Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero

ilustraciones, gráficas, tablas

Autores:
Mateus Cagua, Diana Mayerly
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79189
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79189
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Enfermedad de moko
bioestimulantes
Estrés biótico
moko disease
biostimulants
biotic stress
Root lenght
Moko
Musaceas
Plant defense
Salicylic acid
Silicon dioxide
Proline
Longitud de raíces
Moko
Musáceas
Defensa vegetal
Ácido salicílico
Dióxido de silicio
Prolina
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_1048746c9a6de94a830660fc0db57dc9
oai_identifier_str oai:repositorio.unal.edu.co:unal/79189
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
title Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
spellingShingle Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Enfermedad de moko
bioestimulantes
Estrés biótico
moko disease
biostimulants
biotic stress
Root lenght
Moko
Musaceas
Plant defense
Salicylic acid
Silicon dioxide
Proline
Longitud de raíces
Moko
Musáceas
Defensa vegetal
Ácido salicílico
Dióxido de silicio
Prolina
title_short Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
title_full Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
title_fullStr Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
title_full_unstemmed Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
title_sort Respuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de vivero
dc.creator.fl_str_mv Mateus Cagua, Diana Mayerly
dc.contributor.advisor.spa.fl_str_mv Gonzalez Almario, Adriana
Rodríguez Yzquierdo, Gustavo Adolfo
dc.contributor.author.spa.fl_str_mv Mateus Cagua, Diana Mayerly
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
topic 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales
Enfermedad de moko
bioestimulantes
Estrés biótico
moko disease
biostimulants
biotic stress
Root lenght
Moko
Musaceas
Plant defense
Salicylic acid
Silicon dioxide
Proline
Longitud de raíces
Moko
Musáceas
Defensa vegetal
Ácido salicílico
Dióxido de silicio
Prolina
dc.subject.agrovoc.spa.fl_str_mv Enfermedad de moko
bioestimulantes
Estrés biótico
dc.subject.agrovoc.eng.fl_str_mv moko disease
biostimulants
biotic stress
dc.subject.proposal.eng.fl_str_mv Root lenght
Moko
Musaceas
Plant defense
Salicylic acid
Silicon dioxide
Proline
dc.subject.proposal.spa.fl_str_mv Longitud de raíces
Moko
Musáceas
Defensa vegetal
Ácido salicílico
Dióxido de silicio
Prolina
description ilustraciones, gráficas, tablas
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-11
dc.date.accessioned.spa.fl_str_mv 2021-02-11T13:05:19Z
dc.date.available.spa.fl_str_mv 2021-02-11T13:05:19Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79189
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.none.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79189
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abeer, H., Abdallah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Alshalawi, S. R. M., Wirth, S., & Dilfuza, E. (2015). Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown udder salt stress. Pak J Bot, 47(5), 1735-1741.
Agarie, S., H. Uchida, W. Qgata, F. Kubota, and P.B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L). Japanese Journal of Crop Science. 1:89-95. Doi: 10.1626/pps.1.89
Agronet, red de información y comunicación del sector agropecuario. Consultado en abril 2020. Disponible en: www.agronet.gov.co
Ahmad, Z., J. Wu, L. Chen, and W. Dong. 2017. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports. 7(1):1777. Doi: 10.1038/s41598-017-01940-9
Albuquerque, G. M., Santos, L. A., Felix, K. C., Rollemberg, C. L., Silva, A. M., Souza, E. B., ... & Mariano, R. L. (2014). Moko disease-causing strains of Ralstonia solanacearum from Brazil extend known diversity in paraphyletic phylotype II. Phytopathology. 104(11): 1175-1182.
Almoneafy, A. A., Kakar, K. U., Nawaz, Z., Li, B., Chun-lan, Y., & Xie, G. L. (2014). Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis, 63(2), 59-70. doi: 10.1007/s13199-014-0288-9
Álvarez, E., Pantoja, A., Gañán, L., & Ceballos, G. (2013). Estado del arte y opciones de manejo del Moko y la Sigatoka negra en América Latina y el Caribe. CIAT/FAO. 40 p.
Alves, A. O., Santos, M. M. B., Souza, L. J. N., Souza, E. B., & Mariano, R. L. R. (2015). Use of silicon for reducing the severity of bacterial wilt of sweet pepper. Journal of Plant Pathology, 97(3), 419-429. doi: 10.4454/JPP.V97I3.002
Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., & Jones, J. B. (2004). Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant disease, 88(6), 669-673.
Anusuya, P. 2014. Studies on screening of banana genotypes against salt and water deficit stresses. Tesis de doctorado. Tamil Nadu Agricultural University, Coimbatore, India.
Asari, S., D. Tarkowská, J. Rolčík, O. Novák, D. V. Palmero, S. Bejai, and J. Meijer. 2017. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta. 245(1):15-30. Doi: 10.1007/s00425-016-2580-9
Aucique-Pérez, C.E., P.E. de Menezes Silva, W.R. Moreira, F.M. DaMatta, and F.Á. Rodrigues. 2017. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiology and Biochemistry. 121:196-205. Doi: 10.1016/j.plaphy.2017.10.023
Ayana, G., Fininsa, C., Ahmed, S., & Wydra, K. (2011). Effects of soil amendment on bacterial wilt caused by Ralstonia solanacerum and tomato yields in Ethiopia. Journal of Plant Protection Research 51:72-76. doi: 10.2478/v10045-011-0015-0
Babar, S., Siddiqi, E. H., Hussain, I., Hayat Bhatti, K., & Rasheed, R. (2014). Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiology Journal, 869058. doi: 10.1155/2014/869058
Baichoo, Z., & Jaufeerally-Fakim, Y. (2017). Ralstonia solanacearum upregulates marker genes of the salicylic acid and ethylene signaling pathways but not those of the jasmonic acid pathway in leaflets of Solanum lines during early stage of infection. European Journal of Plant Pathology, 147(3), 615-625. doi: 10.1007/s10658-016-1030-7
Barr, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci, 15(3), 413-428. doi: 10.1071/BI9620413
Barrios, M. O., Gaviria, P. A. R., Osorio, J. G. M., & Yepes, M. S. (2008). Hospedantes de Ralstonia solanacearum en plantaciones de banano y plátano en Colombia. Revista Facultad Nacional de Agronomia Medellin. 61(2): 4518.
Barriuso, J., Solano, B. R., & Gutiérrez Mañero, F. J. (2008). Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology, 98(6), 666-672. doi: 10.1094/PHYTO-98-6-0666
Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of experimental botany, 58(15-16), 4019-4026. Doi: 10.1093/jxb/erm298.
Brown, P., & Saa, S. (2015). Biostimulants in agriculture. Frontiers in plant science, 6:671. doi: 10.3389/fpls.2015.00671
Buah, J.N., and J. W. Tachie-Menson. 2015. Suitability of Bud Manipulation Technique as an Alternative to Tissue Culture in the Production of Suckers for Plantains and Bananas. Biotechnology. 14(1):41-46.
Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.
Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. doi: 10.3390/agronomy9060306
CABI (2020). Disponible en: https://www.cabi.org/isc/datasheet/44999
Caldwell, D., Kim, B. S., & Iyer-Pascuzzi, A. S. (2017). Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 107(5):528-536.
Caldwell, D.C. (2016). The Role of root anatomy and root architecture in resistance to Ralstonia solanacearum (Tesis de maestría, Universidad de Purdue, Indiana, Estados Unidos). Recuperada desde: https://docs.lib.purdue.edu/
Calvo, P., D.B. Watts, J.W. Kloepper, and H.A. Torbert, 2017. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science. 180(1):56-70. Doi: 10.1002/jpln.201500616
Cao, W.L., X.C. Meng, and W. Ma. 2015. Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring. China journal of Chinese materia medica. 40(18):3553-3559.
Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., ... & Cai, Y. (2018). Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific reports, 8(1), 1-14. doi: 10.1038/s41598-018-22782-z
Ceballos, G., Álvarez, E., & Bolaños, M. M. (2014). Reducción de poblaciones de Ralstonia solanacearum raza 2 (Smith) en plátano (Musa AAB Simmonds) con aplicación de extractos de Trichoderma sp. (Alexopoulus y Mims) y bacterias antagonistas. Acta Agronómica, 63(1), 80-87. doi: 10.15446/acag.v63n1.43121
Chabi, M. C., Dassou, A. G., Dossou-Aminon, I., Ogouchoro, D., Aman, B. O., & Dansi, A. (2018). Banana and plantain production systems in Benin: ethnobotanical investigation, varietal diversity, pests, and implications for better production. Journal of ethnobiology and ethnomedicine, 14(1), 78. https://doi.org/10.1186/s13002-018-0280-1
Chaves C, B., Cayón S, G., & Jones, J. W. (2009). Modeling plantain (Musa AAB Simmonds) potential yield. Agronomía Colombiana, 27(3), 359-366.
Chaves-Gómez, J. L., Cotes-Prado, A. M., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological response of cape gooseberry seedlings to two organic additives and their mixture under inoculation with Fusarium oxysporum f. sp. physali. HortScience horts, 55(1), 55-62.
Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2020). Physiological responses to the foliar application of synthetic resistance elicitors in Cape Gooseberry seedlings infected with Fusarium oxysporum f. sp. physali. Plants, 9(2), 176. doi: 10.3390/plants9020176
Chen, Y., Liu, M., Wang, L., Lin, W., Fan, X., & Cai, K. (2015). Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. Plant and soil, 387(1-2), 425-440.
Chen, Y., Ren, X., Zhou, X., Huang, L., Yan, L., Lei, Y., ... & Jiang, H. (2014). Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC genomics, 15(1), 1078.
Choi, H. K., Iandolino, A., da Silva, F. G., & Cook, D. R. (2013). Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Molecular Plant-Microbe Interactions, 26(6), 643-657. doi: 10.1094/MPMI-09-12-0217-R.
Chunyu, L. I., Weicong, H. U., Bin, P. A. N., Yan, L. I. U., Saifei, Y. U. A. N., Yuanyuan, D. I. N. G., ... & Qirong, S. H. E. N. (2017). Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere, 27(6), 1135-1146. doi: 10.1016/S1002-0160(17)60406-5
Cubides, W. (2016). Incidencia de Ralstonia solanacearum raza 2 en cultivos de plátano (Musa AAB), y su manejo en el control oficial, a través en el departamento del meta para el año 2015 (trabajo de especialización). Universidad Nacional de Colombia, Bogotá.
Dahal, A., Chen, L., Kiba, A., Hikichi, Y., & Ohnishi, K. (2018). Chloroplastic proteins are targets for the RipG effectors of Ralstonia solanacearum. Int. J. Environ. Technol. Sci, 5, 147-156.
Dalal, V.K., & Tripathy, B.C. (2018). Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 8, 5955. doi: 10.1038/s41598-017-14419-4
de Lima, B. C., Moro, A. L., Santos, A. C. P., Bonifacio, A., Araujo, A. S. F., & de Araujo, F. F. (2019). Bacillus subtilis ameliorates water stress tolerance in maize and common bean. Journal of Plant Interactions, 14(1), 432-439. doi: 10.1080/17429145.2019.1645896
Deng, X., Xiao, W., Shi, Z., Zeng, L., & Lei, L. (2020). Combined Effects of Drought and Shading on Growth and Non-Structural Carbohydrates in Pinus massoniana Lamb. Seedlings. Forests, 11(1), 18. doi: 10.3390/f11010018
Dien, D. C., Mochizuki, T., & Yamakawa, T. (2019). Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Production Science, 22(4), 530-545.
Ding, P., & Ding, Y. (2020). Stories of salicylic acid: A plant defense hormone. Trends in Plant Science, 25(6), 549-565. doi: 10.1016/j.tplants.2020.01.004
Diogo, R. V., & Wydra, K. (2007). Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology, 70(4-6), 120-129. doi:10.1016/j.pmpp.2007.07.008
Djaya, L., Istifadah, N., Hartati, S., & Joni, I. M. (2019). In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology, 19, 101153. doi: 10.1016/j.bcab.2019.101153
Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy, 9(6), 335. doi: 10.3390/agronomy9060335
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Doi: 10.1016/j.scienta.2015.09.021
EBIC, 2020. Economic overview of the biostimulants sector in Europe. European Biostimulants industry Council. Consultado en: http://www.biostimulants.eu/
Elsayed, T. R., Jacquiod, S., Nour, E. H., Sørensen, S. J., & Smalla, K. (2020). Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota and Ralstonia solanacearum. Frontiers in microbiology, 10, 2835. doi: 10.3389/fmicb.2019.02835
Fan, X.Y., Lin, W.P., Rui, L.I.U., Jiang, N.H., & Cai, K.Z. (2018). Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum. Journal of Integrative Agriculture, 17(10), 2160-2171. doi: 10.1016/S2095-3119(18)62036-2
FAO. FAOSTAT database. Roma: Food and Agriculture Organization; 2020.
FAOSTAT. 2016. Agriculture data. Disponible en: http://www.fao.org/faostat/en/#data/QC (Consultado 14 de marzo de 2018).
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht.
Fernandes, A., Silva, M., Silva, D., Santos, T., Schmildt, E., Pfenning, L., & Falqueto, A. (2020). Silicon improves the photosynthetic performance of black pepper plants inoculated with Fusarium solani f. sp. piperis. Photosynthetica, 58(3), 692-701. doi: 10.32615/ps.2019.182
Flores-Cruz, Z., & Allen, C. (2011). Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Applied and environmental microbiology, 77(18), 6426-6432.
Fortunato, A. A., Rodrigues, F. Á., & do Nascimento, K. J. T. (2012). Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology, 102(10), 957-966.
Galán-Saúco, V., and J.C. Robinson. 2013. Fisiología, clima y producción de banano. pp. 44-56. En: XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos). Fortaleza, CE.
Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist, 187(4), 920-928. doi: 10.1111/j.1469-8137.2010.03397.x
Ghareeb, H., Bozsó, Z., Ott, P. G., Repenning, C., Stahl, F., & Wydra, K. (2011). Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology, 75(3), 83-89. doi:10.1016/j.pmpp.2010.11.004
Halpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Muller, and U. Yermiyahu. 2015. The Use of Biostimulants for Enhancing Nutrient Uptake. Advances in Agronomy. 130:141-174. Doi: 10.1016/bs.agron.2014.10.001
Hazman, M., & Brown, K. M. (2018). Progressive drought alters architectural and anatomical traits of rice roots. Rice, 11(1), 62. doi: 10.1186/s12284-018-0252-z
Helaly, M.N., H. El-Hoseiny, N.I. El-Sheery, A. Rastogi, and H.M. Kalaji. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant physiology and biochemistry. 118:31-44. Doi: 10.1016/j.plaphy.2017.05.021
Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171-178.
Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10. doi: 10.3389/fpls.2019.00800
ICA. (2018a). Rendición de cuentas. Gerencia seccional Meta. Noviembre 2018.
Jacobs, J. M., Milling, A., Mitra, R. M., Hogan, C. S., Ailloud, F., Prior, P., & Allen, C. (2013). Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid-mediated defenses during tomato pathogenesis. MBio, 4(6):e00875-13. doi: 10.1128/mBio.00875-13.
Jiang N., Fan X., Lin W., Wang G., Cai K. (2019). Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. Int. J. Mol. Sci. 20(3), 761. doi: 10.3390/ijms20030761
Karimi, S., Karami, H., Vahdati, K., & Mokhtassi-Bidgoli, A. (2020). Antioxidative responses to short-term salinity stress induce drought tolerance in walnut. Scientia Horticulturae, 267, 109322.
Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1-9. doi: 10.1007/s40502-015-0139-6.
La, V.H., Lee, B.R., Zhang, Q., Park, S.H., Islam, M.T., & Kim, T.H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic. Environ. Biotechnol., 60(1), 31-40. doi: 10.1007/s13580-018-0099-7
Lagogianni, C. S., & Tsitsigiannis, D. I. (2019). Effective biopesticides and biostimulants to reduce aflatoxins in maize fields. Frontiers in Microbiology, 10, 2645. doi: 10.3389/fmicb.2019.02645
Lee, B. R., Zhang, Q., Park, S. H., Islam, M. T., & Kim, T. H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Horticulture, Environment, and Biotechnology, 60(1), 31-40. doi: 10.1007/s13580-018-0099-7
Liu, X., Rockett, K. S., Kørner, C. J., & Pajerowska-Mukhtar, K. M. (2015). Salicylic acid signalling: new insights and prospects at a quarter-century milestone. Essays in biochemistry, 58, 101-113.
Lowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349. doi: 10.1111/1462-2920.14020
Lowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349. doi: 10.1111/1462-2920.14020
Lu, H., Lema A, S., Planas-Marques, M., Alonso-Díaz, A., Valls, M., & Coll, N. S. (2018). Type III Secretion–Dependent and–Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots. Molecular plant-microbe interactions, 31(1), 175-184. doi: 10.1094/MPMI-05-17-0109-FI
Maghsoudi, K., Y. Emam, and M. Ashraf. (2016a). Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. Journal of Plant Nutrition. 39(8):1194-1203. Doi: 10.1080/01904167.2015.1115876
Maghsoudi, K., Y. Emam, and M. Pessarakli. (2016b). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition. 39(7):1001-1015.
Mandal, S., Acharya, P., & Kar, I. (2014). Reactive oxygen species signaling in eggplant in response to Ralstonia solanacearum infection. Journal of plant pathology, 96(3), 525-534. doi: 10.4454/JPP.V96I3.018
Martínez A.A.M., and D.G. Cayón Salinas. 2011. Dinámica del crecimiento y desarrollo del banano (Musa AAA Simmonds cvs. Gran Enano y Valery). Revista Facultad Nacional de Agronomía-Medellín. 64(2):6055-60-64.
Martínez, A. (1998). El cultivo de plátano en los Llanos Orientales, aspectos generales y labores del cultivo. Manual. Corporación Colombiana de Investigación Agropecuaria (Corpoica); Programa Nacional de Transferencia de Tecnología Agropecuaria (Pronatta). Recuperado de: http://bibliotecadigital.agronet.gov.co/bitstream/11348/4031/1/20061127152826_El%20cultivo%20del%20platano%20llanos.pdf
Mateus-Cagua, D., & Rodríguez-Yzquierdo, G. (2019). Effect of biostimulants on the dry matter accumulation and gas exchange in plantains plants (Musa AAB). Revista Colombiana de Ciencias Hortícolas, 13(2): 151-160. doi: 10.17584/rcch.2019v13i2.8460
Mhlongo, M. I., Piater, L. A., Madala, N. E., Labuschagne, N., & Dubery, I. A. (2018). The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in plant science, 9, 112. doi: 10.3389/fpls.2018.00112
Mia, M.B., Z.H. Shamsuddin, and M. Mahmood. 2010a. Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol. 12(3):459-467.
Mia, M.B., Z.H. Shamsuddin, Z. Wahab, and M. Marziah. 2010b. Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv.‘Berangan’). Scientia horticulturae. 126(2):80-87. Doi: 10.1016/j.scienta.2010.06.005
Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., ... & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180-190.
Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., ... & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180-190.
Nakano, M., & Mukaihara, T. (2018). Ralstonia solanacearum type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated defense responses in plants. Plant and Cell Physiology, 59(12), 2576-2589. doi: 10.1093/pcp/pcy177
Nansamba, M., Sibiya, J., Tumuhimbise, R., Karamura, D., Kubiriba, J., & Karamura, E. (2020). Breeding banana (Musa spp.) for drought tolerance: A review. Plant Breeding. doi: 10.1111/pbr.12812
Narancio, R., Zorrilla, P., Robello, C., Gonzalez, M., Vilaró, F., Pritsch, C., & Dalla Rizza, M. (2013). Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. European journal of plant pathology, 136(4), 823-835. doi: 10.1007/s10658-013-0210-y
Narasimhamurthy, K., Soumya, K., Udayashankar, A. C., Srinivas, C., & Niranjana, S. R. (2019). Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum. Biocatalysis and Agricultural Biotechnology, 22, 101414. doi: 10.1016/j.bcab.2019.101414
Olumba, C. C., & Onunka, C. N. (2020). Banana and plantain in West Africa: production and marketing. African Journal of Food, Agriculture, Nutrition & Development, 15474-15489. doi: 10.18697/ajfand.90.18365
Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species—A review. Food and Energy Security, 8(2), e00162. doi: 10.1002/fes3.162
Peeters, N., Guidot, A., Vailleau, F., & Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post‐genomic era. Molecular plant pathology, 14(7), 651-662. doi: 10.1111/mpp.12038
Ramírez, D. A., Yactayo, W., Gutiérrez, R., Mares, V., De Mendiburu, F., Posadas, A., & Quiroz, R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168, 202-209.
Ramírez, G., Guillermo, J., Muñoz, A., Patiño, H., Fernando, L., Morales, O., & Gonzalo, J. (2015). Banana Moko disease management with resistance inducers and chlorine dioxide. Agronomía Colombiana, 33(2), 194-202. doi: 10.15446/agron.colomb.v33n2.48663.
Ramírez, M., Neuman, B., & Ramírez, C. A. (2020). Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biological Control, 104238. doi: 10.1016/j.biocontrol.2020.104238
Ray, S. K., Kumar, R., Peeters, N., Boucher, C., & Genin, S. (2015). rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum. Frontiers in microbiology, 6, 229.
Robinson, J. H., & Sauco, V. G. (2010). Banana and Plantains. 2nd Editition. CABI North America Office. USA. 1-9 pp.
Rodríguez, G. A., Becerra, J. J., Betancourt, M., Miranda, T. C., Alzate, S. V., Pisco, Y. C & Sandoval, H. A. (2018). Modelo productivo para la producción de plátano en los Llanos Orientales. Mosquera, Colombia. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 216 p.
Rodríguez, G. A., J. Becerra, M. Betancourt, T. Miranda & S. Alzate. (2019). Modelo productivo: Tecnologías eficientes para la producción de semilla de plátano en los Llanos Orientales. Mosquera, Colombia. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 82 p.
Saa, S., O.D. Rio, S. Castro, and P.H. Brown. 2015. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] DA Webb). Frontiers in plant science. 6:87. Doi: 10.3389/fpls.2015.00087
Saud, S., Chen, Y., Fahad, S., Hussain, S., Na, L., Xin, L., et al. (2016). Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ. Sci. Pollut. Res. 23, 17647–17655. doi: 10.1007/s11356-016-6957-x
Sayago, P., Juncosa, F., Albarracín Orio, A.G., Luna, D.F., Molina, G., Lafi, J., & Ducasse D.A. (2020). Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance. Eur J Plant Pathol. doi: 10.1007/s10658-020-02012-x
Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., ... & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285. doi: 10.3390/biom9070285
Silva, P. A., Cosme, V. S., Rodrigues, K. C., Detmann, K. S., Leão, F. M., Cunha, R. L., ... & Pinheiro, H. A. (2017). Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta physiologiae plantarum, 39(2), 58. doi: 10.1007/s11738-017-2354-4
Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102(4), 381-389.
Singh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., & Sharma, R. K. (2016). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol, 7:327. doi: 10.4172/2157-7471.1000327
Sinha, R., Gupta, A., & Senthil-Kumar, M. (2017). Concurrent drought stress and vascular pathogen infection induce common and distinct transcriptomic responses in chickpea. Frontiers in plant science, 8, 333. doi: 10.3389/fpls.2017.00333/full
Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestič, M., Afrin, S., Sakil, M. A., Hossain, M. T., ... & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuates drought stress in rice. Plant Soil Environ, 66:7-13. doi: 10.17221/472/2019-PSE
Song, A., Li, P., Fan, F., Li, Z., & Liang, Y. (2014). The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One, 9(11):e113782. doi:10.1371/journal.pone.0113782
Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., ... & Gao, X. (2017). Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC plant biology, 17(1), 1-16. doi: 10.1186/s12870-017-1083-6
Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., & Xu, Y. (2016). Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52(3), 341-351. doi: 10.1007/s00374-015-1079-z.
Turner, M., Jauneau, A., Genin, S., Tavella, M. J., Vailleau, F., Gentzbittel, L., & Jardinaud, M. F. (2009). Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiology, 150 (4):1713–1722. doi: 10.1104/pp.109.141523.
Ugena, L., Hýlová, A., Podlešáková, K., Humplík, J. F., Doležal, K., Diego, N. D., & Spíchal, L. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Frontiers in Plant Science, 9, 1327.
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 5. doi: 10.1186/s40538-017-0089-5
Wang, H. C., Guo, H., Cai, L., Cai, L. T., Guo, Y. S., & Ding, W. (2019). Effect of temperature on phenotype characterization of Ralstonia solanacearum from tobacco. Canadian Journal of Plant Pathology, 1-18.
Wang, R., Gao, M., Ji, S., Wang, S., Meng, Y., & Zhou, Z. (2016). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology and Biochemistry, 107, 137-146.
Wang, W., Qiu, Y., Qiu, S., Ke, Y., & Pan, T. (2014). Photosynthetic characteristics and chloroplast ultrastructure of sweet potato leaves infected by Ralstonia solanacearum. Journal of Tropical and Subtropical Botany, 22(6), 610-616.
Wen-ying, Y., Wei-ying, W., Q., Yong-xiang, Yu-qin, K., Wei, W., & Zhi-dong, C. (2008). Salicylic acid induced sweet potato resistance to Ralstonia solanacearum through antioxidant enzymes. Journal of Fujian Agriculture and Forestry University (Natu. Sci. Ed.). 37: 23-26.
Xiao, X., Lin, W., Li, K., Li, W., Gao, X., & Lv, L. (2017). Early burst of reactive oxygen species positively regulates resistance of eggplant against bacterial wilt. Journal of Phytopathology, 165(10), 652–661. doi:10.1111/jph.12604
Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi. Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia genus nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Douderoff 1973) comb.nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology and Immunology, 39, 897-904.
Yuliar, N. Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and environments. 30(1): 1-11. doi: 10.1264/jsme2.ME14144.
Zhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y., & Ahammed, G. J. (2019). Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy, 9(11), 733. doi: 10.3390/agronomy9110733.
Zhang, Y., Shi, Y., Gong, H., Zhao, H., Li, H., Hu, Y., & Wang, Y. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17(10), 2151–2159. doi:10.1016/s2095-3119(18)62038-6
Zhao, C., Wang, H., Lu, Y., Hu, J., Qu, L., Li, Z., Wang, D., He, Y., Valls, M., Coll, N. S, Chen, Q., & Lu, H. (2019). Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. Molecular plant-microbe interactions, 32, 813-827. doi: 10.1094/MPMI-10-18-0268-R
Zheng, X., Zhu, Y., Liu, B., Lin, N., & Zheng, D. (2017). Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Microbial pathogenesis, 113, 144-151. doi: 0.1016/j.micpath.2017.10.046
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Springer Science & Business Media. Chapter 5.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 108 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Escuela de posgrados
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79189/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79189/1/1121835531.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79189/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79189/4/1121835531.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
7ee9dea4226c67b992d7c6bb50727666
217700a34da79ed616c2feb68d4c5e06
5acb4dd13bd3e697bf1cfc18af4b449b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089985886781440
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez Almario, Adriana2095714a2ee0a49a87d2319bc2e287b4Rodríguez Yzquierdo, Gustavo Adolfoddf8d62c-2f2c-4c43-b827-1f822271166fMateus Cagua, Diana Mayerly8dde9a9277724882843a60ec369274cf2021-02-11T13:05:19Z2021-02-11T13:05:19Z2020-11https://repositorio.unal.edu.co/handle/unal/79189Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasRalstonia solanacearum raza 2 (Rs) es uno de los factores bióticos más limitantes del cultivo de plátano. Este patógeno obstruye los haces vasculares afectando el transporte de agua y nutrientes en la planta hasta ocasionar su muerte. No existe un manejo actual para esta enfermedad, sin embargo, los bioestimulanes, productos usados para mejorar procesos fisiológicos de la planta y que en algunos casos pueden actuar como inductores de resistencia, podrían ser una alternativa. El objetivo de este trabajo fue determinar la influencia de cuatro bioestimulantes con los ingredientes activos: Bacillus subtilis (Bs), B. amyloliquefaciens (Ba), acido salicílico (As) y dióxido de silicio (Si), sobre parámetros fisiológicos de plantas de plátano cv. Hartón en etapa de vivero y su potencial para reducir el daño ocasionado por Rs. Se evaluó el estado hidrico de la planta, intercambio de gases, fluorescencia de la corofila, acumulación de masa seca, longitud de raíces, grado y progreso de la enfermedad, crecimiento bacteriano en tejido, contenido de malondialdehído (MDA), prolina, azucares y clorofila. Se encontró que plantas no inoculadas con Rs tratadas con Bs y Si mejoraron su actividad fotosintética y crecimiento signficativamente en comparación con plantas no tratadas. En plantas inoculadas con Rs, los tratamientos As y Si lograron retrasar el daño ocasionado por el patógeno y su efecto sobre variables fisiológicas por estimular, posiblemente, respuestas de defensa en las mismas. La menor concentración de MDA, el menor contenido de prolina (metabolito usado por Rs) y la longitud de raíces laterales en estas plantas sugieren este hecho. Los resultados señalan la importancia de integrar la aplicación de bioestimulantes al manejo de plátano en etapa de vivero, no solo para mejorar procesos fisiológicos, sino para proveer una alternativa potencial para el manejo preventivo de Moko. Es necesario continuar con trabajos de investigación en condiciones de infección natural que vinculen estrategias de manejo integrado y consideren los aspectos del sistema productivo relacionados con el proceso de infección. (Texto tomado de la fuente).Ralstonia solanacearum Race 2 (Rs) is a major limiting biotic factor in plantain crops. This pathogen blocks the vascular bundles and obstructs the transportation of water and nutrients, causing wilt and subsequent plant death. Although, there is no management for this disease, biostimulants, which are products used to improve physiological plant processes, might serve as resistance inducers and be used as a control alternative. The aim of this work was to determine the influence of four biostimulants (containing Bacillus subtilis (Bs), B. amyloliquefaciens (Ba), salicylic acid (As) and silicon dioxide (Si)) on cv. Hartón plantain plants and to determine their potential to reduce the damage caused by Rs on physiological and biochemical parameters. Hydric status, gas exchange, chlorophyll fluorescence, dry mass accumulation, root length, disease severity and progression, bacterial growth in seudostem, malondialdehyde (MDA), proline, sugars and chlorophyll content were evaluated in inoculated and not-inoculated plants. Not-inoculated plants with Rs treated with Bs and Si showed a significant higher photosynthetic activity and growth compared to untreated plants. For inoculated plants treated with As and Si a stimulation in the defense response led to a delay in the damage caused by pathogen and its effect on physiological variables. The lower concentration of MDA, lower content of proline (metabolite used by Rs) and length of lateral roots in these latter plants suggest this observation. These results expose the importance of integrating biostimulants in disease management of plantain crops during the nursery stage, to improve not only physiological processes, but to provide a potential alternative for a preventive management of Rs. It is necessary to continue the research on natural infection conditions under an integrated management strategy involving the production system and infection process.Incluye anexosMaestríaMagíster en Ciencias AgrariasFisiología de cultivosCiencias Agronómicasxxiii, 108 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesEnfermedad de mokobioestimulantesEstrés bióticomoko diseasebiostimulantsbiotic stressRoot lenghtMokoMusaceasPlant defenseSalicylic acidSilicon dioxideProlineLongitud de raícesMokoMusáceasDefensa vegetalÁcido salicílicoDióxido de silicioProlinaRespuesta fisiológica inducida por bioestimulantes en plantas de plátano (Musa AAB) sometidas a estrés bióticos (Ralstonia solanacearum) en condiciones de viveroTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbeer, H., Abdallah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Alshalawi, S. R. M., Wirth, S., & Dilfuza, E. (2015). Impact of plant growth promoting Bacillus subtilis on growth and physiological parameters of Bassia indica (Indian bassia) grown udder salt stress. Pak J Bot, 47(5), 1735-1741.Agarie, S., H. Uchida, W. Qgata, F. Kubota, and P.B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L). Japanese Journal of Crop Science. 1:89-95. Doi: 10.1626/pps.1.89Agronet, red de información y comunicación del sector agropecuario. Consultado en abril 2020. Disponible en: www.agronet.gov.coAhmad, Z., J. Wu, L. Chen, and W. Dong. 2017. Isolated Bacillus subtilis strain 330-2 and its antagonistic genes identified by the removing PCR. Scientific reports. 7(1):1777. Doi: 10.1038/s41598-017-01940-9Albuquerque, G. M., Santos, L. A., Felix, K. C., Rollemberg, C. L., Silva, A. M., Souza, E. B., ... & Mariano, R. L. (2014). Moko disease-causing strains of Ralstonia solanacearum from Brazil extend known diversity in paraphyletic phylotype II. Phytopathology. 104(11): 1175-1182.Almoneafy, A. A., Kakar, K. U., Nawaz, Z., Li, B., Chun-lan, Y., & Xie, G. L. (2014). Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis, 63(2), 59-70. doi: 10.1007/s13199-014-0288-9Álvarez, E., Pantoja, A., Gañán, L., & Ceballos, G. (2013). Estado del arte y opciones de manejo del Moko y la Sigatoka negra en América Latina y el Caribe. CIAT/FAO. 40 p.Alves, A. O., Santos, M. M. B., Souza, L. J. N., Souza, E. B., & Mariano, R. L. R. (2015). Use of silicon for reducing the severity of bacterial wilt of sweet pepper. Journal of Plant Pathology, 97(3), 419-429. doi: 10.4454/JPP.V97I3.002Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., & Jones, J. B. (2004). Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant disease, 88(6), 669-673.Anusuya, P. 2014. Studies on screening of banana genotypes against salt and water deficit stresses. Tesis de doctorado. Tamil Nadu Agricultural University, Coimbatore, India.Asari, S., D. Tarkowská, J. Rolčík, O. Novák, D. V. Palmero, S. Bejai, and J. Meijer. 2017. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta. 245(1):15-30. Doi: 10.1007/s00425-016-2580-9Aucique-Pérez, C.E., P.E. de Menezes Silva, W.R. Moreira, F.M. DaMatta, and F.Á. Rodrigues. 2017. Photosynthesis impairments and excitation energy dissipation on wheat plants supplied with silicon and infected with Pyricularia oryzae. Plant Physiology and Biochemistry. 121:196-205. Doi: 10.1016/j.plaphy.2017.10.023Ayana, G., Fininsa, C., Ahmed, S., & Wydra, K. (2011). Effects of soil amendment on bacterial wilt caused by Ralstonia solanacerum and tomato yields in Ethiopia. Journal of Plant Protection Research 51:72-76. doi: 10.2478/v10045-011-0015-0Babar, S., Siddiqi, E. H., Hussain, I., Hayat Bhatti, K., & Rasheed, R. (2014). Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiology Journal, 869058. doi: 10.1155/2014/869058Baichoo, Z., & Jaufeerally-Fakim, Y. (2017). Ralstonia solanacearum upregulates marker genes of the salicylic acid and ethylene signaling pathways but not those of the jasmonic acid pathway in leaflets of Solanum lines during early stage of infection. European Journal of Plant Pathology, 147(3), 615-625. doi: 10.1007/s10658-016-1030-7Barr, H. D., & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci, 15(3), 413-428. doi: 10.1071/BI9620413Barrios, M. O., Gaviria, P. A. R., Osorio, J. G. M., & Yepes, M. S. (2008). Hospedantes de Ralstonia solanacearum en plantaciones de banano y plátano en Colombia. Revista Facultad Nacional de Agronomia Medellin. 61(2): 4518.Barriuso, J., Solano, B. R., & Gutiérrez Mañero, F. J. (2008). Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology, 98(6), 666-672. doi: 10.1094/PHYTO-98-6-0666Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant–pathogen interactions. Journal of experimental botany, 58(15-16), 4019-4026. Doi: 10.1093/jxb/erm298.Brown, P., & Saa, S. (2015). Biostimulants in agriculture. Frontiers in plant science, 6:671. doi: 10.3389/fpls.2015.00671Buah, J.N., and J. W. Tachie-Menson. 2015. Suitability of Bud Manipulation Technique as an Alternative to Tissue Culture in the Production of Suckers for Plantains and Bananas. Biotechnology. 14(1):41-46.Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and molecular biology of plants. John Wiley & Sons.Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. doi: 10.3390/agronomy9060306CABI (2020). Disponible en: https://www.cabi.org/isc/datasheet/44999Caldwell, D., Kim, B. S., & Iyer-Pascuzzi, A. S. (2017). Ralstonia solanacearum differentially colonizes roots of resistant and susceptible tomato plants. Phytopathology, 107(5):528-536.Caldwell, D.C. (2016). The Role of root anatomy and root architecture in resistance to Ralstonia solanacearum (Tesis de maestría, Universidad de Purdue, Indiana, Estados Unidos). Recuperada desde: https://docs.lib.purdue.edu/Calvo, P., D.B. Watts, J.W. Kloepper, and H.A. Torbert, 2017. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science. 180(1):56-70. Doi: 10.1002/jpln.201500616Cao, W.L., X.C. Meng, and W. Ma. 2015. Effect of salicylic acid on photosynthesis, physio-biochemistry and quality of Panax ginseng under full sun shine in spring. China journal of Chinese materia medica. 40(18):3553-3559.Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., ... & Cai, Y. (2018). Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific reports, 8(1), 1-14. doi: 10.1038/s41598-018-22782-zCeballos, G., Álvarez, E., & Bolaños, M. M. (2014). Reducción de poblaciones de Ralstonia solanacearum raza 2 (Smith) en plátano (Musa AAB Simmonds) con aplicación de extractos de Trichoderma sp. (Alexopoulus y Mims) y bacterias antagonistas. Acta Agronómica, 63(1), 80-87. doi: 10.15446/acag.v63n1.43121Chabi, M. C., Dassou, A. G., Dossou-Aminon, I., Ogouchoro, D., Aman, B. O., & Dansi, A. (2018). Banana and plantain production systems in Benin: ethnobotanical investigation, varietal diversity, pests, and implications for better production. Journal of ethnobiology and ethnomedicine, 14(1), 78. https://doi.org/10.1186/s13002-018-0280-1Chaves C, B., Cayón S, G., & Jones, J. W. (2009). Modeling plantain (Musa AAB Simmonds) potential yield. Agronomía Colombiana, 27(3), 359-366.Chaves-Gómez, J. L., Cotes-Prado, A. M., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological response of cape gooseberry seedlings to two organic additives and their mixture under inoculation with Fusarium oxysporum f. sp. physali. HortScience horts, 55(1), 55-62.Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2020). Physiological responses to the foliar application of synthetic resistance elicitors in Cape Gooseberry seedlings infected with Fusarium oxysporum f. sp. physali. Plants, 9(2), 176. doi: 10.3390/plants9020176Chen, Y., Liu, M., Wang, L., Lin, W., Fan, X., & Cai, K. (2015). Proteomic characterization of silicon-mediated resistance against Ralstonia solanacearum in tomato. Plant and soil, 387(1-2), 425-440.Chen, Y., Ren, X., Zhou, X., Huang, L., Yan, L., Lei, Y., ... & Jiang, H. (2014). Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC genomics, 15(1), 1078.Choi, H. K., Iandolino, A., da Silva, F. G., & Cook, D. R. (2013). Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. Molecular Plant-Microbe Interactions, 26(6), 643-657. doi: 10.1094/MPMI-09-12-0217-R.Chunyu, L. I., Weicong, H. U., Bin, P. A. N., Yan, L. I. U., Saifei, Y. U. A. N., Yuanyuan, D. I. N. G., ... & Qirong, S. H. E. N. (2017). Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere, 27(6), 1135-1146. doi: 10.1016/S1002-0160(17)60406-5Cubides, W. (2016). Incidencia de Ralstonia solanacearum raza 2 en cultivos de plátano (Musa AAB), y su manejo en el control oficial, a través en el departamento del meta para el año 2015 (trabajo de especialización). Universidad Nacional de Colombia, Bogotá.Dahal, A., Chen, L., Kiba, A., Hikichi, Y., & Ohnishi, K. (2018). Chloroplastic proteins are targets for the RipG effectors of Ralstonia solanacearum. Int. J. Environ. Technol. Sci, 5, 147-156.Dalal, V.K., & Tripathy, B.C. (2018). Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Sci Rep 8, 5955. doi: 10.1038/s41598-017-14419-4de Lima, B. C., Moro, A. L., Santos, A. C. P., Bonifacio, A., Araujo, A. S. F., & de Araujo, F. F. (2019). Bacillus subtilis ameliorates water stress tolerance in maize and common bean. Journal of Plant Interactions, 14(1), 432-439. doi: 10.1080/17429145.2019.1645896Deng, X., Xiao, W., Shi, Z., Zeng, L., & Lei, L. (2020). Combined Effects of Drought and Shading on Growth and Non-Structural Carbohydrates in Pinus massoniana Lamb. Seedlings. Forests, 11(1), 18. doi: 10.3390/f11010018Dien, D. C., Mochizuki, T., & Yamakawa, T. (2019). Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Production Science, 22(4), 530-545.Ding, P., & Ding, Y. (2020). Stories of salicylic acid: A plant defense hormone. Trends in Plant Science, 25(6), 549-565. doi: 10.1016/j.tplants.2020.01.004Diogo, R. V., & Wydra, K. (2007). Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiological and Molecular Plant Pathology, 70(4-6), 120-129. doi:10.1016/j.pmpp.2007.07.008Djaya, L., Istifadah, N., Hartati, S., & Joni, I. M. (2019). In vitro study of plant growth promoting rhizobacteria (PGPR) and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology, 19, 101153. doi: 10.1016/j.bcab.2019.101153Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy, 9(6), 335. doi: 10.3390/agronomy9060335du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3-14. Doi: 10.1016/j.scienta.2015.09.021EBIC, 2020. Economic overview of the biostimulants sector in Europe. European Biostimulants industry Council. Consultado en: http://www.biostimulants.eu/Elsayed, T. R., Jacquiod, S., Nour, E. H., Sørensen, S. J., & Smalla, K. (2020). Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota and Ralstonia solanacearum. Frontiers in microbiology, 10, 2835. doi: 10.3389/fmicb.2019.02835Fan, X.Y., Lin, W.P., Rui, L.I.U., Jiang, N.H., & Cai, K.Z. (2018). Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum. Journal of Integrative Agriculture, 17(10), 2160-2171. doi: 10.1016/S2095-3119(18)62036-2FAO. FAOSTAT database. Roma: Food and Agriculture Organization; 2020.FAOSTAT. 2016. Agriculture data. Disponible en: http://www.fao.org/faostat/en/#data/QC (Consultado 14 de marzo de 2018).Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture (pp. 153-188). Springer, Dordrecht.Fernandes, A., Silva, M., Silva, D., Santos, T., Schmildt, E., Pfenning, L., & Falqueto, A. (2020). Silicon improves the photosynthetic performance of black pepper plants inoculated with Fusarium solani f. sp. piperis. Photosynthetica, 58(3), 692-701. doi: 10.32615/ps.2019.182Flores-Cruz, Z., & Allen, C. (2011). Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Applied and environmental microbiology, 77(18), 6426-6432.Fortunato, A. A., Rodrigues, F. Á., & do Nascimento, K. J. T. (2012). Physiological and biochemical aspects of the resistance of banana plants to Fusarium wilt potentiated by silicon. Phytopathology, 102(10), 957-966.Galán-Saúco, V., and J.C. Robinson. 2013. Fisiología, clima y producción de banano. pp. 44-56. En: XX Reunião Internacional da Associação para a Cooperação em Pesquisa e Desenvolvimento Integral das Musáceas (Bananas e Plátanos). Fortaleza, CE.Genin, S. (2010). Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytologist, 187(4), 920-928. doi: 10.1111/j.1469-8137.2010.03397.xGhareeb, H., Bozsó, Z., Ott, P. G., Repenning, C., Stahl, F., & Wydra, K. (2011). Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology, 75(3), 83-89. doi:10.1016/j.pmpp.2010.11.004Halpern, M., A. Bar-Tal, M. Ofek, D. Minz, T. Muller, and U. Yermiyahu. 2015. The Use of Biostimulants for Enhancing Nutrient Uptake. Advances in Agronomy. 130:141-174. Doi: 10.1016/bs.agron.2014.10.001Hazman, M., & Brown, K. M. (2018). Progressive drought alters architectural and anatomical traits of rice roots. Rice, 11(1), 62. doi: 10.1186/s12284-018-0252-zHelaly, M.N., H. El-Hoseiny, N.I. El-Sheery, A. Rastogi, and H.M. Kalaji. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant physiology and biochemistry. 118:31-44. Doi: 10.1016/j.plaphy.2017.05.021Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171-178.Huang, H., Ullah, F., Zhou, D. X., Yi, M., & Zhao, Y. (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science, 10. doi: 10.3389/fpls.2019.00800ICA. (2018a). Rendición de cuentas. Gerencia seccional Meta. Noviembre 2018.Jacobs, J. M., Milling, A., Mitra, R. M., Hogan, C. S., Ailloud, F., Prior, P., & Allen, C. (2013). Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and to overcome salicylic acid-mediated defenses during tomato pathogenesis. MBio, 4(6):e00875-13. doi: 10.1128/mBio.00875-13.Jiang N., Fan X., Lin W., Wang G., Cai K. (2019). Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. Int. J. Mol. Sci. 20(3), 761. doi: 10.3390/ijms20030761Karimi, S., Karami, H., Vahdati, K., & Mokhtassi-Bidgoli, A. (2020). Antioxidative responses to short-term salinity stress induce drought tolerance in walnut. Scientia Horticulturae, 267, 109322.Katiyar, D., Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Indian Journal of Plant Physiology, 20(1), 1-9. doi: 10.1007/s40502-015-0139-6.La, V.H., Lee, B.R., Zhang, Q., Park, S.H., Islam, M.T., & Kim, T.H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Hortic. Environ. Biotechnol., 60(1), 31-40. doi: 10.1007/s13580-018-0099-7Lagogianni, C. S., & Tsitsigiannis, D. I. (2019). Effective biopesticides and biostimulants to reduce aflatoxins in maize fields. Frontiers in Microbiology, 10, 2645. doi: 10.3389/fmicb.2019.02645Lee, B. R., Zhang, Q., Park, S. H., Islam, M. T., & Kim, T. H. (2019). Salicylic acid improves drought-stress tolerance by regulating the redox status and proline metabolism in Brassica rapa. Horticulture, Environment, and Biotechnology, 60(1), 31-40. doi: 10.1007/s13580-018-0099-7Liu, X., Rockett, K. S., Kørner, C. J., & Pajerowska-Mukhtar, K. M. (2015). Salicylic acid signalling: new insights and prospects at a quarter-century milestone. Essays in biochemistry, 58, 101-113.Lowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349. doi: 10.1111/1462-2920.14020Lowe‐Power, T. M., Hendrich, C. G., von Roepenack‐Lahaye, E., Li, B., Wu, D., Mitra, R., ... & Jancewicz, A. (2018). Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environmental microbiology, 20(4), 1330-1349. doi: 10.1111/1462-2920.14020Lu, H., Lema A, S., Planas-Marques, M., Alonso-Díaz, A., Valls, M., & Coll, N. S. (2018). Type III Secretion–Dependent and–Independent Phenotypes Caused by Ralstonia solanacearum in Arabidopsis Roots. Molecular plant-microbe interactions, 31(1), 175-184. doi: 10.1094/MPMI-05-17-0109-FIMaghsoudi, K., Y. Emam, and M. Ashraf. (2016a). Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. Journal of Plant Nutrition. 39(8):1194-1203. Doi: 10.1080/01904167.2015.1115876Maghsoudi, K., Y. Emam, and M. Pessarakli. (2016b). Effect of silicon on photosynthetic gas exchange, photosynthetic pigments, cell membrane stability and relative water content of different wheat cultivars under drought stress conditions. Journal of Plant Nutrition. 39(7):1001-1015.Mandal, S., Acharya, P., & Kar, I. (2014). Reactive oxygen species signaling in eggplant in response to Ralstonia solanacearum infection. Journal of plant pathology, 96(3), 525-534. doi: 10.4454/JPP.V96I3.018Martínez A.A.M., and D.G. Cayón Salinas. 2011. Dinámica del crecimiento y desarrollo del banano (Musa AAA Simmonds cvs. Gran Enano y Valery). Revista Facultad Nacional de Agronomía-Medellín. 64(2):6055-60-64.Martínez, A. (1998). El cultivo de plátano en los Llanos Orientales, aspectos generales y labores del cultivo. Manual. Corporación Colombiana de Investigación Agropecuaria (Corpoica); Programa Nacional de Transferencia de Tecnología Agropecuaria (Pronatta). Recuperado de: http://bibliotecadigital.agronet.gov.co/bitstream/11348/4031/1/20061127152826_El%20cultivo%20del%20platano%20llanos.pdfMateus-Cagua, D., & Rodríguez-Yzquierdo, G. (2019). Effect of biostimulants on the dry matter accumulation and gas exchange in plantains plants (Musa AAB). Revista Colombiana de Ciencias Hortícolas, 13(2): 151-160. doi: 10.17584/rcch.2019v13i2.8460Mhlongo, M. I., Piater, L. A., Madala, N. E., Labuschagne, N., & Dubery, I. A. (2018). The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Frontiers in plant science, 9, 112. doi: 10.3389/fpls.2018.00112Mia, M.B., Z.H. Shamsuddin, and M. Mahmood. 2010a. Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol. 12(3):459-467.Mia, M.B., Z.H. Shamsuddin, Z. Wahab, and M. Marziah. 2010b. Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv.‘Berangan’). Scientia horticulturae. 126(2):80-87. Doi: 10.1016/j.scienta.2010.06.005Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., ... & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180-190.Mimouni, H., Wasti, S., Manaa, A., Gharbi, E., Chalh, A., Vandoorne, B., ... & Ahmed, H. B. (2016). Does salicylic acid (SA) improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. Omics: a journal of integrative biology, 20(3), 180-190.Nakano, M., & Mukaihara, T. (2018). Ralstonia solanacearum type III effector RipAL targets chloroplasts and induces jasmonic acid production to suppress salicylic acid-mediated defense responses in plants. Plant and Cell Physiology, 59(12), 2576-2589. doi: 10.1093/pcp/pcy177Nansamba, M., Sibiya, J., Tumuhimbise, R., Karamura, D., Kubiriba, J., & Karamura, E. (2020). Breeding banana (Musa spp.) for drought tolerance: A review. Plant Breeding. doi: 10.1111/pbr.12812Narancio, R., Zorrilla, P., Robello, C., Gonzalez, M., Vilaró, F., Pritsch, C., & Dalla Rizza, M. (2013). Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. European journal of plant pathology, 136(4), 823-835. doi: 10.1007/s10658-013-0210-yNarasimhamurthy, K., Soumya, K., Udayashankar, A. C., Srinivas, C., & Niranjana, S. R. (2019). Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum. Biocatalysis and Agricultural Biotechnology, 22, 101414. doi: 10.1016/j.bcab.2019.101414Olumba, C. C., & Onunka, C. N. (2020). Banana and plantain in West Africa: production and marketing. African Journal of Food, Agriculture, Nutrition & Development, 15474-15489. doi: 10.18697/ajfand.90.18365Parađiković, N., Teklić, T., Zeljković, S., Lisjak, M., & Špoljarević, M. (2019). Biostimulants research in some horticultural plant species—A review. Food and Energy Security, 8(2), e00162. doi: 10.1002/fes3.162Peeters, N., Guidot, A., Vailleau, F., & Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post‐genomic era. Molecular plant pathology, 14(7), 651-662. doi: 10.1111/mpp.12038Ramírez, D. A., Yactayo, W., Gutiérrez, R., Mares, V., De Mendiburu, F., Posadas, A., & Quiroz, R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168, 202-209.Ramírez, G., Guillermo, J., Muñoz, A., Patiño, H., Fernando, L., Morales, O., & Gonzalo, J. (2015). Banana Moko disease management with resistance inducers and chlorine dioxide. Agronomía Colombiana, 33(2), 194-202. doi: 10.15446/agron.colomb.v33n2.48663.Ramírez, M., Neuman, B., & Ramírez, C. A. (2020). Bacteriophages as promising agents for the biological control of moko disease (Ralstonia solanacearum) of banana. Biological Control, 104238. doi: 10.1016/j.biocontrol.2020.104238Ray, S. K., Kumar, R., Peeters, N., Boucher, C., & Genin, S. (2015). rpoN1, but not rpoN2, is required for twitching motility, natural competence, growth on nitrate, and virulence of Ralstonia solanacearum. Frontiers in microbiology, 6, 229.Robinson, J. H., & Sauco, V. G. (2010). Banana and Plantains. 2nd Editition. CABI North America Office. USA. 1-9 pp.Rodríguez, G. A., Becerra, J. J., Betancourt, M., Miranda, T. C., Alzate, S. V., Pisco, Y. C & Sandoval, H. A. (2018). Modelo productivo para la producción de plátano en los Llanos Orientales. Mosquera, Colombia. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 216 p.Rodríguez, G. A., J. Becerra, M. Betancourt, T. Miranda & S. Alzate. (2019). Modelo productivo: Tecnologías eficientes para la producción de semilla de plátano en los Llanos Orientales. Mosquera, Colombia. Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA. 82 p.Saa, S., O.D. Rio, S. Castro, and P.H. Brown. 2015. Foliar application of microbial and plant based biostimulants increases growth and potassium uptake in almond (Prunus dulcis [Mill.] DA Webb). Frontiers in plant science. 6:87. Doi: 10.3389/fpls.2015.00087Saud, S., Chen, Y., Fahad, S., Hussain, S., Na, L., Xin, L., et al. (2016). Silicate application increases the photosynthesis and its associated metabolic activities in Kentucky bluegrass under drought stress and post-drought recovery. Environ. Sci. Pollut. Res. 23, 17647–17655. doi: 10.1007/s11356-016-6957-xSayago, P., Juncosa, F., Albarracín Orio, A.G., Luna, D.F., Molina, G., Lafi, J., & Ducasse D.A. (2020). Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance. Eur J Plant Pathol. doi: 10.1007/s10658-020-02012-xSharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., ... & Zheng, B. (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285. doi: 10.3390/biom9070285Silva, P. A., Cosme, V. S., Rodrigues, K. C., Detmann, K. S., Leão, F. M., Cunha, R. L., ... & Pinheiro, H. A. (2017). Drought tolerance in two oil palm hybrids as related to adjustments in carbon metabolism and vegetative growth. Acta physiologiae plantarum, 39(2), 58. doi: 10.1007/s11738-017-2354-4Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102(4), 381-389.Singh, D., Yadav, D. K., Chaudhary, G., Rana, V. S., & Sharma, R. K. (2016). Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. J Plant Pathol Microbiol, 7:327. doi: 10.4172/2157-7471.1000327Sinha, R., Gupta, A., & Senthil-Kumar, M. (2017). Concurrent drought stress and vascular pathogen infection induce common and distinct transcriptomic responses in chickpea. Frontiers in plant science, 8, 333. doi: 10.3389/fpls.2017.00333/fullSohag, A. A. M., Tahjib-Ul-Arif, M., Brestič, M., Afrin, S., Sakil, M. A., Hossain, M. T., ... & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuates drought stress in rice. Plant Soil Environ, 66:7-13. doi: 10.17221/472/2019-PSESong, A., Li, P., Fan, F., Li, Z., & Liang, Y. (2014). The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One, 9(11):e113782. doi:10.1371/journal.pone.0113782Tahir, H. A. S., Gu, Q., Wu, H., Raza, W., Safdar, A., Huang, Z., ... & Gao, X. (2017). Effect of volatile compounds produced by Ralstonia solanacearum on plant growth promoting and systemic resistance inducing potential of Bacillus volatiles. BMC plant biology, 17(1), 1-16. doi: 10.1186/s12870-017-1083-6Tan, S., Gu, Y., Yang, C., Dong, Y., Mei, X., Shen, Q., & Xu, Y. (2016). Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52(3), 341-351. doi: 10.1007/s00374-015-1079-z.Turner, M., Jauneau, A., Genin, S., Tavella, M. J., Vailleau, F., Gentzbittel, L., & Jardinaud, M. F. (2009). Dissection of bacterial wilt on Medicago truncatula revealed two type III secretion system effectors acting on root infection process and disease development. Plant Physiology, 150 (4):1713–1722. doi: 10.1104/pp.109.141523.Ugena, L., Hýlová, A., Podlešáková, K., Humplík, J. F., Doležal, K., Diego, N. D., & Spíchal, L. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Frontiers in Plant Science, 9, 1327.Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), 5. doi: 10.1186/s40538-017-0089-5Wang, H. C., Guo, H., Cai, L., Cai, L. T., Guo, Y. S., & Ding, W. (2019). Effect of temperature on phenotype characterization of Ralstonia solanacearum from tobacco. Canadian Journal of Plant Pathology, 1-18.Wang, R., Gao, M., Ji, S., Wang, S., Meng, Y., & Zhou, Z. (2016). Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiology and Biochemistry, 107, 137-146.Wang, W., Qiu, Y., Qiu, S., Ke, Y., & Pan, T. (2014). Photosynthetic characteristics and chloroplast ultrastructure of sweet potato leaves infected by Ralstonia solanacearum. Journal of Tropical and Subtropical Botany, 22(6), 610-616.Wen-ying, Y., Wei-ying, W., Q., Yong-xiang, Yu-qin, K., Wei, W., & Zhi-dong, C. (2008). Salicylic acid induced sweet potato resistance to Ralstonia solanacearum through antioxidant enzymes. Journal of Fujian Agriculture and Forestry University (Natu. Sci. Ed.). 37: 23-26.Xiao, X., Lin, W., Li, K., Li, W., Gao, X., & Lv, L. (2017). Early burst of reactive oxygen species positively regulates resistance of eggplant against bacterial wilt. Journal of Phytopathology, 165(10), 652–661. doi:10.1111/jph.12604Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi. Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia genus nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Douderoff 1973) comb.nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiology and Immunology, 39, 897-904.Yuliar, N. Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and environments. 30(1): 1-11. doi: 10.1264/jsme2.ME14144.Zhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y., & Ahammed, G. J. (2019). Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy, 9(11), 733. doi: 10.3390/agronomy9110733.Zhang, Y., Shi, Y., Gong, H., Zhao, H., Li, H., Hu, Y., & Wang, Y. (2018). Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17(10), 2151–2159. doi:10.1016/s2095-3119(18)62038-6Zhao, C., Wang, H., Lu, Y., Hu, J., Qu, L., Li, Z., Wang, D., He, Y., Valls, M., Coll, N. S, Chen, Q., & Lu, H. (2019). Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. Molecular plant-microbe interactions, 32, 813-827. doi: 10.1094/MPMI-10-18-0268-RZheng, X., Zhu, Y., Liu, B., Lin, N., & Zheng, D. (2017). Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Microbial pathogenesis, 113, 144-151. doi: 0.1016/j.micpath.2017.10.046Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Springer Science & Business Media. Chapter 5.InvestigadoresEstudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79189/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52ORIGINAL1121835531.2020.pdf1121835531.2020.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf2381027https://repositorio.unal.edu.co/bitstream/unal/79189/1/1121835531.2020.pdf7ee9dea4226c67b992d7c6bb50727666MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/79189/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL1121835531.2020.pdf.jpg1121835531.2020.pdf.jpgGenerated Thumbnailimage/jpeg5064https://repositorio.unal.edu.co/bitstream/unal/79189/4/1121835531.2020.pdf.jpg5acb4dd13bd3e697bf1cfc18af4b449bMD54unal/79189oai:repositorio.unal.edu.co:unal/791892024-07-29 23:13:06.524Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==