On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces

We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + βHuxx + (Hux - uxx) = 0, where x ∈ T, t 0, η 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s - ½. We...

Full description

Autores:
Pastrán, Ricardo
Riaño, Oscar
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66454
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66454
http://bdigital.unal.edu.co/67482/
Palabra clave:
51 Matemáticas / Mathematics
Cauchy problem
local and global well-posedness
Benjamin-Ono equation
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + βHuxx + (Hux - uxx) = 0, where x ∈ T, t 0, η 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s - ½. We also prove some ill-posedness issues when s -1.