Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín
ilustaciones, diagramas
- Autores:
-
López Buitrago, Juan Pablo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82598
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
320 - Ciencia política (política y gobierno)
Citizen participation - Medellín
Partici´pación ciudadana - Medellín
Participación Ciudadana
IPCM
Machine Learning
Feature Importance
Medellín
Innovative Citizen Participation
IPCM
Machine Learning
Feature Importance
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_113643a04a619ff9ac1e3ac1aa6ac8f1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82598 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
dc.title.translated.eng.fl_str_mv |
Application of data analytics techniques to identify the factors that affect citizen participation in Medellin |
title |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
spellingShingle |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín 000 - Ciencias de la computación, información y obras generales 320 - Ciencia política (política y gobierno) Citizen participation - Medellín Partici´pación ciudadana - Medellín Participación Ciudadana IPCM Machine Learning Feature Importance Medellín Innovative Citizen Participation IPCM Machine Learning Feature Importance |
title_short |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
title_full |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
title_fullStr |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
title_full_unstemmed |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
title_sort |
Aplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en Medellín |
dc.creator.fl_str_mv |
López Buitrago, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Olaya Morales, Yris |
dc.contributor.author.none.fl_str_mv |
López Buitrago, Juan Pablo |
dc.contributor.orcid.spa.fl_str_mv |
0000-0001-5210-4731 |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales 320 - Ciencia política (política y gobierno) |
topic |
000 - Ciencias de la computación, información y obras generales 320 - Ciencia política (política y gobierno) Citizen participation - Medellín Partici´pación ciudadana - Medellín Participación Ciudadana IPCM Machine Learning Feature Importance Medellín Innovative Citizen Participation IPCM Machine Learning Feature Importance |
dc.subject.lemb.eng.fl_str_mv |
Citizen participation - Medellín |
dc.subject.lemb.spa.fl_str_mv |
Partici´pación ciudadana - Medellín |
dc.subject.proposal.spa.fl_str_mv |
Participación Ciudadana IPCM Machine Learning Feature Importance Medellín |
dc.subject.proposal.eng.fl_str_mv |
Innovative Citizen Participation IPCM Machine Learning Feature Importance |
description |
ilustaciones, diagramas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-11-02T15:39:14Z |
dc.date.available.none.fl_str_mv |
2022-11-02T15:39:14Z |
dc.date.issued.none.fl_str_mv |
2022-08-02 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82598 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82598 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Boudjelida, A. & Mellouli, S. (2016). A Multidimensional Analysis Approach For Electronic Citizens Participation. In Proceedings of the 17th International Digital Government Research Conference on Digital Government Research (dg.o '16). Association for Computing Machinery, New York, NY, USA, 49–57. https://doi.org/10.1145/2912160.2912195 Danaher, J., Hogan, M. J., Noone, C., Kennedy, R., Behan, A., De Paor, A., Felzmann, H., Haklay, M., Khoo, S.-M., Morison, J., Murphy, M. H., O’Brolchain, N., Schafer, B., & Shankar, K. (2017). Algorithmic governance: Developing a research agenda through the power of collective intelligence. Big Data & Society. https://doi.org/10.1177/2053951717726554 Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines: optimization based theory, algorithms, and extensions. CRC press. Diez, D. M., Barr, C. D., & Çetinkaya-Rundel, M. (2019). OpenIntro Statistics: Fourth Edition. OpenIntro. García, J., Molina, J. M., Berlanga, A., Patricio, M. A., Bustamante, A. L., & Padilla, W. R. (2018). Ciencia de datos. Técnicas analíticas y aprendizaje estadístico. Alfaomega Colombiana S.A, Publicaciones Altaria. González, F. (2019). Big data, algoritmos y política: las ciencias sociales en la era de las redes digitales. Cinta de moebio, (65), 267-280. https://dx.doi.org/10.4067/s0717-554x2019000200267 Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7 Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 283–304. https://doi.org/10.1023/A:1009769707641 Islam Sarker, N., Khatun, M., Alam, M. & Islam, S. (2020). Big Data Driven Smart City: Way to Smart City Governance. 2020 International Conference on Computing and Information Technology (ICCIT-1441), 2020, 1-8. doi: 10.1109/ICCIT-144147971.2020.9213795 Ju, J., Liu, L., & Feng, Y. (2018). Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommunications Policy, 42(10), 881–896. https://doi.org/https://doi.org/10.1016/j.telpol.2018.01.003 Kononenko, I., & Kukar, M. (2007). Machine Learning Basics. Machine Learning and Data Mining, 59–105. doi:10.1533/9780857099440.59 Kowalczyk, A. (2017). Support Vector Machines Succintly. Syncfusion Lemus-Delgado, D. & Pérez Navarro, R. (2020). Ciencia de datos y estudios globales: aportaciones y desafíos metodológicos. Colombia Internacional, (102), 41-62. https://doi.org/10.7440/colombiaint102.2020.03 Lundberg, S. & Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. ArXiv. https://doi.org/10.48550/arXiv.1705.07874 Mayorga, F. & Córdova, E., (2007), “Gobernabilidad y Gobernanza en América latina”, Working Paper NCCR Norte-Sur IP8, Ginebra. No publicado. http://www.institut-gouvernance.org/docs/ficha-gobernabilida.pdf Meijer, A., & Bolívar, M. P. R. (2016). Governing the smart city: a review of the literature on smart urban governance. International Review of Administrative Sciences, 82(2), 392–408. https://doi.org/10.1177/0020852314564308 Meneses Rocha, M. (2018). Grandes datos, grandes desafíos para las ciencias sociales. Revista mexicana de sociología, 80(2), 415-444. https://doi.org/10.22201/iis.01882503p.2018.2.57723 Müller, A.C., & Guido, S. (2016). Introduction to Machine Learning with Python. A guide for Data Scientist. O’Reilly. Pando, V. & San Martín, R. (2004). Regresión logística multinomial. En: Cuadernos de la Sociedad Española de Ciencias Forestales, Nº. 18, 2004, págs. 323-327 Saarela, M., Jauhiainen, S. Comparison of feature importance measures as explanations for classification models. SN Appl. Sci. 3, 272 (2021). https://doi.org/10.1007/s42452-021-04148-9 Weber, M. (1947). The Theory of Social and Economic Organization. New York: Oxford University Press Williams, G. J. (2011). Data mining with Rattle and R: The art of excavating data for knowledge discovery. Springer Zhu, Z. & Zhang. M. (2020). K-Nearest Neighbors(KNN) Classification with Different Distance Metrics. Shanghai Jiao Tong University |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xii, 81 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Analítica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82598/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82598/2/1037975877.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82598/3/1037975877.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a a0d13e89120c5558039c79ec83c3023b df53cd4ca46a86af6920d2e773295557 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089336583356416 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Olaya Morales, Yrisd0327c70a5d5053a81a3451418a03b72López Buitrago, Juan Pablo4ab966c54b75105d70b0c3c25456c4580000-0001-5210-47312022-11-02T15:39:14Z2022-11-02T15:39:14Z2022-08-02https://repositorio.unal.edu.co/handle/unal/82598Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustaciones, diagramasTeniendo en marcha la tercera medición del Índice de Participación Ciudadana, y aprovechando la experiencia consolidada a lo largo de los años en el cálculo e interpretación de los indicadores, una de las premisas obtenidas para la presente medición era la necesidad de dar un paso más en esta dirección. Teniendo esto como punto de partida, se propuso la exploración de herramientas de Analítica y Ciencia de Datos para garantizar un mejor aprovechamiento de los datos almacenados producto de las diferentes mediciones, y a la vez generar valor y conocimiento a partir de los datos que faciliten el ejercicio de toma de decisiones. Como resultado, se construyó un modelo de Aprendizaje Automatizado a partir del algoritmo Random Forest Classifier. Con el objetivo de identificar las variables que más influyen en el puntaje final del IPCM se utilizaron herramientas de Feature Importance, dando lugar a inferencias, conclusiones y recomendaciones que brindarán una base sólida e informada para la elaboración de programas, proyectos y políticas públicas orientadas a mejorar el ejercicio de la participación en Medellín. (Texto tomado de la fuente)Having underway the third measurement of the Citizen Participation Index, and taking advantage of the experience consolidated over the years in the calculation and interpretation of the indicators, one of the premises obtained for the present measurement was the need to take a step further in this direction. With this as a starting point, the exploration of Analytics and Data Science tools was proposed to guarantee a better use of the data stored as a result of the different measurements, and at the same time generate value and knowledge from the data to facilitate the decision-making exercise. As a result, a Machine Learning model was built based on the Random Forest Classifier algorithm. In order to identify the variables that most influence the final IPCM score, Feature Importance tools were used, leading to inferences, conclusions and recommendations that will provide a solid and informed basis for the development of programs, projects and public policies aimed at improving the exercise of participation in Medellin.MaestríaMagíster en Ingeniería - AnalíticaÁrea Curricular de Ingeniería de Sistemas e Informáticaxii, 81 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - AnalíticaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín000 - Ciencias de la computación, información y obras generales320 - Ciencia política (política y gobierno)Citizen participation - MedellínPartici´pación ciudadana - MedellínParticipación CiudadanaIPCMMachine LearningFeature ImportanceMedellínInnovative Citizen ParticipationIPCMMachine LearningFeature ImportanceAplicación de técnicas de analítica de datos para identificar los factores que afectan la participación ciudadana en MedellínApplication of data analytics techniques to identify the factors that affect citizen participation in MedellinTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMedellín, ColombiaRedColLaReferenciaBoudjelida, A. & Mellouli, S. (2016). A Multidimensional Analysis Approach For Electronic Citizens Participation. In Proceedings of the 17th International Digital Government Research Conference on Digital Government Research (dg.o '16). Association for Computing Machinery, New York, NY, USA, 49–57. https://doi.org/10.1145/2912160.2912195Danaher, J., Hogan, M. J., Noone, C., Kennedy, R., Behan, A., De Paor, A., Felzmann, H., Haklay, M., Khoo, S.-M., Morison, J., Murphy, M. H., O’Brolchain, N., Schafer, B., & Shankar, K. (2017). Algorithmic governance: Developing a research agenda through the power of collective intelligence. Big Data & Society. https://doi.org/10.1177/2053951717726554Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines: optimization based theory, algorithms, and extensions. CRC press.Diez, D. M., Barr, C. D., & Çetinkaya-Rundel, M. (2019). OpenIntro Statistics: Fourth Edition. OpenIntro.García, J., Molina, J. M., Berlanga, A., Patricio, M. A., Bustamante, A. L., & Padilla, W. R. (2018). Ciencia de datos. Técnicas analíticas y aprendizaje estadístico. Alfaomega Colombiana S.A, Publicaciones Altaria.González, F. (2019). Big data, algoritmos y política: las ciencias sociales en la era de las redes digitales. Cinta de moebio, (65), 267-280. https://dx.doi.org/10.4067/s0717-554x2019000200267Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springer New York. https://doi.org/10.1007/978-0-387-84858-7Huang, Z. (1998). Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3), 283–304. https://doi.org/10.1023/A:1009769707641Islam Sarker, N., Khatun, M., Alam, M. & Islam, S. (2020). Big Data Driven Smart City: Way to Smart City Governance. 2020 International Conference on Computing and Information Technology (ICCIT-1441), 2020, 1-8. doi: 10.1109/ICCIT-144147971.2020.9213795Ju, J., Liu, L., & Feng, Y. (2018). Citizen-centered big data analysis-driven governance intelligence framework for smart cities. Telecommunications Policy, 42(10), 881–896. https://doi.org/https://doi.org/10.1016/j.telpol.2018.01.003Kononenko, I., & Kukar, M. (2007). Machine Learning Basics. Machine Learning and Data Mining, 59–105. doi:10.1533/9780857099440.59Kowalczyk, A. (2017). Support Vector Machines Succintly. SyncfusionLemus-Delgado, D. & Pérez Navarro, R. (2020). Ciencia de datos y estudios globales: aportaciones y desafíos metodológicos. Colombia Internacional, (102), 41-62. https://doi.org/10.7440/colombiaint102.2020.03Lundberg, S. & Lee, S. (2017). A Unified Approach to Interpreting Model Predictions. ArXiv. https://doi.org/10.48550/arXiv.1705.07874Mayorga, F. & Córdova, E., (2007), “Gobernabilidad y Gobernanza en América latina”, Working Paper NCCR Norte-Sur IP8, Ginebra. No publicado. http://www.institut-gouvernance.org/docs/ficha-gobernabilida.pdfMeijer, A., & Bolívar, M. P. R. (2016). Governing the smart city: a review of the literature on smart urban governance. International Review of Administrative Sciences, 82(2), 392–408. https://doi.org/10.1177/0020852314564308Meneses Rocha, M. (2018). Grandes datos, grandes desafíos para las ciencias sociales. Revista mexicana de sociología, 80(2), 415-444. https://doi.org/10.22201/iis.01882503p.2018.2.57723Müller, A.C., & Guido, S. (2016). Introduction to Machine Learning with Python. A guide for Data Scientist. O’Reilly.Pando, V. & San Martín, R. (2004). Regresión logística multinomial. En: Cuadernos de la Sociedad Española de Ciencias Forestales, Nº. 18, 2004, págs. 323-327Saarela, M., Jauhiainen, S. Comparison of feature importance measures as explanations for classification models. SN Appl. Sci. 3, 272 (2021). https://doi.org/10.1007/s42452-021-04148-9Weber, M. (1947). The Theory of Social and Economic Organization. New York: Oxford University PressWilliams, G. J. (2011). Data mining with Rattle and R: The art of excavating data for knowledge discovery. SpringerZhu, Z. & Zhang. M. (2020). K-Nearest Neighbors(KNN) Classification with Different Distance Metrics. Shanghai Jiao Tong UniversityEstudiantesGrupos comunitariosInvestigadoresPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82598/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1037975877.2022.pdf1037975877.2022.pdfTesis de Maestría en Ingeniería - Analíticaapplication/pdf2418877https://repositorio.unal.edu.co/bitstream/unal/82598/2/1037975877.2022.pdfa0d13e89120c5558039c79ec83c3023bMD52THUMBNAIL1037975877.2022.pdf.jpg1037975877.2022.pdf.jpgGenerated Thumbnailimage/jpeg5338https://repositorio.unal.edu.co/bitstream/unal/82598/3/1037975877.2022.pdf.jpgdf53cd4ca46a86af6920d2e773295557MD53unal/82598oai:repositorio.unal.edu.co:unal/825982023-08-10 23:04:11.668Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |