On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces
We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + βHuxx + (Hux - uxx) = 0, where x ∈ T, t 0, η 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s - ½. We...
- Autores:
-
Pastrán, Ricardo
Riaño, Oscar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66454
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66454
http://bdigital.unal.edu.co/67482/
- Palabra clave:
- 51 Matemáticas / Mathematics
Cauchy problem
local and global well-posedness
Benjamin-Ono equation
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + βHuxx + (Hux - uxx) = 0, where x ∈ T, t 0, η 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s - ½. We also prove some ill-posedness issues when s -1. |
---|