. Loprinzi, and L. Schapira, “Immunotherapy for Breast Cancer Treatment : Is It an Option ?,” ASCO, 2020. https://www.cancer.net/blog/2020-09/immunotherapy-breast-cancer-treatment-it-option. K. V. R. Reddy, R. D. Yedery, and C. Aranha, “Antimicrobial peptides: Premises and promises,” Int. J. Antimicrob. Agents, vol. 24, no. 6, pp. 536–547, 2004, doi: 10.1016/j.ijantimicag.2004.09.005. D. Gaspar, A. Salomé Veiga, and M. A. R. B. Castanho, “From antimicrobial to anticancer peptides. A review,” Front. Microbiol., vol. 4, pp. 1–16, 2013, doi: 10.3389/fmicb.2013.00294. D. Wu, Y. Gao, Y. Qi, L. Chen, Y. Ma, and Y. Li, “Peptide-based cancer therapy: Opportunity and challenge,” Cancer Lett., vol. 351, no. 1, pp. 13–22, 2014, doi: 10.1016/j.canlet.2014.05.002 T. Jauset and M. E. Beaulieu, “Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead,” Curr. Opin. Pharmacol., vol. 47, pp. 133–140, 2019, doi: 10.1016/j.coph.2019.03.014. B. Chen et al., “Targeting negative surface charges of cancer cells by multifunctional nanoprobes,” Theranostics, vol. 6, no. 11, pp. 1887–1898, 2016, doi: 10.7150/thno.16358. D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochim. Biophys. Acta - Biomembr., vol. 1778, no. 2, pp. 357–375, 2008, doi: 10.1016/j.bbamem.2007.11.008. C. Adessi and C. Soto, “Converting a Peptide into a Drug: Strategies to Improve Stability and Bioavailability,” Curr. Med. Chem., vol. 9, no. 9, pp. 963–978, 2005, doi: 10.2174/0929867024606731. J. M. Davis, L. K. Tsou, and A. D. Hamilton, “Synthetic non-peptide mimetics of α-helices,” Chem. Soc. Rev., vol. 36, no. 2, pp. 326–334, 2007, doi: 10.1039/b608043j. J. Wang et al., “Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides,” JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, no. 9. pp. 3889–3907, 2018, [Online]. Available: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000432204800009&lang=es&site=eds-live. M. Felicio et al., “Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2,” Biochim. Biophys. ACTA-BIOMEMBRANES, vol. 1858, no. 7, pp. 1488–1498, 2016, doi: https://doi.org/10.1016/j.bbamem.2016.04.003. C. Sun et al., “Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences,” Int. J. Mol. Sci., vol. 19, no. 10, 2018, doi: 10.3390/ijms19102951. M. Xie, D. Liu, and Y. Yang, “Anti-cancer peptides: classification, mechanism of action, reconstruction and modification,” Open Biol., vol. 10, no. 7, 2020, doi: 10.1098/rsob.200004. K. J. Cutrona, B. A. Kaufman, D. M. Figueroa, and D. E. Elmore, “Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides,” FEBS Lett., vol. 589, no. 24, pp. 3915–3920, 2015, doi: 10.1016/j.febslet.2015.11.002. H. X. Luong, D. H. Kim, B. J. Lee, and Y. W. Kim, “Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides,” Arch. Pharm. Res., vol. 41, no. 11, pp. 1092–1097, 2018, doi: 10.1007/s12272-018-1084-5. C. Domhan et al., “Replacement of L-amino acids by D-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution,” Molecules, vol. 24, no. 16, 2019, doi: 10.3390/molecules24162987. P. Grieco et al., “The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 652–660, 2013, doi: 10.1016/j.bbamem.2012.08.027. W. Yang et al., “Inhibition of proliferative and invasive capacities of breast cancer cells by arginine-glycine-aspartic acid peptide in vitro,” Oncol. Rep., vol. 15, no. 1, pp. 113–117, 2006, doi: 10.3892/or.15.1.113. D. Legrand, “Overview of Lactoferrin as a Natural Immune Modulator,” J. Pediatr., vol. 173, pp. S10–S15, 2016, doi: 10.1016/j.jpeds.2016.02.071. B. Wang, Y. P. Timilsena, E. Blanch, and B. Adhikari, “Lactoferrin: Structure, function, denaturation and digestion,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 4, pp. 580–596, 2019, doi: 10.1080/10408398.2017.1381583. A. Richardson, R. de Antueno, R. Duncan, and D. W. Hoskin, “Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells,” Biochem. Biophys. Res. Commun., vol. 388, no. 4, pp. 736–741, 2009, doi: 10.1016/j.bbrc.2009.08.083. M. Arias et al., “Anticancer activities of bovine and human lactoferricin- derived peptides,” Comput. Cell Biol., vol. 95, no. 1, pp. 91–98, 2017. C. Chea et al., “Bovine lactoferrin reverses programming of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition in oral squamous cell carcinoma,” Biochem. Biophys. Res. Commun., vol. 507, no. 1–4, pp. 142–147, 2018, doi: 10.1016/j.bbrc.2018.10.193. J. C. Pereira Guedes, “Molecular Mechanisms Underlying the Anticancer Activity of Lactoferrin in Highly Metastatic Cancer Cell Lines,” 2017. J. Gibbons, R. Kanwar, and J. Kanwar, “Lactoferrin and cancer in different cancer models,” Cancer Cell, no. 1, pp. 1080–1088, 2011. P. Puddu, P. Valenti, and S. Gessani, “Immunomodulatory effects of lactoferrin on antigen presenting cells,” Biochimie, vol. 91, no. 1, pp. 11–18, 2009, doi: 10.1016/j.biochi.2008.05.005. I. Z. Sadiq, K. Babagana, D. Danlami, L. I. Abdullahi, and A. R. Khan, “Molecular Therapeutic Cancer Peptides: A Closer Look at Bovine Lactoferricin,” Asian J. Biochem. Genet. Mol. Biol., vol. 1, no. 2, pp. 1–9, 2018, doi: 10.9734/ajbgmb/2018/v1i2471 J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin, “Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines,” Mol. Cancer Ther., vol. 4, no. 4, pp. 612–624, 2005, doi: 10.1158/1535-7163.MCT-04-0077. D. I. Chan, E. J. Prenner, and H. J. Vogel, “Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action,” Biochim. Biophys. Acta - Biomembr., vol. 1758, no. 9, pp. 1184–1202, 2006, doi: 10.1016/j.bbamem.2006.04.006. V. A. Solarte, “Péptidos derivados de lactoferricina bovina como agentes anticancerígenos contra el carcinoma de células escamosas de la cavidad oral.,” p. 127, 2016. D. S. Insuasty-Cepeda et al., “Peptides derived from (Rrwqwrmkklg)2- k-ahx induce selective cellular death in breast cancer cell lines through apoptotic pathway,” Int. J. Mol. Sci., vol. 21, no. 12, pp. 1–13, 2020, doi: 10.3390/ijms21124550. Y. Zhang, C. F. Lima, and L. R. Rodrigues, “Invitro evaluation of bovine lactoferrin potential as an anticancer agent,” Int. Dairy J., vol. 40, pp. 6–15, 2015, doi: 10.1016/j.idairyj.2014.08.016. S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen,” Oncol. Rep., vol. 15, no. 5, pp. 1385–1390, 2006, doi: 10.3892/or.15.5.1385. Y. Vargas et al., “Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines,” Molecules, vol. 22, no. 10, p. 1641, 2017, doi: 10.3390/molecules22101641. J. R. Guerra et al., “The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line,” RSC Adv., vol. 9, no. 36, pp. 20497–20504, 2019, doi: 10.1039/c9ra04145a. N. D. J. Huertas et al., “Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076,” Molecules, vol. 22, no. 3, p. 452, 2017, doi: 10.3390/molecules22030452. A. C. Barragán-Cárdenas et al., “Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin,” RSC Adv., vol. 10, no. 30, pp. 17593–17601, 2020, doi: 10.1039/d0ra02688c. A. C. Barragán-Cárdenas et al., “The Nonapeptide RWQWRWQWR : A Promising Molecule for Breast Cancer Therapy,” ChemistrySelect, vol. 5, pp. 9691–9700, 2020, doi: doi.org/10.1002/slct.202002101 z. D. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules, vol. 24, no. 7, 2019, doi: 10.3390/molecules24071215. ATCC, “MDA-MB-468.” pp. 1–3, 2018. ATCC, “MDA-MB-231.” pp. 1–3, 2020 ATCC, “MCF-7.” pp. 1–3, 2020. ATCC, “BT-474.” pp. 1–3, 2018. ATCC, “MCF-12A.” pp. 1–3, 2020. J. A. Rodríguez, “Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama,” Repositorio.Unal.Edu.Co, 2019, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/76436. A. C. Barragán-Cárdenas et al., “Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines,” ACS Omega, 2023, doi: 10.1021/acsomega.2c07336. M. Lara-Márquez et al., “Lipid-rich extract from Mexican avocado (Persea americana var. drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells,” J. Funct. Foods, vol. 64, no. October 2019, p. 103658, 2020, doi: 10.1016/j.jff.2019.103658. Luminex, “Muse® Oxidative Stress Kit,” vol. 100111, no. October, 2019, [Online]. Available: www.luminexcorp.com. Biolegend, “Assay Kit LEGENDplex TM CRP1 & Co,” no. 75062_V01, [Online]. Available: https://www.biolegend.com/Files/Images/media_assets/pro_detail/datasheets/75062_Hu_Macrophage-Microglia_Panel_V01.pdf. C. Numbers, “TRIzol TM Reagent,” vol. 15596018, no. 15596026. M. C. Sandoval-Usme et al., “Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells,” PLoS One, vol. 9, no. 1, 2014, doi: 10.1371/journal.pone.0087769. R. Cabezas-Perez, A. F. Vallejo-Pulido, A. Umaña-Pérez, and M. Sánchez-Gómez, “IGF-II Y LA GONADOTROPINA CORIONICA REGULAN LA PROLIFERACION, MIGRACION E INVASION DE CELULAS DE TROFOBLASTO HUMANO_.pdf,” Acta Biológica Colomb., vol. 16, no. 1, pp. 143–152, 2011. C. P. Bravo-Chaucanés, Y. Vargas-Casanova, L. C. Chitiva-Chitiva, A. Ceballos-Garzon, G. Modesti-Costa, and C. M. Parra-Giraldo, “Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation,” J. Fungi, vol. 8, no. 8, p. 784, 2022, doi: 10.3390/jof8080784 OECD, “Test No. 236: Fish Embryo Acute Toxicity (FET) Test.,” OECD Guidel. Test. Chem. Sect. 2, OECD Publ., no. July, pp. 1–22, 2013, [Online]. Available: http://www.oecd-ilibrary.org. J. R. Mathiasen and V. C. Moser, “The Irwin Test and Functional Observational Battery (FOB) for Assessing the Effects of Compounds on Behavior, Physiology, and Safety Pharmacology in Rodents,” Curr. Protoc. Pharmacol., vol. 83, no. 1, pp. 1–18, 2018, doi: 10.1002/cpph.43. K. Y. Chang and J. R. Yang, “Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests,” PLoS One, vol. 8, no. 8, 2013, doi: 10.1371/journal.pone.0070166. C. K. Hattotuwagama and D. R. Flower, “Empirical prediction of peptide octanol-water partition coefficients,” Bioinformation, vol. 1, no. 7, pp. 257–259, 2006, doi: 10.6026/97320630001257. N. C. Tan, P. Yu, Y.-U. Kwon, and T. Kodadek, “High-Throughput Evaluation of Relative Cell Permeability between Peptoids and Peptides,” Bioorg Med Chem, vol. 16, no. 11, pp. 5853–5861, 2008, doi: 10.1038/nature08365.Reconstructing. F. Huang and W. M. Nau, “A conformational flexibility scale for amino acids in peptides,” Angew. Chemie - Int. Ed., vol. 42, no. 20, pp. 2269–2272, 2003, doi: 10.1002/anie.200250684. L. S. Vermeer et al., “Conformational flexibility determines selectivity and antibacterial, antiplasmodial,andanticancer potency of cationic -αhelical peptides,” J. Biol. Chem., vol. 287, no. 41, pp. 34120–34133, 2012, doi: 10.1074/jbc.M112.359067. C. K. Wang, J. E. Swedberg, P. J. Harvey, Q. Kaas, and D. J. Craik, “Conformational Flexibility Is a Determinant of Permeability for Cyclosporin,” J. Phys. Chem. B, vol. 122, no. 8, pp. 2261–2276, 2018, doi: 10.1021/acs.jpcb.7b12419. K. Amin and R.-M. Dannenfelser, “In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist,” J. Pharm. Sci., vol. 95, no. 6, pp. 1173–1176, 2006, doi: 10.1002/jps. F. Marques-Garcia, D. H. H. Jung, and S. E. Pérez, “Impact of individualized hemolysis management based on biological variation cut-offs in a clinical laboratory,” Ann. Lab. Med., vol. 42, no. 2, pp. 169–177, 2021, doi: 10.3343/ALM.2022.42.2.169. M. Ravikanth, P. Soujanya, K. Manjunath, T. R. Saraswathi, and C. R. Ramachandran, “Heterogenecity of fibroblasts,” J. Oral Maxillofac. Pathol., vol. 15, no. 2, pp. 247–250, 2011, doi: 10.4103/0973-029X.84516. K. Singh, A. Gangrade, A. Jana, B. B. Mandal, and N. Das, “Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring,” ACS Omega, vol. 4, no. 1, pp. 835–841, 2019, doi: 10.1021/acsomega.8b02849 A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res., vol. 45, no. 3, pp. 528–537, 2000, doi: 10.1016/S0008-6363(99)00384-3. K. A. Camilio, “Short Lytic Anticancer Peptides as a Novel Therapy against Cancer,” p. 68, 2013, [Online]. Available: https://munin.uit.no/bitstream/handle/10037/5489/thesis.pdf?sequence=6&isAllowed=y. N. Yang, M. B. Strøm, S. M. Mekonnen, J. S. Svendsen, and Ø. Rekdal, “The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells,” J. Pept. Sci., vol. 10, no. 1, pp. 37–46, 2004, doi: 10.1002/psc.470. F. Harris, S. Dennison, J. Singh, and P. David, “On the Selectivity and Efficacy of Defense Peptides With Respect to Cancer Cells,” Med. Res. Rev., vol. 33, no. 1, pp. 190–234, 2011, doi: 10.1002/med. A. Won et al., “Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin,” Biochim. Biophys. Acta - Biomembr., vol. 1808, no. 6, pp. 1592–1600, 2011, doi: 10.1016/j.bbamem.2010.11.010. K. Johanna et al., “Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides : Pursuing Production Lower Costs , Lower Hemolysis , and Sustained Antimicrobial Activity,” Int. J. Pept. Res. Ther., no. 0123456789, 2021, doi: 10.1007/s10989-021-10207-x. Z. Ye, X. Zhu, S. Acosta, D. Kumar, T. Sang, and C. Aparicio, “Self-assembly Dynamics and Antimicrobial Activity of All L- and D-amino Acid Enantiomers of a Designer Peptide,” Nanoscale, vol. 11, no. 1, pp. 266–275, 2018, doi: 10.1039/c8nr07334a.Self-assembly. M. Abdulbagi, L. Wang, O. Siddig, B. Di, and B. Li, “D-amino acids and d-amino acid-containing peptides: Potential disease biomarkers and therapeutic targets?,” Biomolecules, vol. 11, no. 11, pp. 1–14, 2021, doi: 10.3390/biom11111716. Z. Feng and B. Xu, “Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches,” Biomol. Concepts, vol. 7, no. 3, pp. 179–187, 2016, doi: 10.1515/bmc-2015-0035. R. Chen, S. Ni, W. Chen, M. Liu, J. Feng, and K. Hu, “Improved anti-triple negative breast cancer effects of docetaxel by RGD-modified lipid-core micelles,” Int. J. Nanomedicine, vol. 16, pp. 5265–5279, 2021, doi: 10.2147/IJN.S313166. R. Mahmoudi et al., “RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells,” J. Biomater. Appl., vol. 35, no. 7, pp. 743–753, 2021, doi: 10.1177/0885328220949367. G. Zheng, M. Zheng, B. Yang, H. Fu, and Y. Li, “Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic (RGD) tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo,” Biomed. Pharmacother., vol. 116, no. 440, p. 109006, 2019, doi: 10.1016/j.biopha.2019.109006. B. Chen et al., “Inhibited effect of an RGD peptide hydrogel on the expression of β1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 109, no. 11, pp. 1857–1865, 2021, doi: 10.1002/jbm.b.34847. A. Heras-Parets, M. P. Ginebra, J. M. Manero, and J. Guillem-Marti, “Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration,” Adv. Healthc. Mater., vol. 12, no. 21, 2023, doi: 10.1002/adhm.202203307. D. T. Seroski et al., “Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly,” Commun. Chem., vol. 3, no. 1, 2020, doi: 10.1038/s42004-020-00414-w. F. Jean-François, J. Elezgaray, P. Berson, P. Vacher, and E. J. Dufourc, “Pore formation induced by an antimicrobial peptide: Electrostatic effects,” Biophys. J., vol. 95, no. 12, pp. 5748–5756, 2008, doi: 10.1529/biophysj.108.136655. H. Li, T. Tamang, and C. Nantasenamat, “Toward insights on antimicrobial selectivity of host defense peptides via machine learning model interpretation,” Genomics, vol. 113, no. 6, pp. 3851–3863, 2021, doi: 10.1016/j.ygeno.2021.08.023. Z. Liu, F. Wang, and X. Chen, “Integrin alphaV-beta3-targeted cancer therapy,” Drug Dev. Res., vol. 69, no. 6, pp. 329–339, 2008, doi: 10.1002/ddr.20265.Integrin. S. S. A. A. Hasson et al., “In vitro apoptosis triggering in the BT-474 human breast cancer cell line by lyophilised camel’s milk,” Asian Pacific J. Cancer Prev., vol. 16, no. 15, pp. 6651–6661, 2015, doi: 10.7314/APJCP.2015.16.15.6651. Knut & Alice Wallenberg Foundation, “Integrin αvβ3,” The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000138448-ITGAV/cell+line (accessed Dec. 02, 2023). Y. Gai et al., “Evaluation of an Integrin αv β3 and Aminopeptidase N Dual- Receptor Targeting Tracer for Breast Cancer Imaging,” Mol Pharm., vol. 17, no. 1, 2020, doi: 10.1021/acs.molpharmaceut.9b01134.Detailed. R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. 15, pp. 7181–7189, 2021, doi: 10.1111/jcmm.16748. J. S. Mader et al., “Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria,” Exp. Cell Res., vol. 313, no. 12, pp. 2634–2650, 2007, doi: 10.1016/j.yexcr.2007.05.015. N. Fester et al., “Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation,” Cell Death Dis., vol. 13, no. 3, pp. 1–10, 2022, doi: 10.1038/s41419-022-04659-2. H. Thomadaki, M. Talieri, and A. Scorilas, “Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS,” Biol. Chem., vol. 387, no. 8, pp. 1081–1086, 2006, doi: 10.1515/BC.2006.133. D. S. Insuasty-cepeda et al., “Non-natural amino acids into LfcinB-derived peptides : effect in their ( i ) proteolytic degradation and ( ii ) cytotoxic activity against cancer cells,” R. Soc. Open Sci., vol. 10, 2023. Y. C. Yoo et al., “Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: Involvement of reactive oxygen species,” Biochem. Biophys. Res. Commun., vol. 237, no. 3, pp. 624–628, 1997, doi: 10.1006/bbrc.1997.7199. J. A. Gibbons, J. R. Kanwar, and R. K. Kanwar, “Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer,” BMC Cancer, vol. 15, no. 1, pp. 1–16, 2015, doi: 10.1186/s12885-015-1441-4. N. H. Ha et al., “Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes,” Cancer Res., vol. 71, no. 23, pp. 7259–7269, 2011, doi: 10.1158/0008-5472.CAN-11-1143. M. V. Mouritzen et al., “Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota,” Mol. Ther. - Methods Clin. Dev., vol. 20, no. March, pp. 726–739, 2021, doi: 10.1016/j.omtm.2021.02.008. R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. June, pp. 7181–7189, 2021, doi: 10.1111/jcmm.16748. A. Masjedi et al., “The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer,” Biomed. Pharmacother., vol. 108, no. September, pp. 1415–1424, 2018, doi: 10.1016/j.biopha.2018.09.177. M. Cheng, P. Liu, and L. X. Xu, “Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment,” J. Inorg. Biochem., vol. 210, no. June, p. 111159, 2020, doi: 10.1016/j.jinorgbio.2020.111159. X. P. Jiang, D. C. Yang, R. L. Elliott, and J. F. Head, “Down-regulation of expression of interleukin-6 and its receptor results in growth inhibition of MCF-7 breast cancer cells,” Anticancer Res., vol. 31, no. 9, pp. 2899–2906, 2011. E. M. El-Fakharany et al., “Therapeutic efficacy of Nano-formulation of lactoperoxidase and lactoferrin via promoting immunomodulatory and apoptotic effects,” Int. J. Biol. Macromol., vol. 220, no. August, pp. 43–55, 2022, doi: 10.1016/j.ijbiomac.2022.08.067. S. A. A.-E. Al-Ameri et al., “Function and regulation of interleukin-10 in breast cancer,” Ann. Res., vol. 3, pp. 162–183, 2020, doi: 10.31219/osf.io/me4a5. A. Cutone et al., “Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action,” Biomolecules, vol. 10, no. 3, pp. 1–26, 2020, doi: 10.3390/biom10030456. W. R. Pan, P. W. Chen, Y. L. S. Chen, H. C. Hsu, C. C. Lin, and W. J. Chen, “Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage,” J. Dairy Sci., vol. 96, no. 12, pp. 7511–7520, 2013, doi: 10.3168/jds.2013-7285. S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts,” Exp. Mol. Pathol., vol. 88, no. 3, pp. 371–375, 2010, doi: 10.1016/j.yexmp.2010.02.001. L. Bugyna, S. Kendra, and H. Bujdáková, “Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks,” Microorganisms, vol. 11, no. 6, 2023, doi: 10.3390/microorganisms11061455. M. El-Harbawi, “Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test,” Procedia Chem., vol. 9, no. December, pp. 40–52, 2014, doi: 10.1016/j.proche.2014.05.006. O. Al-Jamal et al., “Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos,” Sci. Total Environ., vol. 741, p. 140450, 2020, doi: 10.1016/j.scitotenv.2020.140450. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
186 páginas, ilustraciones (principalmente a color), fotografías |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Biotecnología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86375/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86375/4/Tesis%20Doctorado%20Biotecnolog%c3%ada%20-%20Andrea%20Barrag%c3%a1n.pdf https://repositorio.unal.edu.co/bitstream/unal/86375/5/Tesis%20Doctorado%20Biotecnolog%c3%ada%20-%20Andrea%20Barrag%c3%a1n.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a fad21d1be2b9f4ad5bd37f44769ba6b6 0cdd366f770625f8983d1351de3138fd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089538332524544 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2García Castañeda, Javier Eduardod233ac45968135ded4a8bcbe0460b111Barragán Cárdenas, Andrea Carolina13848f974b83bc8361449d2a032afb98600Síntesis y Aplicación de Moléculas PeptídicasBarragán Cárdenas, Andrea Carolina [000000075458129]Barragán Cárdenas, Andrea Carolina [0000011789]Barragán Cárdenas, Andrea Carolina [Andrea-Barragan-Cardenas]2024-07-03T16:52:36Z2024-07-03T16:52:36Z2024-01-29https://repositorio.unal.edu.co/handle/unal/86375Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.coEl diseño, síntesis y evaluación de péptidos anticancerígenos es una estrategia utilizada para la búsqueda de nuevas moléculas con potencial terapéutico para el tratamiento del cáncer. El cáncer de mama es el más diagnosticado a nivel mundial, el cuarto con mayor mortalidad y, su amplia variación genética deriva en la necesidad de diferentes moléculas para