Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva
Los derrames de hidrocarburos en fuentes de agua son eventos de alta afectación ambiental, lo que conduce al desarrollo de métodos que faciliten la respuesta ante estas eventualidades, donde es prioritario maximizar la selectividad y minimizar los tiempos de recolección. Los materiales porosos con s...
- Autores:
-
Álvarez Gil, Laura Carolina
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86184
- Palabra clave:
- 620 - Ingeniería y operaciones afines
Derrame de petróleo
Materiales porosos
Separación (tecnología)
Metales - Propiedades mecánicas
Materiales celulares
Tratamiento superficial
Saturación
Presión capilar
Aluminio
Mezclas agua/aceite
Cellular materials
Surface treatment
Saturation
Capillary pressure
Flow capacity
Aluminum
Water/hydrocarbons mixtures
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_104980e9929ca561406545d49b448d74 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86184 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
dc.title.translated.eng.fl_str_mv |
Separation of water/hydrocarbon mixtures from cellular metals with selective surface affinity |
title |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
spellingShingle |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva 620 - Ingeniería y operaciones afines Derrame de petróleo Materiales porosos Separación (tecnología) Metales - Propiedades mecánicas Materiales celulares Tratamiento superficial Saturación Presión capilar Aluminio Mezclas agua/aceite Cellular materials Surface treatment Saturation Capillary pressure Flow capacity Aluminum Water/hydrocarbons mixtures |
title_short |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
title_full |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
title_fullStr |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
title_full_unstemmed |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
title_sort |
Separación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectiva |
dc.creator.fl_str_mv |
Álvarez Gil, Laura Carolina |
dc.contributor.advisor.none.fl_str_mv |
Fernández Morales, Gloria Patricia Ramírez Patiño, Juan Fernando |
dc.contributor.author.none.fl_str_mv |
Álvarez Gil, Laura Carolina |
dc.contributor.researchgroup.spa.fl_str_mv |
GIBIR |
dc.contributor.orcid.spa.fl_str_mv |
Álvarez Gil, Laura Carolina [0000000182196366] |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001637449 |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines |
topic |
620 - Ingeniería y operaciones afines Derrame de petróleo Materiales porosos Separación (tecnología) Metales - Propiedades mecánicas Materiales celulares Tratamiento superficial Saturación Presión capilar Aluminio Mezclas agua/aceite Cellular materials Surface treatment Saturation Capillary pressure Flow capacity Aluminum Water/hydrocarbons mixtures |
dc.subject.lemb.none.fl_str_mv |
Derrame de petróleo Materiales porosos Separación (tecnología) Metales - Propiedades mecánicas |
dc.subject.proposal.spa.fl_str_mv |
Materiales celulares Tratamiento superficial Saturación Presión capilar Aluminio Mezclas agua/aceite |
dc.subject.proposal.eng.fl_str_mv |
Cellular materials Surface treatment Saturation Capillary pressure Flow capacity Aluminum Water/hydrocarbons mixtures |
description |
Los derrames de hidrocarburos en fuentes de agua son eventos de alta afectación ambiental, lo que conduce al desarrollo de métodos que faciliten la respuesta ante estas eventualidades, donde es prioritario maximizar la selectividad y minimizar los tiempos de recolección. Los materiales porosos con superficie modificada se han presentado como una alternativa para la atención de derrames de hidrocarburos en fuentes de agua, debido a su aplicabilidad como barrera selectiva. En esta tesis se desarrolló una metodología para el uso de espumas de aluminio obtenidas por infiltración de moldes solubles y su alteración superficial por inmersión en solución de ácido dodecanoico, obteniendo un material con características hidrófobas que favorecen su aplicación en procesos de separación de mezclas agua/hidrocarburos. Se obtuvieron probetas de tamaños de poro de entre 425 y 1200 μm, las cuales fueron empleadas en un proceso de separación dinámica de agua/aceite por succión. El material mostró repelencia por el agua y eficiencias de separación superiores al 98%, posicionando al aluminio dentro de los materiales de alto potencial de uso en la obtención de barreras selectivas de fluidos. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-08-04 |
dc.date.accessioned.none.fl_str_mv |
2024-05-29T20:53:39Z |
dc.date.available.none.fl_str_mv |
2024-05-29T20:53:39Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86184 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.repo.none.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86184 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.relation.references.spa.fl_str_mv |
M. Lombo, “Una tragedia silenciosa,” ACP Hidrocarburos, vol. 14, pp. 87–89, 2015. P. Scholz D. K., Kucklick, J. H., Pond, R., Walker, A. H.., Bostrom, A., and Fischbeck, “Fate of spilled oil in marine water,” Health and Environment Science Department, API, vol. 4691. pp. 1–57, 1999. Y. Murakami, S. I. Kitamura, K. Nakayama, S. Matsuoka, and H. Sakaguchi, “Effects of heavy oil in the developing spotted halibut, Verasper variegatus,” Mar. Pollut. Bull., vol. 57, no. 6–12, pp. 524–528, 2008. I. The International Tanker Owner Pollution Federation Limited, “Efectos de la contaminación por hidrocarburos en el medio marino,” in Documento de información técnica, 2015. A. D. Venosa and X. Zhu, “Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 163–178, 2003. V. Broje and A. A. Keller, “Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery,” J. Colloid Interface Sci., vol. 305, no. 2, pp. 286–292, 2007. L. H. Carvajal Ortiz and F. Jara Gutierrez, “Aspectos técnicos sobre derrames de crudo,” 2005. I. The International Tanker Owner Pollution Federation Limited, “Uso de materiales adsorventes en la respuesta a derrames de hidrocarburos,” Doc. Inf. técnica, vol. 8, pp. 1, 12, 2011. I. The International Tanker Owner Pollution Federation Limited, “Uso de barreras en la respuestaa a la contaminación por hidrocarburos,” Doc. Inf. técnica, vol. 3, pp. 1, 12, 2011. S. Yavari, A. Malakahmad, and N. B. Sapari, “A Review on Phytoremediation of Crude Oil Spills,” Water, Air, Soil Pollut., vol. 226, no. 8, p. 279, 2015. S. A. Zengel, J. Michel, and J. A. Dahlin, “Environmental effects of in situ burning of oil spills in inland and upland habitats,” Spill Sci. Technol. Bull., vol. 8, no. 4, pp. 373–377, 2003. I. The International Tanker Owner Pollution Federation Limited, “Uso de skimmers en la respuesta a la contaminanción por hidrocarburos,” Doc. Inf. técnica, vol. 5, pp. 1, 16, 2011. I. The International Tanker Owner Pollution Federation Limited, “Use of Dispersants to Treat Oil Spills,” Impact PR Des. Ltd., vol. 4, p. 12, 2011. M. Zheng, M. Ahuja, D. Bhattacharya, T. P. Clement, J. S. Hayworth, and M. Dhanasekaran, “Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500,” Life Sci., vol. 95, no. 2, pp. 108–117, 2014. A. M. Chakrabarty, “Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof,” US4259444 A, 1981. R. Boopathy, “Factors limiting bioremediation technologies,” Bioresour. Technol., vol. 74, no. 1, pp. 63–67, 2000. X. Qi, Z. Jia, Y. Yang, and H. liu, “Sorption Capacity of New Type Oil Absorption Felt for Potential Application to Ocean Oil Spill,” Procedia Environ. Sci., vol. 10, pp. 849–853, 2011. R. Gao et al., “Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture,” Appl. Surf. Sci., vol. 289, pp. 417–424, 2014. Y. Hu et al., “Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation,” Chem. Eng. J., vol. 322, pp. 157–166, 2017. M. Patowary, R. Ananthakrishnan, and K. Pathak, “Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water,” Appl. Surf. Sci., vol. 320, pp. 294–300, 2014. Q. Zhu and Q. Pan, “Mussel-Inspired Direct Immobilization of Nanoparticles and Application for Oil À Water Separation,” ACS Nano, vol. 8, no. 2, pp. 1402–1409, 2014. F. Beshkar, H. Khojasteh, and M. Salavati-niasari, “Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil / water separation,” J. Colloid Interface Sci., vol. 497, pp. 57–65, 2017. A. Fragouli, D; Calcagnile, P; Anyfantis, G.C; Cingolani, R; Bayer, I; Athanassiou, “Selective separation of oil from water via superhydrophobic magnetic foams,” in Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech, 2011, pp. 387–390. X. Zhang, Z. Li, K. Liu, and L. Jiang, “Bioinspired Multifunctional Foam with Self-Cleaning and Oil / Water Separation,” Adv. Funct. Mater., vol. 23, no. 22, pp. 1–6, 2013. Q. Liu, H.-D; Gu, B; Yuan, W.-F; He, “Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal,” Mater. Res. Express, vol. 5, no. 2, 2018. B. Wang, Y; Zhu, Y; Yang, C; Liu, J; Jiang, W; Liang, “A Facile Two-Step Strategy for the Construction of a Mechanically Stable 3D Superhydrophobic Structure for Continuous Oil-Water Separation,” Appl. Mater. Interfaces, vol. 451, pp. 24149–24156, 2018. Y. Zang, D; Wu, C; Zhu, R; Zhang, W; Yu, X; Zhang, “Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water,” Chem. Commun., vol. 49, no. 75, pp. 8410–8412, 2013. J. Zhang, K. Ji, J. Chen, Y. Ding, and Z. Dai, “A three-dimensional porous metal foam with selective-wettability for oil – water separation,” J. Mater. Sci., vol. 50, no. 16, pp. 5371–5377, 2015. Y. Wang, Y; Lin, F; Peng, J., Dong, Y; Li, W; Huang, “A robust bilayer nanofilm fabricated on copper foam for oil-water separation with improved performances,” J. Mater., vol. 26, pp. 10294–10303, 2016. H. Zhu, L. Gao, X. Yu, C. Liang, and Y. Zhang, “Durability evaluation of superhydrophobic copper foams for long-term oil-water separation,” Appl. Surf. Sci., vol. 407, pp. 145–155, 2017. Y. Song et al., “Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation,” J. Bionic Eng., vol. 14, no. 3, pp. 497–505, 2017. W. Zhou, G. Li, L. Wang, Z. Chen, and Y. Lin, “A Facile Method for the Fabrication of a Superhydrophobic polydopamine-coated copper foam for oil/water separation,” Appl. Surf. Sci., vol. 413, pp. 140–148, 2017. J. Rong et al., “Design and preparation of efficient , stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil – water separation,” Mater. Des., vol. 142, pp. 83–92, 2018. L. Liu, Y; Zhang, K; Son, Y., Zhang, W; Spindler, L.M; Han, Z; Ren, “A smart switchable bioinspired copper foam responding to different pH droplets for reversible oil-water separation,” J. Mater. Chem., vol. 6, pp. 2603–2612, 2017. X. Jin et al., “Bio-Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions,” Adv. Funct. Mater., vol. 24, no. 18, pp. 2721–2726, 2014. E. Wang, H. Wang, Z. Liu, and R. Yuan, “One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil – water separation,” J. Mater. Sci., vol. 50, no. 13, pp. 4707–4716, 2015. Q. Wang et al., “Synthesis of vertically aligned composite microcone membrane fi lter for water / oil separation,” Mater. Des., vol. 111, pp. 9–16, 2016. X. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional ( 3D ) nickel foam for oil / water separation,” J. Mater. Sci., vol. 52, no. 4, pp. 2169–2179, 2016. C. Zhang, Y. Li, N. Bai, C. Tan, P. Cai, and Q. Li, “Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption,” Mater. Sci. Eng. B, vol. 224, pp. 117–124, 2017. Z. Xu, K. Miyazaki, and T. Hori, “Dopamine-Induced Superhydrophobic Melamine Foam for Oil / Water Separation,” Adv. Mater. Interfaces, vol. 2, no. 15, pp. 1–5, 2015. R. Du et al., “Microscopic Dimensions Engineering : Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil / Water Separation,” Advaced Mater., vol. 28, pp. 936–942, 2016. J. Du, R; Feng, Q; Ren, H; Zhao, Q; Gao, X; Zhang, “Hybrid-dimensional magnetic microstructure based 3D substrates for remote controllable and ultrafast water remediation,” J. Mater. Chem. A, vol. 4, no. 3, pp. 938–943, 2015. A. Stolz et al., “Melamine-derived carbon sponges for oil-water separation,” Carbon N. Y., vol. 107, pp. 198–208, 2016. Y. Liu, J. H. Xin, and C. Choi, “Cotton Fabrics with Single-Faced Superhydrophobicity,” Langmuir, vol. 28, no. 50, pp. 17426–17434, 2012. W. Yu, L; Hao, G; Zhou, S; Jiang, “Durable and modified foam for cleanup of oil contamination and separation of oil-water mixtures,” RSC Adv., vol. 6, no. 29, pp. 24773–24779, 2016. S. Yang, L. Chen, C. Wang, M. Rana, and P. Ma, “Surface roughness induced superhydrophobicity of graphene foam for oil-water separation,” J. Colloid Interface Sci., vol. 508, pp. 254–262, 2017. T. Minari, X. Liu, H. Liu, and J. Chen, “Recyclable Oil-Absorption Foams via Secondary Phase Separation,” J. Colloid Interface Sci., vol. 525, pp. 11–20, 2018. P. Wu, S. Zhang, H. Yang, Y. Zhu, and J. Chen, “Preparation of Emulsion-Templated Fluorinated Polymers and Their Application in Oil / Water Separation,” J. Polym. Sci. Part A Polym. Chem., vol. 56, no. 14, pp. 1508–1515, 2018. H. Liu and Y. Kang, “Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil / water separation,” Appl. Surf. Sci., vol. 451, pp. 223–231, 2018. S. Khosravi, Maryam; Azizian, “Fabrication of an Oil Spill Collector Package by Using Polyurethane Foam Wrapped with Superhydrophobic ZnO Microrods/Carbon Cloth,” Chempluschem, vol. 83, no. 5, pp. 455–462, 2018. Q. Chen, N; Pan, “Versatile fabrication of ultralight magnetic foams and application for oil-water separation,” ACS Nano, vol. 7, no. 8, pp. 6875–6883, 2013. “Scopus - Analyze search results.” [Online]. Available: https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=e002811e01c9d86aef98c548cd67d439&origin=resultslist&src=s&s=TITLE-ABS-KEY%28oil+water+separation+superhydrophobicity+porous%29&sort=plf-f&sdt=b&sot=b&sl=62&count=76&analyzeResults=Analyze+re. [Accessed: 08-Feb-2019]. F. Montoro, Marcos A; Franco, “TRANSPORTE DE FLUIDOS NO MISCIBLES EN MEDIOS POROSOS : PERMEABILIDAD RELATIVA.” San Juan, Argentina, 2006. M. Paris, Fundamentos de Ingenieria de Yacimientos, 1°. Maracaibo, 2009. D. Tiab and E. C. Donaldson, “Porosity and Permeability,” in Petrophysics, 2012, pp. 85–219. J. S. Buckley, J. Edwards, and E. Fordham, “Los fundamentos de la mojabilidad,” pp. 48–67. A. Lafuma and D. Quéré, “Superhydrophobic states.,” Nat. Mater., vol. 2, no. 7, pp. 457–60, 2003 D. Tiab and E. C. Donaldson, “Wettability,” in Petrophysics, 3°., Oxford, 2012, pp. 371–418. Y. Zhu, H. Hu, S. Sun, and G. Ding, “Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 1 – Two-phase flow pattern visualization,” Int. J. Heat Mass Transf., vol. 91, pp. 446–453, Dec. 2015. S. T. Kolaczkowski, S. Awdry, T. Smith, D. Thomas, L. Torkuhl, and R. Kolvenbach, “Potential for metal foams to act as structured catalyst supports in fixed-bed reactors,” Catal. Today, vol. 273, pp. 221–233, 2016. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. . Wadley, “Metal foams: a design guide,” Mater. Des., vol. 23, no. 1, p. 119, 2002. J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci., vol. 46, pp. 559–632, 2001. P. Fernández, G. Torres V, J. Cruz R, S. Gaviria G, and E. Ochoa, “Fabrication of aluminium base cellular metals,” Sci. Tech., no. 36, pp. 677–682, 2007. R. Goodall, Porous metals: foams and sponges. 2013. K. A. Yasakau, M. L. Zheludkevich, and M. G. S. Ferreira, Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. Elsevier Ltd., 2018. A. Calle Fernandez, “Espumas Pulvimetalurgicas De Aluminio,” p. 136, 2012. J. C. Elliott, Madison, and Wis, “Method of production metal foams,” US2751289, 1956. B. C. Allen and M. W. Mote, “Method of Making Foamed Metal-Us 3087807,” 1963. J. W. Ayers, “Method of producing a lightweight foamed metal,” US, 1962. P. Fernández, L. J. Cruz, and J. Coleto, “Manufacturing processes of cellular metals. Part I: Liquid route processes,” Rev. Metal., vol. 44, no. 6, pp. 540–555, 2008. Y. Yamada et al., “Processing of cellular magnesium materials,” Adv Eng Mater, vol. 2, no. 4, pp. 184–187, 2000. P. Fernández, L. J. Cruz, and J. Coleto, “Procesos de fabricación de metales celulares. Parte II: Vía sólida, deposición de metales, otros procesos,” Rev. Metal., vol. 45, no. 2, pp. 124–142, 2009. A. Fernández, “Estudio de la Hidrofobicidad y Autolimpieza en Materiales con Nanotratamientos Superficiales,” Universitat Autònoma de Barcelona, 2013. L. Aisa, A. Navarro, J. L. Fuertes, C. O. Dopaz, and J. Gimenez, Coal/Water mixture (CWM) Preparation, Stability, Rheology and Pumping. N. J. Shirtcliffe, G. McHale, S. Atherton, and M. I. Newton, “An introduction to superhydrophobicity,” Adv. Colloid Interface Sci., vol. 161, no. 1–2, pp. 124–138, 2010. S. Shirtcliffe, Neil; Comanns, Philipp; Hamlett, Christopher; Roach, Paul; Atherton, The Effect of Roughness Geometry on Superhydrophobicity and Related Phenomena, 2 nd. Elsevier Ltd., 2018. J. Ruiz-cabello, “Efecto de la rugosidad y heterogeneidad superficial en fenómenos de mojado,” Universidad de Granada, 2009. P. Liu, Guodong; Zhang, Meiyun; Ridway, Cathy; Ganem, “Pore wall rugosity - The role of extended wetting contact line length during spontaneous liquid imbibition in porous media.pdf,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 443, pp. 286–295, 2014. B. Dehghan-Manshadi, H. Mahmudi, A. Abedian, and R. Mahmudi, “A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method,” Mater. Des., vol. 28, no. 1, pp. 8–15, 2007. J. Sáenz, “Crudo derramado por atentados a Caño Limón-Coveñas cuesta más de US$277 millones | ELESPECTADOR.COM,” 2018. [Online]. Available: https://www.elespectador.com/economia/crudo-derramado-por-atentados-cano-limon-covenas-cuesta-mas-de-us277-millones-articulo-820320. [Accessed: 18-Mar-2019]. Ecopetrol, “Transporte,” 2014. [Online]. Available: https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/nuestra-empresa/quienes-somos/lo-que-hacemos/transporte. [Accessed: 18-Mar-2019]. D. C. Ibañez, “Optimización del tratamiento químico del fluido de producción en una facilidad mediante la simulación y análisis de la distribución de flujos.,” p. 98, 2009. P. Ahmed, Tarek; McKinney, Advanced Reservoir Engineering, vol. 53, no. 9. London, 2005. C. Macosko, Rheology: Principles, Measurements and Applications, vol. 86, no. 3. 1996. D. Tiab and E. C. Donaldson, “Porosity and Permeability,” Petrophysics, pp. 87–202, 2007. A. Y. Dandekar, “Petroleum Reservoir Rock and Fluid Properties (2nd Edition),” Taylor Fr., 2013. E. Lazzarni, “Solubilidad - Las Soluciones Salinas.” [Online]. Available: https://sites.google.com/site/261lassolucionessalinas/lo-nuevo/solubilidad. [Accessed: 19-Mar-2019]. J. M. Martín Martínez, Adsorción física de gases y vapores por carbones. 1990. [89] Dataphysics, OCA product series. C. A. Franco, F. B. Cortés, and N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue,” J. Colloid Interface Sci., vol. 425, pp. 168–177, 2014. C. A. Franco, F. B. Cortés, and N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue,” J. Colloid Interface Sci., vol. 425, pp. 168–177, 2014. A. Varshney, P; Lomga, J; Gupta, P; Mohapatra, S; Kumar, “Durable and regenerable superhydropobic coatins for aluminium surfaces with excellent self-cleaning and anti-fogging properties,” Tribol. Int., vol. 119, pp. 38–44, 2018. A. Lomba, J; Varshney, P; Nanda, D; Satapathy, M; Mohapatra, S; Kumar, “Fabrication of durable and regenerable superhydrophobic coatings with excellent self cleaning and anti fogging properties for aluminium surfaces.pdf,” J. Alloys Compd., vol. 702, pp. 161–170, 2017. D. Zhang, J. Creek, A. J. Jamaluddin, A. G. Marshall, R. P. Rodgers, and O. C. Mullins, “Los asfaltenos : Problemáticos pero ricos en potencial,” Oilf. Rev., pp. 24–47, 2007. M. D. Lobato, F. Gámez, S. Lago, and J. M. Pedrosa, “The influence of the polarity of fractionated asphaltenes on their Langmuir-film properties,” Fuel, vol. 200, pp. 162–170, 2017. B. Bienfait and P. Ertl, “JSME : a free molecule editor in JavaScript,” J. Cheminform., vol. 5, no. 24, pp. 1–6, 2013. D. Padilla and K. Watt, “Precipitación de asfaltenos : Técnicas de predicción y control Asphaltene precipitation : Prediction and Control Techniques,” 2012. O. L. Mora, “Ácido láurico : componente bioactivo del aceite de palmiste,” vol. 24, no. 1, pp. 79–83, 2003. “Químicas: El Grupo Carboxilo.” [Online]. Available: https://www.quimicas.net/2015/05/el-grupo-carboxilo.html. [Accessed: 27-Feb-2019] H. Hu, Z. Lai, G. Ding, and D. Zhuang, “Experimental investigation on water drainage characteristics of open-cell metal foams with different wettabilities,” vol. 79, pp. 101–113, 2017. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
118 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Nivel Nacional |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86184/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86184/2/11284421182019.pdf https://repositorio.unal.edu.co/bitstream/unal/86184/3/11284421182019.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 36189b6cae51022c22e6c5cdb7c470f7 4be1774c8bc91b9cfeac14ff7891f29e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090032116400128 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fernández Morales, Gloria Patriciaa6f63794a7b958f715b081b7b867201cRamírez Patiño, Juan Fernando069795e173fc573dbe842cf4713e1ddeÁlvarez Gil, Laura Carolinaa7b5b4b2f2c91a3139ad2b19fdb3aea6GIBIRÁlvarez Gil, Laura Carolina [0000000182196366]https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00016374492024-05-29T20:53:39Z2024-05-29T20:53:39Z2019-08-04https://repositorio.unal.edu.co/handle/unal/86184Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Los derrames de hidrocarburos en fuentes de agua son eventos de alta afectación ambiental, lo que conduce al desarrollo de métodos que faciliten la respuesta ante estas eventualidades, donde es prioritario maximizar la selectividad y minimizar los tiempos de recolección. Los materiales porosos con superficie modificada se han presentado como una alternativa para la atención de derrames de hidrocarburos en fuentes de agua, debido a su aplicabilidad como barrera selectiva. En esta tesis se desarrolló una metodología para el uso de espumas de aluminio obtenidas por infiltración de moldes solubles y su alteración superficial por inmersión en solución de ácido dodecanoico, obteniendo un material con características hidrófobas que favorecen su aplicación en procesos de separación de mezclas agua/hidrocarburos. Se obtuvieron probetas de tamaños de poro de entre 425 y 1200 μm, las cuales fueron empleadas en un proceso de separación dinámica de agua/aceite por succión. El material mostró repelencia por el agua y eficiencias de separación superiores al 98%, posicionando al aluminio dentro de los materiales de alto potencial de uso en la obtención de barreras selectivas de fluidos.Los derrames de hidrocarburos en fuentes de agua son eventos de alta afectación ambiental, lo que conduce al desarrollo de métodos que faciliten la respuesta ante estas eventualidades, donde es prioritario maximizar la selectividad y minimizar los tiempos de recolección. Los materiales porosos con superficie modificada se han presentado como una alternativa para la atención de derrames de hidrocarburos en fuentes de agua, debido a su aplicabilidad como barrera selectiva. En esta tesis se desarrolló una metodología para el uso de espumas de aluminio obtenidas por infiltración de moldes solubles y su alteración superficial por inmersión en solución de ácido dodecanoico, obteniendo un material con características hidrófobas que favorecen su aplicación en procesos de separación de mezclas agua/hidrocarburos. Se obtuvieron probetas de tamaños de poro de entre 425 y 1200 μm, las cuales fueron empleadas en un proceso de separación dinámica de agua/aceite por succión. El material mostró repelencia por el agua y eficiencias de separación superiores al 98%, posicionando al aluminio dentro de los materiales de alto potencial de uso en la obtención de barreras selectivas de fluidos. (tomado de la fuente)MaestríaMagíster en Ingeniería MecánicaÁrea Curricular de Ingeniería Mecánica118 páginasapplication/pdfUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería MecánicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Nivel Nacional620 - Ingeniería y operaciones afinesDerrame de petróleoMateriales porososSeparación (tecnología)Metales - Propiedades mecánicasMateriales celularesTratamiento superficialSaturaciónPresión capilarAluminioMezclas agua/aceiteCellular materialsSurface treatmentSaturationCapillary pressureFlow capacityAluminumWater/hydrocarbons mixturesSeparación de mezclas agua/hidrocarburos a partir de metales celulares con afinidad superficial selectivaSeparation of water/hydrocarbon mixtures from cellular metals with selective surface affinityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMM. Lombo, “Una tragedia silenciosa,” ACP Hidrocarburos, vol. 14, pp. 87–89, 2015.P. Scholz D. K., Kucklick, J. H., Pond, R., Walker, A. H.., Bostrom, A., and Fischbeck, “Fate of spilled oil in marine water,” Health and Environment Science Department, API, vol. 4691. pp. 1–57, 1999.Y. Murakami, S. I. Kitamura, K. Nakayama, S. Matsuoka, and H. Sakaguchi, “Effects of heavy oil in the developing spotted halibut, Verasper variegatus,” Mar. Pollut. Bull., vol. 57, no. 6–12, pp. 524–528, 2008.I. The International Tanker Owner Pollution Federation Limited, “Efectos de la contaminación por hidrocarburos en el medio marino,” in Documento de información técnica, 2015.A. D. Venosa and X. Zhu, “Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands,” Spill Sci. Technol. Bull., vol. 8, no. 2, pp. 163–178, 2003.V. Broje and A. A. Keller, “Interfacial interactions between hydrocarbon liquids and solid surfaces used in mechanical oil spill recovery,” J. Colloid Interface Sci., vol. 305, no. 2, pp. 286–292, 2007.L. H. Carvajal Ortiz and F. Jara Gutierrez, “Aspectos técnicos sobre derrames de crudo,” 2005.I. The International Tanker Owner Pollution Federation Limited, “Uso de materiales adsorventes en la respuesta a derrames de hidrocarburos,” Doc. Inf. técnica, vol. 8, pp. 1, 12, 2011.I. The International Tanker Owner Pollution Federation Limited, “Uso de barreras en la respuestaa a la contaminación por hidrocarburos,” Doc. Inf. técnica, vol. 3, pp. 1, 12, 2011.S. Yavari, A. Malakahmad, and N. B. Sapari, “A Review on Phytoremediation of Crude Oil Spills,” Water, Air, Soil Pollut., vol. 226, no. 8, p. 279, 2015.S. A. Zengel, J. Michel, and J. A. Dahlin, “Environmental effects of in situ burning of oil spills in inland and upland habitats,” Spill Sci. Technol. Bull., vol. 8, no. 4, pp. 373–377, 2003.I. The International Tanker Owner Pollution Federation Limited, “Uso de skimmers en la respuesta a la contaminanción por hidrocarburos,” Doc. Inf. técnica, vol. 5, pp. 1, 16, 2011.I. The International Tanker Owner Pollution Federation Limited, “Use of Dispersants to Treat Oil Spills,” Impact PR Des. Ltd., vol. 4, p. 12, 2011.M. Zheng, M. Ahuja, D. Bhattacharya, T. P. Clement, J. S. Hayworth, and M. Dhanasekaran, “Evaluation of differential cytotoxic effects of the oil spill dispersant Corexit 9500,” Life Sci., vol. 95, no. 2, pp. 108–117, 2014.A. M. Chakrabarty, “Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof,” US4259444 A, 1981.R. Boopathy, “Factors limiting bioremediation technologies,” Bioresour. Technol., vol. 74, no. 1, pp. 63–67, 2000.X. Qi, Z. Jia, Y. Yang, and H. liu, “Sorption Capacity of New Type Oil Absorption Felt for Potential Application to Ocean Oil Spill,” Procedia Environ. Sci., vol. 10, pp. 849–853, 2011.R. Gao et al., “Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture,” Appl. Surf. Sci., vol. 289, pp. 417–424, 2014.Y. Hu et al., “Facile preparation of superhydrophobic metal foam for durable and high efficient continuous oil-water separation,” Chem. Eng. J., vol. 322, pp. 157–166, 2017.M. Patowary, R. Ananthakrishnan, and K. Pathak, “Chemical modification of hygroscopic magnesium carbonate into superhydrophobic and oleophilic sorbent suitable for removal of oil spill in water,” Appl. Surf. Sci., vol. 320, pp. 294–300, 2014.Q. Zhu and Q. Pan, “Mussel-Inspired Direct Immobilization of Nanoparticles and Application for Oil À Water Separation,” ACS Nano, vol. 8, no. 2, pp. 1402–1409, 2014.F. Beshkar, H. Khojasteh, and M. Salavati-niasari, “Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil / water separation,” J. Colloid Interface Sci., vol. 497, pp. 57–65, 2017.A. Fragouli, D; Calcagnile, P; Anyfantis, G.C; Cingolani, R; Bayer, I; Athanassiou, “Selective separation of oil from water via superhydrophobic magnetic foams,” in Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech, 2011, pp. 387–390.X. Zhang, Z. Li, K. Liu, and L. Jiang, “Bioinspired Multifunctional Foam with Self-Cleaning and Oil / Water Separation,” Adv. Funct. Mater., vol. 23, no. 22, pp. 1–6, 2013.Q. Liu, H.-D; Gu, B; Yuan, W.-F; He, “Fabrication of a superhydrophobic polyurethane foam and its application for continuous oil removal,” Mater. Res. Express, vol. 5, no. 2, 2018.B. Wang, Y; Zhu, Y; Yang, C; Liu, J; Jiang, W; Liang, “A Facile Two-Step Strategy for the Construction of a Mechanically Stable 3D Superhydrophobic Structure for Continuous Oil-Water Separation,” Appl. Mater. Interfaces, vol. 451, pp. 24149–24156, 2018.Y. Zang, D; Wu, C; Zhu, R; Zhang, W; Yu, X; Zhang, “Porous copper surfaces with improved superhydrophobicity under oil and their application in oil separation and capture from water,” Chem. Commun., vol. 49, no. 75, pp. 8410–8412, 2013.J. Zhang, K. Ji, J. Chen, Y. Ding, and Z. Dai, “A three-dimensional porous metal foam with selective-wettability for oil – water separation,” J. Mater. Sci., vol. 50, no. 16, pp. 5371–5377, 2015.Y. Wang, Y; Lin, F; Peng, J., Dong, Y; Li, W; Huang, “A robust bilayer nanofilm fabricated on copper foam for oil-water separation with improved performances,” J. Mater., vol. 26, pp. 10294–10303, 2016.H. Zhu, L. Gao, X. Yu, C. Liang, and Y. Zhang, “Durability evaluation of superhydrophobic copper foams for long-term oil-water separation,” Appl. Surf. Sci., vol. 407, pp. 145–155, 2017.Y. Song et al., “Fabrication of Bioinspired Structured Superhydrophobic and Superoleophilic Copper Mesh for Efficient Oil-water Separation,” J. Bionic Eng., vol. 14, no. 3, pp. 497–505, 2017.W. Zhou, G. Li, L. Wang, Z. Chen, and Y. Lin, “A Facile Method for the Fabrication of a Superhydrophobic polydopamine-coated copper foam for oil/water separation,” Appl. Surf. Sci., vol. 413, pp. 140–148, 2017.J. Rong et al., “Design and preparation of efficient , stable and superhydrophobic copper foam membrane for selective oil absorption and consecutive oil – water separation,” Mater. Des., vol. 142, pp. 83–92, 2018.L. Liu, Y; Zhang, K; Son, Y., Zhang, W; Spindler, L.M; Han, Z; Ren, “A smart switchable bioinspired copper foam responding to different pH droplets for reversible oil-water separation,” J. Mater. Chem., vol. 6, pp. 2603–2612, 2017.X. Jin et al., “Bio-Inspired Multifunctional Metallic Foams Through the Fusion of Different Biological Solutions,” Adv. Funct. Mater., vol. 24, no. 18, pp. 2721–2726, 2014.E. Wang, H. Wang, Z. Liu, and R. Yuan, “One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil – water separation,” J. Mater. Sci., vol. 50, no. 13, pp. 4707–4716, 2015.Q. Wang et al., “Synthesis of vertically aligned composite microcone membrane fi lter for water / oil separation,” Mater. Des., vol. 111, pp. 9–16, 2016.X. Chen, Y. He, Y. Fan, Q. Yang, G. Zeng, and H. Shi, “Facile fabrication of a robust superwetting three-dimensional ( 3D ) nickel foam for oil / water separation,” J. Mater. Sci., vol. 52, no. 4, pp. 2169–2179, 2016.C. Zhang, Y. Li, N. Bai, C. Tan, P. Cai, and Q. Li, “Fabrication of robust 3D superhydrophobic material by a simple and low-cost method for oil-water separation and oil absorption,” Mater. Sci. Eng. B, vol. 224, pp. 117–124, 2017.Z. Xu, K. Miyazaki, and T. Hori, “Dopamine-Induced Superhydrophobic Melamine Foam for Oil / Water Separation,” Adv. Mater. Interfaces, vol. 2, no. 15, pp. 1–5, 2015.R. Du et al., “Microscopic Dimensions Engineering : Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil / Water Separation,” Advaced Mater., vol. 28, pp. 936–942, 2016.J. Du, R; Feng, Q; Ren, H; Zhao, Q; Gao, X; Zhang, “Hybrid-dimensional magnetic microstructure based 3D substrates for remote controllable and ultrafast water remediation,” J. Mater. Chem. A, vol. 4, no. 3, pp. 938–943, 2015.A. Stolz et al., “Melamine-derived carbon sponges for oil-water separation,” Carbon N. Y., vol. 107, pp. 198–208, 2016.Y. Liu, J. H. Xin, and C. Choi, “Cotton Fabrics with Single-Faced Superhydrophobicity,” Langmuir, vol. 28, no. 50, pp. 17426–17434, 2012.W. Yu, L; Hao, G; Zhou, S; Jiang, “Durable and modified foam for cleanup of oil contamination and separation of oil-water mixtures,” RSC Adv., vol. 6, no. 29, pp. 24773–24779, 2016.S. Yang, L. Chen, C. Wang, M. Rana, and P. Ma, “Surface roughness induced superhydrophobicity of graphene foam for oil-water separation,” J. Colloid Interface Sci., vol. 508, pp. 254–262, 2017.T. Minari, X. Liu, H. Liu, and J. Chen, “Recyclable Oil-Absorption Foams via Secondary Phase Separation,” J. Colloid Interface Sci., vol. 525, pp. 11–20, 2018.P. Wu, S. Zhang, H. Yang, Y. Zhu, and J. Chen, “Preparation of Emulsion-Templated Fluorinated Polymers and Their Application in Oil / Water Separation,” J. Polym. Sci. Part A Polym. Chem., vol. 56, no. 14, pp. 1508–1515, 2018.H. Liu and Y. Kang, “Superhydrophobic and superoleophilic modified EPDM foam rubber fabricated by a facile approach for oil / water separation,” Appl. Surf. Sci., vol. 451, pp. 223–231, 2018.S. Khosravi, Maryam; Azizian, “Fabrication of an Oil Spill Collector Package by Using Polyurethane Foam Wrapped with Superhydrophobic ZnO Microrods/Carbon Cloth,” Chempluschem, vol. 83, no. 5, pp. 455–462, 2018.Q. Chen, N; Pan, “Versatile fabrication of ultralight magnetic foams and application for oil-water separation,” ACS Nano, vol. 7, no. 8, pp. 6875–6883, 2013.“Scopus - Analyze search results.” [Online]. Available: https://www-scopus-com.ezproxy.unal.edu.co/term/analyzer.uri?sid=e002811e01c9d86aef98c548cd67d439&origin=resultslist&src=s&s=TITLE-ABS-KEY%28oil+water+separation+superhydrophobicity+porous%29&sort=plf-f&sdt=b&sot=b&sl=62&count=76&analyzeResults=Analyze+re. [Accessed: 08-Feb-2019].F. Montoro, Marcos A; Franco, “TRANSPORTE DE FLUIDOS NO MISCIBLES EN MEDIOS POROSOS : PERMEABILIDAD RELATIVA.” San Juan, Argentina, 2006.M. Paris, Fundamentos de Ingenieria de Yacimientos, 1°. Maracaibo, 2009.D. Tiab and E. C. Donaldson, “Porosity and Permeability,” in Petrophysics, 2012, pp. 85–219.J. S. Buckley, J. Edwards, and E. Fordham, “Los fundamentos de la mojabilidad,” pp. 48–67.A. Lafuma and D. Quéré, “Superhydrophobic states.,” Nat. Mater., vol. 2, no. 7, pp. 457–60, 2003D. Tiab and E. C. Donaldson, “Wettability,” in Petrophysics, 3°., Oxford, 2012, pp. 371–418.Y. Zhu, H. Hu, S. Sun, and G. Ding, “Flow boiling of refrigerant in horizontal metal-foam filled tubes: Part 1 – Two-phase flow pattern visualization,” Int. J. Heat Mass Transf., vol. 91, pp. 446–453, Dec. 2015.S. T. Kolaczkowski, S. Awdry, T. Smith, D. Thomas, L. Torkuhl, and R. Kolvenbach, “Potential for metal foams to act as structured catalyst supports in fixed-bed reactors,” Catal. Today, vol. 273, pp. 221–233, 2016.M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. . Wadley, “Metal foams: a design guide,” Mater. Des., vol. 23, no. 1, p. 119, 2002.J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams,” Prog. Mater. Sci., vol. 46, pp. 559–632, 2001.P. Fernández, G. Torres V, J. Cruz R, S. Gaviria G, and E. Ochoa, “Fabrication of aluminium base cellular metals,” Sci. Tech., no. 36, pp. 677–682, 2007.R. Goodall, Porous metals: foams and sponges. 2013.K. A. Yasakau, M. L. Zheludkevich, and M. G. S. Ferreira, Role of intermetallics in corrosion of aluminum alloys. Smart corrosion protection. Elsevier Ltd., 2018.A. Calle Fernandez, “Espumas Pulvimetalurgicas De Aluminio,” p. 136, 2012.J. C. Elliott, Madison, and Wis, “Method of production metal foams,” US2751289, 1956.B. C. Allen and M. W. Mote, “Method of Making Foamed Metal-Us 3087807,” 1963.J. W. Ayers, “Method of producing a lightweight foamed metal,” US, 1962.P. Fernández, L. J. Cruz, and J. Coleto, “Manufacturing processes of cellular metals. Part I: Liquid route processes,” Rev. Metal., vol. 44, no. 6, pp. 540–555, 2008.Y. Yamada et al., “Processing of cellular magnesium materials,” Adv Eng Mater, vol. 2, no. 4, pp. 184–187, 2000.P. Fernández, L. J. Cruz, and J. Coleto, “Procesos de fabricación de metales celulares. Parte II: Vía sólida, deposición de metales, otros procesos,” Rev. Metal., vol. 45, no. 2, pp. 124–142, 2009.A. Fernández, “Estudio de la Hidrofobicidad y Autolimpieza en Materiales con Nanotratamientos Superficiales,” Universitat Autònoma de Barcelona, 2013.L. Aisa, A. Navarro, J. L. Fuertes, C. O. Dopaz, and J. Gimenez, Coal/Water mixture (CWM) Preparation, Stability, Rheology and Pumping.N. J. Shirtcliffe, G. McHale, S. Atherton, and M. I. Newton, “An introduction to superhydrophobicity,” Adv. Colloid Interface Sci., vol. 161, no. 1–2, pp. 124–138, 2010.S. Shirtcliffe, Neil; Comanns, Philipp; Hamlett, Christopher; Roach, Paul; Atherton, The Effect of Roughness Geometry on Superhydrophobicity and Related Phenomena, 2 nd. Elsevier Ltd., 2018.J. Ruiz-cabello, “Efecto de la rugosidad y heterogeneidad superficial en fenómenos de mojado,” Universidad de Granada, 2009.P. Liu, Guodong; Zhang, Meiyun; Ridway, Cathy; Ganem, “Pore wall rugosity - The role of extended wetting contact line length during spontaneous liquid imbibition in porous media.pdf,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 443, pp. 286–295, 2014.B. Dehghan-Manshadi, H. Mahmudi, A. Abedian, and R. Mahmudi, “A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method,” Mater. Des., vol. 28, no. 1, pp. 8–15, 2007.J. Sáenz, “Crudo derramado por atentados a Caño Limón-Coveñas cuesta más de US$277 millones | ELESPECTADOR.COM,” 2018. [Online]. Available: https://www.elespectador.com/economia/crudo-derramado-por-atentados-cano-limon-covenas-cuesta-mas-de-us277-millones-articulo-820320. [Accessed: 18-Mar-2019].Ecopetrol, “Transporte,” 2014. [Online]. Available: https://www.ecopetrol.com.co/wps/portal/es/ecopetrol-web/nuestra-empresa/quienes-somos/lo-que-hacemos/transporte. [Accessed: 18-Mar-2019].D. C. Ibañez, “Optimización del tratamiento químico del fluido de producción en una facilidad mediante la simulación y análisis de la distribución de flujos.,” p. 98, 2009.P. Ahmed, Tarek; McKinney, Advanced Reservoir Engineering, vol. 53, no. 9. London, 2005.C. Macosko, Rheology: Principles, Measurements and Applications, vol. 86, no. 3. 1996.D. Tiab and E. C. Donaldson, “Porosity and Permeability,” Petrophysics, pp. 87–202, 2007.A. Y. Dandekar, “Petroleum Reservoir Rock and Fluid Properties (2nd Edition),” Taylor Fr., 2013.E. Lazzarni, “Solubilidad - Las Soluciones Salinas.” [Online]. Available: https://sites.google.com/site/261lassolucionessalinas/lo-nuevo/solubilidad. [Accessed: 19-Mar-2019].J. M. Martín Martínez, Adsorción física de gases y vapores por carbones. 1990. [89] Dataphysics, OCA product series.C. A. Franco, F. B. Cortés, and N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue,” J. Colloid Interface Sci., vol. 425, pp. 168–177, 2014.C. A. Franco, F. B. Cortés, and N. N. Nassar, “Adsorptive removal of oil spill from oil-in-fresh water emulsions by hydrophobic alumina nanoparticles functionalized with petroleum vacuum residue,” J. Colloid Interface Sci., vol. 425, pp. 168–177, 2014.A. Varshney, P; Lomga, J; Gupta, P; Mohapatra, S; Kumar, “Durable and regenerable superhydropobic coatins for aluminium surfaces with excellent self-cleaning and anti-fogging properties,” Tribol. Int., vol. 119, pp. 38–44, 2018.A. Lomba, J; Varshney, P; Nanda, D; Satapathy, M; Mohapatra, S; Kumar, “Fabrication of durable and regenerable superhydrophobic coatings with excellent self cleaning and anti fogging properties for aluminium surfaces.pdf,” J. Alloys Compd., vol. 702, pp. 161–170, 2017.D. Zhang, J. Creek, A. J. Jamaluddin, A. G. Marshall, R. P. Rodgers, and O. C. Mullins, “Los asfaltenos : Problemáticos pero ricos en potencial,” Oilf. Rev., pp. 24–47, 2007.M. D. Lobato, F. Gámez, S. Lago, and J. M. Pedrosa, “The influence of the polarity of fractionated asphaltenes on their Langmuir-film properties,” Fuel, vol. 200, pp. 162–170, 2017.B. Bienfait and P. Ertl, “JSME : a free molecule editor in JavaScript,” J. Cheminform., vol. 5, no. 24, pp. 1–6, 2013.D. Padilla and K. Watt, “Precipitación de asfaltenos : Técnicas de predicción y control Asphaltene precipitation : Prediction and Control Techniques,” 2012.O. L. Mora, “Ácido láurico : componente bioactivo del aceite de palmiste,” vol. 24, no. 1, pp. 79–83, 2003.“Químicas: El Grupo Carboxilo.” [Online]. Available: https://www.quimicas.net/2015/05/el-grupo-carboxilo.html. [Accessed: 27-Feb-2019]H. Hu, Z. Lai, G. Ding, and D. Zhuang, “Experimental investigation on water drainage characteristics of open-cell metal foams with different wettabilities,” vol. 79, pp. 101–113, 2017.Universidad Pontificia BolivarianaUniversidad Nacional de ColombiaInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86184/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL11284421182019.pdf11284421182019.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf3723179https://repositorio.unal.edu.co/bitstream/unal/86184/2/11284421182019.pdf36189b6cae51022c22e6c5cdb7c470f7MD52THUMBNAIL11284421182019.pdf.jpg11284421182019.pdf.jpgGenerated Thumbnailimage/jpeg4464https://repositorio.unal.edu.co/bitstream/unal/86184/3/11284421182019.pdf.jpg4be1774c8bc91b9cfeac14ff7891f29eMD53unal/86184oai:repositorio.unal.edu.co:unal/861842024-05-29 23:11:12.239Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |