Extraction of morphological and spectral features of potato plants from high resolution multispectral images
ilustraciones, fotografías, gráficas, tablas
- Autores:
-
Rodríguez Galvis, Jorge Luis
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80029
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales
Enfermedades de las plantas
Plant diseases
Papa
Potatoes
Vigilancia de plagas
Pest monitoring
Procesamiento de datos
Data processing
Late blight
UAV
Remote sensing
Machine learning
Plant traits
Tizón tardío
Percepción remota
Aprendizaje de maquina
Rasgos de plantas
Aeronave remotamente tripulada
- Rights
- openAccess
- License
- Atribución-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_10e49f88c4ae8e5296cfeaea85f56d44 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80029 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
dc.title.translated.spa.fl_str_mv |
Extracción de características morfológicas y espectrales de plantas de papa a partir de imágenes multiespectrales de alta resolución |
title |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
spellingShingle |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images 000 - Ciencias de la computación, información y obras generales Enfermedades de las plantas Plant diseases Papa Potatoes Vigilancia de plagas Pest monitoring Procesamiento de datos Data processing Late blight UAV Remote sensing Machine learning Plant traits Tizón tardío Percepción remota Aprendizaje de maquina Rasgos de plantas Aeronave remotamente tripulada |
title_short |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
title_full |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
title_fullStr |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
title_full_unstemmed |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
title_sort |
Extraction of morphological and spectral features of potato plants from high resolution multispectral images |
dc.creator.fl_str_mv |
Rodríguez Galvis, Jorge Luis |
dc.contributor.advisor.none.fl_str_mv |
Lizarazo Salcedo, Iván Alberto Prieto Ortíz, Flavio Augusto |
dc.contributor.author.none.fl_str_mv |
Rodríguez Galvis, Jorge Luis |
dc.contributor.researchgroup.spa.fl_str_mv |
Análisis Espacial del Territorio y del Cambio Global (AET-CG) Grupo de Automática de la Universidad Nacional GAUNAL |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales |
topic |
000 - Ciencias de la computación, información y obras generales Enfermedades de las plantas Plant diseases Papa Potatoes Vigilancia de plagas Pest monitoring Procesamiento de datos Data processing Late blight UAV Remote sensing Machine learning Plant traits Tizón tardío Percepción remota Aprendizaje de maquina Rasgos de plantas Aeronave remotamente tripulada |
dc.subject.agrovoc.none.fl_str_mv |
Enfermedades de las plantas Plant diseases Papa Potatoes Vigilancia de plagas Pest monitoring Procesamiento de datos Data processing |
dc.subject.proposal.eng.fl_str_mv |
Late blight UAV Remote sensing Machine learning Plant traits |
dc.subject.proposal.spa.fl_str_mv |
Tizón tardío Percepción remota Aprendizaje de maquina Rasgos de plantas Aeronave remotamente tripulada |
description |
ilustraciones, fotografías, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-26T16:52:33Z |
dc.date.available.none.fl_str_mv |
2021-08-26T16:52:33Z |
dc.date.issued.none.fl_str_mv |
2021-03-16 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80029 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80029 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
An, N., Palmer, C. M., Baker, R. L., Markelz, R. J., Ta, J., Covington, M. F., Maloof, J. N., Welch, S. M., and Weinig, C. (2016). Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area. Computers and Electronics in Agriculture, 127:376 - 394. Araus, J. L. and Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1):52 - 61. Arora, R. K., Sharma, S., and Singh, B. P. (2014). Late blight disease of potato and its management. Potato Journal, 41(1):16 - 40. Bagheri, N. (2020). Application of aerial remote sensing technology for detection of fire blight infected pear trees. Computers and Electronics in Agriculture, 168(September 2019):105147. Batchelor, B. G., editor (2012). Machine Vision Handbook. Springer London, London. Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., and Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39:79 - 87. Bock, C. H., Poole, G. H., Parker, P. E., and Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2):59 - 107. Bolger, M., Schwacke, R., Gundlach, H., Schmutzer, T., Chen, J., Arend, D., Oppermann, M., Weise, S., Lange, M., Fiorani, F., Spannagl, M., Scholz, U., Mayer, K., and Usadel, B. (2017). From plant genomes to phenotypes. Journal of Biotechnology. Breiman, L. (2001). Random Forest. Machine Learning, 45:5 - 32. Camilus, K. S. and Govindan, V. K. (2012). A Review on Graph Based Segmentation. I.J. Image, Graphics and Signal Processing, (June):1 - 13. Chang, C. C. and Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):1 - 39. Conci, A., Rodrigues, O., and Liatsis, P. (2018). Morphological classifiers. Pattern Recognition, 84:82 - 96. Congedo, L. (2021). Semi-Automatic Classification Plugin. Coppens, F., Wuyts, N., Inz e, D., and Dhondt, S. (2017). Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Current Opinion in Systems Biology, 4:58{63. Drass, M., Berthold, H., M uller-Braun, S., Seel, M., K onig, M., Hof, P., Schneider, J., and Oechsner, M. (2020). Semantic Segmentation with Deep Learning: Detection of Cracks at the Cut Edge of Glass (under review). Glass Structures & Engineering. Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., and Soto-Su arez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing, 10(10). Eisenbeiss, H., Zurich, E. T. H., Eisenbei , H., and Zurich, E. T. H. (2009). UAV photogrammetry. Number 18515. EPPO (2007). General crop inspection procedure for potatoes. Technical report, European and Mediterranean Plant Protection Organization. Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and Lin, C. J. (2008). LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9(2008):1871 - 1874. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861 - 874. Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). E cient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2):167 - 181. Forbes, G., Perez, W., and Andrade-Piedra, J. (2014). Field assessment of resistance in potato to Phytophthora infestans, International Cooperators Guide. Franceschini, M. H. D., Bartholomeus, H., van Apeldoorn, D. F., Suomalainen, J., and Kooistra, L. (2019). Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in Potato. Remote Sensing, 11(3). Franke, J. and Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8(3):161 - 172. Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., and Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153:9 - 19. Genuer, R., Poggi, J. M., and Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14):2225 - 2236. Ghanem, M. E., Marrou, H., and Sinclair, T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20(3):139 - 144. Gibson-Poole, S., Humphris, S., Toth, I., and Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2):812 - 816. Gitelson, A. and Merzlyak, M. N. (1994). Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3):286 - 292. Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3):271 - 282. Glasbey, C. A. (1993). An Analysis of Histogram-Based Thresholding Algorithms. Granier, C. and Vile, D. (2014). Phenotyping and beyond: Modelling the relationships between traits. Current Opinion in Plant Biology, 18(1):96 - 102. Hamuda, E., Glavin, M., and Jones, E. (2016a). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184 - 199. Hamuda, E., Glavin, M., and Jones, E. (2016b). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184 - 199. Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., Xiao, Y., and He, Z. (2018). A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, (October 2017):1 - 9. Hsu, C. W. and Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415 - 425. Hu, P., Chapman, S. C., Wang, X., Potgieter, A., Duan, T., Jordan, D., Guo, Y., and Zheng, B. (2018). Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. European Journal of Agronomy, 95(November 2017):24 - 32. Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, (83):195 - 213. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3):295 - 309. Hussain, T., Singh, B. P., and Anwar, F. (2014). A quantitative real time PCR based method for the detection of Phytophthora infestans causing late blight of potato, in infested soil. Saudi Journal of Biological Sciences, 21(4):380 - 386. Jiang, Y., Zebarth, B. J., Somers, G. H., Macleod, J. A., and Savard, M. M. (2012). Sustainable potato production: Global case studies. Jiang, Z., Huete, A. R., Didan, K., and Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10):3833 - 3845. John Reader (2009). POTATO. A history of the propitious esculent. Jones, H. G. and Vaughan, R. A. (2010). Remote sensing of vegetation - principles, techniques, and applications. University Press Oxford, United Kingdom, 1 edition. Kamberova, G. and Bajcsy, R. (2006). Sensor Errors and the Uncertainties in Stereo Reconstruction. Technical report, University of Pennsylvania. Kaur, D. and Kaur, Y. (2014). Various Image Segmentation Techniques: A Review. International Journal of Computer Science and Mobile Computing, 3(5):809 - 814. Klemenjak, C., Faustine, A., Makonin, S., and Elmenreich, W. (2019). On metrics to assess the transferability of machine learning models in non-intrusive load monitoring. arXiv. Kuhl, J. C., Zarka, K., Coombs, J., Kirk, W. W., and Douches, D. S. (2007). Late blight resistance of RB Transgenic potato lines. Journal of the American Society for Horticultural Science, 132(6):783 - 789. Kumar, J., Kumar, S., and Pratap, A. (2015). Phenomics in crop plants: Trends, options and limitations. Kung, O. ., Strecha, C., Beyeler, A., Zu erey, J.-C., Floreano, D., Fua, P., and Gervaix, F. (2011). The Accuracy of Automatic Photogrammetric Techniques on Ultra-Light UAV Imagery. Paper presented at: UAV-g 2011 - Unmanned Aerial Vehicle in Geomatics. Lawrence, R., Bunn, A., Powell, S., and Zambon, M. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3):331 - 336. Lee, Y. H., Wei, C. P., Cheng, T. H., and Yang, C. T. (2012). Nearest-neighbor-based approach to time-series classification. Decision Support Systems, 53(1):207 - 217. Li, B., Xu, X., Han, J., Zhang, L., Bian, C., Jin, L., and Liu, J. (2019). The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 15(1):1 - 13. Liu, J., Pattey, E., and J ego, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123:347 - 358. Liu, S., Li, L., Gao, W., Zhang, Y., Liu, Y., Wang, S., and Lu, J. (2018a). Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151(June):185 - 195. Liu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C., and Guo, W. (2018b). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252(January):144 - 154. Mahlein, A.-K. (2016a). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2):1 - 11. Mahlein, A.-K. (2016b). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2):1 - 11. Mamaghani, B. and Salvaggio, C. (2019). Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors (Switzerland), 19(20). Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. Micasense (2018). Rededge Integration Guide. Minervini, M., Fischbach, A., Scharr, H., and Tsaftaris, S. A. (2016). Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, 81:80 - 89. Mishra, Y., Johansson J ank anp a a, H., Kiss, A. Z., Funk, C., Schr oder, W. P., and Jansson, S. (2012). Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biology, 12. Moore, A. W. (1991). An introductory tutorial on kd-trees, Robotics Institute. Eficient Memory-based Learning for Robot Control, (209):1 - 20. Namugga, P., Sibiya, J., Melis, R., and Barekye, A. (2017). Phenotypic characterisation of potato (Solanum tuberosum) genotypes in Uganda. South African Journal of Plant and Soil, 1862:1 - 8. OECD (1997). Organization for Economic Co-operation and Development. Consensus document on the biology of solanum tubersoum subsp. Tuberosum (potato). Http://Www.Oecd.Org/Science/Biotrack/46815598.Pdf, (8):1 - 38. Omar, L. and Ivrissimtzis, I. (2019). Using theoretical ROC curves for analysing machine learning binary classifiers. Pattern Recognition Letters, 128:447 - 451. Omohundro, S. M. (1989). Five balltree construction algorithms. Science, 51(1):1 - 22. Ose, K., Corpetti, T., and Demagistri, L. (2016). Multispectral Satellite Image Processing. Optical Remote Sensing of Land Surface: Techniques and Methods, pages 58 - 124. Otsu, N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. IEEE transactions on systems, man, and cybernetics, 9(1):62 - 66. Pacilly, F. C., Groot, J. C., Hofstede, G. J., Schaap, B. F., and van Bueren, E. T. (2016). Analysing potato late blight control as a social-ecological system using fuzzy cognitive mapping. Agronomy for Sustainable Development, 36(2). Pepe, M., Fregonese, L., and Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1):412 - 435. Pradal, C., Artzet, S., Chopard, J., Dupuis, D., Fournier, C., Mielewczik, M., N egre, V., Neveu, P., Parigot, D., Valduriez, P., and Cohen-Boulakia, S. (2017). InfraPhenoGrid: A scientific workflow infrastructure for plant phenomics on the Grid. Future Generation Computer Systems, 67:341 - 353. Puissant, A., Rougiera, S., and Stumpf, A. (2014). Object-oriented mapping of urban trees using random forestclassifiers. International Journal of Applied Earth Observation and Geoinformation, 26(1):235 - 245. Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P. (2012). An assessment of the e ectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1):93 - 104. Rouse J.W., J., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication, volume 351, page 309. Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, R. R., and Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Sankaran, S., Zhou, J., Khot, L. R., Trapp, J. J., Mndolwa, E., and Miklas, P. N. (2018). High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Computers and Electronics in Agriculture, 151(June):84 - 92. Schumann, G. L., D'Arcy, C. J., and Ristaino, J. (2000). Late blight of potato and tomato. Shakoor, N., Lee, S., and Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38:184 - 192. Singh, A., Ganapathysubramanian, B., Singh, A. K., and Sarkar, S. (2016). Machine Learning for High-Throughput Stress Phenotyping in Plants. Sliwka, J., Jakuczun, H., Chmielarz, M., Hara-Skrzypiec, A., Tomczynska, I., Kilian, A., and Zimnoch-Guzowska, E. (2012). A resistance gene against potato late blight originating from Solanum x michoacanum maps to potato chromosome VII. Theoretical and Applied Genetics, 124(2):397406. Speiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134:93 - 101. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., and Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88:297 - 307. Strobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8. Struik, P. C. (2010). Can Physiology Help Us to Combat Late Blight in Potato? Potato Research, 53(4):277 - 287. Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., and Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148:1 - 10. Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017). Plant Phenomics, From Sensors to Knowledge. Current Biology, 27(15):R770 - R783. Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics. Tokekar, P., Hook, J. V., Mulla, D., and Isler, V. (2016). Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Transactions on Robotics, 32(6):1498 - 1511. Van Der Walt, S., Sch onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2014(1):1 - 18. Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., and Mueller, A. (2015). Scikit-learn. GetMobile: Mobile Computing and Communications, 19(1):29 - 33. White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, R. L., Strand, R. J., Thorp, K. R., Wall, G. W., and Wang, G. (2012). Field-based phenomics for plant genetics research. Field Crops Research, 133:101 - 112. Wiik, L. (2014). Potato Late Blight and Tuber Yield: Results from 30 Years of Field Trials. Potato Research, 57(1):77 - 98. Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1):259 - 269. Xu, H., Zhang, H., He, W., and Zhang, L. (2019). Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification. Neurocomputing, 360:138 - 150. Zhang, C., Chen, W., and Sankaran, S. (2019). High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Protection, 125:104885. Zhang, F. and Yang, X. (2020). Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sensing of Environment, 251(January):112105. Zhao, C. J. and Jiang, G. Q. (2010). Baseline detection and matching to vision-based navigation of agricultural robot. 2010 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2010, (July):44 - 48. Zhao, H., Yang, C., Guo, W., Zhang, L., and Zhang, D. (2020). Automatic estimation of crop disease severity levels based on vegetation index normalization. Remote Sensing, 12(12):1 - 17. Zhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., and Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127:406 - 412. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-CompartirIgual 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
X, 82 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Geomática |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80029/2/MsC_Thesis_Document_RodriguezJorge.pdf https://repositorio.unal.edu.co/bitstream/unal/80029/4/license.txt https://repositorio.unal.edu.co/bitstream/unal/80029/5/license_rdf https://repositorio.unal.edu.co/bitstream/unal/80029/6/MsC_Thesis_Document_RodriguezJorge.pdf.jpg |
bitstream.checksum.fl_str_mv |
27e6b77109f6433488bfd887b318ca27 cccfe52f796b7c63423298c2d3365fc6 84a900c9dd4b2a10095a94649e1ce116 5a50f1a8ce52d6c2bf1f29d92581d59f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089769086353408 |
spelling |
Atribución-CompartirIgual 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lizarazo Salcedo, Iván Albertob7a911d83f30c19f50a8d2f7b4e94e02Prieto Ortíz, Flavio Augusto13ffc51d2d98b7ee93bf77c8adaaee2dRodríguez Galvis, Jorge Luis919b8684f8069cd549c801a4897abf56Análisis Espacial del Territorio y del Cambio Global (AET-CG)Grupo de Automática de la Universidad Nacional GAUNAL2021-08-26T16:52:33Z2021-08-26T16:52:33Z2021-03-16https://repositorio.unal.edu.co/handle/unal/80029Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, gráficas, tablasEste trabajo estudia el uso de características espectrales y morfológicas en la evaluación y detección del tizón tardío de la papa utilizando imágenes multiespectrales de muy alta resolución capturadas por vehículos aéreos no tripulados (UAV). Los métodos tradicionales de detección y cartografía del tizón tardío consumen mucho tiempo, requieren un gran esfuerzo humano y, en muchos casos, son subjetivos. El estudio de las características geométricas y espectrales de las plantas de papa mediante UAV puede contribuir a mejorar la eficiencia de los sistemas de detección de campo que se utilizan actualmente. Esta investigación busca contribuir a la determinación de los métodos de captura, procesamiento y análisis de los datos adquiridos a través de UAV de manera que proporcione a los productores herramientas confiables para el mejoramiento y manejo de sus cultivos de manera ágil y eficiente. El enfoque de este estudio integra operaciones morfológicas y evalúa el rendimiento de cinco algoritmos de aprendizaje automático: bosque aleatorio (RF), clasificador de aumento de gradiente (GBC), clasificador de vectores de soporte (SVC), clasificador de vectores de soporte lineal (LSVC) y K- vecinos más cercanos. (KNN) para detectar áreas de tizón tardío. Los principales componentes del enfoque propuesto son: (i) corrección radiométrica y geométrica de imágenes en bruto; (ii) eliminación del suelo desnudo mediante la aplicación de una técnica de umbralización; (iii) la generación de índices espectrales; (iv) la construcción de características morfológicas de las plantas; (v) un procedimiento de clasificación supervisado utilizando algoritmos de ML; y (vi) uso de modelos previamente entrenados para clasificar un nuevo conjunto de datos. El desempeño del método se evalúa en dos fechas en un campo de papa experimental. Los resultados mostraron que los clasificadores LSVC y RF se desempeñaron mejor en términos de métricas de precisión y tiempo de ejecución. El estudio mostró que el método propuesto permite la detección del tizón tardío con poca intervención humana. (Texto tomado de la fuente)This work studies the use of spectral and morphological features in the evaluation and detection of potato late blight using very high resolution multispectral images captured by Unmanned Aerial Vehicles (UAV). Traditional late blight detection and mapping methods are time-consuming, require great human effort and, in many cases, are subjective. The study of the geometric and spectral characteristics of potato plants by means of UAV can contribute to improving the efficiency of the field detection systems that are currently used. This research seeks to contribute to the determination of the capture, processing and analysis methods of the data acquired through UAV in a way that provides producers with reliable tools for the improvement and management of their crops in an agile and efficient way. The approach of this study integrates morphological operations and evaluates the performance of five machine learning algorithms: Random Forest (RF), Gradient Boosting classifier (GBC), Support Vector Classifier (SVC), Linear Support Vector Classifier (LSVC) and K- Nearest Neighbours (KNN) to detect late blight areas. The main components of the proposed approach are: (i) radiometric and geometric correction of raw images; (ii) elimination of bare soil by applying a thresholding technique; (iii) the generation of spectral indices; (iv) the construction of morphological features of the plants; (v) a supervised classification procedure using ML algorithms; and (vi) use of pre-trained models to classify a new data set. The performance of the method is evaluated on two dates in an experimental potato field. The results showed that the LSVC and RF classifiers performed the best in terms of accuracy and execution time metrics. The study showed that the proposed method allows the detection of late blight with little human intervention.MaestríaMagíster en GeomáticaTecnologías GeoespacialesX, 82 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en GeomáticaEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generalesEnfermedades de las plantasPlant diseasesPapaPotatoesVigilancia de plagasPest monitoringProcesamiento de datosData processingLate blightUAVRemote sensingMachine learningPlant traitsTizón tardíoPercepción remotaAprendizaje de maquinaRasgos de plantasAeronave remotamente tripuladaExtraction of morphological and spectral features of potato plants from high resolution multispectral imagesExtracción de características morfológicas y espectrales de plantas de papa a partir de imágenes multiespectrales de alta resoluciónTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAn, N., Palmer, C. M., Baker, R. L., Markelz, R. J., Ta, J., Covington, M. F., Maloof, J. N., Welch, S. M., and Weinig, C. (2016). Plant high-throughput phenotyping using photogrammetry and imaging techniques to measure leaf length and rosette area. Computers and Electronics in Agriculture, 127:376 - 394.Araus, J. L. and Cairns, J. E. (2014). Field high-throughput phenotyping: The new crop breeding frontier. Trends in Plant Science, 19(1):52 - 61.Arora, R. K., Sharma, S., and Singh, B. P. (2014). Late blight disease of potato and its management. Potato Journal, 41(1):16 - 40.Bagheri, N. (2020). Application of aerial remote sensing technology for detection of fire blight infected pear trees. Computers and Electronics in Agriculture, 168(September 2019):105147.Batchelor, B. G., editor (2012). Machine Vision Handbook. Springer London, London.Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., and Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observation and Geoinformation, 39:79 - 87.Bock, C. H., Poole, G. H., Parker, P. E., and Gottwald, T. R. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2):59 - 107.Bolger, M., Schwacke, R., Gundlach, H., Schmutzer, T., Chen, J., Arend, D., Oppermann, M., Weise, S., Lange, M., Fiorani, F., Spannagl, M., Scholz, U., Mayer, K., and Usadel, B. (2017). From plant genomes to phenotypes. Journal of Biotechnology.Breiman, L. (2001). Random Forest. Machine Learning, 45:5 - 32.Camilus, K. S. and Govindan, V. K. (2012). A Review on Graph Based Segmentation. I.J. Image, Graphics and Signal Processing, (June):1 - 13.Chang, C. C. and Lin, C. J. (2011). LIBSVM: A Library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(3):1 - 39.Conci, A., Rodrigues, O., and Liatsis, P. (2018). Morphological classifiers. Pattern Recognition, 84:82 - 96.Congedo, L. (2021). Semi-Automatic Classification Plugin.Coppens, F., Wuyts, N., Inz e, D., and Dhondt, S. (2017). Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Current Opinion in Systems Biology, 4:58{63.Drass, M., Berthold, H., M uller-Braun, S., Seel, M., K onig, M., Hof, P., Schneider, J., and Oechsner, M. (2020). Semantic Segmentation with Deep Learning: Detection of Cracks at the Cut Edge of Glass (under review). Glass Structures & Engineering.Duarte-Carvajalino, J. M., Alzate, D. F., Ramirez, A. A., Santa-Sepulveda, J. D., Fajardo-Rojas, A. E., and Soto-Su arez, M. (2018). Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms. Remote Sensing, 10(10).Eisenbeiss, H., Zurich, E. T. H., Eisenbei , H., and Zurich, E. T. H. (2009). UAV photogrammetry. Number 18515.EPPO (2007). General crop inspection procedure for potatoes. Technical report, European and Mediterranean Plant Protection Organization.Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., and Lin, C. J. (2008). LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9(2008):1871 - 1874.Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861 - 874.Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). E cient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2):167 - 181.Forbes, G., Perez, W., and Andrade-Piedra, J. (2014). Field assessment of resistance in potato to Phytophthora infestans, International Cooperators Guide.Franceschini, M. H. D., Bartholomeus, H., van Apeldoorn, D. F., Suomalainen, J., and Kooistra, L. (2019). Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in Potato. Remote Sensing, 11(3).Franke, J. and Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8(3):161 - 172.Gago, J., Douthe, C., Coopman, R. E., Gallego, P. P., Ribas-Carbo, M., Flexas, J., Escalona, J., and Medrano, H. (2015). UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153:9 - 19.Genuer, R., Poggi, J. M., and Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14):2225 - 2236.Ghanem, M. E., Marrou, H., and Sinclair, T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends in Plant Science, 20(3):139 - 144.Gibson-Poole, S., Humphris, S., Toth, I., and Hamilton, A. (2017). Identification of the onset of disease within a potato crop using a UAV equipped with un-modified and modified commercial off-the-shelf digital cameras. Advances in Animal Biosciences, 8(2):812 - 816.Gitelson, A. and Merzlyak, M. N. (1994). Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant Physiology, 143(3):286 - 292.Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3):271 - 282.Glasbey, C. A. (1993). An Analysis of Histogram-Based Thresholding Algorithms.Granier, C. and Vile, D. (2014). Phenotyping and beyond: Modelling the relationships between traits. Current Opinion in Plant Biology, 18(1):96 - 102.Hamuda, E., Glavin, M., and Jones, E. (2016a). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184 - 199.Hamuda, E., Glavin, M., and Jones, E. (2016b). A survey of image processing techniques for plant extraction and segmentation in the field. Computers and Electronics in Agriculture, 125:184 - 199.Hassan, M. A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., Xiao, Y., and He, Z. (2018). A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Science, (October 2017):1 - 9.Hsu, C. W. and Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2):415 - 425.Hu, P., Chapman, S. C., Wang, X., Potgieter, A., Duan, T., Jordan, D., Guo, Y., and Zheng, B. (2018). Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. European Journal of Agronomy, 95(November 2017):24 - 32.Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., and Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, (83):195 - 213.Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3):295 - 309.Hussain, T., Singh, B. P., and Anwar, F. (2014). A quantitative real time PCR based method for the detection of Phytophthora infestans causing late blight of potato, in infested soil. Saudi Journal of Biological Sciences, 21(4):380 - 386.Jiang, Y., Zebarth, B. J., Somers, G. H., Macleod, J. A., and Savard, M. M. (2012). Sustainable potato production: Global case studies.Jiang, Z., Huete, A. R., Didan, K., and Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10):3833 - 3845.John Reader (2009). POTATO. A history of the propitious esculent.Jones, H. G. and Vaughan, R. A. (2010). Remote sensing of vegetation - principles, techniques, and applications. University Press Oxford, United Kingdom, 1 edition.Kamberova, G. and Bajcsy, R. (2006). Sensor Errors and the Uncertainties in Stereo Reconstruction. Technical report, University of Pennsylvania.Kaur, D. and Kaur, Y. (2014). Various Image Segmentation Techniques: A Review. International Journal of Computer Science and Mobile Computing, 3(5):809 - 814.Klemenjak, C., Faustine, A., Makonin, S., and Elmenreich, W. (2019). On metrics to assess the transferability of machine learning models in non-intrusive load monitoring. arXiv.Kuhl, J. C., Zarka, K., Coombs, J., Kirk, W. W., and Douches, D. S. (2007). Late blight resistance of RB Transgenic potato lines. Journal of the American Society for Horticultural Science, 132(6):783 - 789.Kumar, J., Kumar, S., and Pratap, A. (2015). Phenomics in crop plants: Trends, options and limitations.Kung, O. ., Strecha, C., Beyeler, A., Zu erey, J.-C., Floreano, D., Fua, P., and Gervaix, F. (2011). The Accuracy of Automatic Photogrammetric Techniques on Ultra-Light UAV Imagery. Paper presented at: UAV-g 2011 - Unmanned Aerial Vehicle in Geomatics.Lawrence, R., Bunn, A., Powell, S., and Zambon, M. (2004). Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90(3):331 - 336.Lee, Y. H., Wei, C. P., Cheng, T. H., and Yang, C. T. (2012). Nearest-neighbor-based approach to time-series classification. Decision Support Systems, 53(1):207 - 217.Li, B., Xu, X., Han, J., Zhang, L., Bian, C., Jin, L., and Liu, J. (2019). The estimation of crop emergence in potatoes by UAV RGB imagery. Plant Methods, 15(1):1 - 13.Liu, J., Pattey, E., and J ego, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123:347 - 358.Liu, S., Li, L., Gao, W., Zhang, Y., Liu, Y., Wang, S., and Lu, J. (2018a). Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151(June):185 - 195.Liu, T., Li, R., Zhong, X., Jiang, M., Jin, X., Zhou, P., Liu, S., Sun, C., and Guo, W. (2018b). Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology, 252(January):144 - 154.Mahlein, A.-K. (2016a). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2):1 - 11.Mahlein, A.-K. (2016b). Present and Future Trends in Plant Disease Detection. Plant Disease, 100(2):1 - 11.Mamaghani, B. and Salvaggio, C. (2019). Multispectral sensor calibration and characterization for sUAS remote sensing. Sensors (Switzerland), 19(20).Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information.Micasense (2018). Rededge Integration Guide.Minervini, M., Fischbach, A., Scharr, H., and Tsaftaris, S. A. (2016). Finely-grained annotated datasets for image-based plant phenotyping. Pattern Recognition Letters, 81:80 - 89.Mishra, Y., Johansson J ank anp a a, H., Kiss, A. Z., Funk, C., Schr oder, W. P., and Jansson, S. (2012). Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components. BMC Plant Biology, 12.Moore, A. W. (1991). An introductory tutorial on kd-trees, Robotics Institute. Eficient Memory-based Learning for Robot Control, (209):1 - 20.Namugga, P., Sibiya, J., Melis, R., and Barekye, A. (2017). Phenotypic characterisation of potato (Solanum tuberosum) genotypes in Uganda. South African Journal of Plant and Soil, 1862:1 - 8.OECD (1997). Organization for Economic Co-operation and Development. Consensus document on the biology of solanum tubersoum subsp. Tuberosum (potato). Http://Www.Oecd.Org/Science/Biotrack/46815598.Pdf, (8):1 - 38.Omar, L. and Ivrissimtzis, I. (2019). Using theoretical ROC curves for analysing machine learning binary classifiers. Pattern Recognition Letters, 128:447 - 451.Omohundro, S. M. (1989). Five balltree construction algorithms. Science, 51(1):1 - 22.Ose, K., Corpetti, T., and Demagistri, L. (2016). Multispectral Satellite Image Processing. Optical Remote Sensing of Land Surface: Techniques and Methods, pages 58 - 124.Otsu, N. (1979). A Tlreshold Selection Method from Gray-Level Histograms. IEEE transactions on systems, man, and cybernetics, 9(1):62 - 66.Pacilly, F. C., Groot, J. C., Hofstede, G. J., Schaap, B. F., and van Bueren, E. T. (2016). Analysing potato late blight control as a social-ecological system using fuzzy cognitive mapping. Agronomy for Sustainable Development, 36(2).Pepe, M., Fregonese, L., and Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. European Journal of Remote Sensing, 51(1):412 - 435.Pradal, C., Artzet, S., Chopard, J., Dupuis, D., Fournier, C., Mielewczik, M., N egre, V., Neveu, P., Parigot, D., Valduriez, P., and Cohen-Boulakia, S. (2017). InfraPhenoGrid: A scientific workflow infrastructure for plant phenomics on the Grid. Future Generation Computer Systems, 67:341 - 353.Puissant, A., Rougiera, S., and Stumpf, A. (2014). Object-oriented mapping of urban trees using random forestclassifiers. International Journal of Applied Earth Observation and Geoinformation, 26(1):235 - 245.Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and Rigol-Sanchez, J. P. (2012). An assessment of the e ectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1):93 - 104.Rouse J.W., J., Haas, R. H., Schell, J. A., and Deering, D. W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts. In NASA Special Publication, volume 351, page 309.Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., Miklas, P. N., Carter, A. H., Pumphrey, M. O., Knowles, R. R., and Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review.Sankaran, S., Zhou, J., Khot, L. R., Trapp, J. J., Mndolwa, E., and Miklas, P. N. (2018). High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Computers and Electronics in Agriculture, 151(June):84 - 92.Schumann, G. L., D'Arcy, C. J., and Ristaino, J. (2000). Late blight of potato and tomato.Shakoor, N., Lee, S., and Mockler, T. C. (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Current Opinion in Plant Biology, 38:184 - 192.Singh, A., Ganapathysubramanian, B., Singh, A. K., and Sarkar, S. (2016). Machine Learning for High-Throughput Stress Phenotyping in Plants.Sliwka, J., Jakuczun, H., Chmielarz, M., Hara-Skrzypiec, A., Tomczynska, I., Kilian, A., and Zimnoch-Guzowska, E. (2012). A resistance gene against potato late blight originating from Solanum x michoacanum maps to potato chromosome VII. Theoretical and Applied Genetics, 124(2):397406.Speiser, J. L., Miller, M. E., Tooze, J., and Ip, E. (2019). A comparison of random forest variable selection methods for classification prediction modeling. Expert Systems with Applications, 134:93 - 101.Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., and Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88:297 - 307.Strobl, C., Boulesteix, A. L., Zeileis, A., and Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8.Struik, P. C. (2010). Can Physiology Help Us to Combat Late Blight in Potato? Potato Research, 53(4):277 - 287.Sugiura, R., Tsuda, S., Tamiya, S., Itoh, A., Nishiwaki, K., Murakami, N., Shibuya, Y., Hirafuji, M., and Nuske, S. (2016). Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosystems Engineering, 148:1 - 10.Tardieu, F., Cabrera-Bosquet, L., Pridmore, T., and Bennett, M. (2017). Plant Phenomics, From Sensors to Knowledge. Current Biology, 27(15):R770 - R783.Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics.Tokekar, P., Hook, J. V., Mulla, D., and Isler, V. (2016). Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture. IEEE Transactions on Robotics, 32(6):1498 - 1511.Van Der Walt, S., Sch onberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T. (2014). Scikit-image: Image processing in python. PeerJ, 2014(1):1 - 18.Varoquaux, G., Buitinck, L., Louppe, G., Grisel, O., Pedregosa, F., and Mueller, A. (2015). Scikit-learn. GetMobile: Mobile Computing and Communications, 19(1):29 - 33.White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, R. L., Strand, R. J., Thorp, K. R., Wall, G. W., and Wang, G. (2012). Field-based phenomics for plant genetics research. Field Crops Research, 133:101 - 112.Wiik, L. (2014). Potato Late Blight and Tuber Yield: Results from 30 Years of Field Trials. Potato Research, 57(1):77 - 98.Woebbecke, D. M., Meyer, G. E., Von Bargen, K., and Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1):259 - 269.Xu, H., Zhang, H., He, W., and Zhang, L. (2019). Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification. Neurocomputing, 360:138 - 150.Zhang, C., Chen, W., and Sankaran, S. (2019). High-throughput field phenotyping of Ascochyta blight disease severity in chickpea. Crop Protection, 125:104885.Zhang, F. and Yang, X. (2020). Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sensing of Environment, 251(January):112105.Zhao, C. J. and Jiang, G. Q. (2010). Baseline detection and matching to vision-based navigation of agricultural robot. 2010 International Conference on Wavelet Analysis and Pattern Recognition, ICWAPR 2010, (July):44 - 48.Zhao, H., Yang, C., Guo, W., Zhang, L., and Zhang, D. (2020). Automatic estimation of crop disease severity levels based on vegetation index normalization. Remote Sensing, 12(12):1 - 17.Zhou, J., Pavek, M. J., Shelton, S. C., Holden, Z. J., and Sankaran, S. (2016). Aerial multispectral imaging for crop hail damage assessment in potato. Computers and Electronics in Agriculture, 127:406 - 412.EspecializadaORIGINALMsC_Thesis_Document_RodriguezJorge.pdfMsC_Thesis_Document_RodriguezJorge.pdfTesis de Maestría en Geomáticaapplication/pdf39235970https://repositorio.unal.edu.co/bitstream/unal/80029/2/MsC_Thesis_Document_RodriguezJorge.pdf27e6b77109f6433488bfd887b318ca27MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80029/4/license.txtcccfe52f796b7c63423298c2d3365fc6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://repositorio.unal.edu.co/bitstream/unal/80029/5/license_rdf84a900c9dd4b2a10095a94649e1ce116MD55THUMBNAILMsC_Thesis_Document_RodriguezJorge.pdf.jpgMsC_Thesis_Document_RodriguezJorge.pdf.jpgGenerated Thumbnailimage/jpeg3350https://repositorio.unal.edu.co/bitstream/unal/80029/6/MsC_Thesis_Document_RodriguezJorge.pdf.jpg5a50f1a8ce52d6c2bf1f29d92581d59fMD56unal/80029oai:repositorio.unal.edu.co:unal/800292024-07-28 01:12:40.782Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |