Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones

ilustraciones, diagramas, mapas

Autores:
Taborda Soto, Juan Esteban
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84459
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84459
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Precipitación atmosférica - Medición
Precipitación pluvial
Precipitation (Meteorology) - Measurement
Depth-area-duration (hydrometeorology)
precipitación
Variabilidad intraestacional
Patrones principales
Norte de Sudamérica
Ondas acopladas con la convección
Chorros de bajo nivel
Interacción suelo-vegetación-atmósfera
Pronóstico
Caudal
Precipitation
Intra-seasonal variability
Northern South America
Convectively coupled waves
Low-level jets
Soil-vegetationatmosphere interaction
Forecast
Streamflow
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_110bf2718630cd33f0ecb532583d7b75
oai_identifier_str oai:repositorio.unal.edu.co:unal/84459
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
dc.title.translated.eng.fl_str_mv Intraseasonal variability of precipitation over northern South America: diagnosis and connections
title Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
spellingShingle Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Precipitación atmosférica - Medición
Precipitación pluvial
Precipitation (Meteorology) - Measurement
Depth-area-duration (hydrometeorology)
precipitación
Variabilidad intraestacional
Patrones principales
Norte de Sudamérica
Ondas acopladas con la convección
Chorros de bajo nivel
Interacción suelo-vegetación-atmósfera
Pronóstico
Caudal
Precipitation
Intra-seasonal variability
Northern South America
Convectively coupled waves
Low-level jets
Soil-vegetationatmosphere interaction
Forecast
Streamflow
title_short Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
title_full Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
title_fullStr Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
title_full_unstemmed Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
title_sort Variabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexiones
dc.creator.fl_str_mv Taborda Soto, Juan Esteban
dc.contributor.advisor.none.fl_str_mv Poveda Jaramillo, Germán
dc.contributor.author.none.fl_str_mv Taborda Soto, Juan Esteban
dc.contributor.researchgroup.spa.fl_str_mv Posgrado en Aprovechamiento de Recursos Hidráulicos
dc.contributor.orcid.spa.fl_str_mv Taborda Soto, Juan Esteban [0000-0002-1908-6030]
Poveda Jaramillo, Germán [0000-0002-7907-6360]
dc.contributor.scopus.spa.fl_str_mv Poveda Jaramillo, Germán [6602764979]
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
topic 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulica
Precipitación atmosférica - Medición
Precipitación pluvial
Precipitation (Meteorology) - Measurement
Depth-area-duration (hydrometeorology)
precipitación
Variabilidad intraestacional
Patrones principales
Norte de Sudamérica
Ondas acopladas con la convección
Chorros de bajo nivel
Interacción suelo-vegetación-atmósfera
Pronóstico
Caudal
Precipitation
Intra-seasonal variability
Northern South America
Convectively coupled waves
Low-level jets
Soil-vegetationatmosphere interaction
Forecast
Streamflow
dc.subject.lemb.spa.fl_str_mv Precipitación atmosférica - Medición
Precipitación pluvial
dc.subject.lemb.eng.fl_str_mv Precipitation (Meteorology) - Measurement
Depth-area-duration (hydrometeorology)
dc.subject.proposal.spa.fl_str_mv precipitación
Variabilidad intraestacional
Patrones principales
Norte de Sudamérica
Ondas acopladas con la convección
Chorros de bajo nivel
Interacción suelo-vegetación-atmósfera
Pronóstico
Caudal
dc.subject.proposal.eng.fl_str_mv Precipitation
Intra-seasonal variability
Northern South America
Convectively coupled waves
Low-level jets
Soil-vegetationatmosphere interaction
Forecast
Streamflow
description ilustraciones, diagramas, mapas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-04T17:17:53Z
dc.date.available.none.fl_str_mv 2023-08-04T17:17:53Z
dc.date.issued.none.fl_str_mv 2023-07-27
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84459
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84459
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Alvarez, D. M. and Poveda, G. (2022). Spatiotemporal dynamics of ndvi, soil moisture and enso in tropical south america. Remote Sensing, 14(11).
Amador, J. A. (2008). The intra-americas sea low-level jet. Annals of the New York Academy of Sciences, 1146(1):153–188.
Anzanello, M. J. and Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5):573–583.
Arenas Cárdenas, J. S. and Carvajal Serna, L. F. (2010). Desarrollo de un modelo de predicción de caudales semanales asociado a la variabilidad intraestacional en colombia. Escuela de Geociencias y Medio Ambiente.
Arias, P. A. (2005). Diagnostico y predicción de la variabilidad intra-anual de la hidrología colombiana. Master’s thesis, Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas.
Arias, P. A., Garreaud, R., Poveda, G., Espinoza, J. C., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L., and van Oevelen, P. J. (2021). Hydroclimate of the andes part ii: Hydroclimate variability and sub-continental patterns. Frontiers in Earth Science, 8.
Arias, P. A., Martínez, J. A., and Vieira, S. C. (2015). Moisture sources to the 2010–2012 anomalous wet season in northern south america. Climate dynamics, 45:2861–2884.
Barrett, B. S. and Leslie, L. M. (2009). Links between tropical cyclone activity and madden–julian oscillation phase in the north atlantic and northeast pacific basins. Monthly Weather Review, 137(2):727 – 744.
Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of colombia (1998–2005). Frontiers in Earth Science, 7.
Builes-Jaramillo, A. and Poveda, G. (2018). Conjoint analysis of surface and atmospheric water balances in the andes-amazon system. Water Resources Research, 54(5):3472–3489.
Builes-Jaramillo, A., Yepes, J., and Salas, H. D. (2022). The orinoco low-level jet and its association with the hydroclimatology of northern south america. Journal of Hydrometeorology, 23(2):209 – 223.
Cook, K. H. and Vizy, E. K. (2010). Hydrodynamics of the caribbean low-level jet and its relationship to precipitation. Journal of Climate, 23(6):1477 – 1494.
Durán-Quesada, A. M., Gimeno, L., and Amador, J. (2017). Role of moisture transport for central american precipitation. Earth System Dynamics, 8(1):147–161.
Espinoza, J. C., Garreaud, R., Poveda, G., Arias, P. A., Molina-Carpio, J., Masiokas, M., Viale, M., and Scaff, L. (2020). Hydroclimate of the andes part i: Main climatic features. Frontiers in Earth Science, 8.
Giraldo-Cardenas, S., Arias, P. A., Vieira, S. C., and Zuluaga, M. D. (2022). Easterly waves and precipitation over northern south america and the caribbean. International Journal of Climatology, 42(3):1483–1499.
Grimm, A. (2019). Madden–julian oscillation impacts on south american summer monsoon season: precipitation anomalies, extreme events, teleconnections, and role in the mjo cycle. Climate Dynamics, 53.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H´olm, E., Janiskov´a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th´epaut, J.-N. (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049.
Hodges, D. and Pu, Z. (2019). Characteristics and variations of lowlevel jets and environmental factors associated with summer precipitation extremes over the great plains. Journal of Climate, 32(16):5123 – 5144.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., and Xie, P. (2020). Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG), pages 343–353. Springer International Publishing, Cham.
Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445):347–350.
Kayano, M. T., Andreoli, R. V., and Souza, R. A. F. d. (2019). El niño–southern oscillation related teleconnections over south america under distinct atlantic multidecadal oscillation and pacific interdecadal oscillation backgrounds: La niña. International Journal of Climatology, 39(3):1359 – 1372.
Kiladis, G. N., Thorncroft, C. D., and Hall, N. M. J. (2006). Threedimensional structure and dynamics of african easterly waves. part i: Observations. Journal of the Atmospheric Sciences, 63(9):2212 – 2230.
Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., and Roundy, P. E. (2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47(2).
Knippertz, P., Gehne, M., Kiladis, G. N., Kikuchi, K., Rasheeda Satheesh, A., Roundy, P. E., Yang, G.-Y., ˇZagar, N., Dias, J., Fink, A. H., Methven, J., Schlueter, A., Sielmann, F., and Wheeler, M. C. (2022). The intricacies of identifying equatorial waves. Quarterly Journal of the Royal Meteorological Society, 148(747):2814–2852.
Lavender, S. L. and Matthews, A. J. (2009). Response of the west african monsoon to the madden–julian oscillation. Journal of Climate, 22(15):4097 – 4116.
Li, T. and Hsu, P.-c. (2018). Madden-Julian Oscillation: Observations and Mechanisms, pages 61–106. Springer International Publishing, Cham.
Liebmann, B. and Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6):1275–1277.
López, M. E. and Howell, W. E. (1967). Katabatic winds in the equatorial andes. Journal of Atmospheric Sciences, 24(1):29 – 35.
Madden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. Journal of Atmospheric Sciences, 28(5):702 – 708.
Madden, R. A. and Julian, P. R. (1972). Description of globalscale circulation cells in the tropics with a 40–50 day period. Journal of Atmospheric Sciences, 29(6):1109 – 1123.
Mapes, B. E., Warner, T. T., and Xu, M. (2003). Diurnal patterns of rainfall in northwestern south america. part iii: Diurnal gravity waves and nocturnal convection offshore. Monthly weather review, 131(5):830–844.
Martinez, J. A., Arias, P. A., Junquas, C., Espinoza, J. C., Condom, T., Dominguez, F., and Morales, J. S. (2022). The orinoco low-level jet and the cross-equatorial moisture transport over tropical south america: Lessons from seasonal wrf simulations. Journal of Geophysical Research: Atmospheres, 127(3):e2021JD035603.e2021JD035603 2021JD035603.
Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1):25–43.
Matthews, A. J. (2004). Intraseasonal variability over tropical africa during northern summer. Journal of Climate, 17(12):2427–2440.
Mayta, V., Ambrizzi, T., Espinoza, J., and Silva Dias, P. (2019). The role of the madden-julian oscillation on the amazon basin intraseasonal rainfall variability. International Journal of Climatology, 39.
Mayta, V., Kiladis, G., Dias, J., Silva Dias, P., and Gehne, M. (2021). Convectively coupled kelvin waves over tropical south america. Journal of Climate, pages 1–52.
Mejia, J., Mesa, O., Poveda, G., Velez, J., Hoyos, C., Mantilla, R., Barco, J., Cuartas, L., MONTOYA, M., and Botero, B. (1999). Distribuci´on espacial y ciclos anual y semianual de la precipitaci´on en colombia. Dyna (Medellin, Colombia), 127:7–26.
Mejía, J. F., Yepes, J., Henao, J. J., Poveda, G., Zuluaga, M. D., Raymond, D. J., and Fuchs-Stone, Z. (2021). Towards a mechanistic understanding of precipitation over the far eastern tropical pacific and western colombia, one of the rainiest spots on earth. Journal of Geophysical Research: Atmospheres, 126(5):e2020JD033415.e2020JD033415 2020JD033415.
Montoya, G. d. J., Pelkowski, J., and Eslava, J. A. (2001). Sobre los alisios del nordeste y la existencia de una corriente en el piedemonte oriental andino. Revista de la Academia Colombiana de Ciencias Exactas, F´ısicas y Naturales, 25(96):363–371.
North, G., Bell, T., Cahalan, R., and Moeng, F. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110.
Pabón Caicedo, J. D. and Dorado, J. (2008). Intraseasonal variability of rainfall over northern south america and caribbean region. Earth Sciences Research Journal, 12.
Poveda, G. (2004). La bioclimatología de colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28:201–222.
Poveda, G. (2022). Controlling mechanisms of the 4d distribution of rainfall over the rainest region on earth. In Fall Meeting 2022. AGU.
Poveda, G., Alvarez, D. M., and Rueda, O. A. (2011). Hydro-climatic variability over the andes of colombia associated with enso: a review of climatic processes and their impact on one of the earth’s most important biodiversity hotspots. Climate Dynamics, 36(11):2233–2249.
Poveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., and van Oevelen, P. J. (2020). High impact weather events in the andes. Frontiers in Earth Science, 8.
Poveda, G., Jaramillo, L., and Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resources Research, 50(1):98–118.
Poveda, G. and Mesa, O. (2000). On the existence of lloro (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low level jet. Geophysical Research Letters, 27:1675–1678.
Poveda, G., Mesa, O., AGUDELO, P., ´ALVAREZ, J., Arias, P., Moreno, H., Salazar Velásquez, L., Toro, V., and Vieira, S. (2002a). Ondas del este, huracanes y fases de la luna en el ciclo diurno de la precipitación en los andes tropicales de colombia. volume 5, pages 3–12. Meteorología Colombiana.
Poveda, G., Mesa, O., Carvajal, L., Hoyos, C., Mejia, J., Cuartas, L., and Pulgarín (2002b). Predicción de caudales medios mensuales en ríos colombianos usando métodos no lineales. Meteorología Colombiana, 6:101–110.
Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical andes of colombia. Monthly Weather Review, 133(1):228 –240.
Poveda, G., Waylen, P. R., and Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern south america and southern mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1):3–27. Late Quaternary climates of tropical America and adjacent seas.
Recalde-Coronel, G., Zaitchik, B., and Pan, W. (2020). Madden-julian oscillation influence on sub-seasonal rainfall variability on the west of south america. Climate Dynamics, 54.
Reed, R., Klinker, E., and Hollingsworth, A. (1988). The structure and characteristics of african easterly wave disturbances as determined from the ecmwf operational analysis/forecast system. Meteorology and Atmospheric Physics, 38(1):22–33.
Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-Validation, pages 532–538. Springer US, Boston, MA.
Rojo-Hernández, J. D. and Carvajal-Serna, L. F. (2010). Predicción no lineal de caudales utilizando variables macroclimáticas y análisis espectral singular. Tecnología y ciencias del agua, 1(4):59–73.
Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310.
Runge, J. (2020). Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Conference on Uncertainty in Artificial Intelligence, pages 1388–1397. PMLR.
Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science advances, 5(11):eaau4996.
Sakamoto, M. S., Ambrizzi, T., and Poveda, G. (2011). Moisture sources and life cycle of convective systems over western colombia. Advances in Meteorology, 2011.
Salazar Velásquez, J. E. and Mesa Sánchez, O. J. (1994). Aplicación de dos modelos no lineales a la simulación de series hidrológicas. Avances en Recursos Hidráulicos, (02):27–47.
Sanchez, J. and Poveda, G. (2006). Aplicación de los métodos mars, holt-winters y arima generalizado en el pronóstico de caudales medios mensuales en ríos de antioquia. Meteorología Colombiana, 10:36–46.
Sanchez, J. G. J. (2018). The Orinoco Low-Level Jet. PhD thesis, The Pennsylvania State University.
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3):160.
Serra, Y. L., Kiladis, G. N., and Hodges, K. I. (2010). Tracking and mean structure of easterly waves over the intra-americas sea. Journal of Climate, 23(18):4823 – 4840.
Sperber, K. R. (2003). Propagation and the vertical structure of the madden–julian oscillation. Monthly Weather Review, 131(12):3018 – 3037.
Taborda, J. E. and Hoyos, C. D. (2023). The influence of equatorially trapped waves on precipitation variability in the amazon basin and northern south america. Manuscrito en preparación.
Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1):61 – 78.
Torres-Pineda, C. and Pabón Caicedo, J. D. (2017). Variabilidad intraestacional de la precipitación en colombia y su relación con la oscilación de madden-julian. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41:79.
Torres Pineda, C. E. (2012). Efecto de las ondas madden-julian en la precipitación sobre algunas regiones del territorio colombiano. Master’s thesis, Universidad Nacional de Colombia, Departamento de Geociencias.
van Drongelen, W. (2007). 6 - continuous, discrete, and fast fourier transform. In van Drongelen, W., editor, Signal Processing for Neuroscientists, pages 91–105. Academic Press, Burlington.
Vera, C. S., Alvarez, M. S., Gonzalez, P. L., Liebmann, B., and Kiladis, G. N. (2018). Seasonal cycle of precipitation variability in south america on intraseasonal timescales. Climate Dynamics, 51(5):1991–2001.
Wang, C. (2007). Variability of the caribbean low-level jet and its relations to climate. Climate Dynamics, 29:411–422.
Wang, F., Han, Y., Zhang, S., and Zhang, R. (2020). Influence of stratospheric sudden warming on the tropical intraseasonal convection. Environmental Research Letters, 15(8):084027.
Wheeler, M. and Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. Journal of the Atmospheric Sciences, 56(3):374 – 399.
Wilks, D. S. (2019a). Chapter 13 - principal component (eof) analysis. In Wilks, D. S., editor, Statistical Methods in the Atmospheric Sciences (Fourth Edition), pages 617–668. Elsevier, fourth edition edition.
Wilks, D. S. (2019b). Chapter 5 - frequentist statistical inference. In Wilks, D. S., editor, Statistical Methods in the Atmospheric Sciences (Fourth Edition), pages 143–207. Elsevier, fourth edition edition.
Yepes, J., Mejía, J. F., Mapes, B., and Poveda, G. (2020). Gravity waves and other mechanisms modulating the diurnal precipitation over one of the rainiest spots on earth: Observations and simulations in 2016. Monthly weather review, 148(9):3933–3950.
Yepes Palacio, L. J. (2012). Variabilidad climática intraestacional y su efecto sobre la precipitación en colombia: Diagnóstico y pronóstico. Master’s thesis, Escuela de Geociencias y Medio Ambiente.
Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A. (2014). On the importance of cascading moisture recycling in south america. Atmospheric Chemistry and Physics, 14(23):13337–13359.
Zuluaga, M. D. and Houze, R. A. (2015). Extreme convection of the near-equatorial americas, africa, and adjoining oceans as seen by trmm. Monthly Weather Review, 143(1):298 – 316.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 131 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Norte de Sur América
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84459/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84459/2/1214737969.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84459/3/1214737969.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
00bb484b6f310f586b55c38e2954df17
9b9795d6fa3c5b5883567c6addba86d2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089821236232192
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Poveda Jaramillo, Germán9c41f332f4b961d18fd86f26f14f47a3Taborda Soto, Juan Esteban07fb6fa0de30738de5d6ab4a7f13c848Posgrado en Aprovechamiento de Recursos HidráulicosTaborda Soto, Juan Esteban [0000-0002-1908-6030]Poveda Jaramillo, Germán [0000-0002-7907-6360]Poveda Jaramillo, Germán [6602764979]Norte de Sur América2023-08-04T17:17:53Z2023-08-04T17:17:53Z2023-07-27https://repositorio.unal.edu.co/handle/unal/84459Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, mapasEntender la precipitación a escala intraestacional es fundamental para establecer sistemas de pronóstico que permitan prever la ocurrencia de diferentes eventos que condicionen la disponibilidad del recurso hídrico y eventos extremos que impliquen inundaciones y sequías. En este sentido, se realiza un estudio de los patrones principales de precipitación sobre norte de Sudamérica, por medio del análisis de componentes principales, en tres bandas intraestacionales: 1-10 días, 10-30 días y 30-90 días. Posteriormente, se relacionan estos patrones con las ondas acopladas con la convección (CCW), los chorros de bajo nivel (LLJ) CHOCÓ, Caribe y Orinoquia, y la interacción suelo-vegetación-atmósfera representada por la evapotranspiración (ET). Los resultados muestran vínculos significativos entre las primeras PCs de la banda de 1-10 días con las ondas Kelvin, depresiones tropicales (TD), inercio-gravitacionales hacia el este (EIG) y mixtas de Rossby-gravedad (MRG), junto con la actividad de la ET. Además, en la banda de 10-30 días se encuentran vínculos principalmente con las ondas Rossby, los LLJ y la ET. Asimismo, en la banda de 30-90 días, con las ondas de Madden-Julian (MJO), los LLJ y la ET. Por último, con base en estas relaciones, se realiza un ejercicio de pronóstico de caudales medios diarios en el río Sogamoso (Colombia) con diferentes modelos estadísticos, de los cuales, los modelos de Regresión lineal (LR) y Vectores de soporte (SVM) muestran ganancias significativas respecto a los pronósticos de referencia climatológico (hasta 94% para los caudales mínimos) y antecedente (hasta 28% para los caudales medios). (Texto tomado de la fuente)Understanding precipitation at the intraseasonal scale is essential to establish forecasting systems that allow predicting the occurrence of different events that condition the availability of water resources and extreme events involving floods and droughts. In this sense, a study of the main precipitation patterns over northern South America is carried out, by means of principal component analysis, in three intra-seasonal bands: 1-10 days, 10-30 days and 30-90 days. Subsequently, these patterns are related to Convectively coupled waves (CCW), the CHOCO, Caribbean and Orinoco low-level jets (LLJ), and the soil-vegetation-atmosphere interaction represented by evapotranspiration (ET). The results show significant links between the first PCs of the 1-10 day band with Kelvin, tropical depression (TD), eastward inertio-gravity (EIG) and mixed Rossby-gravity (MRG) waves, and ET activity. Furthermore, in the 10-30 day band, links are found mainly with Rossby waves, LLJs and ET, and in the 30-90 day band, with the Madden-Julian (MJO) waves, LLJs and ET. Finally, based on this relationships, a daily mean streamflow forecasting exercise is performed for the Sogamoso river (Colombia) where the Linear regression (LR) and Support vector machine (SVM) models show significant gains with respect to the climatological (up to 94% for minimum stremflows) and antecedent (up to 28% for mean stremflows) benchmark forecasts.MaestríaMagíster en Ingeniería - Recursos HidráulicosHidrometeorologíaÁrea Curricular de Medio Ambientexx, 131 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaPrecipitación atmosférica - MediciónPrecipitación pluvialPrecipitation (Meteorology) - MeasurementDepth-area-duration (hydrometeorology)precipitaciónVariabilidad intraestacionalPatrones principalesNorte de SudaméricaOndas acopladas con la convecciónChorros de bajo nivelInteracción suelo-vegetación-atmósferaPronósticoCaudalPrecipitationIntra-seasonal variabilityNorthern South AmericaConvectively coupled wavesLow-level jetsSoil-vegetationatmosphere interactionForecastStreamflowVariabilidad intraestacional de la precipitación sobre el norte de Sudamérica: diagnóstico y conexionesIntraseasonal variability of precipitation over northern South America: diagnosis and connectionsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAlvarez, D. M. and Poveda, G. (2022). Spatiotemporal dynamics of ndvi, soil moisture and enso in tropical south america. Remote Sensing, 14(11).Amador, J. A. (2008). The intra-americas sea low-level jet. Annals of the New York Academy of Sciences, 1146(1):153–188.Anzanello, M. J. and Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5):573–583.Arenas Cárdenas, J. S. and Carvajal Serna, L. F. (2010). Desarrollo de un modelo de predicción de caudales semanales asociado a la variabilidad intraestacional en colombia. Escuela de Geociencias y Medio Ambiente.Arias, P. A. (2005). Diagnostico y predicción de la variabilidad intra-anual de la hidrología colombiana. Master’s thesis, Universidad Nacional de Colombia. Sede Medellín. Facultad de Minas.Arias, P. A., Garreaud, R., Poveda, G., Espinoza, J. C., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L., and van Oevelen, P. J. (2021). Hydroclimate of the andes part ii: Hydroclimate variability and sub-continental patterns. Frontiers in Earth Science, 8.Arias, P. A., Martínez, J. A., and Vieira, S. C. (2015). Moisture sources to the 2010–2012 anomalous wet season in northern south america. Climate dynamics, 45:2861–2884.Barrett, B. S. and Leslie, L. M. (2009). Links between tropical cyclone activity and madden–julian oscillation phase in the north atlantic and northeast pacific basins. Monthly Weather Review, 137(2):727 – 744.Bedoya-Soto, J. M., Aristizábal, E., Carmona, A. M., and Poveda, G. (2019). Seasonal shift of the diurnal cycle of rainfall over medellin’s valley, central andes of colombia (1998–2005). Frontiers in Earth Science, 7.Builes-Jaramillo, A. and Poveda, G. (2018). Conjoint analysis of surface and atmospheric water balances in the andes-amazon system. Water Resources Research, 54(5):3472–3489.Builes-Jaramillo, A., Yepes, J., and Salas, H. D. (2022). The orinoco low-level jet and its association with the hydroclimatology of northern south america. Journal of Hydrometeorology, 23(2):209 – 223.Cook, K. H. and Vizy, E. K. (2010). Hydrodynamics of the caribbean low-level jet and its relationship to precipitation. Journal of Climate, 23(6):1477 – 1494.Durán-Quesada, A. M., Gimeno, L., and Amador, J. (2017). Role of moisture transport for central american precipitation. Earth System Dynamics, 8(1):147–161.Espinoza, J. C., Garreaud, R., Poveda, G., Arias, P. A., Molina-Carpio, J., Masiokas, M., Viale, M., and Scaff, L. (2020). Hydroclimate of the andes part i: Main climatic features. Frontiers in Earth Science, 8.Giraldo-Cardenas, S., Arias, P. A., Vieira, S. C., and Zuluaga, M. D. (2022). Easterly waves and precipitation over northern south america and the caribbean. International Journal of Climatology, 42(3):1483–1499.Grimm, A. (2019). Madden–julian oscillation impacts on south american summer monsoon season: precipitation anomalies, extreme events, teleconnections, and role in the mjo cycle. Climate Dynamics, 53.Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor´anyi, A., Mu˜noz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., H´olm, E., Janiskov´a, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Th´epaut, J.-N. (2020). The era5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049.Hodges, D. and Pu, Z. (2019). Characteristics and variations of lowlevel jets and environmental factors associated with summer precipitation extremes over the great plains. Journal of Climate, 32(16):5123 – 5144.Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R. J., Kidd, C., Nelkin, E. J., Sorooshian, S., Stocker, E. F., Tan, J., Wolff, D. B., and Xie, P. (2020). Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG), pages 343–353. Springer International Publishing, Cham.Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J. (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496(7445):347–350.Kayano, M. T., Andreoli, R. V., and Souza, R. A. F. d. (2019). El niño–southern oscillation related teleconnections over south america under distinct atlantic multidecadal oscillation and pacific interdecadal oscillation backgrounds: La niña. International Journal of Climatology, 39(3):1359 – 1372.Kiladis, G. N., Thorncroft, C. D., and Hall, N. M. J. (2006). Threedimensional structure and dynamics of african easterly waves. part i: Observations. Journal of the Atmospheric Sciences, 63(9):2212 – 2230.Kiladis, G. N., Wheeler, M. C., Haertel, P. T., Straub, K. H., and Roundy, P. E. (2009). Convectively coupled equatorial waves. Reviews of Geophysics, 47(2).Knippertz, P., Gehne, M., Kiladis, G. N., Kikuchi, K., Rasheeda Satheesh, A., Roundy, P. E., Yang, G.-Y., ˇZagar, N., Dias, J., Fink, A. H., Methven, J., Schlueter, A., Sielmann, F., and Wheeler, M. C. (2022). The intricacies of identifying equatorial waves. Quarterly Journal of the Royal Meteorological Society, 148(747):2814–2852.Lavender, S. L. and Matthews, A. J. (2009). Response of the west african monsoon to the madden–julian oscillation. Journal of Climate, 22(15):4097 – 4116.Li, T. and Hsu, P.-c. (2018). Madden-Julian Oscillation: Observations and Mechanisms, pages 61–106. Springer International Publishing, Cham.Liebmann, B. and Smith, C. A. (1996). Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77(6):1275–1277.López, M. E. and Howell, W. E. (1967). Katabatic winds in the equatorial andes. Journal of Atmospheric Sciences, 24(1):29 – 35.Madden, R. A. and Julian, P. R. (1971). Detection of a 40–50 day oscillation in the zonal wind in the tropical pacific. Journal of Atmospheric Sciences, 28(5):702 – 708.Madden, R. A. and Julian, P. R. (1972). Description of globalscale circulation cells in the tropics with a 40–50 day period. Journal of Atmospheric Sciences, 29(6):1109 – 1123.Mapes, B. E., Warner, T. T., and Xu, M. (2003). Diurnal patterns of rainfall in northwestern south america. part iii: Diurnal gravity waves and nocturnal convection offshore. Monthly weather review, 131(5):830–844.Martinez, J. A., Arias, P. A., Junquas, C., Espinoza, J. C., Condom, T., Dominguez, F., and Morales, J. S. (2022). The orinoco low-level jet and the cross-equatorial moisture transport over tropical south america: Lessons from seasonal wrf simulations. Journal of Geophysical Research: Atmospheres, 127(3):e2021JD035603.e2021JD035603 2021JD035603.Matsuno, T. (1966). Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan. Ser. II, 44(1):25–43.Matthews, A. J. (2004). Intraseasonal variability over tropical africa during northern summer. Journal of Climate, 17(12):2427–2440.Mayta, V., Ambrizzi, T., Espinoza, J., and Silva Dias, P. (2019). The role of the madden-julian oscillation on the amazon basin intraseasonal rainfall variability. International Journal of Climatology, 39.Mayta, V., Kiladis, G., Dias, J., Silva Dias, P., and Gehne, M. (2021). Convectively coupled kelvin waves over tropical south america. Journal of Climate, pages 1–52.Mejia, J., Mesa, O., Poveda, G., Velez, J., Hoyos, C., Mantilla, R., Barco, J., Cuartas, L., MONTOYA, M., and Botero, B. (1999). Distribuci´on espacial y ciclos anual y semianual de la precipitaci´on en colombia. Dyna (Medellin, Colombia), 127:7–26.Mejía, J. F., Yepes, J., Henao, J. J., Poveda, G., Zuluaga, M. D., Raymond, D. J., and Fuchs-Stone, Z. (2021). Towards a mechanistic understanding of precipitation over the far eastern tropical pacific and western colombia, one of the rainiest spots on earth. Journal of Geophysical Research: Atmospheres, 126(5):e2020JD033415.e2020JD033415 2020JD033415.Montoya, G. d. J., Pelkowski, J., and Eslava, J. A. (2001). Sobre los alisios del nordeste y la existencia de una corriente en el piedemonte oriental andino. Revista de la Academia Colombiana de Ciencias Exactas, F´ısicas y Naturales, 25(96):363–371.North, G., Bell, T., Cahalan, R., and Moeng, F. (1982). Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110.Pabón Caicedo, J. D. and Dorado, J. (2008). Intraseasonal variability of rainfall over northern south america and caribbean region. Earth Sciences Research Journal, 12.Poveda, G. (2004). La bioclimatología de colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. Acad. Colomb. Cienc, 28:201–222.Poveda, G. (2022). Controlling mechanisms of the 4d distribution of rainfall over the rainest region on earth. In Fall Meeting 2022. AGU.Poveda, G., Alvarez, D. M., and Rueda, O. A. (2011). Hydro-climatic variability over the andes of colombia associated with enso: a review of climatic processes and their impact on one of the earth’s most important biodiversity hotspots. Climate Dynamics, 36(11):2233–2249.Poveda, G., Espinoza, J. C., Zuluaga, M. D., Solman, S. A., Garreaud, R., and van Oevelen, P. J. (2020). High impact weather events in the andes. Frontiers in Earth Science, 8.Poveda, G., Jaramillo, L., and Vallejo, L. F. (2014). Seasonal precipitation patterns along pathways of south american low-level jets and aerial rivers. Water Resources Research, 50(1):98–118.Poveda, G. and Mesa, O. (2000). On the existence of lloro (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low level jet. Geophysical Research Letters, 27:1675–1678.Poveda, G., Mesa, O., AGUDELO, P., ´ALVAREZ, J., Arias, P., Moreno, H., Salazar Velásquez, L., Toro, V., and Vieira, S. (2002a). Ondas del este, huracanes y fases de la luna en el ciclo diurno de la precipitación en los andes tropicales de colombia. volume 5, pages 3–12. Meteorología Colombiana.Poveda, G., Mesa, O., Carvajal, L., Hoyos, C., Mejia, J., Cuartas, L., and Pulgarín (2002b). Predicción de caudales medios mensuales en ríos colombianos usando métodos no lineales. Meteorología Colombiana, 6:101–110.Poveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., and Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical andes of colombia. Monthly Weather Review, 133(1):228 –240.Poveda, G., Waylen, P. R., and Pulwarty, R. S. (2006). Annual and inter-annual variability of the present climate in northern south america and southern mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1):3–27. Late Quaternary climates of tropical America and adjacent seas.Recalde-Coronel, G., Zaitchik, B., and Pan, W. (2020). Madden-julian oscillation influence on sub-seasonal rainfall variability on the west of south america. Climate Dynamics, 54.Reed, R., Klinker, E., and Hollingsworth, A. (1988). The structure and characteristics of african easterly wave disturbances as determined from the ecmwf operational analysis/forecast system. Meteorology and Atmospheric Physics, 38(1):22–33.Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-Validation, pages 532–538. Springer US, Boston, MA.Rojo-Hernández, J. D. and Carvajal-Serna, L. F. (2010). Predicción no lineal de caudales utilizando variables macroclimáticas y análisis espectral singular. Tecnología y ciencias del agua, 1(4):59–73.Runge, J. (2018). Causal network reconstruction from time series: From theoretical assumptions to practical estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310.Runge, J. (2020). Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Conference on Uncertainty in Artificial Intelligence, pages 1388–1397. PMLR.Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., and Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear time series datasets. Science advances, 5(11):eaau4996.Sakamoto, M. S., Ambrizzi, T., and Poveda, G. (2011). Moisture sources and life cycle of convective systems over western colombia. Advances in Meteorology, 2011.Salazar Velásquez, J. E. and Mesa Sánchez, O. J. (1994). Aplicación de dos modelos no lineales a la simulación de series hidrológicas. Avances en Recursos Hidráulicos, (02):27–47.Sanchez, J. and Poveda, G. (2006). Aplicación de los métodos mars, holt-winters y arima generalizado en el pronóstico de caudales medios mensuales en ríos de antioquia. Meteorología Colombiana, 10:36–46.Sanchez, J. G. J. (2018). The Orinoco Low-Level Jet. PhD thesis, The Pennsylvania State University.Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN computer science, 2(3):160.Serra, Y. L., Kiladis, G. N., and Hodges, K. I. (2010). Tracking and mean structure of easterly waves over the intra-americas sea. Journal of Climate, 23(18):4823 – 4840.Sperber, K. R. (2003). Propagation and the vertical structure of the madden–julian oscillation. Monthly Weather Review, 131(12):3018 – 3037.Taborda, J. E. and Hoyos, C. D. (2023). The influence of equatorially trapped waves on precipitation variability in the amazon basin and northern south america. Manuscrito en preparación.Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1):61 – 78.Torres-Pineda, C. and Pabón Caicedo, J. D. (2017). Variabilidad intraestacional de la precipitación en colombia y su relación con la oscilación de madden-julian. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 41:79.Torres Pineda, C. E. (2012). Efecto de las ondas madden-julian en la precipitación sobre algunas regiones del territorio colombiano. Master’s thesis, Universidad Nacional de Colombia, Departamento de Geociencias.van Drongelen, W. (2007). 6 - continuous, discrete, and fast fourier transform. In van Drongelen, W., editor, Signal Processing for Neuroscientists, pages 91–105. Academic Press, Burlington.Vera, C. S., Alvarez, M. S., Gonzalez, P. L., Liebmann, B., and Kiladis, G. N. (2018). Seasonal cycle of precipitation variability in south america on intraseasonal timescales. Climate Dynamics, 51(5):1991–2001.Wang, C. (2007). Variability of the caribbean low-level jet and its relations to climate. Climate Dynamics, 29:411–422.Wang, F., Han, Y., Zhang, S., and Zhang, R. (2020). Influence of stratospheric sudden warming on the tropical intraseasonal convection. Environmental Research Letters, 15(8):084027.Wheeler, M. and Kiladis, G. N. (1999). Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. Journal of the Atmospheric Sciences, 56(3):374 – 399.Wilks, D. S. (2019a). Chapter 13 - principal component (eof) analysis. In Wilks, D. S., editor, Statistical Methods in the Atmospheric Sciences (Fourth Edition), pages 617–668. Elsevier, fourth edition edition.Wilks, D. S. (2019b). Chapter 5 - frequentist statistical inference. In Wilks, D. S., editor, Statistical Methods in the Atmospheric Sciences (Fourth Edition), pages 143–207. Elsevier, fourth edition edition.Yepes, J., Mejía, J. F., Mapes, B., and Poveda, G. (2020). Gravity waves and other mechanisms modulating the diurnal precipitation over one of the rainiest spots on earth: Observations and simulations in 2016. Monthly weather review, 148(9):3933–3950.Yepes Palacio, L. J. (2012). Variabilidad climática intraestacional y su efecto sobre la precipitación en colombia: Diagnóstico y pronóstico. Master’s thesis, Escuela de Geociencias y Medio Ambiente.Zemp, D. C., Schleussner, C.-F., Barbosa, H. M. J., van der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., and Rammig, A. (2014). On the importance of cascading moisture recycling in south america. Atmospheric Chemistry and Physics, 14(23):13337–13359.Zuluaga, M. D. and Houze, R. A. (2015). Extreme convection of the near-equatorial americas, africa, and adjoining oceans as seen by trmm. Monthly Weather Review, 143(1):298 – 316.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84459/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1214737969.2023.pdf1214737969.2023.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf58465128https://repositorio.unal.edu.co/bitstream/unal/84459/2/1214737969.2023.pdf00bb484b6f310f586b55c38e2954df17MD52THUMBNAIL1214737969.2023.pdf.jpg1214737969.2023.pdf.jpgGenerated Thumbnailimage/jpeg4505https://repositorio.unal.edu.co/bitstream/unal/84459/3/1214737969.2023.pdf.jpg9b9795d6fa3c5b5883567c6addba86d2MD53unal/84459oai:repositorio.unal.edu.co:unal/844592023-08-15 23:03:55.405Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=