su tratamiento. Los tratamientos utilizados para este tipo de cáncer no son selectivos por las células cancerosas y generan múltiples efectos secundarios que disminuyen la calidad de vida del paciente de forma drástica, el tumor puede presentar resistencia y derivar en recurrencia; razón por la cual la búsqueda de nuevos posibles agentes terapéuticos es imperativa. En este trabajo se diseñaron, sintetizaron y evaluaron péptidos derivados del péptido palindrómico con actividad anticancerosa LfcinB (21-25)Pal:H2N-RWQWRWQWR-CONH2. Se evaluaron péptidos con modificaciones en la estructura primaria del péptido palindrómico como la longitud y carga neta positiva, cambios puntuales de residuos por aminoácidos de la misma polaridad o por aminoácidos no naturales y, funcionalización con el motivo RGD en el extremo N-terminal y/o C-terminal. Se determinó que el aumento de la longitud y carga de la secuencia mediante adición de una Arg (R) y/o la unión al motivo RGD en el extremo N-terminal generaron péptidos con un mayor efecto citotóxico frente a células derivadas de cáncer de mama MCF-7, identificando cuatro péptidos promisorios: RRWQWRWQWR, RRWQWRWQWRR, RGD-Ahx-RRWQWRWQWR y RGD-Ahx-RWQWRWQWR, los cuales inducen disminución de la viabilidad celular dependiente de la concentración. Se evidenció que los residuos de Arg (R) ubicados en los extremos N y C-terminal de la secuencia palindrómica son relevantes para mantener la selectividad de los péptidos por células cancerosas, mientras que la Arg central de la secuencia es determinante para ejercer el efecto citotóxico. Los resultados sugieren que el aumento de la carga neta positiva del péptido que permite una interacción electrostática inespecífica con la célula no es el único parámetro que influye en el efecto citotóxico y su ubicación en la secuencia es clave. La inclusión de la Arg en el extremo N-terminal (RRWQWRWQWR) incrementó significativamente el efecto anticanceroso, lo cual puede estar asociado a que esta modificación hace que se complete el motivo mínimo de la LfcinB. Reemplazos puntuales en la secuencia por aminoácidos de la misma polaridad o por aminoácidos no naturales generaron disminución del efecto anticanceroso del péptido sugiriendo que es posible que esté involucrada una interacción específica péptido-célula. Los resultados respecto a la funcionalización con el motivo RGD en los extremos N y/o C-terminal muestran que cuando la adición se realiza en el extremo C-terminal el efecto citotóxico disminuye sugiriendo que los residuos ubicados en ese extremo son determinantes. El péptido RGD-Ahx-RWQWRWQWR, presentó mayor actividad citotóxica que la secuencia original, además indujo disminución de la viabilidad celular de líneas celulares derivadas de los cuatro subtipos moleculares de cáncer de mamá (Luminal A, Luminal B, Triple Negativo A y Triple Negativo B), la cual fue dependiente de la concentración, rápida y se mantuvo hasta por 48h. Se observó que en la línea MCF-7 indujo la citotoxicidad mediante la activación de la vía extrínseca e intrínseca de la apoptosis, acompañada de la disminución de la capacidad migratoria celular y disminuyendo también los procesos de invasión. Ensayos preliminares de toxicidad aguda en modelo in vivo muestran que este péptido se categoriza como ligera-moderadamente tóxico indicando que pues una molécula segura para proceder con ensayos de eficacia. Estos resultado sugieren que el péptido obtenido es una molécula que puede ser considerada como un potencial candidato para el desarrollo de agentes terapéuticos en el tratamiento de este tipo de cáncer. (Texto tomado de la fuente)The design, synthesis and evaluation of anticancer peptides are used to search for new molecules with therapeutic potential for the treatment of cancer. Breast cancer is the most diagnosed cancer worldwide, the fourth with the highest mortality rate, and its wide genetic variation results in the need for different molecules for its treatment. The treatments used for this type of cancer are not selective for cancer cells and generate multiple side effects that drastically reduce the patient's quality of life. The tumour can present resistance and lead to recurrence, which is why the search for new possible therapeutic agents is imperative. In this work, peptides derived from the palindromic peptide with anticancer activity LfcinB (21-25)Pal: H2N-RWQWRWQWR-CONH2 were designed, synthesized, and evaluated. Peptides were evaluated with modifications in the primary structure of the palindromic peptide such as length and net positive charge, specific changes of residues by amino acids of the same polarity or by non-natural amino acids and, functionalization with the RGD motif at the N-terminal and/ or C-terminal end. It was determined that increasing the length and charge of the sequence by adding an Arg (R) and/or binding to the RGD motif at the N-terminal end generated peptides with a more significant cytotoxic effect against MCF-7 cells (derived from breast cancer) identifying four promising peptides: RRWQWRWQWR, RRWQWRWQWRR, RGD-Ahx-RRWQWRWQWR and RGD-Ahx-RWQWRWQWR which induce a concentration-dependent decrease in cell viability. It was noted that the Arg (R) residues located at the N and C-terminal ends of the palindromic sequence are relevant to maintain the selectivity of the peptides for cancer cells, while the central Arg of the sequence is decisive to exert the cytotoxic effect. The results suggest that the increase in the peptide’s net positive charge, which allows a nonspecific electrostatic interaction with the cell is not directly proportional to the cytotoxic effect, and its location in the sequence is key. Including Arg at the N-terminal end (RRWQWRWQWR) significantly increased the anticancer effect, which may be associated with the modification completing the minimal LfcinB motif. (Texto tomado de la fuente)DoctoradoDoctor en BiotecnologíaPéptidos anticancerosos186 páginas, ilustraciones (principalmente a color), fotografíasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::572 - Bioquímica610 - Medicina y salud::616 - EnfermedadesAnticarcinógenosAntineoplásicosNeoplasias de la mamaAnálisis de secuencia de proteínaCitotoxinasApoptosisAnticarcinogenic agentsAntineoplastic agentsBreast neoplasmsSequence analysis, proteinCytotoxinsCáncer de mamaPéptidosLactoferricinaBreast cancerAnticancer peptideslactoferricinSecuencia palindrómicaLactoferricinaPalindromic sequenceLactoferricinPéptidos modificados derivados de la secuencia RWQWRWQWR: evaluación de la actividad anticancerosa frente a líneas celulares derivadas de cáncer de mamaModified peptides derived from the RWQWRWQWR sequence: evaluation of anticancer activity against cell lines derived from breast cancerTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDMayo Clinic, “Cancer,” 2018. https://www.mayoclinic.org/diseases-conditions/cancer/symptoms-causes/syc-20370588.Y. A. Fouad and C. Aanei, “Revisiting the hallmarks of cancer,” Am. J. Cancer Res., vol. 7, no. 5, pp. 1016–1036, 2017.AACR, “What Is Cancer?,” American Association for Cancer Research, Inc, 2020. https://www.aacr.org/patients-caregivers/about-cancer/what-is-cancer/#:~:text=The term cancer encompasses more,blood stream and bone marrow.A. G. Waks and E. P. Winer, “Breast Cancer Treatment: A Review,” JAMA - J. Am. Med. Assoc., vol. 321, no. 3, pp. 288–300, 2019, doi: 10.1001/jama.2018.19323.M. Akram, M. Iqbal, M. Daniyal, and A. U. Khan, “Awareness and current knowledge of breast cancer,” Biol. Res., vol. 50, no. 1, pp. 1–23, 2017, doi: 10.1186/s40659-017-0140-9.The global cancer observatory, “Breast cancer,” vol. 419, pp. 3–4, 2020.WHO, “Breast cancer,” 2019. https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/.Fondo Colombiano de Enfermedades de Alto Costo, Situación del cáncer en la población adulta atendida en el SGSSS de Colombia. Bogotá, 2019.M. A. Vivas, “CAC: panorama del cáncer de mama en Colombia 2020 La,” ConsultorSalud, vol. 36, no. 4, pp. 344–352, 2021.Ministerio de Salud y Protección Social de Colombia, Plan Nacional contra el Cancer 2012-2020. 2018.C. Pardo and E. de Vries, “Breast and cervical cancer survival at instituto nacional de cancerología, Colombia,” Colomb. Med., vol. 49, no. 1, pp. 102–108, 2018, doi: 10.25100/cm.v49i1.2840.E. Vergara-Dagobeth, A. Suárez-Causado, and R. D. Gómez-Arias, “Plan Control del cáncer en Colombia 2012-2021. Un análisis formal,” Rev. Gerenc. y Polit. Salud, vol. 16, no. 33, pp. 16–18, 2017, doi: 10.11144/Javeriana.rgps16-33.pccc.N. Harbeck et al., “Breast cancer,” Nat. Rev. Dis. Prim., vol. 5, no. 1, 2019, doi: 10.1038/s41572-019-0111-2A. L. Tornesello, A. Borrelli, L. Buonaguro, F. M. Buonaguro, and M. L. Tornesello, “Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities,” Molecules, vol. 25, no. 12, pp. 1–25, 2020, doi: 10.3390/molecules25122850.N. K. Kunda, “Antimicrobial peptides as novel therapeutics for non-small cell lung cancer,” Drug Discov. Today, vol. 25, no. 1, pp. 238–247, 2020, doi: 10.1016/j.drudis.2019.11.012K. Kurrikoff, D. Aphkhazava, and Ü. Langel, “The future of peptides in cancer treatment,” Curr. Opin. Pharmacol., vol. 47, pp. 27–32, 2019, doi: 10.1016/j.coph.2019.01.008.M. Jannesari et al., “Breast Cancer Histopathological Image Classification: A Deep Learning Approach,” Proc. - 2018 IEEE Int. Conf. Bioinforma. Biomed. BIBM 2018, no. March 2020, pp. 2405–2412, 2019, doi: 10.1109/BIBM.2018.8621307.Y. Tang, Y. Wang, M. F. Kiani, and B. Wang, “Classification, Treatment Strategy, and Associated Drug Resistance in Breast Cancer,” Clin. Breast Cancer, vol. 16, no. 5, pp. 335–343, 2016, doi: 10.1016/j.clbc.2016.05.012J. L. Townson and A. F. Chambers, “Dormancy of solitary metastatic cells,” Cell Cycle, vol. 5, no. 16, pp. 1744–1750, 2006, doi: 10.4161/cc.5.16.2864.H. Y. Wen and E. Brogi, “Lobular Carcinoma In Situ,” Surg. Pathol. Clin., vol. 11, no. 1, pp. 123–145, 2018, doi: 10.1016/j.path.2017.09.009.Z. Chen et al., “Invasive lobular carcinoma of the breast: A special histological type compared with invasive ductal carcinoma,” PLoS One, vol. 12, no. 9, pp. 1–17, 2017, doi: 10.1371/journal.pone.0182397.Y. Feng et al., “Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis,” Genes Dis., vol. 5, no. 2, pp. 77–106, 2018, doi: 10.1016/j.gendis.2018.05.001.F. Imigo, E. Mansilla, I. Delama, M. T. Poblete, and C. Fonfach, “CLASIFICACIÓN MOLECULAR DEL CÁNCER DE MAMA,” Cuad. cirugía, vol. 25, pp. 67–74, 2011.O. A. Bonilla-Sepúlveda, G. Matute-Turízo, and Severich, “Classification of intrinsic subtypes of breast carcinomas analyzed in a pathology center of Medellin in 2011,” CES Med., vol. 29, no. 1, pp. 36–45, 2015.Globocan, “Estimated number of incident cases and deaths worldwide,” Glob. Cancer Obs., p. 80, 2020.H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi: 10.3322/caac.21660.A. Di Sibio, G. Abriata, D. Forman, and M. S. Sierra, “Female breast cancer in Central and South America,” Cancer Epidemiol., vol. 44, pp. S110–S120, 2016, doi: 10.1016/j.canep.2016.08.010.S. K. Al-Ghazal, L. Fallowfield, and R. W. Blamey, “Comparison of psychological aspects and patient satisfaction following breast conserving surgery, simple mastectomy and breast reconstruction,” Eur. J. Cancer, vol. 36, no. 15, pp. 1938–1943, 2000, doi: 10.1016/S0959-8049(00)00197-0.B. H. L. Howes, D. I. Watson, C. Xu, B. Fosh, M. Canepa, and N. R. Dean, “Quality of life following total mastectomy with and without reconstruction versus breast-conserving surgery for breast cancer: A case-controlled cohort study,” J. Plast. Reconstr. Aesthetic Surg., vol. 69, no. 9, pp. 1184–1191, 2016, doi: 10.1016/j.bjps.2016.06.004.C. Speers and L. J. Pierce, “Postoperative radiotherapy after breast-conserving surgery for early-stage breast cancer a review,” JAMA Oncol., vol. 2, no. 8, pp. 1075–1082, 2016, doi: 10.1001/jamaoncol.2015.5805.K. Rygiel, “Cardiotoxic effects of radiotherapy and strategies to reduce them in patients with breast cancer: An overview,” J. Cancer Res. Ther., vol. 13, no. 2, pp. 186–192, 2017, doi: 10.4103/0973-1482.187303.H. T. Hsu et al., “Symptom Cluster Trajectories During Chemotherapy in Breast Cancer Outpatients,” J. Pain Symptom Manage., vol. 53, no. 6, pp. 1017–1025, 2017, doi: 10.1016/j.jpainsymman.2016.12.354.J. J. Tao, K. Visvanathan, and A. C. Wolff, “Long term side effects of adjuvant chemotherapy in patients with early breast cancer,” The Breast, vol. 24, no. 0 2, pp. S23–S24, 2015, doi: 10.1016/s0960-9776(15)70048-2.S. A. Hussain, S. Williams, A. Stevens, and D. W. Rea, “Endocrine therapy for early breast cancer,” Expert Rev. Anticancer Ther., vol. 4, no. 5, pp. 877–888, 2004, doi: 10.1586/14737140.4.5.877.R. Condorelli and I. Vaz-Luis, “Managing side effects in adjuvant endocrine therapy for breast cancer,” Expert Rev. Anticancer Ther., vol. 18, no. 11, pp. 1101–1112, 2018, doi: 10.1080/14737140.2018.1520096.A. Spellman and S. C. Tang, “Immunotherapy for breast cancer: past, present, and future,” Cancer Metastasis Rev., vol. 35, no. 4, pp. 525–546, 2016, doi: 10.1007/s10555-016-9654-9.N. L. Henry, C. L. Loprinzi, and L. Schapira, “Immunotherapy for Breast Cancer Treatment : Is It an Option ?,” ASCO, 2020. https://www.cancer.net/blog/2020-09/immunotherapy-breast-cancer-treatment-it-option.K. V. R. Reddy, R. D. Yedery, and C. Aranha, “Antimicrobial peptides: Premises and promises,” Int. J. Antimicrob. Agents, vol. 24, no. 6, pp. 536–547, 2004, doi: 10.1016/j.ijantimicag.2004.09.005.D. Gaspar, A. Salomé Veiga, and M. A. R. B. Castanho, “From antimicrobial to anticancer peptides. A review,” Front. Microbiol., vol. 4, pp. 1–16, 2013, doi: 10.3389/fmicb.2013.00294.D. Wu, Y. Gao, Y. Qi, L. Chen, Y. Ma, and Y. Li, “Peptide-based cancer therapy: Opportunity and challenge,” Cancer Lett., vol. 351, no. 1, pp. 13–22, 2014, doi: 10.1016/j.canlet.2014.05.002T. Jauset and M. E. Beaulieu, “Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead,” Curr. Opin. Pharmacol., vol. 47, pp. 133–140, 2019, doi: 10.1016/j.coph.2019.03.014.B. Chen et al., “Targeting negative surface charges of cancer cells by multifunctional nanoprobes,” Theranostics, vol. 6, no. 11, pp. 1887–1898, 2016, doi: 10.7150/thno.16358.D. W. Hoskin and A. Ramamoorthy, “Studies on anticancer activities of antimicrobial peptides,” Biochim. Biophys. Acta - Biomembr., vol. 1778, no. 2, pp. 357–375, 2008, doi: 10.1016/j.bbamem.2007.11.008.C. Adessi and C. Soto, “Converting a Peptide into a Drug: Strategies to Improve Stability and Bioavailability,” Curr. Med. Chem., vol. 9, no. 9, pp. 963–978, 2005, doi: 10.2174/0929867024606731.J. M. Davis, L. K. Tsou, and A. D. Hamilton, “Synthetic non-peptide mimetics of α-helices,” Chem. Soc. Rev., vol. 36, no. 2, pp. 326–334, 2007, doi: 10.1039/b608043j.J. Wang et al., “Combating Drug-Resistant Fungi with Novel Imperfectly Amphipathic Palindromic Peptides,” JOURNAL OF MEDICINAL CHEMISTRY, vol. 61, no. 9. pp. 3889–3907, 2018, [Online]. Available: http://ezproxy.unal.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000432204800009&lang=es&site=eds-live.M. Felicio et al., “Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2,” Biochim. Biophys. ACTA-BIOMEMBRANES, vol. 1858, no. 7, pp. 1488–1498, 2016, doi: https://doi.org/10.1016/j.bbamem.2016.04.003.C. Sun et al., “Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences,” Int. J. Mol. Sci., vol. 19, no. 10, 2018, doi: 10.3390/ijms19102951.M. Xie, D. Liu, and Y. Yang, “Anti-cancer peptides: classification, mechanism of action, reconstruction and modification,” Open Biol., vol. 10, no. 7, 2020, doi: 10.1098/rsob.200004.K. J. Cutrona, B. A. Kaufman, D. M. Figueroa, and D. E. Elmore, “Role of arginine and lysine in the antimicrobial mechanism of histone-derived antimicrobial peptides,” FEBS Lett., vol. 589, no. 24, pp. 3915–3920, 2015, doi: 10.1016/j.febslet.2015.11.002.H. X. Luong, D. H. Kim, B. J. Lee, and Y. W. Kim, “Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides,” Arch. Pharm. Res., vol. 41, no. 11, pp. 1092–1097, 2018, doi: 10.1007/s12272-018-1084-5.C. Domhan et al., “Replacement of L-amino acids by D-amino acids in the antimicrobial peptide ranalexin and its consequences for antimicrobial activity and biodistribution,” Molecules, vol. 24, no. 16, 2019, doi: 10.3390/molecules24162987.P. Grieco et al., “The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide,” Biochim. Biophys. Acta - Biomembr., vol. 1828, no. 2, pp. 652–660, 2013, doi: 10.1016/j.bbamem.2012.08.027.W. Yang et al., “Inhibition of proliferative and invasive capacities of breast cancer cells by arginine-glycine-aspartic acid peptide in vitro,” Oncol. Rep., vol. 15, no. 1, pp. 113–117, 2006, doi: 10.3892/or.15.1.113.D. Legrand, “Overview of Lactoferrin as a Natural Immune Modulator,” J. Pediatr., vol. 173, pp. S10–S15, 2016, doi: 10.1016/j.jpeds.2016.02.071.B. Wang, Y. P. Timilsena, E. Blanch, and B. Adhikari, “Lactoferrin: Structure, function, denaturation and digestion,” Crit. Rev. Food Sci. Nutr., vol. 59, no. 4, pp. 580–596, 2019, doi: 10.1080/10408398.2017.1381583.A. Richardson, R. de Antueno, R. Duncan, and D. W. Hoskin, “Intracellular delivery of bovine lactoferricin’s antimicrobial core (RRWQWR) kills T-leukemia cells,” Biochem. Biophys. Res. Commun., vol. 388, no. 4, pp. 736–741, 2009, doi: 10.1016/j.bbrc.2009.08.083.M. Arias et al., “Anticancer activities of bovine and human lactoferricin- derived peptides,” Comput. Cell Biol., vol. 95, no. 1, pp. 91–98, 2017.C. Chea et al., “Bovine lactoferrin reverses programming of epithelial-to-mesenchymal transition to mesenchymal-to-epithelial transition in oral squamous cell carcinoma,” Biochem. Biophys. Res. Commun., vol. 507, no. 1–4, pp. 142–147, 2018, doi: 10.1016/j.bbrc.2018.10.193.J. C. Pereira Guedes, “Molecular Mechanisms Underlying the Anticancer Activity of Lactoferrin in Highly Metastatic Cancer Cell Lines,” 2017.J. Gibbons, R. Kanwar, and J. Kanwar, “Lactoferrin and cancer in different cancer models,” Cancer Cell, no. 1, pp. 1080–1088, 2011.P. Puddu, P. Valenti, and S. Gessani, “Immunomodulatory effects of lactoferrin on antigen presenting cells,” Biochimie, vol. 91, no. 1, pp. 11–18, 2009, doi: 10.1016/j.biochi.2008.05.005.I. Z. Sadiq, K. Babagana, D. Danlami, L. I. Abdullahi, and A. R. Khan, “Molecular Therapeutic Cancer Peptides: A Closer Look at Bovine Lactoferricin,” Asian J. Biochem. Genet. Mol. Biol., vol. 1, no. 2, pp. 1–9, 2018, doi: 10.9734/ajbgmb/2018/v1i2471J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin, “Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines,” Mol. Cancer Ther., vol. 4, no. 4, pp. 612–624, 2005, doi: 10.1158/1535-7163.MCT-04-0077.D. I. Chan, E. J. Prenner, and H. J. Vogel, “Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action,” Biochim. Biophys. Acta - Biomembr., vol. 1758, no. 9, pp. 1184–1202, 2006, doi: 10.1016/j.bbamem.2006.04.006.V. A. Solarte, “Péptidos derivados de lactoferricina bovina como agentes anticancerígenos contra el carcinoma de células escamosas de la cavidad oral.,” p. 127, 2016.D. S. Insuasty-Cepeda et al., “Peptides derived from (Rrwqwrmkklg)2- k-ahx induce selective cellular death in breast cancer cell lines through apoptotic pathway,” Int. J. Mol. Sci., vol. 21, no. 12, pp. 1–13, 2020, doi: 10.3390/ijms21124550.Y. Zhang, C. F. Lima, and L. R. Rodrigues, “Invitro evaluation of bovine lactoferrin potential as an anticancer agent,” Int. Dairy J., vol. 40, pp. 6–15, 2015, doi: 10.1016/j.idairyj.2014.08.016.S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Lactoferricin-induced apoptosis in estrogen-nonresponsive MDA-MB-435 breast cancer cells is enhanced by C6 ceramide or tamoxifen,” Oncol. Rep., vol. 15, no. 5, pp. 1385–1390, 2006, doi: 10.3892/or.15.5.1385.Y. Vargas et al., “Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines,” Molecules, vol. 22, no. 10, p. 1641, 2017, doi: 10.3390/molecules22101641.J. R. Guerra et al., “The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line,” RSC Adv., vol. 9, no. 36, pp. 20497–20504, 2019, doi: 10.1039/c9ra04145a.N. D. J. Huertas et al., “Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076,” Molecules, vol. 22, no. 3, p. 452, 2017, doi: 10.3390/molecules22030452.A. C. Barragán-Cárdenas et al., “Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin,” RSC Adv., vol. 10, no. 30, pp. 17593–17601, 2020, doi: 10.1039/d0ra02688c.A. C. Barragán-Cárdenas et al., “The Nonapeptide RWQWRWQWR : A Promising Molecule for Breast Cancer Therapy,” ChemistrySelect, vol. 5, pp. 9691–9700, 2020, doi: doi.org/10.1002/slct.202002101 z.D. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules, vol. 24, no. 7, 2019, doi: 10.3390/molecules24071215.ATCC, “MDA-MB-468.” pp. 1–3, 2018.ATCC, “MDA-MB-231.” pp. 1–3, 2020ATCC, “MCF-7.” pp. 1–3, 2020.ATCC, “BT-474.” pp. 1–3, 2018.ATCC, “MCF-12A.” pp. 1–3, 2020.J. A. Rodríguez, “Evaluación de la actividad anticancerígena In Vitro de péptidos sintéticos derivados de Lactoferricina Bovina en líneas celulares de cáncer de mama,” Repositorio.Unal.Edu.Co, 2019, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/76436.A. C. Barragán-Cárdenas et al., “Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines,” ACS Omega, 2023, doi: 10.1021/acsomega.2c07336.M. Lara-Márquez et al., “Lipid-rich extract from Mexican avocado (Persea americana var. drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells,” J. Funct. Foods, vol. 64, no. October 2019, p. 103658, 2020, doi: 10.1016/j.jff.2019.103658.Luminex, “Muse® Oxidative Stress Kit,” vol. 100111, no. October, 2019, [Online]. Available: www.luminexcorp.com.Biolegend, “Assay Kit LEGENDplex TM CRP1 & Co,” no. 75062_V01, [Online]. Available: https://www.biolegend.com/Files/Images/media_assets/pro_detail/datasheets/75062_Hu_Macrophage-Microglia_Panel_V01.pdf.C. Numbers, “TRIzol TM Reagent,” vol. 15596018, no. 15596026.M. C. Sandoval-Usme et al., “Simvastatin impairs growth hormone-activated signal transducer and activator of transcription (STAT) signaling pathway in UMR-106 osteosarcoma cells,” PLoS One, vol. 9, no. 1, 2014, doi: 10.1371/journal.pone.0087769.R. Cabezas-Perez, A. F. Vallejo-Pulido, A. Umaña-Pérez, and M. Sánchez-Gómez, “IGF-II Y LA GONADOTROPINA CORIONICA REGULAN LA PROLIFERACION, MIGRACION E INVASION DE CELULAS DE TROFOBLASTO HUMANO_.pdf,” Acta Biológica Colomb., vol. 16, no. 1, pp. 143–152, 2011.C. P. Bravo-Chaucanés, Y. Vargas-Casanova, L. C. Chitiva-Chitiva, A. Ceballos-Garzon, G. Modesti-Costa, and C. M. Parra-Giraldo, “Evaluation of Anti-Candida Potential of Piper nigrum Extract in Inhibiting Growth, Yeast-Hyphal Transition, Virulent Enzymes, and Biofilm Formation,” J. Fungi, vol. 8, no. 8, p. 784, 2022, doi: 10.3390/jof8080784OECD, “Test No. 236: Fish Embryo Acute Toxicity (FET) Test.,” OECD Guidel. Test. Chem. Sect. 2, OECD Publ., no. July, pp. 1–22, 2013, [Online]. Available: http://www.oecd-ilibrary.org.J. R. Mathiasen and V. C. Moser, “The Irwin Test and Functional Observational Battery (FOB) for Assessing the Effects of Compounds on Behavior, Physiology, and Safety Pharmacology in Rodents,” Curr. Protoc. Pharmacol., vol. 83, no. 1, pp. 1–18, 2018, doi: 10.1002/cpph.43.K. Y. Chang and J. R. Yang, “Analysis and Prediction of Highly Effective Antiviral Peptides Based on Random Forests,” PLoS One, vol. 8, no. 8, 2013, doi: 10.1371/journal.pone.0070166.C. K. Hattotuwagama and D. R. Flower, “Empirical prediction of peptide octanol-water partition coefficients,” Bioinformation, vol. 1, no. 7, pp. 257–259, 2006, doi: 10.6026/97320630001257.N. C. Tan, P. Yu, Y.-U. Kwon, and T. Kodadek, “High-Throughput Evaluation of Relative Cell Permeability between Peptoids and Peptides,” Bioorg Med Chem, vol. 16, no. 11, pp. 5853–5861, 2008, doi: 10.1038/nature08365.Reconstructing.F. Huang and W. M. Nau, “A conformational flexibility scale for amino acids in peptides,” Angew. Chemie - Int. Ed., vol. 42, no. 20, pp. 2269–2272, 2003, doi: 10.1002/anie.200250684.L. S. Vermeer et al., “Conformational flexibility determines selectivity and antibacterial, antiplasmodial,andanticancer potency of cationic -αhelical peptides,” J. Biol. Chem., vol. 287, no. 41, pp. 34120–34133, 2012, doi: 10.1074/jbc.M112.359067.C. K. Wang, J. E. Swedberg, P. J. Harvey, Q. Kaas, and D. J. Craik, “Conformational Flexibility Is a Determinant of Permeability for Cyclosporin,” J. Phys. Chem. B, vol. 122, no. 8, pp. 2261–2276, 2018, doi: 10.1021/acs.jpcb.7b12419.K. Amin and R.-M. Dannenfelser, “In Vitro Hemolysis: Guidance for the Pharmaceutical Scientist,” J. Pharm. Sci., vol. 95, no. 6, pp. 1173–1176, 2006, doi: 10.1002/jps.F. Marques-Garcia, D. H. H. Jung, and S. E. Pérez, “Impact of individualized hemolysis management based on biological variation cut-offs in a clinical laboratory,” Ann. Lab. Med., vol. 42, no. 2, pp. 169–177, 2021, doi: 10.3343/ALM.2022.42.2.169.M. Ravikanth, P. Soujanya, K. Manjunath, T. R. Saraswathi, and C. R. Ramachandran, “Heterogenecity of fibroblasts,” J. Oral Maxillofac. Pathol., vol. 15, no. 2, pp. 247–250, 2011, doi: 10.4103/0973-029X.84516.K. Singh, A. Gangrade, A. Jana, B. B. Mandal, and N. Das, “Design, Synthesis, Characterization, and Antiproliferative Activity of Organoplatinum Compounds Bearing a 1,2,3-Triazole Ring,” ACS Omega, vol. 4, no. 1, pp. 835–841, 2019, doi: 10.1021/acsomega.8b02849A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovasc. Res., vol. 45, no. 3, pp. 528–537, 2000, doi: 10.1016/S0008-6363(99)00384-3.K. A. Camilio, “Short Lytic Anticancer Peptides as a Novel Therapy against Cancer,” p. 68, 2013, [Online]. Available: https://munin.uit.no/bitstream/handle/10037/5489/thesis.pdf?sequence=6&isAllowed=y.N. Yang, M. B. Strøm, S. M. Mekonnen, J. S. Svendsen, and Ø. Rekdal, “The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells,” J. Pept. Sci., vol. 10, no. 1, pp. 37–46, 2004, doi: 10.1002/psc.470.F. Harris, S. Dennison, J. Singh, and P. David, “On the Selectivity and Efficacy of Defense Peptides With Respect to Cancer Cells,” Med. Res. Rev., vol. 33, no. 1, pp. 190–234, 2011, doi: 10.1002/med.A. Won et al., “Investigating the effects of L- to D-amino acid substitution and deamidation on the activity and membrane interactions of antimicrobial peptide anoplin,” Biochim. Biophys. Acta - Biomembr., vol. 1808, no. 6, pp. 1592–1600, 2011, doi: 10.1016/j.bbamem.2010.11.010.K. Johanna et al., “Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides : Pursuing Production Lower Costs , Lower Hemolysis , and Sustained Antimicrobial Activity,” Int. J. Pept. Res. Ther., no. 0123456789, 2021, doi: 10.1007/s10989-021-10207-x.Z. Ye, X. Zhu, S. Acosta, D. Kumar, T. Sang, and C. Aparicio, “Self-assembly Dynamics and Antimicrobial Activity of All L- and D-amino Acid Enantiomers of a Designer Peptide,” Nanoscale, vol. 11, no. 1, pp. 266–275, 2018, doi: 10.1039/c8nr07334a.Self-assembly.M. Abdulbagi, L. Wang, O. Siddig, B. Di, and B. Li, “D-amino acids and d-amino acid-containing peptides: Potential disease biomarkers and therapeutic targets?,” Biomolecules, vol. 11, no. 11, pp. 1–14, 2021, doi: 10.3390/biom11111716.Z. Feng and B. Xu, “Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches,” Biomol. Concepts, vol. 7, no. 3, pp. 179–187, 2016, doi: 10.1515/bmc-2015-0035.R. Chen, S. Ni, W. Chen, M. Liu, J. Feng, and K. Hu, “Improved anti-triple negative breast cancer effects of docetaxel by RGD-modified lipid-core micelles,” Int. J. Nanomedicine, vol. 16, pp. 5265–5279, 2021, doi: 10.2147/IJN.S313166.R. Mahmoudi et al., “RGD peptide-mediated liposomal curcumin targeted delivery to breast cancer cells,” J. Biomater. Appl., vol. 35, no. 7, pp. 743–753, 2021, doi: 10.1177/0885328220949367.G. Zheng, M. Zheng, B. Yang, H. Fu, and Y. Li, “Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic (RGD) tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo,” Biomed. Pharmacother., vol. 116, no. 440, p. 109006, 2019, doi: 10.1016/j.biopha.2019.109006.B. Chen et al., “Inhibited effect of an RGD peptide hydrogel on the expression of β1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts,” J. Biomed. Mater. Res. - Part B Appl. Biomater., vol. 109, no. 11, pp. 1857–1865, 2021, doi: 10.1002/jbm.b.34847.A. Heras-Parets, M. P. Ginebra, J. M. Manero, and J. Guillem-Marti, “Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration,” Adv. Healthc. Mater., vol. 12, no. 21, 2023, doi: 10.1002/adhm.202203307.D. T. Seroski et al., “Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly,” Commun. Chem., vol. 3, no. 1, 2020, doi: 10.1038/s42004-020-00414-w.F. Jean-François, J. Elezgaray, P. Berson, P. Vacher, and E. J. Dufourc, “Pore formation induced by an antimicrobial peptide: Electrostatic effects,” Biophys. J., vol. 95, no. 12, pp. 5748–5756, 2008, doi: 10.1529/biophysj.108.136655.H. Li, T. Tamang, and C. Nantasenamat, “Toward insights on antimicrobial selectivity of host defense peptides via machine learning model interpretation,” Genomics, vol. 113, no. 6, pp. 3851–3863, 2021, doi: 10.1016/j.ygeno.2021.08.023.Z. Liu, F. Wang, and X. Chen, “Integrin alphaV-beta3-targeted cancer therapy,” Drug Dev. Res., vol. 69, no. 6, pp. 329–339, 2008, doi: 10.1002/ddr.20265.Integrin.S. S. A. A. Hasson et al., “In vitro apoptosis triggering in the BT-474 human breast cancer cell line by lyophilised camel’s milk,” Asian Pacific J. Cancer Prev., vol. 16, no. 15, pp. 6651–6661, 2015, doi: 10.7314/APJCP.2015.16.15.6651.Knut & Alice Wallenberg Foundation, “Integrin αvβ3,” The Human Protein Atlas. https://www.proteinatlas.org/ENSG00000138448-ITGAV/cell+line (accessed Dec. 02, 2023).Y. Gai et al., “Evaluation of an Integrin αv β3 and Aminopeptidase N Dual- Receptor Targeting Tracer for Breast Cancer Imaging,” Mol Pharm., vol. 17, no. 1, 2020, doi: 10.1021/acs.molpharmaceut.9b01134.Detailed.R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. 15, pp. 7181–7189, 2021, doi: 10.1111/jcmm.16748.J. S. Mader et al., “Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria,” Exp. Cell Res., vol. 313, no. 12, pp. 2634–2650, 2007, doi: 10.1016/j.yexcr.2007.05.015.N. Fester et al., “Enhanced pro-apoptosis gene signature following the activation of TAp63α in oocytes upon γ irradiation,” Cell Death Dis., vol. 13, no. 3, pp. 1–10, 2022, doi: 10.1038/s41419-022-04659-2.H. Thomadaki, M. Talieri, and A. Scorilas, “Treatment of MCF-7 cells with taxol and etoposide induces distinct alterations in the expression of apoptosis-related genes BCL2, BCL2L12, BAX, CASPASE-9 and FAS,” Biol. Chem., vol. 387, no. 8, pp. 1081–1086, 2006, doi: 10.1515/BC.2006.133.D. S. Insuasty-cepeda et al., “Non-natural amino acids into LfcinB-derived peptides : effect in their ( i ) proteolytic degradation and ( ii ) cytotoxic activity against cancer cells,” R. Soc. Open Sci., vol. 10, 2023.Y. C. Yoo et al., “Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-devived peptide: Involvement of reactive oxygen species,” Biochem. Biophys. Res. Commun., vol. 237, no. 3, pp. 624–628, 1997, doi: 10.1006/bbrc.1997.7199.J. A. Gibbons, J. R. Kanwar, and R. K. Kanwar, “Iron-free and iron-saturated bovine lactoferrin inhibit survivin expression and differentially modulate apoptosis in breast cancer,” BMC Cancer, vol. 15, no. 1, pp. 1–16, 2015, doi: 10.1186/s12885-015-1441-4.N. H. Ha et al., “Lactoferrin-endothelin-1 axis contributes to the development and invasiveness of triple-negative breast cancer phenotypes,” Cancer Res., vol. 71, no. 23, pp. 7259–7269, 2011, doi: 10.1158/0008-5472.CAN-11-1143.M. V. Mouritzen et al., “Improved diabetic wound healing by LFcinB is associated with relevant changes in the skin immune response and microbiota,” Mol. Ther. - Methods Clin. Dev., vol. 20, no. March, pp. 726–739, 2021, doi: 10.1016/j.omtm.2021.02.008.R. Rahman et al., “Inhibition of breast cancer xenografts in a mouse model and the induction of apoptosis in multiple breast cancer cell lines by lactoferricin B peptide,” J. Cell. Mol. Med., vol. 25, no. June, pp. 7181–7189, 2021, doi: 10.1111/jcmm.16748.A. Masjedi et al., “The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer,” Biomed. Pharmacother., vol. 108, no. September, pp. 1415–1424, 2018, doi: 10.1016/j.biopha.2018.09.177.M. Cheng, P. Liu, and L. X. Xu, “Iron promotes breast cancer cell migration via IL-6/JAK2/STAT3 signaling pathways in a paracrine or autocrine IL-6-rich inflammatory environment,” J. Inorg. Biochem., vol. 210, no. June, p. 111159, 2020, doi: 10.1016/j.jinorgbio.2020.111159.X. P. Jiang, D. C. Yang, R. L. Elliott, and J. F. Head, “Down-regulation of expression of interleukin-6 and its receptor results in growth inhibition of MCF-7 breast cancer cells,” Anticancer Res., vol. 31, no. 9, pp. 2899–2906, 2011.E. M. El-Fakharany et al., “Therapeutic efficacy of Nano-formulation of lactoperoxidase and lactoferrin via promoting immunomodulatory and apoptotic effects,” Int. J. Biol. Macromol., vol. 220, no. August, pp. 43–55, 2022, doi: 10.1016/j.ijbiomac.2022.08.067.S. A. A.-E. Al-Ameri et al., “Function and regulation of interleukin-10 in breast cancer,” Ann. Res., vol. 3, pp. 162–183, 2020, doi: 10.31219/osf.io/me4a5.A. Cutone et al., “Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action,” Biomolecules, vol. 10, no. 3, pp. 1–26, 2020, doi: 10.3390/biom10030456.W. R. Pan, P. W. Chen, Y. L. S. Chen, H. C. Hsu, C. C. Lin, and W. J. Chen, “Bovine lactoferricin B induces apoptosis of human gastric cancer cell line AGS by inhibition of autophagy at a late stage,” J. Dairy Sci., vol. 96, no. 12, pp. 7511–7520, 2013, doi: 10.3168/jds.2013-7285.S. J. Furlong, J. S. Mader, and D. W. Hoskin, “Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts,” Exp. Mol. Pathol., vol. 88, no. 3, pp. 371–375, 2010, doi: 10.1016/j.yexmp.2010.02.001.L. Bugyna, S. Kendra, and H. Bujdáková, “Galleria mellonella—A Model for the Study of aPDT—Prospects and Drawbacks,” Microorganisms, vol. 11, no. 6, 2023, doi: 10.3390/microorganisms11061455.M. El-Harbawi, “Toxicity Measurement of Imidazolium Ionic Liquids Using Acute Toxicity Test,” Procedia Chem., vol. 9, no. December, pp. 40–52, 2014, doi: 10.1016/j.proche.2014.05.006.O. Al-Jamal et al., “Organ-specific toxicity evaluation of stearamidopropyl dimethylamine (SAPDMA) surfactant using zebrafish embryos,” Sci. Total Environ., vol. 741, p. 140450, 2020, doi: 10.1016/j.scitotenv.2020.140450.AdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86375/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis Doctorado Biotecnología - Andrea Barragán.pdfTesis Doctorado Biotecnología - Andrea Barragán.pdfTesis de Doctorado en Biotecnologíaapplication/pdf6821585https://repositorio.unal.edu.co/bitstream/unal/86375/4/Tesis%20Doctorado%20Biotecnolog%c3%ada%20-%20Andrea%20Barrag%c3%a1n.pdffad21d1be2b9f4ad5bd37f44769ba6b6MD54THUMBNAILTesis Doctorado Biotecnología - Andrea Barragán.pdf.jpgTesis Doctorado Biotecnología - Andrea Barragán.pdf.jpgGenerated Thumbnailimage/jpeg4873https://repositorio.unal.edu.co/bitstream/unal/86375/5/Tesis%20Doctorado%20Biotecnolog%c3%ada%20-%20Andrea%20Barrag%c3%a1n.pdf.jpg0cdd366f770625f8983d1351de3138fdMD55unal/86375oai:repositorio.unal.edu.co:unal/863752024-08-26 23:10:13.808Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |