On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains
ilustraciones, diagramas
- Autores:
-
Guerra Gutiérrez, Juan Sebastián
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86714
- Palabra clave:
- 510 - Matemáticas::515 - Análisis
510 - Matemáticas::512 - Álgebra
ALGEBRAS DE VON NEUMANN
ECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC.
TEORIA DE LOS OPERADORES
ESPACIOS FUNCIONALES
ESPACIOS DE SOBOLEV
Von Neumann algebras
Differential equations - problems, exercises, etc.
Operator theory
Function spaces
Sobolev spaces
Problema de Neumann
Ecuaciones Ddferenciales parciales
Operador uniformemente elíptico
Dominios no-regulares
Neumann problem
Partial differential equations
Uniformly elliptic operator
Non-smooth domains
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_10f3c70ab2e327451f25b879f9afc748 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86714 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
dc.title.translated.spa.fl_str_mv |
Caracterización de la solubilidad del problema de Neumann con condiciones de frontera homogéneas para ecuaciones uniformemente elípticas de segundo orden sobre dominios generales |
title |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
spellingShingle |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains 510 - Matemáticas::515 - Análisis 510 - Matemáticas::512 - Álgebra ALGEBRAS DE VON NEUMANN ECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC. TEORIA DE LOS OPERADORES ESPACIOS FUNCIONALES ESPACIOS DE SOBOLEV Von Neumann algebras Differential equations - problems, exercises, etc. Operator theory Function spaces Sobolev spaces Problema de Neumann Ecuaciones Ddferenciales parciales Operador uniformemente elíptico Dominios no-regulares Neumann problem Partial differential equations Uniformly elliptic operator Non-smooth domains |
title_short |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
title_full |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
title_fullStr |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
title_full_unstemmed |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
title_sort |
On the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domains |
dc.creator.fl_str_mv |
Guerra Gutiérrez, Juan Sebastián |
dc.contributor.advisor.spa.fl_str_mv |
Ardila de la Peña, Víctor Manuel |
dc.contributor.author.spa.fl_str_mv |
Guerra Gutiérrez, Juan Sebastián |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::515 - Análisis 510 - Matemáticas::512 - Álgebra |
topic |
510 - Matemáticas::515 - Análisis 510 - Matemáticas::512 - Álgebra ALGEBRAS DE VON NEUMANN ECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC. TEORIA DE LOS OPERADORES ESPACIOS FUNCIONALES ESPACIOS DE SOBOLEV Von Neumann algebras Differential equations - problems, exercises, etc. Operator theory Function spaces Sobolev spaces Problema de Neumann Ecuaciones Ddferenciales parciales Operador uniformemente elíptico Dominios no-regulares Neumann problem Partial differential equations Uniformly elliptic operator Non-smooth domains |
dc.subject.lemb.spa.fl_str_mv |
ALGEBRAS DE VON NEUMANN ECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC. TEORIA DE LOS OPERADORES ESPACIOS FUNCIONALES ESPACIOS DE SOBOLEV |
dc.subject.lemb.eng.fl_str_mv |
Von Neumann algebras Differential equations - problems, exercises, etc. Operator theory Function spaces Sobolev spaces |
dc.subject.proposal.spa.fl_str_mv |
Problema de Neumann Ecuaciones Ddferenciales parciales Operador uniformemente elíptico Dominios no-regulares |
dc.subject.proposal.eng.fl_str_mv |
Neumann problem Partial differential equations Uniformly elliptic operator Non-smooth domains |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-09T13:17:25Z |
dc.date.available.none.fl_str_mv |
2024-08-09T13:17:25Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86714 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86714 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Brezis, H. (2011). Functional analysis, Sobolev spaces and partial differential equations. Springer. Courant, R., John, F., Blank, A. A., and Solomon, A. (1974). Introduction to calculus and analysis, volume 2. A Wiley-Interscience Publication. Kesavan, S. (1989). Topics in functional analysis and applications. New Age International Ltd., Publishers. Kesavan, S. (2009). Functional analysis. Hindustan Book Agency. Krantz, S. G. and Parks, H. R. (2008). Geometric integration theory. Birkhäuser. Krasnoselskii and Rutickii, Y. B. (1961). Convex functions and Orlicz spaces. P. Noordhoff LTD- Groningen. Kreyszig, E. (1978). Introductory functional analysis with applications. John Wiley & Sons. Leoni, G. (2009). A first course in Sobolev spaces. American Mathematical Society. Kufner, A., Maligranda, L., and Persson, L.-E. (2006). The Prehistory of the Hardy Inequality. The American Mathematical Monthly, 113(8), 715–732. Maz’ya, V. (1968). On neumann’s problem in domains with nonregular boundaries. Siberian Mathematical Journal, 9, 990–1012. Maz’ya, V. G. (1973). On certain integral inequalities for functions of many variables. Journal of Soviet Mathematics, 1(2), 205–234 Maz’ya, V. G. (2011). Sobolev Spaces: With Applications to Elliptic Partial Differential Equations. Springer. Movahedi-Lankarani, H. (1992). On the theorem of Rademacher. Real Analysis Exchange, 17(2), 802 – 808. Nandakumaran, A. and Datti, P. (2020). Partial differential equations: classical theory with a modern touch. Cambridge University Press. Natanson, I. P. (1964). Theory of functions of a real variable, volume 1. Courier Dover Publications. Rana, I. K. (2002). An introduction to measure and integration. American Mathematical Society. Rektorys, K. (1977). Variational methods in mathematics, science and engineering. Reidel Publishing Company. Rossmann, J., Takac, P., and Wildenhain, G. (2012). The Maz’ya Anniversary Collection: Volume 1: On Maz’ya’s work in functional analysis, partial differential equations and applications, volume 109. Birkhäuser. Rudin, W. (1973). Functional analysis. McGraw-Hill Book Company. Rudin, W. (1987). Real and complex analysis. McGraw-Hill International Editions. Villani, A. (1985). Another note on the inclusion lp(μ) ⊂ lq(μ). The American Mathematical Monthly, 92(7), 485–487. Kondrat’ev, V. A. and Oleinik, O. A. (1983). Boundary-value problems for partial differential equations in non-smooth domains. Russian Mathematical Surveys, 38(2):1–86 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
viii, 106 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86714/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86714/2/1015413807.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86714/3/1015413807.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 9401170673d07aae59437bffbb0f0fd1 32253507f9c0bc1e5794b0dd1c4c6b18 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089324205965312 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ardila de la Peña, Víctor Manuelae8f73196b28451ab2ca2d84f77df280Guerra Gutiérrez, Juan Sebastián9f358402276a84014ce6c8b6e3ccec1c2024-08-09T13:17:25Z2024-08-09T13:17:25Z2024https://repositorio.unal.edu.co/handle/unal/86714Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasWe give solvability criteria for the weak formulation of the homogeneous Neumann problem for uniformly elliptic operators of the form \begin{ceqn} \begin{align*} \mathcal{L}u = - \displaystyle \sum_{i,j = 1}^n \frac{\partial}{\partial x_j}\left( a_{ij}\dfrac{\partial u}{\partial x_i}\right)+au \end{align*} \end{ceqn} where the $a_{ij}$ and $a$ are measurable functions satisfying certain adequate hypotheses. Conditions on the domain of definition are given to ensure the solvability of the problem in which smoothing restrictions on the boundary are relaxed.Damos criterios de solubilidad de la formulación débil del problema homogéneo de Neumann para operadores uniformemente elípticos de la forma \begin{ceqn} \begin{align*} \mathcal{L}u = - \displaystyle \sum_{i,j = 1}^n \frac{\partial}{\partial x_j}\left( a_{ij}\dfrac{\partial u}{\partial x_i}\right)+au \end{align*} \end{ceqn} donde las $a_{ij}$ y $a$ son funciones medibles que satisfacen ciertas hipótesis. Se establecen condiciones sobre el dominio de definición que garantizan la solubilidad del problema y que relajan restricciones de suavidad en la frontera (Texto tomado de la fuente).MaestríaMagíster en Ciencias - MatemáticasEcuaciones diferenciales parcialesviii, 106 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::515 - Análisis510 - Matemáticas::512 - ÁlgebraALGEBRAS DE VON NEUMANNECUACIONES DIFERENCIALES-PROBLEMAS, EJERCICIOS, ETC.TEORIA DE LOS OPERADORESESPACIOS FUNCIONALESESPACIOS DE SOBOLEVVon Neumann algebrasDifferential equations - problems, exercises, etc.Operator theoryFunction spacesSobolev spacesProblema de NeumannEcuaciones Ddferenciales parcialesOperador uniformemente elípticoDominios no-regularesNeumann problemPartial differential equationsUniformly elliptic operatorNon-smooth domainsOn the solvability of the homogeneous Neumann problem for second order uniformly elliptic equations on non-smooth domainsCaracterización de la solubilidad del problema de Neumann con condiciones de frontera homogéneas para ecuaciones uniformemente elípticas de segundo orden sobre dominios generalesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBrezis, H. (2011). Functional analysis, Sobolev spaces and partial differential equations. Springer.Courant, R., John, F., Blank, A. A., and Solomon, A. (1974). Introduction to calculus and analysis, volume 2. A Wiley-Interscience Publication.Kesavan, S. (1989). Topics in functional analysis and applications. New Age International Ltd., Publishers.Kesavan, S. (2009). Functional analysis. Hindustan Book Agency.Krantz, S. G. and Parks, H. R. (2008). Geometric integration theory. Birkhäuser.Krasnoselskii and Rutickii, Y. B. (1961). Convex functions and Orlicz spaces. P. Noordhoff LTD- Groningen.Kreyszig, E. (1978). Introductory functional analysis with applications. John Wiley & Sons.Leoni, G. (2009). A first course in Sobolev spaces. American Mathematical Society.Kufner, A., Maligranda, L., and Persson, L.-E. (2006). The Prehistory of the Hardy Inequality. The American Mathematical Monthly, 113(8), 715–732.Maz’ya, V. (1968). On neumann’s problem in domains with nonregular boundaries. Siberian Mathematical Journal, 9, 990–1012.Maz’ya, V. G. (1973). On certain integral inequalities for functions of many variables. Journal of Soviet Mathematics, 1(2), 205–234Maz’ya, V. G. (2011). Sobolev Spaces: With Applications to Elliptic Partial Differential Equations. Springer.Movahedi-Lankarani, H. (1992). On the theorem of Rademacher. Real Analysis Exchange, 17(2), 802 – 808.Nandakumaran, A. and Datti, P. (2020). Partial differential equations: classical theory with a modern touch. Cambridge University Press.Natanson, I. P. (1964). Theory of functions of a real variable, volume 1. Courier Dover Publications.Rana, I. K. (2002). An introduction to measure and integration. American Mathematical Society.Rektorys, K. (1977). Variational methods in mathematics, science and engineering. Reidel Publishing Company.Rossmann, J., Takac, P., and Wildenhain, G. (2012). The Maz’ya Anniversary Collection: Volume 1: On Maz’ya’s work in functional analysis, partial differential equations and applications, volume 109. Birkhäuser.Rudin, W. (1973). Functional analysis. McGraw-Hill Book Company.Rudin, W. (1987). Real and complex analysis. McGraw-Hill International Editions.Villani, A. (1985). Another note on the inclusion lp(μ) ⊂ lq(μ). The American Mathematical Monthly, 92(7), 485–487.Kondrat’ev, V. A. and Oleinik, O. A. (1983). Boundary-value problems for partial differential equations in non-smooth domains. Russian Mathematical Surveys, 38(2):1–86EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86714/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015413807.2024.pdf1015413807.2024.pdfTesis de Maestría en Matemáticasapplication/pdf1363306https://repositorio.unal.edu.co/bitstream/unal/86714/2/1015413807.2024.pdf9401170673d07aae59437bffbb0f0fd1MD52THUMBNAIL1015413807.2024.pdf.jpg1015413807.2024.pdf.jpgGenerated Thumbnailimage/jpeg4634https://repositorio.unal.edu.co/bitstream/unal/86714/3/1015413807.2024.pdf.jpg32253507f9c0bc1e5794b0dd1c4c6b18MD53unal/86714oai:repositorio.unal.edu.co:unal/867142024-08-27 23:11:21.176Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |